
8

Fast and Accurate Time-Series Clustering

JOHN PAPARRIZOS and LUIS GRAVANO, Columbia University

The proliferation and ubiquity of temporal data across many disciplines has generated substantial interest
in the analysis and mining of time series. Clustering is one of the most popular data-mining methods, not
only due to its exploratory power but also because it is often a preprocessing step or subroutine for other
techniques. In this article, we present k-Shape and k-MultiShapes (k-MS), two novel algorithms for time-
series clustering. k-Shape and k-MS rely on a scalable iterative refinement procedure. As their distance
measure, k-Shape and k-MS use shape-based distance (SBD), a normalized version of the cross-correlation
measure, to consider the shapes of time series while comparing them. Based on the properties of SBD, we
develop two new methods, namely ShapeExtraction (SE) and MultiShapesExtraction (MSE), to compute
cluster centroids that are used in every iteration to update the assignment of time series to clusters. k-Shape
relies on SE to compute a single centroid per cluster based on all time series in each cluster. In contrast, k-MS
relies on MSE to compute multiple centroids per cluster to account for the proximity and spatial distribution
of time series in each cluster. To demonstrate the robustness of SBD, k-Shape, and k-MS, we perform an
extensive experimental evaluation on 85 datasets against state-of-the-art distance measures and clustering
methods for time series using rigorous statistical analysis. SBD, our efficient and parameter-free distance
measure, achieves similar accuracy to Dynamic Time Warping (DTW), a highly accurate but computationally
expensive distance measure that requires parameter tuning. For clustering, we compare k-Shape and k-
MS against scalable and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based
methods, with combinations of the most competitive distance measures. k-Shape outperforms all scalable
methods in terms of accuracy. Furthermore, k-Shape also outperforms all non-scalable approaches, with
one exception, namely k-medoids with DTW, which achieves similar accuracy. However, unlike k-Shape, this
approach requires tuning of its distance measure and is significantly slower than k-Shape. k-MS performs
similarly to k-Shape in comparison to rival methods, but k-MS is significantly more accurate than k-Shape.
Beyond clustering, we demonstrate the effectiveness of k-Shape to reduce the search space of one-nearest-
neighbor classifiers for time series. Overall, SBD, k-Shape, and k-MS emerge as domain-independent, highly
accurate, and efficient methods for time-series comparison and clustering with broad applications.

CCS Concepts: � Mathematics of computing → Time series analysis; Cluster analysis; � Informa-
tion systems → Clustering; Nearest-neighbor search;

Additional Key Words and Phrases: Time-series clustering, time-series classification, distance measures

This article includes material from Paparrizos and Gravano [2015] and significantly extends this earlier ar-
ticle, as discussed in detail in Section 7. This research was supported by the Intelligence Advanced Research
Projects Activity (IARPA) via Department of Interior National Business Center (DoI/NBC) contract number
D11PC20153. The U.S. Government is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government. This
material is also based upon work supported by a generous gift from Microsoft Research.
Authors’ addresses: J. Paparrizos and L. Gravano, Computer Science Department, Columbia University,
1214 Amsterdam Avenue, New York, NY 10027-7003; emails: {jopa, gravano}@cs.columbia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0362-5915/2017/06-ART8 $15.00
DOI: http://dx.doi.org/10.1145/3044711

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

http://dx.doi.org/10.1145/3044711

8:2 J. Paparrizos and L. Gravano

ACM Reference Format:
John Paparrizos and Luis Gravano. 2017. Fast and accurate time-series clustering. ACM Trans. Database
Syst. 42, 2, Article 8 (June 2017), 49 pages.
DOI: http://dx.doi.org/10.1145/3044711

1. INTRODUCTION

Temporal, or sequential, data mining deals with problems where data are naturally
organized in sequences [Han et al. 2011]. We refer to such data sequences as time-
series sequences if they contain explicit information about timing (e.g., as is the case in
stock, audio, speech, and video data) or if an ordering on values can be inferred (e.g., as
is the case in streams and handwriting data). Large volumes of time-series sequences
appear in almost every discipline, including astronomy, biology, meteorology, medicine,
finance, robotics, engineering, and others [Keogh et al. 2015; Bar-Joseph et al. 2002;
Gavrilov et al. 2000; Goddard et al. 2003; Honda et al. 2002; Mantegna 1999; Ruiz
et al. 2012; Uehara and Shimada 2002]. The ubiquity of time series has generated a
substantial interest in querying [Agrawal et al. 1993; Ding et al. 2008; Kin-pong and
Ada 1999; Korn et al. 1997; Lian et al. 2007; Papapetrou et al. 2011; Shou et al. 2005;
Wang et al. 2014], indexing [Cai and Ng 2004; Chen et al. 2007a; Keogh 2006; Keogh
et al. 2001; Keogh and Ratanamahatana 2005; Vlachos et al. 2006], classification [Hu
et al. 2013; Mueen et al. 2011; Ratanamahatana and Keogh 2004; Ye and Keogh 2009],
clustering [Keogh and Lin 2005; Megalooikonomou et al. 2005; Petitjean et al. 2011;
Yang and Leskovec 2011; Zakaria et al. 2012], and modeling [Alon et al. 2003; Kalpakis
et al. 2001; Xiong and Yeung 2002] of such data.

Among all techniques applied to time-series sequences, clustering is one of the most
widely used as it does not rely on costly human supervision or time-consuming annota-
tion of data. With clustering, we can identify and summarize interesting patterns and
correlations in the underlying data [Halkidi et al. 2001]. In the past few decades, clus-
tering of time-series sequences has received significant attention [Bagnall and Janacek
2004; Das et al. 1998; Gavrilov et al. 2000; Li et al. 1998; Oates 1999; Petitjean et al.
2011; Rakthanmanon et al. 2011; Yang and Leskovec 2011; Zakaria et al. 2012], not
only as a powerful standalone exploratory method but also as a preprocessing step or
subroutine for other tasks.

Most time-series analysis techniques, including clustering, critically depend on the
choice of distance measure. A key issue when comparing two time-series sequences is
how to handle the variety of distortions, as we will discuss, that are characteristic of
the sequences. To illustrate this point, consider the well-known ECGFiveDays dataset
[Keogh et al. 2015], with sequences recorded with electrocardiography (ECG) for the
same patient on two different days. While the sequences seem similar overall, they
exhibit patterns that belong in one of two distinct classes (see Figure 1): Class A is
characterized by a sharp rise, a drop, and another gradual increase, while Class B
is characterized by a gradual increase, a drop, and another gradual increase. Ideally,
a shape-based clustering method should generate a partition similar to the classes
shown in Figure 1, where sequences exhibiting similar patterns are placed into the
same cluster based on their shape similarity, regardless of differences in amplitude
and phase. As the notion of shape cannot be precisely defined, dozens of distance
measures have been proposed [Chen and Ng 2004; Chen et al. 2005, 2007b; Ding et al.
2008; Faloutsos et al. 1994; Frentzos et al. 2007; Morse and Patel 2007; Stefan et al.
2013; Vlachos et al. 2002; Wang et al. 2013] to offer invariances to multiple inherent
distortions in the data. However, it has been shown that distance measures offering
invariances to amplitude and phase perform exceptionally well [Ding et al. 2008; Wang
et al. 2013], and, hence, such distance measures are used for shape-based clustering
[Meesrikamolkul et al. 2012; Niennattrakul and Ratanamahatana 2009; Petitjean et al.
2011; Yang and Leskovec 2011].

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

http://dx.doi.org/10.1145/3044711

Fast and Accurate Time-Series Clustering 8:3

Fig. 1. ECG sequence examples and types of alignments for the two classes of the ECGFiveDays dataset
[Keogh et al. 2015].

Due to these difficulties and the different needs for invariances from one domain
to another, more attention has been given to the creation of new distance measures
rather than to the creation of new clustering algorithms. It is generally believed that
the choice of distance measure is more important than the clustering algorithm itself
[Batista et al. 2013]. As a consequence, time-series clustering relies mostly on classic
clustering methods, either by replacing the default distance measure with one that is
more appropriate for time series or by transforming time series into “flat” data so exist-
ing clustering algorithms can be directly used [Warren Liao 2005]. However, the choice
of clustering method can affect (i) accuracy, as every method expresses homogeneity
and separation of clusters differently, and (ii) efficiency, as the computational cost dif-
fers from one method to another. For example, spectral clustering [Filippone et al. 2008]
or certain variants of hierarchical clustering [Kaufman and Rousseeuw 2009] are more
appropriate to identify density-based clusters (i.e., areas of higher density than the
remainder of the data) than partitional methods such as k-means [MacQueen 1967]
or k-medoids [Kaufman and Rousseeuw 2009]. On the other hand, k-means is more
efficient than hierarchical, spectral, or k-medoids methods.

Unfortunately, state-of-the-art approaches for shape-based clustering, which use par-
titional methods with distance measures that are scale and shift invariant, suffer from
three main drawbacks: (i) these approaches cannot scale to large volumes of data as they
depend on computationally expensive methods or distance measures [Meesrikamolkul
et al. 2012; Niennattrakul and Ratanamahatana 2009; Petitjean et al. 2011; Yang
and Leskovec 2011], (ii) these approaches have been developed for particular domains
[Yang and Leskovec 2011] or their effectiveness has only been shown for a limited
number of datasets [Meesrikamolkul et al. 2012; Niennattrakul and Ratanamahatana
2009], and (iii) these approaches are sensitive to outliers and noise as they do not take
into consideration the proximity and spatial distribution of time series. Moreover, the
most successful shape-based clustering methods handle phase invariance through a
local, non-linear alignment of the sequence coordinates, even though a global, linear
alignment is often adequate and, in certain cases, more accurate. For example, for the
ECG dataset in Figure 1, an efficient linear drift can reveal the underlying differences
in patterns of sequences of two classes, whereas an expensive non-linear alignment
attempts to match every corresponding increase or drop of each sequence, making it
difficult to distinguish the two classes (see Figure 1). Importantly, in contrast to linear
alignment, the effectiveness of non-linear alignments might degrade for time series
with large variability in their prefix and suffix coordinates [Silva et al. 2016]. Addi-
tionally, to the best of our knowledge, these approaches have never been extensively
evaluated against each other, against other partitional methods, or against different
approaches such as hierarchical or spectral methods. We present such an experimental
evaluation, as discussed below.

In this article, we propose k-Shape and k-MS, two novel algorithms for shape-based
time-series clustering that are efficient and domain independent. k-Shape and k-MS
are based on a scalable iterative refinement procedure similar to the one used by the

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:4 J. Paparrizos and L. Gravano

k-means algorithm but with significant differences. Specifically, k-Shape and k-MS use
both a different distance measure and a different method for centroid computation
from those of k-means. As argued above, k-Shape and k-MS attempt to preserve the
shapes of time series while comparing them. Furthermore, k-MS also considers the
proximity and spatial distribution of time series. To do so, k-Shape and k-MS require
a distance measure that is invariant to scaling and shifting. Unlike other cluster-
ing methods [Meesrikamolkul et al. 2012; Petitjean et al. 2011; Yang and Leskovec
2011], we adapt the cross-correlation measure and we show (i) how we can derive in
a principled manner a time-series distance measure that is scale and shift invariant
and (ii) how this distance measure can be computed efficiently by exploiting intrinsic
characteristics of Fourier transform algorithms. Based on the properties of this nor-
malized version of cross-correlation, namely, shape-based distance (SBD), we develop
ShapeExtraction (SE) and MultiShapesExtraction (MSE), two novel methods to com-
pute cluster centroids, which are used in every iteration to update the assignment of
time series to clusters. k-Shape relies on SE to compute a single centroid per cluster
based on the entire set of time series in each cluster. In contrast, k-MS relies on MSE to
compute multiple centroids per cluster in order to consider the proximity and spatial
distribution of time series in each cluster.

To demonstrate the effectiveness of SBD, k-Shape, and k-MS we have conducted
an extensive experimental evaluation over 85 datasets and compared the state-of-
the-art distance measures and clustering approaches for time series using rigorous
statistical analysis. We took steps to ensure the reproducibility of our results, including
making available our source code as well as using public datasets. The current article
substantially extends the analysis and experimental evaluation in Paparrizos and
Gravano [2015] and, importantly, confirms the earlier findings on a significantly larger
set of datasets than the 48 datasets in our original article. Specifically, our results show
that SBD is competitive, outperforming Euclidean distance (ED) [Faloutsos et al. 1994]
and achieving similar accuracy as constrained Dynamic Time Warping (cDTW) [Sakoe
and Chiba 1978], one of the best performing distance measures [Wang et al. 2013],
without requiring any tuning and performing significantly faster. Interestingly, our
results further suggest that only the supervised tuning of cDTW leads to significant
improvements in classification accuracy of cDTW over the unconstrained DTW. In
contrast, DTW outperforms cDTW in clustering accuracy, which contradicts the belief
that cDTW generally improves the accuracy of DTW.

For time-series clustering, we show that the k-means algorithm with ED, in contrast
to what has been reported in the literature, is a robust approach and that inadequate
modifications of the distance measure and the centroid computation can reduce its
performance. Similarly to the earlier findings in Paparrizos and Gravano [2015], our
new results in the expanded set of datasets suggest that partitional methods outper-
form hierarchical and spectral methods with the most competitive distance measures.
Additionally, in this article, we compare partitional methods against density-based
and shapelet-based clustering methods, which attempt to isolate and ignore outliers
in time series, and show the superiority of partitional methods. These results indicate
that the choice of algorithm, which is sometimes believed to be less important than
that of distance measure, is as critical as the choice of distance measure. Similarly, we
show that key characteristics of the clustering methods, such as the linkage criterion
in hierarchical clustering, can significantly affect the accuracy of the clustering results,
whereas the choice of distance measure is many times less important.

Our extensive experimental evaluation shows that k-Shape outperforms all scalable
and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based
methods in terms of accuracy, with the only exception of one existing approach that
achieves similar accuracy results, namely k-medoids with cDTW. However, there are

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:5

problems with this approach that can be avoided with k-Shape: (i) the requirement
of k-medoids to compute the dissimilarity matrix makes it unable to scale and
particularly slow, two orders of magnitude slower than k-Shape, and (ii) its distance
measure requires tuning, either through automated methods that rely on labeling of
instances or through the help of a domain expert; this requirement is problematic for
clustering, which is an unsupervised task. In contrast, k-Shape uses a parameter-free
and efficient distance measure.

k-MS behaves similarly to k-Shape in comparison to scalable and non-scalable rival
methods but, importantly, k-MS is significantly more accurate than k-Shape on datasets
with large variance in the proximity and spatial distribution of time series. Therefore,
k-MS is suitable to cluster time series in the presence of outliers and noise.

Overall, k-Shape and k-MS are scalable—yet accurate—choices for time-series clus-
tering that achieve state-of-the-art performance across different domains and are par-
ticularly effective for applications involving similar but out-of-phase sequences. In
addition to our clustering results, and inspired by the work by Petitjean et al. [2014]
and Petitjean et al. [2015], we also show how k-Shape can also lead to efficient tech-
niques for other related time-series tasks. Specifically, we show that we can rely on
k-Shape as a subroutine to effectively reduce the search space for one-nearest-neighbor
time-series classification algorithms.

Our article starts with a review of the state of the art for clustering time series, as
well as with a precise definition of our problem of focus (Section 2). We continue as
follows:

—We show how to derive SBD, a scale-, translate-, and shift-invariant distance mea-
sure, in a principled manner from cross-correlation and how to efficiently compute
this measure by exploiting intrinsic characteristics of Fourier transform algorithms
(Section 3.1).

—We present two novel methods to compute a single centroid or multiple centroids per
cluster when the SBD distance measure is used (Section 3.2).

—We develop k-Shape and k-MS, two algorithms for time-series clustering
(Section 3.3).

—We present the Nearest Shape Classifier (NSC), a one-nearest-neighbor classification
algorithm that relies on k-Shape as subroutine to reduce the search space of one-
nearest-neighbor algorithms (Section 4).

—We perform an extensive experimental evaluation of our ideas (Sections 5 and 6).

Finally, we conclude with a discussion of related work (Section 7) and the implications
of our work (Section 8). This article includes material from Paparrizos and Gravano
[2015] and significantly extends this earlier article, as discussed in detail in Section 7.
Additionally, a summary of the article in Paparrizos and Gravano [2015] appears in a
SIGMOD Record “Research Highlights” special issue [Paparrizos and Gravano 2016].

2. PRELIMINARIES

In this section, we review the relevant theoretical background (Section 2.1). We discuss
common distortions in time series (Section 2.2) and the most popular distance measures
for such data (Section 2.3). Then, we summarize existing approaches for clustering
time-series data (Section 2.4) and for centroid computation (Section 2.5). Finally, we
define our clustering problem of focus (Section 2.6).

2.1. Theoretical Background

Hardness of clustering: Clustering is the general problem of partitioning n observa-
tions into k clusters, where a cluster is characterized with the notions of homogeneity—
the similarity of observations within a cluster—and separation—the dissimilarity of

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:6 J. Paparrizos and L. Gravano

observations from different clusters. Even though many clustering criteria to capture
homogeneity and separation have been proposed [Hansen and Jaumard 1997], the
minimum within-cluster sum of squared distances is most commonly used as it
expresses both of them. Given a set of n observations X = {�x1, . . . , �xn}, where �xi ∈ R

m,
and the number of clusters k < n, the objective is to partition X into k pairwise-disjoint
clusters P = {p1, . . . , pk}, such that the within-cluster sum of squared distances is
minimized:

P∗ = arg min
P

k∑
j=1

∑
�xi∈pj

dist(�xi, �c j)2, (1)

where �c j is the centroid of partition pj ∈ P. In Euclidean space this is an NP-hard
optimization problem for k ≥ 2 [Aloise et al. 2009], even for number of dimensions
m = 2 [Mahajan et al. 2009]. Because finding a global optimum is difficult, heuristics
such as the k-means method [MacQueen 1967] are often used to find a local optimum.
Specifically, k-means randomly assigns the data points into k clusters and then uses
an iterative procedure that performs two steps in every iteration: (i) in the assignment
step, every data point is assigned to the cluster of its nearest centroid, which is
determined with the use of a distance function, and (ii) in the refinement step, the
centroids of the clusters are updated to reflect the changes in cluster memberships.
The algorithm terminates either when there is no change in cluster memberships or
when the maximum number of iterations is reached.

Steiner’s sequence: In the refinement step, k-means computes new centroids to serve
as representatives of the clusters. The centroid is defined as the data point that mini-
mizes the sum of squared distances to all other data points, and, hence, it depends on
the distance measure used. Finding such a centroid is known as the Steiner’s sequence
problem [Petitjean and Gançarski 2012]: Given a partition pj ∈ P, the corresponding
centroid �c j needs to fulfill the following:

�c j = arg min
�w

∑
�xi∈pj

dist(�w, �xi)2, �w ∈ R
m. (2)

When ED is used, the centroid can be computed with the arithmetic mean property
[Dimitriadou et al. 2002]. In many cases where alignment of observations is required,
this problem is referred to as the multiple sequence alignment problem, which is
known to be NP-complete [Wang and Jiang 1994]. In the context of time series, DTW
(see Section 2.3) is the most widely used measure to compare time-series sequences
with alignment, and many heuristics have been proposed to find the average sequence
under DTW (see Section 2.5).

2.2. Time-Series Invariances

Sequences are often distorted in some way and distance measures need to satisfy a
number of invariances to compare sequences meaningfully. We now review common
distortions and their invariances. For a more detailed review, see Batista et al. [2013].

Scaling and translation invariances: In many cases, it is useful to recognize the
similarity of sequences despite differences in amplitude and offset. In other words,
transforming a sequence �x as �x′ = a�x + b, where a and b are constants, should not
change �x’s similarity to other sequences. For example, these invariances might be
useful to analyze seasonal variations in currency values on foreign exchange markets
without being biased by inflation.

Shift invariance: When two sequences are similar but differ in phase (global align-
ment) or when there are regions of the sequences that are aligned and others are

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:7

not (local alignment), we might still need to consider them similar. For example, heart-
beats can be out of phase depending on when we start taking the measurements (global
alignment) and handwritings of a phrase from different people will need alignment de-
pending on the size of the letters and on the spaces between words (local alignment).

Uniform scaling invariance: Sequences that differ in length require either stretch-
ing of the shorter sequence or shrinking of the longer sequence to compare them effec-
tively. This invariance is required for heartbeats with measurement periods of different
duration.

Occlusion invariance: When subsequences are missing, we can still compare the
sequences by ignoring the subsequences that do not match well. This invariance is
useful in handwritings if there is a typo or a letter is missing.

Complexity invariance: When sequences have similar shape but different complexi-
ties, we might want to make them have low or high similarity based on the application.
For example, audio signals that were recorded indoors and outdoors might be con-
sidered similar, despite the fact that outdoor signals will be more noisy than indoor
signals.

For many tasks, some or all of the above invariances are required when we compare
time-series sequences. To satisfy the appropriate invariances, we could preprocess the
data to eliminate the corresponding distortions before clustering. For example, by z-
normalizing [Goldin and Kanellakis 1995] the data, we can achieve the scaling and
translation invariances. However, for invariances that cannot be trivially achieved
with a preprocessing step, we can define sophisticated distance measures that offer
distortion invariances. In the next section, we review the most common such distance
measures.

2.3. Time-Series Distance Measures

The two state-of-the-art approaches for time-series comparison first z-normalize the
sequences and then use a distance to determine their similarity and possibly capture
more invariances [Rakthanmanon et al. 2012]. The most widely used distance is ED
[Faloutsos et al. 1994]. ED compares two time series �x = (x1, . . . , xm) and �y = (y1, . . . , ym)
as follows:

ED(�x, �y) =
√∑m

i=1
(xi − yi)2. (3)

Another popular distance measure is DTW [Sakoe and Chiba 1978]. DTW can be
seen as an extension of ED that offers a local (non-linear) alignment. To achieve that,
an m-by-m matrix M is constructed, with the ED between any two points of �x and
�y. A warping path W = {w1, w2, . . . , wr}, with r ≥ m, is a contiguous set of matrix
elements that defines a mapping between �x and �y under several constraints [Keogh
and Ratanamahatana 2005]:

DTW(�x, �y) = min
√∑r

i=1
wi. (4)

This path can be computed on matrix M with dynamic programming as follows:

γ (i, j) = ED(i, j) + min{γ (i − 1, j − 1), γ (i − 1, j), γ (i, j − 1)}.
It is common practice to constrain the warping path to visit only a subset of cells on
matrix M. The shape of the subset matrix is called band and the width of the band is
called warping window. The most frequently used band for cDTW is the Sakoe-Chiba
band [Sakoe and Chiba 1978]. Figure 2(a) shows the difference in alignments of two

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:8 J. Paparrizos and L. Gravano

Fig. 2. Similarity computation: (a) alignment under ED (top) and DTW (bottom), (b) Sakoe-Chiba band with
a warping window of five cells (light cells in band) and the warping path computed under cDTW (dark cells
in band).

sequences offered by ED and DTW, whereas Figure 2(b) presents the computation of
the warping path (dark cells) for cDTW constrained by the Sakoe-Chiba band with
width five cells (light cells).

Recently, Wang et al. [2013] evaluated nine distance measures and several variants
thereof. They found that ED is the most efficient measure with a reasonably high
accuracy and that DTW and cDTW perform exceptionally well in comparison to other
measures. cDTW is slightly better than DTW and significantly reduces the computation
time. Several optimizations have been proposed to further speed up cDTW [Rakthan-
manon et al. 2012]. Next, we review clustering methods that can utilize these distance
measures.

2.4. Time-Series Clustering Algorithms

Several methods have been proposed to cluster time series. All approaches generally
modify existing algorithms, either by replacing the default distance measures with
a version that is more suitable for comparing time series (raw-based methods) or by
transforming the sequences into “flat” data so they can be directly used in classic algo-
rithms (feature- and model-based methods) [Warren Liao 2005]. Raw-based approaches
can easily leverage the vast literature on distance measures (see Section 2.3), which
has shown that invariances offered by certain measures, such as DTW, are general and,
hence, suitable for almost every domain [Ding et al. 2008]. In contrast, feature- and
model-based approaches are usually domain- dependent and applications on different
domains require that we modify the features or models. Because of these drawbacks of
feature- and model-based methods, in this article we follow a raw-based approach.

The four most popular raw-based methods are agglomerative hierarchical, spectral,
density-based, and partitional clustering [Batista et al. 2013; Warren Liao 2005]. For
hierarchical clustering, the most widely used “linkage” criteria are the single, average,
and complete linkage variants [Kaufman and Rousseeuw 2009]. Spectral clustering
[Ng et al. 2002] has recently started receiving attention [Batista et al. 2013] due to
its success over other types of data [Filippone et al. 2008]. Similarly, density-based
clustering [Ester et al. 1996] has gained popularity due to its ability to handle outliers
in datasets [Begum et al. 2015]. Among partitional methods, k-means [MacQueen 1967]
and k-medoids [Kaufman and Rousseeuw 2009] are the most representative examples.
When partitional methods use distances that offer invariances to scaling, translation,
and shifting, we consider them as shape-based approaches. From these methods, k-
medoids is usually preferred [Warren Liao 2005]: Unlike k-means, k-medoids computes
the dissimilarity matrix of all data sequences and uses actual sequences as cluster
centroids; in contrast, k-means requires the computation of artificial sequences as
centroids, which hinders the easy adaptation of distance measures other than ED (see
Section 2.1). However, from all these methods, only the k-means class of algorithms

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:9

can scale linearly with the size of the datasets. Recently, k-means was modified to work
with (i) DTW [Petitjean et al. 2011] and (ii) a distance that offers pairwise scaling and
shifting of sequences [Yang and Leskovec 2011]. Both of these modifications rely on
new approaches to compute cluster centroids that we will review next.

2.5. Time-Series Averaging Techniques

The computation of an average sequence or, in the context of clustering, a centroid, is
a difficult task and it critically depends on the distance measure used to compare time
series. We now review the state-of-the-art methods for the computation of an average
sequence.

With ED, the property of arithmetic mean is used to compute an average sequence
(e.g., as is the case in the centroid computation of k-means). However, as DTW is more
appropriate for many time-series tasks [Keogh and Ratanamahatana 2005; Rakthan-
manon et al. 2012], several methods have been proposed to average sequences under
DTW. Nonlinear alignment and averaging filters [Gupta et al. 1996] uses a simple
pairwise method where each coordinate of the average sequence is calculated as the
center of the mapping produced by DTW. This method is applied sequentially to pairs
of sequences until only one pair is left. Prioritized shape averaging [Niennattrakul and
Ratanamahatana 2009] uses a hierarchical method to average sequences. The coordi-
nates of an average sequence are computed as the weighted center of the coordinates
of two time-series sequences that were coupled by DTW. Initially, all sequences have
weight one, and each average sequence produced in the nodes of the tree has a weight
that corresponds to the number of sequences it averages. To avoid the high computa-
tion cost of previous approaches, Ranking Shape-based Template Matching Framework
[Meesrikamolkul et al. 2012] approximates an ordering of the time-series sequences by
looking at the distances of sequences to all other cluster centroids, instead of computing
the distances of all pairs of sequences.

Several drawbacks of these methods have led to the creation of a more robust tech-
nique called Dynamic Time Warping Barycenter Averaging (DBA) [Petitjean et al.
2011], which iteratively refines the coordinates of a sequence initially picked from the
data. Each coordinate of the average sequence is updated with the use of barycen-
ter of one or more coordinates of the other sequences that were associated with the
use of DTW. Among all these methods, DBA seems to be the most efficient and accu-
rate averaging approach when DTW is used [Petitjean et al. 2011]. Another averaging
technique that is based on matrix decomposition was proposed as part of K-Spectral
Centroid Clustering (KSC) [Yang and Leskovec 2011] to compute the centroid of a clus-
ter when a distance measure for pairwise scaling and shifting is used. In our approach,
which we will present in Section 3, we also rely on matrix decomposition to compute
centroids.

2.6. Problem Definition

We address the problem of domain-independent, accurate, and scalable clustering of
time series into k clusters for a given value of the target number of clusters k.1 Even
though different domains might require different invariances to data distortions (see
Section 2.2), we focus on distance measures that offer invariances to scaling and shift-
ing, which are generally sufficient (see Section 2.3) [Ding et al. 2008]. Furthermore,
to easily adopt such distance measures, we focus our analysis on raw-based clustering
approaches, as we argued in Section 2.4. Next, we introduce k-Shape and k-MS, our
novel time-series clustering algorithms.

1Although the estimation of k is difficult without a gold standard, we can do so by varying k and evaluating
clustering quality with criteria to capture information intrinsic to the data [Kaufman and Rousseeuw 2009].

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:10 J. Paparrizos and L. Gravano

3. k-SHAPE AND k-MS, TWO SHAPE-BASED CLUSTERING ALGORITHMS

Our objective is to develop domain-independent, accurate, and scalable algorithms
for time-series clustering with a distance measure that is invariant to scaling and
shifting. In this section, we first discuss our distance measure, namely SBD, which is
based on cross-correlation (Section 3.1). Based on SBD, we then present two methods to
compute centroids of time-series clusters (Section 3.2). Finally, we propose k-Shape and
k-MS, two novel clustering algorithms that rely on an iterative refinement procedure
that scales linearly in the number of sequences and generates homogeneous and well-
separated clusters (Section 3.3).

3.1. Time-Series Shape Similarity

Capturing shape-based similarity requires measures that can handle distortions in am-
plitude and phase. Unfortunately, the best performing measures offering invariances to
these distortions, such as DTW, are computationally expensive (see Section 2.3). To cir-
cumvent this efficiency limitation, we adapt a normalized version of cross-correlation.

Cross-correlation is a measure of similarity that compares points of time-lagged
signals one to one. Cross-correlation is widely used in signal processing to compare
sequences that differ in phase (global alignment). In contrast, DTW is a measure
that is able to compare regions of sequences (local alignment). After DTW [Berndt and
Clifford 1994], research on the problem of time-series comparison has mostly focused on
elastic measures that compare one-to-many or one-to-none points [Chen and Ng 2004;
Chen et al. 2005; Keogh and Ratanamahatana 2005; Morse and Patel 2007; Vlachos
et al. 2002; Wang et al. 2013]. Therefore, the relative performance of elastic measures
against cross-correlation remains largely unexplored. Different needs from one domain
or application to another hinder the process of finding appropriate normalizations for
the data and the cross-correlation measure. Moreover, inefficient implementations of
cross-correlation can make it particularly slow. In the rest of this section, we show how
to address these drawbacks. Specifically, we show how to choose normalizations that
are domain independent and efficient and lead to a shape-based distance for comparing
time series efficiently and effectively.

Cross-correlation: Cross-correlation is a measure with which we can determine the
similarity of two sequences �x = (x1, . . . , xm) and �y = (y1, . . . , ym), even if they are
not properly aligned.2 To achieve shift-invariance, cross-correlation keeps �y static and
slides �x over �y to compute their inner product for each shift s of �x. We denote a shift of
a sequence as follows:

�x(s) =

⎧⎪⎪⎨
⎪⎪⎩

(

|s|︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xm−s), s ≥ 0

(x1−s, . . . , xm−1, xm, 0, . . . , 0︸ ︷︷ ︸
|s|

), s < 0 . (5)

When all possible shifts �x(s) are considered, with s ∈ [−m, m], we produce CCw(�x, �y) =
(c1, . . . , cw), the cross-correlation sequence with length 2m− 1, defined as follows:

CCw(�x, �y) = Rw−m(�x, �y), w ∈ {1, 2, . . . , 2m− 1}, (6)

where Rw−m(�x, �y) is computed, in turn, as

Rk(�x, �y) =

⎧⎪⎪⎨
⎪⎪⎩

m−k∑
l=1

xl+k · yl, k ≥ 0

R−k(�y, �x), k < 0

. (7)

2For simplicity, we consider sequences of equal length even though cross-correlation can be computed on
sequences of different length.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:11

Fig. 3. Time-series and cross-correlation normalizations.

Our goal is to compute the position w at which CCw(�x, �y) is maximized. Based on this
value of w, the optimal shift of �x with respect to �y is then �x(s), where s = m− w.

Depending on the domain or the application, different normalizations for CCw(�x, �y)
might be required. The most common normalizations are the biased estimator, NCCb,
the unbiased estimator, NCCu, and the coefficient normalization, NCCc, defined as
follows:

NCCq(�x, �y) =

⎧⎪⎪⎨
⎪⎪⎩

CCw(�x,�y)
m , q = “b” (NCCb)

CCw(�x,�y)
m−|w−m| , q = “u” (NCCu)

CCw(�x,�y)√
R0(�x,�x)·R0(�y,�y)

, q = “c” (NCCc)
. (8)

Beyond the cross-correlation normalizations, time series might also require normal-
ization to remove inherent distortions. Figure 3 illustrates how the cross-correlation
normalizations for two sequences �x and �y of length m = 1024 are affected by time-
series normalizations. (Appendix A of [Paparrizos and Gravano 2015] elaborates on
the classification accuracy of cross-correlation variants under other time-series nor-
malizations.) Independently of the normalization applied to CCw(�x, �y), the produced
sequence will have length 2047. Initially, in Figure 3(a), we remove differences in am-
plitude by z-normalizing �x and �y to show that they are aligned and, hence, no shifting
is required. If CCw(�x, �y) is maximized for w ∈ [1025, 2047] (or w ∈ [1,1023]), then the �x
sequence should be shifted by w −1024 to the left (or 1024−w to the right). Otherwise,
if w = 1024, �x and �y are properly aligned, which is what we expect in our example.
Figure 3(b) shows that if we do not z-normalize �x and �y, and we use the biased estima-
tor, then NCCb is maximized at w = 1797, which indicates a shifting of the �x sequence
to the left 1797 − 1024 = 773 times. If we z-normalize �x and �y, and use the unbiased
estimator, then NCCu is maximized at w = 1694, which indicates a shifting of the �x
sequence to the left 1694 − 1024 = 670 times (Figure 3(c)). Finally, if we z-normalize
�x and �y, and use the coefficient normalization, then NCCc is maximized at w = 1024,
which indicates that no shifting is required (Figure 3(d)).

As illustrated by the example above, normalizations of the data and the cross-
correlation measure can have a significant impact on the cross-correlation sequence
produced, which makes the creation of a distance measure a non-trivial task. Further-
more, as we have seen in Figure 3, cross-correlation sequences produced by pairwise
comparisons of time series will differ in amplitude based on the normalizations. Thus,
a normalization that produces values within a specified range should be used to mean-
ingfully compare such sequences.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:12 J. Paparrizos and L. Gravano

SBD: To devise a shape-based distance measure, and based on the previous discussion,
we use the coefficient normalization that gives values between −1 and 1, regardless
of the data normalization. Coefficient normalization divides the cross-correlation se-
quence by the geometric mean of autocorrelations of the individual sequences. After
normalization of the sequence, we detect the position w where NCCc(�x, �y) is maximized
and we derive the following distance measure:

SBD(�x, �y) = 1 − max
w

(
CCw(�x, �y)√

R0(�x, �x) · R0(�y, �y)

)
, (9)

which takes values between 0 to 2, with 0 indicating perfect similarity for time series.
Until now we have addressed shift invariance. For scaling invariance, we transform

each sequence �x into �x′ = �x−μ

σ
, so its mean μ is zero and its standard deviation σ is one.

Efficient computation of SBD: From Equation (6), the computation of CCw(�x, �y) for
all values of w requires O(m2) time, where m is the time-series length. The convolution
theorem [Katznelson 2004] states that the convolution of two time series can be com-
puted as the Inverse Discrete Fourier Transform (IDFT) of the product of the individual
Discrete Fourier Transforms (DFT) of the time series, where DFT is

F(xk) =
|�x|−1∑
r=0

xre
−2 jrkπ

|�x| , k = 0, . . . , |�x| − 1 (10)

and IDFT is

F−1(xr) = 1
|�x|

|�x|−1∑
k=0

F(xk)e
2 jrkπ

|�x| , r = 0, . . . , |�x| − 1, (11)

where j = √−1. Cross-correlation is then computed as the convolution of two time
series if one sequence is first reversed in time, �x(t) = �x(−t) [Katznelson 2004], which
equals taking the complex conjugate (represented by ∗) in the frequency domain. Thus,
Equation (6) can be computed for every m as

CC(�x, �y) = F−1{F(�x) ∗ F(�y)}. (12)

However, DFT and IDFT still require O(m2) time. By using a Fast Fourier Transform
(FFT) algorithm [Cooley and Tukey 1965], the time reduces to O(m · log(m)). Data
and cross-correlation normalizations can also be efficiently computed; thus the overall
time complexity of SBD remains O(m · log(m)). Importantly, by exploiting intrinsic
characteristics of FFT algorithms, we can further improve the performance of SBD.
Specifically, recursive algorithms compute an FFT by dividing it into pieces of power-
of-two size [Frigo and Johnson 2005]. Therefore, when CC(�x, �y) is not an exact power of
two, we pad �x and �y with zeros to reach the next power-of-two length after 2m −1. This
important property of FFT algorithms, which is not often exploited in the literature
(e.g., Mueen et al. [2014] and Zakaria et al. [2012]), leads to a significant improvement
in the performance of SBD, as we show in Section 6.1. Algorithm 1 outlines how this
efficient and parameter-free measure is computed in a few lines of code using modern
mathematical software.

In this section, we showed effective cross-correlation and data normalizations to
derive a shape-based distance measure. Importantly, we also discussed how cross-
correlation can be efficiently computed. In our experimental evaluation (Sections 5
and 6), we will show that SBD is highly competitive, achieving similar results to cDTW
while being significantly faster. We now turn to the critical problem of extracting cluster

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:13

Fig. 4. Examples of “Class A” sequences of the ECGFiveDays dataset and centroids based on the arithmetic
mean property (solid lines) and our SE and MSE methods (dashed lines).

ALGORITHM 1: [dist, y′] = SBD(x, y)
Input: Two z-normalized sequences x and y
Output: Dissimilarity dist of x and y

Aligned sequence y′ of y towards x
1 length = 2nextpower2(2∗length(x)−1)

2 CC = IFFT{FFT(x,length) * FFT(y,length) } // Equation 12

3 NCCc = CC
||x|| ||y|| // Equation 8

4 [value, index] = max(NCCc)
5 dist = 1 − value // Equation 9
6 shift = index − length(x)
7 if shift ≥ 0 then
8 y′ = [zeros(1, shift), y(1 : end − shift)] // Equation 5

9 else
10 y′ = [y(1 − shift : end), zeros(1,−shift)] // Equation 5

centroids to represent the cluster data consistently with the shape-based distance
measure described above.

3.2. Time-Series Shape Extraction Methods

Many tasks in time-series analysis rely on methods that effectively summarize a set of
time series by a small number of sequences and, in some cases, by only one sequence.
These summary sequences are often referred to as average sequences or, in the context
of clustering, centroids. The extraction of meaningful centroids is a challenging task
that critically depends on the choice of distance measure (see Section 2.1). We now
show how to determine such centroids for time-series clustering for SBD to capture
shared characteristics of the underlying data. Specifically, we present ShapeExtraction,
a method that extracts a single centroid to summarize an entire set of time series, and
MultiShapesExtraction, a method that extracts multiple centroids to summarize an
entire set of time series.
ShapeExtraction (SE): The easiest way to extract an average sequence from a set
of sequences is to compute each coordinate of the average sequence as the arithmetic
mean of the corresponding coordinates of all sequences. This approach is used by k-
means, the most popular clustering method. In Figure 4, the solid line shows the
centroid for “Class A” in the ECGFiveDays dataset of Figure 1: These centroids do not
offer invariances to scaling and shifting and, therefore, such centroids do not capture
effectively the class characteristics.

To avoid such problems, we cast the centroid computation as an optimization problem
where the objective is to find the minimizer of the sum of squared distances to all
other time-series sequences (Equation (2)). However, as cross-correlation intuitively
captures the similarity—rather than the dissimilarity—of time series, we can express
the computed sequence as the maximizer μ�

k of the squared similarities to all other
time-series sequences. By rewriting Equation (2) as a maximization problem and from

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:14 J. Paparrizos and L. Gravano

Equation (8), we obtain

�μk
� = argmax

�μk

∑
�xi∈Pk

NCCc(�xi, �μk)2

= argmax
�μk

∑
�xi∈Pk

(
max

w

CCw(�xi, �μk)√
R0(�xi, �xi) · R0(�μk, �μk)

)2

. (13)

Equation (13) requires the computation of an optimal shift for every �xi ∈ Pk. As this
approach is used in the context of iterative clustering, we use the previously computed
centroid as reference and align all sequences towards this reference sequence.3

This is a reasonable choice, because the previous centroid will be very close to the new
centroid. For this alignment, we use SBD, which identifies an optimal shift for every �xi ∈
Pk. Subsequently, as sequences are already aligned towards a reference sequence before
the centroid computation, we can also omit the denominator of Equation (13). Then, by
combining Equations (6) and (7), we obtain

�μk
� = argmax

�μk

∑
�xi∈Pk

⎛
⎝ ∑

l∈[1,m]

xil · μkl

⎞
⎠2

.

For simplicity, we express this equation with vectors and assume that the �xi sequences
have already been z-normalized to handle the differences in amplitude,

�μ�
k = argmax

�μk

∑
�xi∈Pk

(�xT
i · �μk)2

= argmax
�μk

∑
�xi∈Pk

�xi
T · �μk · �xi

T · �μk

= argmax
�μk

�μk
T ·

∑
�xi∈Pk

(�xi · �xi
T) · �μk. (14)

In the previous equation, only �μk is not z-normalized. To handle the centering (i.e., the
subtraction of mean) of �μk we set �μk = �μk · Q, where Q = I − 1

mO, I is the identity
matrix, and O is a matrix with all ones. Furthermore, to make �μk have unit norm, we
divide Equation (14) by �μk

T · �μk. (We omit the division with the standard deviation as
such step will not alter the results.) Finally, by substituting S for

∑
�xi∈Pk

(�xi · �xi
T), we

obtain

�μk
� = argmax

�μk

�μk
T · QT · S · Q · �μk

�μk
T · �μk

= argmax
�μk

�μk
T · M · �μk

�μk
T · �μk

, (15)

where M = QT · S · Q. Through the above transformations, we have reduced the
optimization of Equation (13) to the optimization of Equation (15), which is a well-
known problem called maximization of the Rayleigh Quotient [Golub and Van Loan

3For simplicity, we consider sequences of equal length. In cases where sequences are of different lengths, we
first pad with zeros all sequences to reach the length of the longest sequence.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:15

ALGORITHM 2: C = SE(X, R)
Input: X is an n-by-m matrix with z-normalized time series.

R is a 1-by-m vector with the reference sequence against which time series of X are
aligned.

Output: C is a 1-by-m vector with the centroid.
1 X ′ ← []
2 for i ← 1 to n do
3 [dist, x′] ← SBD(R, X(i)) // Algorithm 1
4 X ′ ← [X ′; x′]

5 S ← X ′T · X ′ // S of Equation 15

6 Q ← I − 1
m · O // Q of Equation 15

7 M ← QT · S · Q // M of Equation 15
8 C ← Eig(M, 1) // Extract first eigenvector

2012]. We can find the maximizer �μk
� as the eigenvector that corresponds to the largest

eigenvalue of matrix M.
Algorithm 2 shows how we can extract the most representative shape from the

underlying data in a few lines of code. As a first step, SE aligns all sequences towards
a reference sequence C. Then, SE computes matrix M (as shown in Equation (15))
and, subsequently, extracts the primary eigenvector of M, which corresponds to the
sequence with the maximum similarity to all others sequences. In Figure 4, we show
the centroid of “Class A” in the ECGFiveDays dataset, extracted with SE and using
a randomly selected sequence as reference sequence. SE method can more effectively
capture the characteristics of “Class A” (Figure 1) than by using the arithmetic mean
property (solid lines in Figure 4).

MultiShapesExtraction (MSE): Similarly to all averaging techniques described in
Section 2.5, SE is based on two important assumptions: (i) a single centroid can effec-
tively represent the characteristics of the underlying time series and (ii) all sequences
contribute equally in the computation of the most representative sequence. However, in
practice, time series are not uniformly distributed in space. Instead, some time series
might appear in areas of higher density than the remainder of the time series. There-
fore, a single centroid might not be sufficient to effectively capture characteristics of
time series in clusters where time series are not uniformly distributed. Additionally,
noisy sequences and outliers complicate the extraction of a representative sequence.
Importantly, such noisy sequences and outliers do not always appear more distant to
a reference sequence than the remainder of the sequences. Therefore, a weighted con-
tribution of sequences in the computation of the most representative sequence is not
sufficient.

To avoid the above limitations, we present MSE, a method to extract multiple cen-
troids, to summarize an entire set of time series. MSE relies on SE to extract each
individual centroid but with two important differences. First, during the process of
alignment of sequences towards a reference sequence, MSE computes the proxim-
ity of sequences to the reference sequence. Second, MSE divides the time series into
evenly distributed “segments” by analyzing the proximity of sequences to a reference
sequence. This division of time series into segments leads to the computation of multi-
ple centroids, with each centroid capturing characteristics of segments with different
proximity to the reference sequence. With this process, MSE solves the limitations
of SE discussed above: (i) dense areas that might contain the majority of time series
are now represented by multiple centroids and (ii) noisy sequences and outliers only
influence the centroids for the segments where the sequences belong.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:16 J. Paparrizos and L. Gravano

ALGORITHM 3: C = MSE(X, R, L)
Input: X is an n-by-m matrix with z-normalized time series.

R is a 1-by-m vector with the reference sequence against which time series of X are
aligned.
L is the desired number of centroids per cluster.

Output: C is an L-by-m matrix with the L centroids.
1 Dists ← []
2 X ′ ← []
3 for i ← 1 to n do
4 [dist, x′] ← SBD(R, X(i)) // Algorithm 1
5 X ′ ← [X ′; x′]
6 Dists ← [Dists; dist]

7 V ← quantile(Dists, L)
8 for LIndex ← 1 to L do
9 NewX ′ ← []

10 for i ← 1 to n do
11 if mod(LIndex, L) = 0 then
12 NewX ′ ← [NewX ′; X(i)′]
13 else
14 if Dists(i) ≤ V (mod(LIndex, L)) then
15 NewX ′ ← [NewX ′; X(i)′]

16 S ← NewX ′T · NewX ′ // S ofEquation 15

17 Q ← I − 1
m · O // Q of Equation 15

18 M ← QT · S · Q // M of Equation 15
19 C(LIndex) ← Eig(M, 1) // Extract first eigenvector

Algorithm 3 shows how we can extract multiple representative shapes from the
underlying data in a few lines of code. As a first step, MSE aligns all sequences to-
wards a reference sequence and computes the proximity of those sequences to the
reference sequence (lines 3–6). MSE analyzes the proximity information and computes
L quantiles that divide the data set into L + 1 evenly distributed segments. Vector V
contains distance values that correspond to L evenly spaced cumulative probabilities

1
L+1 , 2

L+1 , . . . , L
L+1 . Then, MSE computes centroids as follows. Each centroid c j , with

j = 1, . . . , L − 1, covers sequences with distances less than V(mod(j, L)), where mod
denotes the modulo operation, and the last centroid, namely, centroid cL, covers all se-
quences. Finally, similarly to SE, MSE computes matrix M (as shown in Equation (15))
for each subset of sequences and, subsequently, extracts the primary eigenvector of M,
which corresponds to the sequence with the maximum similarity to all other sequences
in the subset of sequences. In Figure 4, we show two centroids of “Class A” in ECG-
FiveDays, extracted with MSE and using a randomly selected sequence as reference
sequence. MSE can more effectively capture the characteristics of “Class A” (Figure 1)
than by using either SE or the arithmetic mean property (solid lines in Figure 4).

We now show how SE and MSE are used in time-series clustering algorithms.

3.3. Shape-Based Time-Series Clustering Methods

In this section, we present k-Shape and k-MS, our novel algorithms for time-series
clustering. We first describe k-Shape, which relies on the SBD distance measure
(Section 3.1) and SE for centroid computation (Section 3.2) to efficiently produce clus-
ters of time series.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:17

ALGORITHM 4: [IDX, C] = k-Shape(X, k)
Input: X is an n-by-m matrix containing n time series of length m that are initially

z-normalized.
k is the number of clusters to produce.

Output: IDX is an n-by-1 vector with the assignment of n time series to k clusters
(initialized randomly).
C is a k-by-m matrix with k centroids of length m (initialized as vectors with
all zeros).

1 iter ← 0
2 IDX ′ ← []
3 while IDX! = IDX ′ and iter < 100 do
4 IDX ′ ← IDX

// Refinement step
5 for j ← 1 to k do
6 X ′ ← []
7 for i ← 1 to n do
8 if IDX(i) = j then
9 X ′ ← [X ′; X(i)]

10 C(j) ← SE(X ′, C(j)) // Algorithm 2

// Assignment step
11 for i ← 1 to n do
12 mindist ← ∞
13 for j ← 1 to k do
14 [dist, x′] ← SBD(C(j), X(i)) // Algorithm 1
15 if dist < mindist then
16 mindist ← dist
17 IDX(i) ← j

18 iter ← iter + 1

k-Shape Clustering Algorithm: k-Shape is a partitional clustering method that is
based on an iterative refinement procedure similar to the one used in k-means. Through
this iterative procedure, k-Shape minimizes the sum of squared distances (Equation (1))
and manages to (i) produce homogeneous and well-separated clusters and (ii) scale
linearly with the number of time series. k-Shape is a nontrivial instantiation of k-
means that compares sequences efficiently and computes centroids effectively under
the scaling, translation, and shift invariances. As we will see, the choice of distance
measure and centroid computation method make k-Shape the only scalable method
that significantly outperforms k-means.

In every iteration, k-Shape performs two steps: (i) in the assignment step, k-Shape
updates the cluster memberships by comparing each time series with all computed
centroids and by assigning each time series to the cluster of the closest centroid; (ii) in
the refinement step, the cluster centroids are updated using the SE method to reflect
the changes in cluster memberships in the previous step. k-Shape repeats these two
steps until either no change in cluster membership occurs or the maximum number of
iterations allowed is reached.

k-Shape (see Algorithm 4) expects as input the time series set X and the number of
clusters k that we want to produce. Initially, we randomly assign the time series in X to
clusters. Then, we compute each cluster centroid using Algorithm 2 (lines 5–10). Once
the centroids are computed, we refine the memberships of the clusters by using SBD
(Algorithm 1) in lines 11–17. We repeat this procedure until the algorithm converges or

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:18 J. Paparrizos and L. Gravano

reaches the maximum number of iterations (usually a small number, such as 100). The
output of the algorithm is the assignment of sequences to clusters and the centroids
for each cluster.

Having described k-Shape, we now present k-MS, which relies on the SBD distance
measure (Section 3.1) and MSE for centroid computation (Section 3.2).

k-MS Clustering Algorithm: k-MS relies on a similar iterative refinement procedure
to the one used for k-Shape. In every iteration, k-MS performs two steps: (i) in the
assignment step, k-MS compares each time series to all computed centroids per cluster,
assigns each time series to the closest centroid, and updates cluster memberships based
on the memberships of centroids that belong to the same cluster; (ii) in the refinement
step, the cluster centroids are updated using the MSE method to reflect the changes in
cluster memberships in the previous step. k-MS repeats these two steps until either no
change in cluster membership occurs or the maximum number of iterations allowed is
reached.

k-MS (see Algorithm 5) expects three input parameters: (i) the time series set X,
(ii) the number of clusters k, and (iii) the number of centroids L per cluster that we want
to produce. In contrast to k-Shape, k-MS needs to handle multiple centroids in each clus-
ter after the refinement and the assignment steps. In particular, in the refinement step,
k-MS extracts multiple centroids for each cluster, and, subsequently, k-MS appends
these centroids in appropriate positions in the global list of centroids (lines 15 and 16).
This step is critical for k-MS and allows the computation of centroids in each cluster
with the same reference sequence. In the assignment step, k-MS performs an additional
step not present in k-Shape: After the assignment of each time series to a centroid, k-MS
merges the memberships of centroids that belong to the same cluster (lines 24 and 25).

Complexity of k-Shape and k-MS: As we claimed earlier, k-Shape and k-MS scale
linearly with the number of time series. To see why, we will analyze the computational
complexity of Algorithms 4 and 5, where n is the number of time series, k is the number
of clusters, L is the number of centroids per cluster, and m is the length of the time
series. In the assignment step, k-Shape computes the dissimilarity of n time series to k
centroids by using SBD, which requires O(m · log(m)) time. Thus, the time complexity
of this step is O(n·k·m· log(m)). k-MS computes the dissimilarity of n time series to k· L
centroids, and, therefore, the time complexity of this step is O(n · k · L · m · log(m)). In
the refinement step, for every cluster, k-Shape computes matrix M, which requires
O(m2) time, and performs an eigenvalue decomposition on M, which requires O(m3)
time. Thus, the complexity of this step is O(max{n · m2, k · m3}). k-MS performs the
same procedure L times per cluster, and, therefore, the complexity of this step for k-MS
is O(max{n·m2, k·L·m3}). Overall, k-Shape requires O(max{n·k·m·log(m), n·m2, k·m3})
time per iteration, and k-MS requires O(max{n·k· L·m· log(m), n·m2, k· L·m3}). We see
that both algorithms have a linear dependence in the number of time series, and the
majority of the computation cost depends on the length of the time series. However, this
length is usually much smaller than the number of time series (i.e., m � n), and, hence,
the dependence on m is not a bottleneck. (Appendix B of Paparrizos and Gravano [2015]
examines the scalability of k-Shape.) Importantly, when m is very large (i.e., m
 n),
dimensionality reduction approaches can be used to sufficiently reduce the length of
the sequences [Lin et al. 2004].

4. EXPLOITING CLUSTERING FOR FASTER ONE-NEAREST-NEIGHBOR CLASSIFICATION

So far, we have focused on how to perform shape-based clustering of time series effec-
tively. However, as noted earlier, clustering is not only useful as a powerful standalone
method but also as a preprocessing or subroutine for other related tasks over time se-
ries. In this section, we show how k-Shape, our simplest shape-based clustering method,

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:19

ALGORITHM 5: [IDX, C] = k-MS(X, k, L)
Input: X is an n-by-m matrix containing n time series of length m that are initially

z-normalized.
k is the number of clusters to produce.
L is the number of centroids per cluster.

Output: IDX is an n-by-1 vector with the assignment of n time series to k clusters
(initialized randomly).
C is a k · L-by-m matrix containing k · L centroids of length m (initialized as vectors
with all zeros).

1 iter ← 0
2 IDX ′ ← []
3 [IDXtemp, Ctmp] ← k − Shape(X, k) // Algorithm 4
4 for j ← 1 to k do
5 for w ← 1 to L do
6 C(w + (j − 1) · L) ← Ctmp(j)

7 while IDX! = IDX ′ and iter < 100 do
8 IDX ′ ← IDX

// Refinement step
9 for j ← 1 to k do

10 X ′ ← []
11 for i ← 1 to n do
12 if IDX(i) = j then
13 X ′ ← [X ′; X(i)]

14 Ctmp ← MSE(X ′, C(j · L)), L) // Algorithm 3
15 for w ← 1 to L do
16 C(w + (j − 1) · L) ← Ctmp(w)

// Assignment step
17 for i ← 1 to n do
18 mindist ← ∞
19 for j ← 1 to k · L do
20 [dist, x′] ← SBD(C(j), X(i)) // Algorithm 1
21 if dist < mindist then
22 mindist ← dist
23 IDX(i) ← j

24 for i ← 1 to n do
25 IDX(i) ← ceil(IDX(i)/L)

26 iter ← iter + 1

can effectively reduce the search space of one-nearest-neighbor algorithms and lead to
fast and accurate techniques for the important problem of classification of time series.

One-nearest-neighbor (1-NN) classifiers address the time-series classification prob-
lem by assigning each time series to the category or class of the “nearest” time series
according to a distance measure. 1-NN classifiers are popular because they do not rely
on tunable parameters and also because they can be used in conjunction with an ap-
propriate choice of distance measure of the vast array of options (see Section 2.3 for
examples of distance measures). Furthermore, 1-NN classifiers perform exceptionally
well for time-series classification when used in conjunction with competitive distance
measures for time series, as shown in Bagnall and Lines [2014], Lines and Bagnall
[2014], Lines and Bagnall [2015], and Bagnall et al. [2017].

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:20 J. Paparrizos and L. Gravano

ALGORITHM 6: Accuracy = NNC(Training, Test, TrainingLabels, TestLabels, LeaveOneOut)
Input: Training is a k-by-m matrix containing k time series of length m.

Test is an n-by-m matrix containing n time series of length m.
TrainingLabels is a 1-by-k vector with the class labels of k time series in Training.
TestLabels is a 1-by-n vector with the class labels of n time series in Test.
LeaveOneOut is a Boolean indicating if this is a leave-one-out classification (true) or
one-nearest-neighbor classification (false).

Output: Accuracy is the classification accuracy.
1 Accuracy ← 0
2 for i ← 1 to n do
3 best dist ← Inf
4 for j ← 1 to k do
5 if LeaveOneOut = true then
6 if i! = j then
7 [dist,∼] ← SBD(Training(j), Test(i)) // Algorithm 1

8 else
9 [dist,∼] ← SBD(Training(j), Test(i)) // Algorithm 1

10 if dist < best dist then
11 class ← TrainingLabels(j)
12 best dist ← dist

13 if TestLabels(i) = class then
14 Accuracy ← Accuracy + 1

15 Accuracy ← Accuracy/n

Reduction of dimensionality, auxiliary index structures, and lower bounding of dis-
tance measures have been previously exploited to reduce the computational time of 1-
NN classifiers for time series [Agrawal et al. 1993; Faloutsos et al. 1994; Rakthanmanon
et al. 2012]. Alternative methods for 1-NN classification, known as k-Nearest Centroid
Classifiers (k-NCC), extract for each “query” the k nearest neighbors from each class in
the search space and then summarize each of the sets of k neighbors with a centroid
that is computed as some variant of a mean vector. k-NCC methods determine the class
of the query using factors such as the proximity and the spatial distribution of the com-
puted centroids relative to the query [Mitani and Hamamoto 2000, 2006; Chaudhuri
1996; Sánchez et al. 1997; Gou et al. 2012]. However, k-NCC methods are usually more
expensive than 1-NN classifiers because of the additional processing that is required
beyond nearest-neighbor search. Interestingly, these approaches reduce to 1-NN when
k = 1. Recently, Petitjean et al. [2014] and Petitjean et al. [2015] demonstrated the po-
tential of representing each class in the search space with a small number of centroids
computed via clustering. However, the clustering methods that they use are particu-
larly inefficient, as we show in Section 6, and they significantly increase the cost to
estimate an appropriate number of centroids to represent each class in the search space.

To address this issue, and inspired by Petitjean et al. [2014] and Petitjean et al.
[2015], we now introduce the NSC, a 1-NN classifier that relies on k-Shape to effectively
summarize time series in its search space (see Algorithm 7). In contrast to k-NCC
methods, NSC uses cluster centroids to summarize the entire search space and does
not recompute the centroids for every query. The estimation of the number of centroids
relies solely on analysis over the search space of the 1-NN classifier. Specifically, NSC
first determines how accurately it can estimate the class for queries taken from the
search space (line 1). This accuracy serves as a baseline estimation of the best achieved

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:21

ALGORITHM 7: Accuracy = NSC(Training, Test, TrainingLabels, TestLabels, InstancesLabels)
Input: Training is a k-by-m matrix containing k time series of length m.

Test is an n-by-m matrix containing n time series of length m.
TrainingLabels is a 1-by-k vector with the class labels of the k time series in
Training.

TestLabels is a 1-by-n vector with the class labels of the n time series in Test.
InstancesLabels is a 1-by-w vector with each cell pointing to a list with IDs of
instances in Training belonging to each of the w classes.

Output: Accuracy is a scalar value containing the classification accuracy on Test.
1 Best Accuracy ← NNC(Training, Training, TrainingLabels, TrainingLabels, true)

// Algorithm 6
2 Best NumberCentroids ← k
3 Best Centroids ← Training
4 Best CentroidsLabels ← TrainingLabels
5 Centroids ← []
6 CentroidsLabels ← []
7 for i ← 1 to max(length(InstancesLabels([1 : w]))) − 1 do
8 for class ← 1 to w do
9 IDs ← InstancesLabels(class)

10 [nrows, ncolumns] ← size(Training(IDs))
11 if i = 1 and nrows = 1 then
12 tmp centroids ← Training(IDs)
13 Centroids ← [Centroids; tmp centroids]
14 CentroidsLabels ← [CentroidsLabels; class]
15 else if i = 1 and nrows > 1 then
16 index ← rand(IDs)
17 re f centroid ← Training(index)
18 tmp centroids ← SE(Training(IDs), re f centroid) // Algorithm 2
19 Centroids ← [Centroids; tmp centroids]
20 CentroidsLabels ← [CentroidsLabels; class]
21 else if i > 1 and nrows > i then
22 [∼, tmp centroids] ← k − Shape(Training(IDs), i) // Algorithm 4
23 Centroids ← [Centroids; tmp centroids]
24 for p ← 1 to nrows do
25 CentroidsLabels ← [CentroidsLabels; class]

26 else if i > 1 and nrows ≤ i then
27 Centroids ← [Centroids; Training(IDs)]
28 for p ← 1 to nrows do
29 CentroidsLabels ← [CentroidsLabels; class]

30 AccuracyCentroids ← NNC(Centroids, Training, CentroidsLabels, TrainingLabels, true)
// Algorithm 6

31 if AccuracyCentroids > Best Accuracy then
32 Best Accuracy ← AccuracyOnCentroids
33 Best NumberCentroids ← size(Centroids, 1)
34 Best Centroids ← Centroids
35 Best CentroidsLabels ← CentroidsLabels

36 Centroids ← []
37 CentroidsLabels ← []

38 Accuracy ← NNC(Best Centroids, Test, Best CentroidsLabels, TestLabels, f alse)
// Algorithm 6

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:22 J. Paparrizos and L. Gravano

accuracy when the entire search space is used. Then, NSC varies the number of cen-
troids required to summarize each class in the search space (line 7). NSC computes
centroids for each class in the search space by considering the following four cases:
(i) when one centroid is requested and the class contains one time series, NSC uses
this time series as centroid (lines 11–14); (ii) when one centroid is requested and the
class contains more than one time series, NSC uses Algorithm 2 in Section 3.2 to sum-
marize the time series (lines 15–20); (iii) when two or more centroids are requested
and the class contains more time series than the requested centroids, NSC uses Al-
gorithm 4 of Section 3.3 to cluster and summarize the time series (lines 21–25); and
(iv) when two or more centroids are requested and the class contains fewer time series
than the requested centroids, NSC uses the time series as centroids and does not per-
form clustering to avoid producing singleton clusters with just one time series in them
(lines 26–29). For each number of centroids, NSC evaluates how accurately it can esti-
mate the class of the queries in the search space when the search space is summarized
by that number of centroids. The process terminates if this accuracy outperforms the
baseline accuracy computed earlier (in line 1). In the end, NSC determines the class of
a query as the class of the nearest centroid.

The above procedure permits the estimation of the number of centroids and the
computation of centroids that capture internal characteristics of every class of time
series accurately, as we will see in Section 6.7. NSC requires as input the instances
and the labels of the training and test sets along with a breakdown of training instances
per class. As output, NSC computes the 1-NN classification accuracy (Algorithm 6) on
the test set but using as search space the estimated number of centroids per class over
the training set.

5. EXPERIMENTAL SETTINGS

We now describe the settings for the evaluation of SBD, k-Shape, k-MS, and NSC.
Datasets: We use the largest public collection of class-labeled time-series datasets,
namely the University of California at Riverside (UCR) collection [Keogh et al. 2015].
It consists of 85 datasets, both synthetic and real, that span several different domains.
Each dataset contains from 40 to 16,637 sequences. The sequences in each dataset
have equal length, but from one dataset to another the sequence length varies from
24 to 2,709. These datasets are annotated, and every sequence can belong to only one
class. In the context of clustering, and for the sake of convenience, the class label for
a sequence is often interpreted as identifying the cluster where the sequence belongs.
Furthermore, the datasets are already z-normalized and split into training and test
sets. As we will see, we use this split of the datasets for the distance measure evaluation;
we also use the training sets for tuning some of the baselines.
Platform: We ran our experiments on a cluster of 61 servers with identical configura-
tion: Dual Intel Xeon E5-2650 (eight-core with two-way simultaneous multithreading
(SMT)) processor with clock speed at 2.6GHz and up to 256GB RAM. We utilized on
average 20 servers continuously for a period of two months to perform all experiments
included in this article. Each server runs Red Hat Enterprise Linux 6.6 (64-bit) and
Matlab R2014a (64-bit).
Implementation: We implemented all approaches under the same framework, in
Matlab, for a consistent evaluation in terms of both accuracy and efficiency. For re-
peatability purposes, we make all datasets and source code available.4

Baselines: We evaluate SBD, our distance measure; k-Shape and k-MS, our clustering
approaches; and NSC, our one-nearest-neighbor method. Specifically, we compare

4http://www.cs.columbia.edu/∼jopa/kshape.html.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

http://www.cs.columbia.edu/protect $
elax sim $jopa/kshape.html

Fast and Accurate Time-Series Clustering 8:23

SBD against the strongest state-of-the-art distance measures for time series (see
Section 2.3):

—ED: a simple, efficient—yet accurate—distance measure [Faloutsos et al. 1994]
—DTW: one of the best performing—but expensive—distance measure for time series

[Sakoe and Chiba 1978]
—cDTW: the constrained version of DTW, with improved accuracy and efficiency [Sakoe

and Chiba 1978]

We compare k-Shape and k-MS against the three strongest types of scalable and non-
scalable clustering methods, namely partitional, hierarchical, and spectral methods
(see Section 2.4 for a detailed discussion), combined with the most competitive distance
measures. As scalable methods, we consider the classic k-means algorithm with ED (k-
AVG+ED) [MacQueen 1967] and the following variants of k-means:

—k-AVG+Dist: k-means with DTW and SBD as distance measures and the arithmetic
mean of time series coordinates for centroid computation

—k-DBA: k-means with DTW as distance measure and the DBA method for centroid
computation [Petitjean et al. 2011]

—KSC: k-means with a distance measure offering pairwise scaling and shifting of time
series and computation of the spectral norm of a matrix (i.e., matrix decomposition)
for centroid computation [Yang and Leskovec 2011]

As non-scalable methods, among partitional methods we consider the Partitioning
Around Medoids (PAM) implementation of the k-medoids algorithm [Kaufman and
Rousseeuw 2009]. Among hierarchical methods, we use agglomerative hierarchi-
cal clustering with single, average, and complete linkage criteria [Kaufman and
Rousseeuw 2009]. Among spectral methods, we consider the popular normalized spec-
tral clustering method [Ng et al. 2002]. These non-scalable approaches require a large
number of distance calculations to compute the full dissimilarity matrix, and, hence,
they become unacceptably inefficient with high-cost distance measures. For this rea-
son, we distribute the computation of the full dissimilarity matrices, and, therefore, we
do not report runtime results for these methods.

Beyond these scalable and non-scalable methods, we further evaluate k-Shape and
k-MS against the strongest types of density-based methods, namely Density-based
Spatial Clustering of Applications with Noise (DBSCAN) [Ester et al. 1996] and
TADPole [Begum et al. 2015]. Density-based methods have started to receive attention
for time-series clustering to identify outliers in the data. DBSCAN can be combined
with any distance measure, while TADPole, a variant of the recently proposed Density
Peaks (DP) clustering method [Rodriguez and Laio 2014], uses the cDTW distance.
DBSCAN and TADPole are also non-scalable methods. Specifically, DBSCAN requires
the computation of the full dissimilarity matrix to operate.5 In contrast, TADPole
significantly prunes the dissimilarity matrix for cDTW but requires the computation
of two additional dissimilarity matrices based on ED. TADPole improves in runtime
performance relative to DP [Rodriguez and Laio 2014] but remains non-scalable
and particularly inefficient relative to k-means variants. Importantly, as we discuss
later, both algorithms require the computation of the dissimilarity matrix for cDTW
to accurately estimate input parameters, a step that is often omitted from runtime
experiments. Therefore, both density-based methods are inefficient, and, hence, we do
not report runtime results for them.

We also compare k-Shape and k-MS against U-Shapelets [Zakaria et al. 2012]. Unlike
previous approaches, U-Shapelets exploits patterns in subsequences of time series to

5DBSCAN can use auxiliary index structures to accelerate neighborhood queries only for metric distance
functions, such as ED.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:24 J. Paparrizos and L. Gravano

Table I. Combinations of PAM, Hierarchical, Spectral, Density-Based, Shapelet-Based Methods
with ED, cDTW, and SBD for Our Evaluation

Name Clustering Algorithm Distance Measure
PAM+ED Partitioning Around Medoids ED

PAM+cDTW Partitioning Around Medoids cDTW5

PAM+SBD Partitioning Around Medoids SBD
H-S+ED Hierarchical with single linkage ED
H-A+ED Hierarchical with average linkage ED
H-C+ED Hierarchical with complete linkage ED

H-S+cDTW Hierarchical with single linkage cDTW5

H-A+cDTW Hierarchical with average linkage cDTW5

H-C+cDTW Hierarchical with complete linkage cDTW5

H-S+SBD Hierarchical with single linkage SBD
H-A+SBD Hierarchical with average linkage SBD
H-C+SBD Hierarchical with complete linkage SBD

S+ED Normalized Spectral Clustering ED
S+cDTW Normalized Spectral Clustering cDTW5

S+SBD Normalized Spectral Clustering SBD
DBSCAN0.3+ED Density-based Spatial Clustering ED
DBSCANBest+ED Density-based Spatial Clustering ED
DBSCAN0.3+SBD Density-based Spatial Clustering SBD
DBSCANBest+SBD Density-based Spatial Clustering SBD
DBSCAN0.3+cDTW Density-based Spatial Clustering cDTW5

DBSCANBest+cDTW Density-based Spatial Clustering cDTW5

TADPole0.3 Time-series Anytime Density Peaks Clustering cDTW5

TADPoleBest Time-series Anytime Density Peaks Clustering cDTW5

U-Shapelets0.5 Unsupervised-Shapelets Clustering —
U-ShapeletsBest Unsupervised-Shapelets Clustering —

isolate outliers. Unfortunately, U-Shapelets cannot handle large datasets, so we use
a variant that has been shown to be faster than the original technique without a
significant loss in accuracy [Begum et al. 2015]. Table I summarizes the non-scalable
clustering combinations used in our evaluation. Overall, we compared k-Shape and
k-MS against 30 clustering approaches.

We compare NSC against data editing and condensing algorithms that are applied
in the full dissimilarity matrix of the training instances of a 1-NN classifier and deter-
mine the order in which instances can be removed to guarantee the performance of a
1-NN classifier. Specifically, we evaluate NSC against three popular variants of such
reduction techniques, namely RT1, RT2, and RT3 [Wilson and Martinez 1997, 2000].
Additionally, we also compare NSC against a simple baseline, namely Random, that
randomly chooses instances for removal from the training instances. Finally, we com-
pare the performance of NSC with three competitive distance measures (Sections 2.3
and 3.1), namely ED (NSC+ED), SBD (NSC+SBD), and cDTW5 (NSC+cDTW) against
1-NN classifiers.

Parameter settings: Among the distance measures discussed above, only cDTW re-
quires setting a parameter, to constrain its warping window. We consider two cases
from the literature: (i) cDTWopt: we compute the optimal window by performing a
leave-one-out classification step over the training set of each dataset; (ii) cDTWw: We
use as window 5%, for cDTW5, and 10%, for cDTW10, of the length of the time se-
ries of each dataset; this second case is more realistic for an unsupervised setting

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:25

such as clustering.6 For the 1-NN classification computation, we also consider the
state-of-the-art lower bounding approach LBKeogh [Keogh and Ratanamahatana 2005],
which prunes time series that could not be matched when DTW and cDTW are used.
We denote lower bounding with the LB subscript (e.g., cDTW10

LB). For clustering, all par-
titional and spectral algorithms that we compare receive the target number of clusters
k as input, which is equal to the number of classes for each dataset. The only excep-
tion is the partitional k-MS method, which requires setting an additional parameter,
namely the number of centroids per cluster. For k-MS, we set the number of centroids
per cluster, L, to L = 5 across all datasets. For hierarchical clustering, we compute a
threshold that cuts the produced dendrogram at the minimum height such that k clus-
ters are formed. We set the maximum number of iterations for k-Shape, all variants
of k-means, PAM, and spectral methods to 100. Finally, in every iteration of k-Shape,
k-DBA, and KSC, we use the centroids of the previous run as reference sequences to
refine the centroids of the current run once.

In contrast to partitional, hierarchical, and spectral methods, density-based methods
require as input two parameters. Specifically, DBSCAN requires as input a cutoff
threshold, e, and the minimum number of points to form a density region, minPts. To
estimate e for each distance measure, we fix the value of minPts (we consider values 3,
4, 5, 10, and 20), compute the full dissimilarity matrix, and keep, for each time series,
the largest distance value such that exactly minPts time series are within that distance
from it. We sort these distance values in descending order and compute the knee point
of the curve of distance values. The process of determining this knee point is similar
to the process of determining the number of clusters in clustering methods [Salvador
and Chan 2004]. We consider all bisections of the curve and, then, by walking along
the curve one bisection point at a time, we fit two straight lines, one to all the points to
the left of the bisection point and one to all the points to the right of the bisection point.
The knee point of the curve corresponds to the bisection point with the minimum sum
of errors for the two fitted lines. For all distance measures, minPts = 3 performed the
best on average across all datasets and we denote this variant as DBSCAN3. However,
the best minPts value for a specific dataset might differ, so we also determine the best
minPts parameter for each dataset after performing a post hoc analysis on the Rand
Index results (see below). We denote the resulting version of DBSCAN with dataset-
specific values of minPts as DBSCANBest.

The second density-based method that we consider, TADPole, also requires setting
the value of two parameters: (i) the number k of clusters and (ii) a cutoff threshold
e. Considering that DBSCAN and TADPole operate similarly, and the fact that the
authors of TADPole [Begum et al. 2015] do not provide details on the estimation of
these parameters, we use the same procedure as with DBSCAN. TADPole also performs
the best on average across all datasets when minPts = 3. We refer to this version of
the algorithm as TADPole3. To determine the best minPts parameter for each dataset,
we perform a post hoc analysis on the Rand Index results. We refer to this version of
the algorithm as TADPoleBest.

U-Shapelets requires setting the value of just one parameter, namely, the length of
subsequences of the entire time series. We consider values of 10%, 20%, 30%, 40%,
and 50% of the time-series length of each dataset. The best-performing length for
U-Shapelets across all datasets is 50% and we denote the resulting technique as U-
Shapelets0.5. Similarly to DBSCAN and TADPole, we also consider the best length
parameter for each dataset after performing a post hoc analysis. We denote this ap-
proach as U-ShapeletsBest. We note that U-ShapeletsBest, DBSCANBest, and TADPoleBest

6For non-scalable methods, we use the cDTW5 variant of cDTW for its efficiency, as noted in Table I, even
though cDTW10, cDTWopt, and DTW perform similarly. We explicitly note when DTW is used.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:26 J. Paparrizos and L. Gravano

are not truly options for fully unsupervised clustering, given that their parameters are
the result of post hoc analysis with labeled data. However, we consider these options
for completeness.

Finally, we use cDTW5 to compute the dissimilarity matrices for RT1, RT2, and RT3,
as well as to measure the accuracy of 1-NN classifiers for Random, RT1, RT2, and
RT3.

Metrics: We compare the approaches on both runtime and accuracy. For runtime, we
compute CPU time utilization and measure the time ratios for our comparisons for
each dataset. We summarize the runtime performance by reporting, for each method,
the number of datasets with time ratios of up to one order of magnitude, between one
but no higher than two orders of magnitude, and at least two orders of magnitude in
comparison to another method. Following Ding et al. [2008], we use the 1-NN classi-
fier, which is a simple and parameter-free classifier, to evaluate distance measures. We
report the classification accuracy (i.e., number of correctly classified instances over all
instances) by performing 1-NN classification over the training and test sets of each
dataset. Because the 1-NN classifier is deterministic, we make this computation once.
Following Batista et al. [2013], we also visualize the actual accuracy gain and the
expected accuracy gain for pairs of distance measures to evaluate if we can predict in
advance which distance measure is more useful for which datasets. The actual accuracy
gain for each dataset is defined as the ratio of the 1-NN classification accuracies of the
two distance measures over the test portion of the dataset. The expected accuracy gain
for each dataset is defined as the ratio of the leave-one-out classification accuracies of
the two distance measures over the training portion of the dataset. In both ratios, the
denominator is the accuracy of the baseline distance measure, whereas the numerator
is the accuracy of the competing distance measure. The resulting plot illustrates the ac-
tual accuracy gains against the expected accuracy gains over all datasets and consists
of four regions. Each region corresponds to the true-positive (TP), true-negative (TN),
false-positive (FP), and false-negative (FN) cases of the well-known contingency table
for comparing pairs of classifiers. For datasets in the TP region, we can predict (i.e.,
by evaluation on the training portions) that the competing distance measure will out-
perform the baseline distance measure. For datasets in the TN region, we can predict
that the baseline distance measure will outperform the competing distance measure.
For datasets in the FN region, we inaccurately predict that the baseline distance mea-
sure will outperform the competing distance measure. Similarly, for datasets in the FP
region, we inaccurately predict that the competing distance measure will outperform
the baseline distance measure.

We use the Rand Index [Rand 1971] to evaluate clustering accuracy over the fused
training and test sets of each dataset. This metric is related to the classification ac-
curacy and is defined as R = TP+TN

TP+TN+FP+FN , where TP is the number of time series
pairs that belong to the same class and are assigned to the same cluster, TN is the
number of time series pairs that belong to different classes and are assigned to differ-
ent clusters, FP is the number of time series pairs that belong to different classes
but are assigned to the same cluster, and FN is the number of time series pairs
that belong to the same class but are assigned to different clusters. As hierarchical
algorithms are deterministic, we report the Rand Index over one run. However, for
partitional methods, we report the average Rand Index over 10 runs and for spectral
methods the average Rand Index over 100 runs; in every run we use a different random
initialization.

Statistical analysis: Following Batista et al. [2013] and Giusti and Batista [2013],
we analyze the results of every pairwise comparison of algorithms over multiple
datasets using the Wilcoxon test [Wilcoxon 1945] with a 99% confidence level. According

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:27

Table II. Comparison of Distance Measures. Columns “>,” “=,” and “<” Denote the Number of Datasets over
Which a Distance Measure Is Better, Equal, or Worse, Respectively, in Comparison to ED. “Better” Indicates

That a Distance Measure Outperforms ED with Statistical Significance. Columns “[0, 10x),” “[10x, 100x),”
and “[100x, +∞)” Denote the Number of Datasets over Which a Distance Measure Is Slower up to 10x,

Between 10x But no Higher Than 100x, and at Least 100x, Respectively, in Comparison to ED

Distance Measure > = < Better [0,10x) [10x,100x) [100x,+∞)
DTW

53 3 29 � 0 9 76
DTWLB 0 14 71
cDTWopt

54 24 7 � 22 28 35
cDTWopt

LB 40 29 16

cDTW5
58 5 22 � 5 39 41

cDTW5
LB 23 41 21

cDTW10
56 4 25 � 2 32 51

cDTW10
LB 8 46 31

SBDNoFFT
54 23 8 �

14 50 21
SBDNoPow2 57 28 0

SBD 79 6 0

to Demšar [2006], the Wilcoxon test is less affected by outliers than is the t-test [Rice
2006], as Wilcoxon does not consider absolute commensurability of differences. More-
over, using pairwise tests to reason about multiple algorithms is not fully satisfactory,
because sometimes the null hypotheses are rejected due to random chance. Therefore,
we also use the Friedman test [Friedman 1937] followed by the post hoc Nemenyi test
[Nemenyi 1963] for comparison of multiple algorithms over multiple datasets, as sug-
gested in Demšar [2006]. The Friedman and Nemenyi tests require more evidence to
detect statistical significance than the Wilcoxon test [Giusti and Batista 2013] (i.e., the
larger the number of methods, the larger the number of datasets required), and, hence,
as we already use all 85 datasets for the Wilcoxon test, we report statistical significant
results with a 95% confidence level.

6. EXPERIMENTAL RESULTS

In this section, we discuss our experiments. First, we evaluate SBD against the state-of-
the-art distance measures (Section 6.1) and corroborate our performance results over
optimized implementations for the state-of-the-art distance measures (Section 6.2).
Second, we compare k-Shape and k-MS against scalable (Section 6.3) and non-scalable
(Section 6.4) clustering approaches. Third, we evaluate k-Shape and k-MS against
approaches that handle outliers in datasets (Section 6.5) and approaches that consider
only subsequences of the entire time series in an attempt to handle abnormal behaviors
in time series (Section 6.6). Then, we evaluate NSC against data editing algorithms
that reduce the search space of 1-NN classifiers (Section 6.7). Finally, we summarize
our findings (Section 6.8).

6.1. Evaluation of SBD

Comparison against ED: To understand if SBD (Section 3.1) is an effective measure
for time-series comparison, we evaluate it against the state-of-the-art distance mea-
sures, using their 1-NN classification accuracy across 85 datasets (Section 5). Table II
reports the performance of the state-of-the-art measures against the baseline ED. All
distance measures, including SBD, outperform ED with statistical significance. In par-
ticular, SBD performs at least as well as ED in 77 of 85 datasets in contrast to DTW,
cDTW5, and cDTW10, which perform at least as well as ED in 56, 63, and 60 datasets,
respectively. Only cDTWOpt, with its optimal warping window constraint, reaches the

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:28 J. Paparrizos and L. Gravano

Fig. 5. Comparison of accuracy gain for ED, SBD, and cDTW5 over 85 datasets.

Fig. 6. Ranking of distance measures based on the average of their ranks across datasets. The wiggly line
connects all measures that do not perform statistically differently according to the Nemenyi test.

performance of SBD (i.e., cDTWOpt performs at least as well as ED in 92% of the
datasets).

However, to better understand the usefulness of each distance measure, we further
analyze if we can predict in advance the accuracy gain by using one distance measure
over another distance measure (i.e., we want to predict the ratio of the classification
accuracy of one distance measure over that of another distance measure). Figure 5(a)
shows that for the large majority of the datasets we can accurately predict in advance
if SBD will outperform ED or not (please refer to the TP and TN regions of the figure).
For only 6 datasets we incorrectly predict that ED will outperform SBD (please refer
to the FN region of the figure). Importantly, 3 out of the 6 datasets are very close to
the (1, 1) region, which highlights the difficulties for identifying differences over those
datasets. We note that none of the datasets belongs to the worst-case FP region, an
important characteristic that also appears in the evaluation of the supervised cDTWOpt

distance. In contrast, for cDTW5 (Figure 5(b)), 3 datasets appear in the FP region, 10
in the FN region, and the rest of the datasets are scattered in the TP and TN regions.
As a result, SBD, a parameter-free and unsupervised distance measure, shows similar
merit to the supervised cDTWOpt distance.

To further elaborate on the importance of optimally constraining the warping window
of DTW, we note that only cDTWOpt is significantly better than DTW. In particular,
cDTWopt performs at least as well as DTW in 61 datasets, cDTW5 performs at least
as well as DTW in 57 datasets, and cDTW10 performs at least as well as DTW in 67
datasets. For cDTW5, the Wilcoxon test suggests no statistical significance over DTW,
whereas for cDTW10 the improvement is statistically significant but with a p-value
close to the confidence level, which indicates that deeper statistical analysis is required.

Figure 6 shows the average rank across datasets of cDTWopt, cDTW5, cDTW10, and
DTW. cDTWopt is the top measure, with an average rank of 2.1, meaning that cDTWopt

performed best in the majority of the datasets. The Friedman test rejects the null
hypothesis that all measures behave similarly, and, hence, we proceed with a post
hoc Nemenyi test to evaluate the significance of the differences in the ranks. The
wiggly line in the figure connects all measures that do not perform statistically differ-
ently according to the Nemenyi test. We observe two clusters: one where the ranks of

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:29

Fig. 7. Ranking of distance measures based on the average of their ranks across datasets. The wiggly line
connects all measures that do not perform statistically differently according to the Nemenyi test.

cDTWopt, cDTW5, and cDTW10 do not present a significant difference, and one where
the ranks of cDTW5, cDTW10, and DTW do not present a significant difference. As
a consequence, only cDTWopt appears to perform significantly better than DTW. This
conclusion contradicts the general belief that constraining DTW’s warping window
significantly improves accuracy, which was also confirmed by our previous analysis on
a subset of 48 datasets [Paparrizos and Gravano 2015].

Comparison against DTW and cDTW: SBD performs at least as well as DTW in 50
datasets, but the statistical test reveals no evidence that either measure is better than
the other. Considering the cDTW versions, we observe that SBD performs similarly to
or better than cDTWopt, cDTW5, and cDTW10 in 41, 37, and 40 datasets, respectively.
Figure 5(c) shows that, for the large majority of datasets, we can accurately predict in
advance when either SBD or cDTW5 should be used (we omit figures for cDTW10 and
cDTWOpt as they exhibit similar trends). Of 10 datasets in the FP region, only 2 cases
are problematic, while the remaining 8 datasets are very close to the (1, 1) region, and
hence it is challenging to predict which distance measure is best. Interestingly, there is
no significant difference among SBD, cDTW5, and cDTW10, but cDTWopt is significantly
better than SBD. Importantly, the p-values for Wilcoxon between cDTWopt and SBD
are close to the confidence level, which indicates that deeper statistical analysis is
required, as we discuss next.

Statistical analysis: To better understand the performance of SBD in comparison
with cDTWopt, cDTW5, and cDTW10, we evaluate the significance of their differences in
accuracy when considered all together. Figure 7 shows the average rank across datasets
of each distance measure. cDTWopt is the top measure, with an average rank of 2.4,
meaning that cDTWopt performed best in the majority of the datasets. The Friedman
test rejects the null hypothesis that all measures behave similarly, and, hence, we
proceed with a post hoc Nemenyi test, to evaluate the significance of the differences
in the ranks. We observe that the ranks of cDTWopt, cDTW5, cDTW10, and SBD do
not present a significant difference, and ED, which is ranked last, is significantly
worse than the others. In conclusion, SBD is a very competitive distance measure
that significantly outperforms ED and achieves similar results to both cDTW and
DTW. Moreover, SBD is the most robust variant of the cross-correlation measure (see
Appendix A of Paparrizos and Gravano [2015]).

Efficiency: We now show that SBD is not only competitive in terms of accuracy but
also highly efficient. We also demonstrate that implementation choices for SBD can
significantly impact its speed. The last row of Table II shows the number of datasets
over which each SBD variation is slower than ED. The optimized version of SBD,
denoted simply as SBD, is the fastest version, performing up to 10× slower than ED
in 93% of the datasets and 10× but less than 100× slower in the remaining 7% of
the datasets. When we use SBD still with FFT but without the power-of-two-length
optimization discussed in Section 3.1, the resulting measure, SBDNoPow2, is up to 10×
slower than ED in 67% of the datasets and 10× but less than 100× slower in 33%
of the datasets. Furthermore, SBDNoFFT, the version of SBD without FFT, performs
up to 10×, 10× but no higher than 100×, and at least 100× slower than ED in 16%,

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:30 J. Paparrizos and L. Gravano

Table III. Comparison of Implementations for cDTWOpt and DTW. Column “Language” Indicates the
Programming Language. Columns “[0, 10x),” “[10x, 100x),” and “[100x, +∞)” Denote the Number of Datasets

over Which a Distance Measure is Slower up to 10x, Between 10x but no Higher than 100x, and at least 100x,
Respectively, in Comparison to ED. “Reference” Indicates the work that Describes the Implementation Details

Distance Measure Language [0,10x) [10x,100x) [100x,+∞) Reference

cDTWopt
LB

Java 25 45 9 Schäfer [2015]
Java 19 52 8 Wang et al. [2013]

Matlab 34 29 16 This work

DTWLB

Java 1 12 66 Schäfer [2015]
Java 0 14 65 Wang et al. [2013]

Matlab 0 13 66 This work

59%, and 25% of the datasets, respectively. Table II also shows that DTW and cDTW
variants are substantially slower than SBD. Specifically, DTW is up to 100× slower in
40% of the datasets and at least 100× in 60% of the datasets in comparison to SBD.
Similarly, cDTWopt, cDTW5, and cDTW10 are more than 10× slower in comparison
to SBD in 51%, 65%, and 79% of the datasets, respectively. Even when we speed up
the search of 1-NN classification computation, by pruning time series impossible for a
match using LBKeogh, SBD is still faster. In particular, DTWLB is up to 100× slower in
46% of the datasets and more than 100× in 54% of the datasets in comparison to SBD.
cDTWopt

LB, cDTW5
LB, and cDTW10

LB are more than 10× slower in comparison to SBD in
24%, 35%, and 54% of the datasets, respectively. Next, we corroborate our performance
findings over different implementations of the rival distance measures and perform
experiments to better understand the scalability of distance measures.

6.2. Robustness of Runtime Results across Implementations

Considering that the choice of programming language as well as optimizations in
implementation may affect the performance of distance measures, we now compare
our Matlab implementation of cDTW and DTW variants across two state-of-the-art
Java implementations from the literature. Specifically, we compare our performance
results for cDTWopt

LB and DTWLB with the results as reported in Schäfer [2015], which
follows the optimizations described in Rakthanmanon et al. [2012] and with results
we obtained in our experimental settings with an implementation that follows the
optimizations described in Wang et al. [2013]. Table III compares the performance of
the three implementations over 79 datasets that are common between Schäfer [2015]
and our work. DTWLB performs similarly across all implementations. In particular,
DTWLB is up to 100× slower than ED in approximately 17% of the datasets and at
least 100× slower than ED in approximately 83% of the datasets. Lower bounding
methods prune only a small fraction of the DTW computations (on average about 25%),
and, hence, there is minor variability in performance across implementations.

In contrast to DTWLB, for cDTWopt
LB there is some variability in the results across

implementations. However, for a vast majority of datasets, the results are consistent
across implementations. Specifically, cDTWopt

LB is up to 100× slower than ED in ap-
proximately 89% of the datasets and at least 100× slower than ED in approximately
11% of the datasets for the two Java implementations. The implementation of Schäfer
[2015], which exploits multiple lower bounding measures in a cascade, is more effi-
cient than that of Wang et al. [2013], which uses only one lower bounding method.
Our version of cDTWopt

LB is up to 100× slower than ED in 80% of the datasets and at
least 100× slower than ED in approximately 20% of the datasets. In comparison to
the Java implementations, we observe that the performance of cDTWopt

LB appears to
decrease in a small number of datasets with long time series because, in such datasets,

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:31

Fig. 8. Runtime of ED, SBD, cDTWOpt, and cDTWOpt
LB as a function of (a) the number of time series n and

(b) the time series length m.

Matlab’s underlying optimizations in linear algebra operations benefit ED. Therefore,
for approximately 10% of the datasets, our version of cDTWopt

LB appears slower than the
Java implementations, but, importantly, for approximately 18% of the datasets (i.e.,
in datasets with short time series), cDTWopt

LB appears faster than the Java implemen-
tations. Overall, we can conclude that the performance results of our implementation
of DTW and cDTW variants are consistent with what has been reported previously in
the literature, with some small variability in the results of cDTW due to underlying
optimizations in programming languages and choices of lower bounding methods.

Even though our performance results are consistent across implementations, we be-
lieve that several factors hinder the process of understanding the runtime performance
when solely the UCR datasets are used. In particular, the large variations in the num-
ber and length of time series across datasets do not help to provide a clear picture of
how distance measures scale as a function of such variable numbers. Moreover, the
choice of different parameters to constrain DTW’s warping window can significantly
affect the runtime performance of the distance measure and the pruning power of lower
bounding approaches.

To better understand the runtime performance and scalability of distance measures,
we perform an additional experiment using the synthetic CBF dataset [Saito 1994].
This dataset enables experiments with varying values of (a) the number of time series
n and (b) the time series length m, without changing any of its general properties. We
report the CPU runtime7 over values for n and m that are orders of magnitude larger
than those for the majority of the datasets in the UCR archive [Keogh et al. 2015].
Specifically, in Figure 8(a), we vary m from 10,000 to 50,000 while we set n = 500. We
observe that SBD is an order of magnitude slower (8×–18×) than ED with varying
lengths while cDTWOpt

LB is two orders of magnitude slower (102×–679×) and cDTWOpt

is two to three orders of magnitude slower (732×–4969×) than ED. SBD remains an
order of magnitude faster (12×–48×) than cDTWOpt

LB and one to two orders of magnitude
faster (87×–354×) than cDTWOpt. Similarly, in Figure 8(b), we vary n from 20,000 to
100,000 while we set m = 4,000. We observe that all measures scale linearly with
the number of time series when m is static and SBD remains less than an order of
magnitude slower (6.9×) than ED while cDTWOpt

LB is an order of magnitude slower
(62×) and cDTWOpt is two orders of magnitude slower (464×) than ED.

7For this experiment, we distributed the computation across eight processes. The code was extracted and
compiled into Matlab’s C/C++ MEX files.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:32 J. Paparrizos and L. Gravano

Table IV. Comparison of k-means Variants Against k-AVG+ED. Columns “>,” “=,” and “<” Denote the Number of
Datasets over Which a Method Is Better, Equal, or Worse, Respectively, in Comparison to k-AVG+ED. “Better”
Indicates That a Method Outperforms k-AVG+ED with Statistical Significance, Whereas “Worse” Indicates that
k-AVG+ED Outperforms a Method with Statistical Significance. Columns “[0, 10x),” “[10x, 100x),” and “[100x,
+∞)” Denote the Number of Datasets over Which a Method Is Slower up to 10x, Between 10x But No Higher

Than 100x, and at Least 100x, Respectively, in Comparison to k-AVG+ED

Algorithm > = < Better Worse [0,10x) [10x,100x) [100x,+∞)
k-AVG+SBD 48 5 32 ✗ ✗ 53 32 0
k-AVG+DTW 24 2 59 ✗ � 1 11 73

KSC 32 2 51 ✗ � 1 3 81
k-DBA 38 1 46 ✗ ✗ 0 0 85

k-Shape+DTW 32 2 51 ✗ ✗ 0 7 78
k-Shape 57 6 22 � ✗ 17 55 13

k-MS 64 3 18 � ✗ 3 46 36

6.3. k-Shape and k-MS against Other Scalable Methods

Comparison against k-AVG+ED: Having shown the robustness of SBD, we now
compare k-Shape and k-MS against scalable time-series clustering algorithms. Table IV
reports the performance of variants of k-means against k-AVG+ED, using their Rand
Index on the 85 datasets (see Section 5). From all these variants of k-means, only
k-Shape and k-MS outperform k-AVG+ED with statistical significance, as we show next.
In most cases, replacing ED in k-means with other distances not only does not improve
accuracy significantly but in certain cases results in substantially lower performance.
For example, k-AVG+SBD achieves higher accuracy than k-AVG+ED in 56% of the
datasets, but the differences in accuracy are not statistically significant. Interestingly,
when DTW is combined with k-means, in k-AVG+DTW, the performance is significantly
worse than with k-AVG+ED.

Even in cases where both the distance measure and the centroid computation method
of k-means are modified, the performance does not improve significantly in comparison
to k-AVG+ED. k-DBA outperforms k-AVG+DTW with statistical significance in 67 of
85 datasets. Both of these approaches use DTW as distance measure, but k-DBA also
modifies its centroid computation method. This modification significantly improves
the performance of k-DBA over that of k-AVG+DTW, with an average improvement
in the Rand Index of 19%. Despite this improvement, k-DBA still does not perform
better than k-AVG+ED in a statistical significant manner.8 Another algorithm that
modifies both the distance measure and the centroid computation method of k-means
is KSC. In contrast to k-DBA, KSC is significantly worse than k-AVG+ED. We note that
this finding contradicts our previous analysis on a subset of 48 datasets [Paparrizos
and Gravano 2015], where k-AVG+ED was shown to perform better in 54% of the
datasets but not in a statistically significant manner. Our current analysis is based on
almost twice as many datasets as our analysis in Paparrizos and Gravano [2015], which
provides substantially more evidence to the Wilcoxon test. (The p-value for Wilcoxon
was very close to the confidence level in Paparrizos and Gravano [2015], which resulted
in considering the difference in accuracy of k-AVG+ED and KSC negligible.)

Comparison of k-MS against k-Shape: Having shown that inadequate modifications
of the distance and the centroid computation method of k-means do not improve accu-
racy, we now evaluate k-Shape and k-MS, the only k-means variants with significant

8Even when multiple refinements of k-DBA’s centroids are performed per iteration, k-DBA still does not
outperform k-AVG+ED. In particular, performing five refinements per iteration improves the Rand Index
by 4%, but runtime increases by 30% according to experiments over 48 datasets [Paparrizos and Gravano
2015]. (These 48 datasets are a subset of the 85 datasets in our experiments.)

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:33

Fig. 9. Ranking of the best performing variants of k-means, namely k-MS and k-Shape, based on the average
of their ranks across datasets.

Fig. 10. Ranking of k-means variants based on the average of their ranks across datasets. The wiggly line
connects all techniques that do not perform statistically differently according to the Nemenyi test.

improvement in accuracy over k-AVG+ED. Specifically, k-Shape performs better than
k-AVG+ED in 67% of the datasets and k-MS performs better than k-AVG+ED in 75%
of the datasets. Importantly, in both of these comparisons, Wilcoxon indicates the su-
periority of k-Shape and k-MS against k-AVG+ED. Comparing now the performance of
k-Shape and k-MS, our results show that k-MS performs better, equally, and worse in
59, 4, and 22 datasets, respectively, in comparison to k-Shape. Importantly, Wilcoxon
indicates that the difference in accuracy of k-MS and k-Shape is statistically significant.
Therefore, we can conclude that k-Shape and k-MS are the only k-means variants that
significantly outperform k-AVG+ED and, importantly, k-MS is the only variant that
significantly outperforms k-Shape.

Comparison against k-DBA and KSC: Both k-DBA and KSC are similar to k-Shape
and k-MS in that they all modify both the centroid computation method and the distance
measure of k-means. Therefore, to understand the impact of these modifications, we
compare them against our k-Shape and k-MS algorithms. k-Shape performs equally or
better in 59 datasets in comparison to KSC and performs equally or better in 58 datasets
in comparison to k-DBA. In both of these comparisons, the statistical test indicates the
superiority of k-Shape. Similarly, k-MS performs equally or better in 62 datasets in
comparison to KSC and performs equally or better in 61 datasets in comparison to k-
DBA. In all these comparisons, the statistical test indicates the superiority of k-Shape
and k-MS.

Statistical analysis: In addition to the pairwise comparisons performed with the
Wilcoxon test, we further evaluate the significance of the differences in algorithm
performance when considered all together. Figure 9 shows the average rank across
datasets of k-MS, k-Shape, and k-AVG+ED, the best performing scalable clustering
methods. k-MS is the top method, with an average rank of 1.51, meaning that k-MS
achieved better rank in the majority of the datasets. The Friedman test rejects the
null hypothesis that all algorithms behave similarly, and, hence, we proceed with a
post hoc Nemenyi test, to evaluate the significance of the differences in the ranks.
We observe that the difference in ranks of each method are statistically significant: k-
Shape is significantly better than k-AVG+ED, and, in turn, k-MS is significantly better
than k-Shape. Figure 10 shows the average rank across datasets of k-MS and k-means
variants that modify both the centroid computation method and the distance measure
of k-means. As before, k-MS is ranked first, with an average rank of 1.78. We observe
that the ranks of KSC, k-DBA, and k-AVG+ED do not present a statistically significant
difference, whereas k-MS, which is ranked first, is significantly better than the others.
We note that according to the Wilcoxon test, as mentioned earlier, KSC is significantly
worse than k-AVG+ED. However, when KSC, k-DBA, k-AVG+ED, and k-MS are consid-
ered collectively, KSC performs similarly to k-DBA and k-AVG+ED. (We observe simi-
lar findings for k-Shape in our analysis over 85 datasets. We omit figures due to space

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:34 J. Paparrizos and L. Gravano

limitations. In Paparrizos and Gravano [2015], we provide such comparisons on a subset
of 48 datasets.) To conclude, modifying k-means with inappropriate distance measures
or centroid computation methods might lead to unexpected results. The same holds
for k-Shape, where the use of DTW, in k-Shape+DTW, results in a significant drop in
performance (i.e., k-Shape outperforms k-Shape+DTW with statistical significance in
60 of 85 datasets).

Efficiency: k-Shape and k-MS are the only algorithms that outperform all k-means
variants, including the simple, yet robust, k-AVG+ED. We now investigate whether
the superiority of k-Shape and k-MS in terms of accuracy has an associated penalty in
efficiency. Table IV shows the number of datasets over which each method is slower than
k-AVG+ED. k-Shape is the fastest method that significantly outperforms k-AVG+ED.
k-MS is slower than k-Shape due to the additional cost required to compute more
centroids. However, k-MS remains only up to 10× slower than k-Shape in 93% of the
datasets. Importantly, k-MS remains significantly faster than all k-means variants that
modify both the distance and the centroid computation method of k-means. Specifically,
KSC performs up to 10×, 10× but less than 100×, and at least 100× slower than k-
Shape, in 20%, 78%, and 2% of the datasets, respectively. KSC performs up to 10×
slower than k-MS in 60% of the datasets, and 10× but less than 100× slower than k-
MS in 40%. k-DBA performs at least 100× slower than k-Shape in 74% of the datasets
and at least 100× slower than k-MS in 44% of the datasets.

6.4. k-Shape and k-MS against Non-Scalable Methods

Comparison against k-AVG+ED: Until now, we have focused our evaluation on scal-
able clustering algorithms. To show the robustness of k-Shape and k-MS in terms
of accuracy beyond scalable approaches, we now ignore scalability and compare k-
Shape and k-MS against clustering methods that scale quadratically with the num-
ber of time series, namely, hierarchical, spectral, and k-medoids methods. Table V re-
ports the performance of non-scalable methods against k-AVG+ED. Among all existing
state-of-the-art methods that use ED or cDTW as distance measures, only partitional
methods perform similarly to or better than k-AVG+ED. In particular, PAM+cDTW is
the only method that outperforms k-AVG+ED with statistical significance. PAM+ED
achieves better performance in 51% of the datasets in comparison to k-AVG+ED; how-
ever, this difference is not statistically significant. Moreover, PAM+cDTW performs
better in 51 datasets, equally in 2 datasets, and worse in 32 datasets relative to
PAM+ED. For this comparison, the statistical significance test indicates the superi-
ority of PAM+cDTW. We note that constraining the warping window for DTW does
not affect significantly the accuracy of clustering methods. Figure 11 shows the rank-
ing of PAM+DTW, PAM+cDTW5, PAM+cDTW10, and k-AVG+ED across all datasets.
PAM+DTW, PAM+cDTW5, and PAM+cDTW10 do not present significant difference in
accuracy, but PAM+DTW is ranked first. This is contradictory to the findings for the
classification task where DTW was ranked last (see Figure 6).

All combinations of hierarchical clustering, with all different linkage criteria, per-
form poorly in comparison to k-AVG+ED. Interestingly, k-AVG+ED outperforms all of
them with statistical significance. We observe that the major difference in performance
among hierarchical methods is attributed to the linkage criterion and not to the dis-
tance measure, as we noted in Paparrizos and Gravano [2015]. This highlights the
importance of the clustering method, in addition to the distance measure for time-
series clustering. Similarly to hierarchical methods, spectral methods also perform
poorly against k-AVG+ED. S+cDTW performs better in more datasets than S+ED in
comparison to k-AVG+ED: Comparing S+cDTW with S+ED, S+cDTW achieves similar
or better accuracy in 41 datasets, but this difference is not significant. Importantly,

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:35

Table V. Comparison of Hierarchical, Spectral, and
k-Medoids Variants against k-AVG+ED.

Columns “>,” “=,” and “<” Denote the Number of
Datasets over Which an Algorithm Is Better, Equal,

or Worse, Respectively, in Comparison to k-AVG+ED.
“Better” Indicates That an Algorithm

Outperforms k-AVG+ED with Statistical Significance,
Whereas “Worse” Indicates That k-AVG+ED

Outperforms an Algorithm with Statistical Significance

Algorithm > = < Better Worse
H-S+ED 17 1 67 ✗ �

H-S+cDTW 21 0 64 ✗ �
H-S+SBD 20 1 64 ✗ �
H-A+ED 16 0 69 ✗ �

H-A+cDTW 22 0 63 ✗ �
H-A+SBD 23 0 62 ✗ �
H-C+ED 28 0 57 ✗ �

H-C+cDTW 33 0 52 ✗ �
H-C+SBD 35 0 50 ✗ �

S+ED 27 1 57 ✗ �
S+cDTW 36 1 48 ✗ �
S+SBD 61 0 24 � ✗

PAM+ED 43 1 41 ✗ ✗

PAM+cDTW 55 2 28 � ✗

PAM+SBD 58 2 25 � ✗

Fig. 11. Ranking of partitional methods that outperform k-AVG+ED based on the average of their ranks
across datasets. The wiggly line connects all techniques that do not perform statistically differently according
to the Nemenyi test.

k-AVG+ED is significantly better than both S+ED and S+cDTW. Therefore, for hier-
archical and spectral methods, these distance measures have a small impact on their
performance.

k-Shape and k-MS against H-C+cDTW, S+cDTW, and PAM+cDTW: Among all
methods using cDTW as distance measure that we evaluated, only PAM+cDTW out-
performs k-AVG+ED with statistical significance. Similarly to k-AVG+ED, k-Shape and
k-MS also outperform H-C+cDTW and S+cDTW with statistical significance. Therefore,
we compare this approach with k-Shape and k-MS. PAM+cDTW performs equally or
better in 45 datasets in comparison to k-Shape and equally or better in 41 datasets in
comparison to k-MS, but these differences are not significant.

For completeness, we also evaluate SBD with hierarchical, spectral, and k-medoids
methods. For hierarchical methods, H-C+SBD is better than H-A+SBD, and, in turn,
H-A+SBD is better than H-S+SBD, all with statistical significance. S+SBD, in contrast
to S+ED and S+cDTW, outperforms k-AVG+ED in 61 of 85 datasets, with statistical
significance. We note that S+SBD is the method that outperforms k-AVG+ED in the
largest number of datasets (72%) than any other method evaluated in this work. S+SBD
is also significantly better than S+ED and S+cDTW, but S+SBD does not outperform
k-Shape or k-MS. Similarly, PAM+SBD performs better in 58, equally in 2, and worse in

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:36 J. Paparrizos and L. Gravano

Fig. 12. Ranking of methods that outperform k-AVG+ED based on the average of their ranks across datasets.
The wiggly line connects all techniques that do not perform statistically differently according to the Nemenyi
test.

25 datasets in comparison to k-AVG+ED. The statistical test suggests that PAM+SBD
is significantly better than k-AVG+ED but not better than k-Shape or k-MS.

Statistical analysis: We evaluate the significance of the differences in algorithm
performance for all algorithms that significantly outperform k-AVG+ED. (We omit k-
Shape to simplify our analysis. Our analysis on 85 datasets indicate similar behavior
as on a subset of 48 datasets [Paparrizos and Gravano 2015].) Figure 12 shows that
k-MS, PAM+SBD, PAM+cDTW, and S+SBD do not present a significant difference in
accuracy, whereas k-AVG+ED, which is ranked last, is significantly worse than the
others.

From our extensive evaluation of existing clustering approaches for time series that
use ED, cDTW, or DTW as distance measures, PAM+cDTW is the only approach that
achieves similar—but not better—results compared to k-Shape and k-MS. In contrast
to k-Shape and k-MS, PAM+cDTW has two drawbacks that make it an unrealistic
choice for time-series clustering: (i) its distance measure, cDTW, requires tuning to
improve its performance and reduce the computation cost and (ii) the computation of
the dissimilarity matrix that PAM+cDTW requires as input makes it unable to scale
in both time and space. For example, the matrix computation alone is already two
orders of magnitude slower than the computation required by k-Shape. Thus, k-Shape
and k-MS emerge as domain-independent, highly accurate, and scalable approaches
for time-series clustering.

6.5. k-Shape and k-MS against Outlier-Aware Methods

Comparison against k-AVG+ED: Until now, we have focused our evaluation on
state-of-the-art scalable and non-scalable clustering methods that do not exploit
any particular mechanism to handle outliers in the datasets. Table VI reports the
performance of outlier-aware methods (see Section 5) against k-AVG+ED, using their
Rand Index on the 85 datasets (see Section 5). From all these approaches, none
outperforms k-AVG+ED, and, importantly, k-AVG+ED significantly outperforms all
variants of DBSCAN. In particular, k-AVG+ED achieves better performance in 71%,
69%, and 65% of the datasets in comparison to DBSCAN3+ED, DBSCAN3+SBD, and
DBSCAN3+cDTW, respectively. DBSCAN3+cDTW is the strongest of the combinations
of DBSCAN with other distance measures. Specifically, DBSCAN3+cDTW performs at
least as well as DBSCAN3+ED in 50 datasets and at least as well as DBSCAN3+SBD
in 45 datasets. However, the Wilcoxon test suggests that these differences in accuracy
are not statistically significant.

Similarly to DBSCAN, TADPole does not outperform k-AVG+ED. Specifically, k-
AVG+ED performs at least as well as TADPole3 in 50 datasets, but this difference
is not significant. Comparing DBSCAN and TADPole, we observe that TADPole3 sig-
nificantly outperforms all DBSCAN variants. In particular, TADPole3 outperforms
DBSCAN3+cDTW, DBSCAN3+SBD, and DBSCAN3+ED in 54, 56, and 55 datasets,
respectively.

As discussed in Section 5, both DBSCAN and TADPole require as input two pa-
rameters. For fairness in the comparison, we now also report experimental results for

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:37

Table VI. Comparison of Variants of Density-Based and
Shapelet-Based Methods against k-AVG+ED.

Columns “>,” “=,” and “<” Denote the Number of
Datasets over Which an Algorithm Is Better,

Equal, or Worse, Respectively, in Comparison
to k-AVG+ED. “Better” Indicates That an

Algorithm Outperforms k-AVG+ED with Statistical
Significance, Whereas “Worse” Indicates That k-AVG+ED

Outperforms an Algorithm with Statistical Significance.
“Rand Index” Denotes the Accuracy Achieved in the 85 Datasets

Algorithm > = < Better Worse
DBSCAN3+ED 25 0 60 ✗ �

DBSCANBest+ED 32 0 53 ✗ �
DBSCAN3+SBD 26 0 59 ✗ �

DBSCANBest+SBD 33 0 52 ✗ �
DBSCAN3+cDTW 30 0 55 ✗ �

DBSCANBest+cDTW 37 0 48 ✗ �
TADPole3 35 1 49 ✗ ✗

TADPoleBest 41 1 43 ✗ ✗

U-Shapelets0.5 31 0 54 ✗ �
U-ShapeletsBest 44 0 41 ✗ ✗

Fig. 13. Ranking of TADPole3, DBSCAN3, k-AVG+ED, and k-MS based on the average of their ranks across
datasets. The wiggly line connects all techniques that do not perform statistically differently according to
the Nemenyi test.

the DBSCAN and TADPole variants when they receive as input the best performing
parameters for each dataset, as described in Section 5. DBSCANBest+cDTW performs
at least as well as DBSCANBest+ED and DBSCANBest+SBD in 46 datasets, but these
differences are not statistically significant. Interestingly, k-AVG+ED performs at least
as well as DBSCANBest+cDTW in 48 datasets, at least as well as DBSCANBest+SBD
in 52 datasets, and at least as well as DBSCANBest+ED in 53 datasets, and all these
differences in accuracy are statistically significant. In contrast, k-AVG+ED performs
equally or better in 44 in comparison to TADPoleBest, but this difference in accuracy is
not statistically significant.

Comparison against k-Shape and k-MS: Among all density-based methods we
evaluated, none outperformed k-AVG+ED with statistical significance. Therefore,
even though k-Shape and k-MS are significantly better than k-AVG+ED, we evalu-
ate k-Shape and k-MS against all density-based methods. Similarly to k-AVG+ED,
k-Shape and k-MS also significantly outperform DBSCAN3+ED, DBSCAN3+SBD,
and DBSCAN3+cDTW. In particular, k-Shape and k-MS perform at least as well as
DBSCAN3+cDTW in 74% of the datasets. In contrast to k-AVG+ED, k-Shape signifi-
cantly outperforms TADPole3 in 70% of the datasets and k-MS significantly outperforms
TADPole3 in 74% of the datasets.

Statistical Analysis: Until now, we evaluated density-based methods pairwise. We
now evaluate the significance of the differences in algorithm performance for the best
performing density-based methods when considered collectively. The Friedman test
rejects the null hypothesis that all algorithms behave similarly, and, hence, as be-
fore, we proceed with a post hoc Nemenyi test. Figure 13 shows that TADPole3 and

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:38 J. Paparrizos and L. Gravano

Fig. 14. Ranking of U-Shapelets0.5, k-AVG+ED, and k-MS based on the average of their ranks across
datasets. The wiggly line connects all techniques that do not perform statistically differently according
to the Nemenyi test.

DBSCAN3+cDTW do not exhibit a significant difference in accuracy. However, in con-
trast to TADPole3, DBSCAN3+cDTW is significantly worse than k-AVG+ED. k-MS,
which is ranked first, is significantly better than both density-based methods. (We
omit similar results for k-Shape.)

6.6. k-Shape and k-MS against a Shapelet-Based Method

Comparison against k-AVG+ED: To conclude our analysis, we now evaluate
U-Shapelets, a shapelet-based method that exploits patterns in subsequences of the
entire time series (see Section 5). The last two rows of Table VI report the performance
of U-Shapelets variants against k-AVG+ED, using their Rand Index on the 85 datasets
(see Section 5). These two variants do not outperform k-AVG+ED and, importantly,
k-AVG+ED significantly outperforms U-Shapelets0.5. In particular, k-AVG+ED per-
forms better in 54 and worse in 31 datasets in comparison to U-Shapelets0.5. For com-
pleteness, we note that U-ShapeletsBest significantly improves the performance of U-
Shapelets. In particular, U-ShapeletsBest performs better in 57 and equal in 28 datasets
in comparison to U-Shapelets0.5. U-ShapeletsBest performs better in 44 and worse in 41
datasets in comparison to k-AVG+ED but the difference in accuracy is not statistically
significant.

Comparison against DBSCAN3+cDTW and TADPole3: We now evaluate the per-
formance of U-Shapelets0.5 against density-based methods. U-Shapelets0.5 performs
better in 52, equally in 1, and worse in 32 datasets in comparison to the best perform-
ing DBSCAN variant, namely DBSCAN3+cDTW. The Wilcoxon text suggests that this
difference in accuracy is not statistically significant but with a p-value close to the
confidence level. Similarly, TADPole3 performs at least as well as U-Shapelets0.5 in 47
datasets, but this difference in accuracy is not statistically significant.

Comparison against k-Shape and k-MS: Among all shapelet-based methods we
evaluated, none outperformed k-AVG+ED. Therefore, even though k-Shape and k-MS
are significantly better than k-AVG+ED, we evaluate k-Shape and k-MS against the best
performing shapelet-based method: Both k-Shape and k-MS outperform U-Shapelets0.5

in 57 of 85 datasets. The Wilcoxon test suggests that this difference in accuracy is
significant.

Statistical Analysis: Having shown the superiority of k-Shape and k-MS against U-
Shapelets0.5, we now conclude our analysis with an evaluation of the significance of the
differences in algorithm performance when considered collectively. The Friedman test
rejects the null hypothesis that all algorithms behave similarly, and, hence, as before,
we proceed with a post hoc Nemenyi test. Figure 14 shows that k-AVG+ED and U-
Shapelets0.5 do not present a significant difference, whereas k-MS, which is ranked first,
is significantly better than k-AVG+ED and U-Shapelets0.5. (We omit similar results for
k-Shape.)

6.7. Evaluation of NSC

Until now, we have demonstrated the robustness of k-Shape and k-MS as standalone
clustering methods for time series. In this section, we evaluate the performance of

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:39

Table VII. Comparison of Random, RT1, RT2, RT3,
and NSC. Columns “k=1,” “k=2,” “k=3,” and “k=4”

Denote the Average Ranking, in Terms of Accuracy,
of Each Algorithm over 75 Datasets when

k Centroids Represent Each Class. The Last
Row Represents the Difference in Ranking of the Best

Performing Rival Method and NSC. Differences
Higher than 0.55 Are Considered Statistically

Significant According to the Nemenyi Test

Algorithm k=1 k=2 k=3 k=4
Random 2.919 2.713 3.081 2.978

RT1 3.603 3.706 3.331 3.404
RT2 3.132 3.132 3.147 3.140
RT3 3.684 3.926 3.824 3.853
NSC 1.662 1.522 1.618 1.625

RBest-RNSC 1.257 1.191 1.463 1.353

k-Shape, our simplest—and competitive—clustering method, as a subroutine to effec-
tively reduce the search space of one-nearest-neighbor algorithms.

We perform three experiments to assess the performance of NSC against rival meth-
ods. First, following Petitjean et al. [2014, 2015], we evaluate performance when a lim-
ited number of centroids are allowed per class. Second, we evaluate the impact of several
key characteristics of the methods. Third, we compare the performance of 1-NN clas-
sifiers against three variants of NSC, namely NSC+ED, NSC+SBD, and NSC+cDTW.
The first two experiments are over the 75 datasets—of the 85 datasets—for which all
algorithms terminated after running continuously for one week, as discussed in Sec-
tion 5. In contrast, the third experiment, which is based solely on the efficient NSC, is
over the full set of 85 datasets.

Table VII reports the average rank, in terms of accuracy, of Random, RT1, RT2,
RT3, and NSC when k centroids represent each class in the training set.9 NSC is the
top method for all values of k that we considered, meaning that NSC achieved higher
accuracy in the majority of the datasets. Specifically, NSC significantly outperforms
each of the rival methods in at least 80% of the datasets for all values of k, according
to Wilcoxon. To understand the performance of NSC in comparison with Random,
RT1, RT2, and RT3, we also evaluate the significance of their differences in accuracy
when considered all together. The Friedman test rejects the null hypothesis that all
algorithms behave similarly for all values of k, and, hence, we proceed with a post hoc
Nemenyi test. The last row in Table VII shows the difference in ranks of NSC and the
best performing method. According to the Nemeyi test, differences higher than 0.55
are significant. Therefore, for all different values of k, the difference in the rank of NSC
against all rival methods is statistically significant.

Having shown the superiority in terms of accuracy of NSC against other methods, we
now explore the impact on four important characteristics of NSC, RT1, RT2, and RT3
in their attempt to outperform their corresponding 1-NN classifier.10 In Table VIII, we
first evaluate the methods based on the number of instances required to outperform
their corresponding 1-NN classifier. NSC is the top method, meaning that NSC required
fewer centroids than the other methods to outperform its corresponding 1-NN classifier
in the majority of datasets. The Friedman test rejects the null hypothesis that all
algorithms behave similarly, and, hence, we proceed as before with a post hoc Nemenyi

9We vary k from 1 to 4 to include datasets with a small number of instances per class.
10We exclude the Random method from this experiment as Random could not outperform 1-NN classifier
with cDTW5 in the majority of the datasets.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:40 J. Paparrizos and L. Gravano

Table VIII. Comparison of RT1, RT2, RT3, and NSC. Column “Average Rank” Denotes the Average Rank in
Terms of the Number of Centroids Required to Outperform the Corresponding 1-NN Accuracy. Column

“Initialization Cost” Denotes the Number of Datasets over Which an Algorithm Requires up to 10x (Column “[0,
10x)”), between 10x But No Higher than 100x (Column “[10x, 100x)”), and at Least 100x (Column “[100x, +∞)”)
More Preprocessing than the Version of the Random Method with the Corresponding Distance. Column “Query
Time Improvement” Indicates the Number of Datasets over Which an Algorithm Improves the Query Response

Time up to 25% (Column “[0, 25)”), from 25% to 50% (Column “[25, 50)”), from 50% to 75% (Column “[50, 75)”),
and from 75% to 100% (Column “[75, 100)”) Relative to the Corresponding 1-NN. Column “Amortization Cost”
Denotes the Number of Datasets over Which an Algorithm Requires to Increase the Number of Queries up to

10x (Column “[0, 10x)”), between 10x But No Higher than 100x (column “[10x, 100x)”), and at Least 100x
(Column “[100x, +∞)”) Relative to the Corresponding 1-NN to Amortize the Initialization Cost

Algorithm
Average Initialization Cost Query TimeImprovement Amortization Cost

Rank [0,10x) [10x,100x) [100x,+∞) [0,25) [25,50) [50,75) [75,100] [0,10x) [10x,100x) [100x,+∞)
RT1 2.838

40 30 5
48 10 7 10

9 17 48RT2 2.561 43 9 10 13
RT3 2.696 45 7 12 11
NSC 1.905 49 26 0 21 8 11 35 45 16 14

test. According to Nemenyi, the difference in the rank of NSC against all rival methods
is statistically significant.

We then investigate the associated initialization cost for each method to outper-
form the corresponding 1-NN classifiers. Considering that 1-NN classifiers require no
preprocessing of the instances in the training set (i.e., the initialization cost of 1-NN
classifiers is negligible), we measure the initialization cost of each method against the
corresponding Random method. NSC performs up to 10× slower than Random in 65%
of the datasets, while in the remaining 35% of the datasets NSC performs between
10× but no higher than 100× slower in comparison to Random. In contrast, RT1, RT2,
and RT3 perform up to 10×, between 10× but no higher than 100×, and at least 100×
slower than Random in 53%, 40%, and 7% of the datasets, respectively.11 Therefore,
we can conclude that NSC is faster at preprocessing the instances in the training set
than all other reduction techniques.

Considering that all methods significantly reduce the number of instances in the
training set in comparison with 1-NN classifiers, we now evaluate the associated
improvement in query runtime in comparison with the corresponding 1-NN classi-
fiers. Specifically, NSC reduces the query response time by at least 50% in 61% of the
datasets. In contrast, the best reduction techniques, namely, RT1 and RT2, reduce the
query response time by at least 50% in 31% of the datasets. Therefore, NSC reduces
the query response time by at least 50% in approximately twice as many datasets as
do the reduction techniques.

Finally, we report the number of queries each method has to process to amortize the
initialization cost in comparison with the associated 1-NN classifiers. NSC increases
the number of queries up to 10× in 60% of the datasets and by at least 10× in 40% of
the datasets to amortize the initialization cost. In contrast, the reduction techniques
increase the number of queries up to 10× in 13% of the datasets and by at least 10×
in 67% of the datasets. Therefore, we can conclude that NSC is a competitive method
to reduce the instances required for training the 1-NN classifiers. NSC is significantly
more accurate than rival methods, requires fewer centroids to effectively summarize
the search space, and yields important reductions in query response time in comparison
with 1-NN classifiers.

11Considering that all reduction techniques are statistically indistinguishable in terms of accuracy and
number of instances required to outperform 1-NN classifier with cDTW5, in Table VIII we only report the
“Initialization Cost” and the “Amortization Cost” of the best performing reduction technique, namely RT2,
to simplify our analysis.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:41

Table IX. Comparison of NSC+cDTW and NSC+SBD against
NSC+ED. Columns “>,” “=,” and “<” Denote the Number of

Datasets over Which an Algorithm Is Better, Equal, or Worse,
Respectively, in Comparison to NSC+ED. “Better” Indicates

That an Algorithm Outperforms NSC+ED with Statistical
Significance, Whereas “Worse” Indicates that NSC+ED
Outperforms an Algorithm with Statistical Significance

Algorithm > = < Better Worse
NSC+cDTW 53 2 30 � ✗

NSC+SBD 67 3 15 � ✗

Fig. 15. Comparison of NSC+SBD against NSC+ED (a), NSC+cDTW against NSC+ED (b), and NSC+SB
against NSC+cDTW (c) over 85 datasets. Circles above the diagonal indicate datasets over which the method
in the vertical axis has better accuracy than the method in the horizontal axis.

Fig. 16. Ranking of nearest shape classifier methods based on the average of their ranks across datasets.
The wiggly line connects all techniques that do not perform statistically differently according to the Nemenyi
test.

Having shown the superiority of NSC against other data editing techniques, we now
evaluate the effectiveness of NSC when combined with competitive distance measures.
Table IX reports the performance of NSC+SBD and NSC+cDTW against NSC+ED on
85 datasets. Both NSC+SBD and NSC+cDTW significantly outperform NSC+ED. In
particular, NSC+SBD performs at least as well as NSC+ED in 82% of the datasets and
NSC+cDTW performs at least as well as NSC+ED in 65% of the datasets. Figures 15(a)
and 15(b) illustrate the superiority of NSC+SBD and NSC+cDTW against NSC+ED,
respectively. In contrast, NSC+SBD performs better in 45, equal in 1, and worse in 39
datasets in comparison to NSC+cDTW. Wilcoxon suggests that this difference in accu-
racy is not statistically significant. Figure 15(c) shows the performance of NSC+SBD
against NSC+cDTW. In addition to the pairwise comparisons performed with Wilcoxon,
we further evaluate the significance of the differences in algorithm performance when
considered collectively. Figure 16 shows the average rank across datasets of each NSC
variant. NSC+SBD is the top method, with an average rank of 1.66, meaning that
NSC+SBD achieved better rank than NSC+ED and NSC+cDTW in the majority of the
datasets. The Friedman test rejects the null hypothesis that all algorithms behave
similarly, and, hence, we proceed with a post hoc Nemenyi test to evaluate the signif-
icance of the differences in the ranks. We observe that the ranks between NSC+SBD
and NSC+cDTW do not present any significant difference, whereas NSC+ED, which is
ranked last, is significantly worse than the others.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:42 J. Paparrizos and L. Gravano

Considering now the performance of NSC and 1-NN variants for the same distances
collectively, we observe no significant difference between NSC+SBD and 1-NN+SBD,
and no significant difference between NSC+ED and 1-NN+ED. However, NSC+cDTW
is significantly worse than 1-NN+cDTW, which indicates that k-Shape is not an ap-
propriate clustering method to compute centroids when cDTW is used. Instead, other
methods, such as PAM+cDTW or k-DBA, would be preferable in conjunction with cDTW.

In conclusion, k-Shape is an effective method to summarize time series, and 1-NN
classifiers can benefit from using k-Shape as a subroutine to significantly reduce their
search space. Importantly, these findings have implications in settings where time-
series classification methods operate under limited computational resources [Petitjean
et al. 2014, 2015] or within a tight time budget [Ding et al. 2015; Pelkonen et al. 2015].

6.8. Summary of Results

In short, our experimental evaluation suggests that (1) cross-correlation measures
(e.g., SBD), which are not widely adopted as time-series distance measures, are as
competitive as state-of-the-art measures, such as cDTW and DTW, but significantly
faster; (2) only the optimally tuned cDTW measure significantly outperforms the DTW
measure when 1-NN classification is used to evaluate distance measures, in contrast to
the belief that cDTW generally improves the accuracy of DTW; (3) for time-series clus-
tering, the DTW measure often achieves better performance than the cDTW measure,
which contradicts the findings under 1-NN classification; (4) the k-means algorithm
with ED, in contrast to what has been reported in the literature, is a robust approach
for time-series clustering, but inadequate modifications of its distance measure and
centroid computation can reduce its performance; (5) the choice of clustering method,
such as partitional versus density-based methods, which was believed to be less impor-
tant than that of distance measure, is as important as the choice of distance measure;
(6) the intrinsic characteristics of clustering algorithms, such as the linkage criterion
in hierarchical clustering, are more important than the choice of distance measures;
(7) the attempts to isolate and ignore abnormal behaviors in time series can signifi-
cantly hurt the performance of outlier-aware clustering methods; (8) k-Shape and k-MS
are highly accurate and efficient methods for time-series clustering; and (9) exploiting
clustering methods, such as k-Shape, as subroutines to reduce the search space of 1-NN
algorithms can lead to fast and accurate classification methods for time series.

7. RELATED WORK

This article substantially extends our previous article [Paparrizos and Gravano 2015]
on efficient and accurate clustering of time series. The earlier article presented the SBD
distance measure (Section 3.1), the k-Shape clustering algorithm (Section 3.3), and an
experimental evaluation over 48 datasets. We can summarize the contributions of the
current article as follows: (i) We present a new shape-based clustering algorithm, k-
MS, that takes into consideration the proximity and spatial distribution of time series;
(ii) we substantially expand the analysis and experimental evaluation in Paparrizos
and Gravano [2015]; and (iii) we demonstrate that we can rely on our approaches to
improve 1-NN time-series classification.

In particular, we present k-MS, a novel time-series clustering method (see Section 3).
k-MS relies on SBD to consider the shapes of time series while comparing them and
on the same iterative refinement procedure used in k-Shape to allow linear scalability
with the number of time series. However, k-MS is based on a different method to
compute cluster centroids than the one used for k-Shape. Specifically, k-Shape relies
on the SE method to compute a single centroid per cluster assuming that a single
centroid can effectively represent the characteristics of the underlying time series.
In practice, time series are not uniformly distributed in space and noisy sequences

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:43

and outliers complicate the extraction of a representative sequence. To avoid these
important limitations, k-MS relies on MSE to compute multiple centroids per cluster
in order to consider the proximity and spatial distribution of time series on each
cluster. Our experimental results suggest that k-MS behaves similarly to k-Shape
in comparison to rival methods we consider in our work, but, importantly, k-MS is
significantly more accurate than k-Shape (see Sections 6.3 and 6.4).

In addition to our new clustering algorithm, this article expands the evaluation of
our techniques along several dimensions. First, all of our results are now over the new
version of the UCR archive of time-series datasets [Keogh et al. 2015]. This archive now
includes 85 time-series datasets, a substantial increase over the earlier 48 datasets for
our evaluation in Paparrizos and Gravano [2015]. The larger number of datasets has
allowed us to both confirm our earlier findings in an even more robust setting, as well
as produce additional findings, all supported with a rigorous statistical significance
analysis. Second, we also significantly expanded the families of alternative time-series
clustering methods in our evaluation. We now include density-based methods and
shapelet-based methods (see Sections 6.5 and 6.6). In contrast to all other clustering
approaches considered in our earlier work, these clustering methods detect abnormal
behaviors in the dataset at hand and attempt to isolate and ignore outliers in time
series. Our results suggest that k-Shape and k-MS are significantly better than these
outlier-aware methods (see Sections 6.5 and 6.6).

Furthermore, we show that we can accurately predict in advance if SBD will out-
perform other state-of-the-art distance measures on each dataset (see Section 6.1 and
Figure 5). Additionally, we corroborate our performance results over optimized imple-
mentations for the state-of-the-art distance measures and we perform a large-scale
runtime experiment of SBD as a function of the number and the length of the time
series (see Section 6.2, Table III, and Figure 8). Our results show that there is merit in
considering SBD as an alternative distance measure for time-series comparison. SBD
combines the efficiency and scalability of ED with the accuracy of cDTW, without the
need to tune parameters.

Finally, we also show how we can use k-Shape to improve other related time-series
tasks. Motivated by recent successful efforts that use centroid computation methods
[Gou et al. 2012] and clustering methods [Petitjean et al. 2014, 2015] to improve the
performance of nearest-neighbor classifiers, we present NSC, a 1-NN classification
method that relies on k-Shape as a subroutine to effectively reduce the search space for
1-NN classification algorithms (see Section 4). We evaluate NSC against data editing
algorithms along several key characteristics, and we show that we can significantly
reduce the search space for 1-NN classifiers without loss in accuracy (see Section 6.7).
Such 1-NN classifiers are useful for real-world settings where the classification of time
series is required under limited computational resources or time constraints.

As additional related work, Section 2 provided an in-depth discussion of the state
of the art for time-series clustering, which we will not repeat for brevity. Specifically,
Section 2.1 summarized the relevant theoretical background, Section 2.2 reviewed
common distortions in time series, and Section 2.3 discussed the most popular state-
of-the-art distance measures for time series. (We refer the reader to Ding et al. [2008]
and Wang et al. [2013] for a thorough review of the alternative time-series distance
measures.) Section 2.4 highlighted existing state-of-the-art approaches for time-series
clustering. (We refer the reader to Warren Liao [2005] for a more detailed view of these
approaches.) Finally, Section 2.5 discussed the methods for centroid computation that
are part of many time-series clustering algorithms.

As argued throughout the article, we focus on shape-based clustering of time series.
Beyond shape-based clustering algorithms, statistical-based approaches use measures
that summarize characteristics [Wang et al. 2006], coefficients of models [Kalpakis

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

8:44 J. Paparrizos and L. Gravano

et al. 2001], or portions of time series (i.e., shapelets) [Zakaria et al. 2012] as descriptive
features to cluster time series. Unfortunately, statistical-based approaches frequently
require the non-trivial tuning of multiple parameters, which often leads to ad hoc
decisions, or their effectiveness has been established only for isolated domains and not
in a domain-independent manner. Instead, shape-based approaches are general and
leverage the vast literature on distance measures. In Section 6.6, we showed that both
k-Shape and k-AVG+ED significantly outperform the U-Shapelets method [Zakaria
et al. 2012].

The best performing shape-based approaches from the literature are partitional
methods combined with scale- and shift-invariant distance measures. Among parti-
tional methods, k-medoids [Kaufman and Rousseeuw 2009] is the most popular method,
as it enables the easy adoption of any shape-based distance measure [Ding et al. 2008;
Wang et al. 2013]. However, k-medoids requires the computation of the full dissimi-
larity matrix among all time series, which makes it particularly slow and unable to
scale. Recent alternative approaches [Gupta et al. 1996; Meesrikamolkul et al. 2012;
Niennattrakul and Ratanamahatana 2009; Petitjean et al. 2011; Yang and Leskovec
2011] have focused on k-means [MacQueen 1967], which is scalable but requires the
modification of the centroid computation method when the distance measure is altered,
to support the same properties (e.g., scaling, translation, and shifting). Because DTW
is the most prominent shape-based distance measure [Ding et al. 2008; Wang et al.
2013], the majority of the k-means approaches have proposed new centroid computa-
tion methods to be used in conjunction with DTW [Gupta et al. 1996; Meesrikamolkul
et al. 2012; Niennattrakul and Ratanamahatana 2009; Petitjean et al. 2011]. k-DBA
has been shown to be the most robust of these approaches [Petitjean et al. 2011]. An-
other approach worth mentioning is KSC [Yang and Leskovec 2011], which focuses on
a different shape-based distance measure that offers simultaneously pairwise scaling
and shifting of time series. Unfortunately, the effectiveness of such pairwise scaling
and shifting, and, hence, KSC, has not been established beyond a limited number
of datasets. In Sections 6.3 and 6.4, we evaluated k-Shape against shape-based ap-
proaches, including combinations of k-means and k-medoids with the most competitive
distance measures, as well as k-DBA and KSC. Apart from shape-based approaches,
we also compared k-Shape against hierarchical and spectral methods (see Section 6.4),
density-based methods (see Section 6.5), and shapelet-based methods (see Section 6.6).

For completeness, we note that Golay et al. [1998] used the arithmetic mean property
for centroid computation and cross-correlation in distance measures with parameters
to regulate the fuzziness of fuzzy clustering of fMRI data. (In Section 6, we showed
that k-AVG+SBD is not competitive for our non-fuzzy setting.) Goutte et al. [1999]
used cross-correlation to transform fMRI data into features for clustering. Baragona
[2000] evaluated several weighting schemes of cross-correlation along with a genetic
algorithm to avoid inappropriate initialization for the k-min clustering criterion [Sahni
and Gonzalez 1976]. Hőppner and Klawonn [2009] proposed a fuzzy c-means [Bezdek
2013] clustering method that uses a weighting scheme to penalize alignment of time
series in larger lags when cross-correlation is used, a weighted arithmetic mean for
centroid computation, and a mechanism to handle outliers given a user-defined thresh-
old. Finally, cross-correlation was used to speed up subsequence matching [Mueen et al.
2014] and the computation of shapelets [Mueen et al. 2011], as well as for stream min-
ing, pattern extraction, and time-series monitoring [Papadimitriou et al. 2006; Sakurai
et al. 2005; Wu et al. 2010; Zhu and Shasha 2002].

8. CONCLUSIONS

In this article, we presented k-Shape and k-MS, two novel scalable partitional al-
gorithms that preserve the shapes of time series. k-Shape and k-MS compare time

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:45

series efficiently and compute centroids effectively under the scaling and shift invari-
ances. k-Shape and k-MS use as their distance measure SBD, a normalized version
of cross-correlation. To compute cluster centroids based on SBD, k-Shape extracts a
single centroid per cluster. In contrast, k-MS extracts multiple centroids per cluster.
Our extensive evaluation showed the robustness of SBD, k-Shape, and k-MS against
state-of-the-art distance measures and clustering approaches for time series. In par-
ticular, SBD is an efficient and parameter-free distance measure that achieves similar
results to the most accurate but computationally expensive distance measures that
require parameter tuning. k-Shape and k-MS outperform all state-of-the-art scalable
and non-scalable partitional, hierarchical, spectral, density-based, and shapelet-based
clustering approaches, with only one method achieving similar performance. Interest-
ingly, this method is significantly slower than both k-Shape and k-MS and, importantly,
its distance measure requires tuning. Beyond clustering, we demonstrated the effec-
tiveness of k-Shape to reduce the search space of one-nearest-neighbor classifiers for
time series. Overall, SBD, k-Shape, and k-MS emerge as domain-independent, accurate,
and scalable approaches for time-series comparison and clustering.

We have identified many interesting directions for future work. For example, k-Shape
and k-MS operate over a single time-series representation and cannot handle multiple
representations. Considering that several transformations (e.g., smoothing) can reduce
noise and eliminate outliers in time series, an extension of k-Shape and k-MS to leverage
characteristics from multiple views could significantly improve their accuracy. Another
direction is to explore the usefulness of k-Shape and k-MS as subroutines of other
methods, just as we did for 1-NN classifiers. For example, anomaly detection in time-
series streams occasionally relies on effective clustering of time-series subsequences to
identify abnormal behaviors.

ACKNOWLEDGMENTS

We thank Or Biran, Christos Faloutsos, Eamonn Keogh, Kathy McKeown, Taesun Moon, François Petitjean,
and Kapil Thadani for invaluable discussions and feedback. We also thank Ken Ross for sharing computing
resources for our experiments. John Paparrizos is an Onassis Foundation Scholar.

REFERENCES

Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient similarity search in sequence
databases. In FODO. 69–84.

Daniel Aloise, Amit Deshpande, Pierre Hansen, and Preyas Popat. 2009. NP-hardness of euclidean sum-of-
squares clustering. Mach. Learn. 75, 2 (2009), 245–248.

Jonathan Alon, Stan Sclaroff, George Kollios, and Vladimir Pavlovic. 2003. Discovering clusters in motion
time-series data. In CVPR. 375–381.

Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh. 2017. The great time
series classification bake off: A review and experimental evaluation of recent algorithmic advances.
Data Mining and Knowledge Discovery 31, 3 (2017), 606–660.

Anthony Bagnall and Jason Lines. 2014. An experimental evaluation of nearest neighbour time series
classification. arXiv Preprint arXiv:1406.4757 (2014).

Anthony J. Bagnall and Gareth J. Janacek. 2004. Clustering time series from ARMA models with clipped
data. In KDD. 49–58.

Ziv Bar-Joseph, Georg Gerber, David K. Gifford, Tommi S. Jaakkola, and Itamar Simon. 2002. A new approach
to analyzing gene expression time series data. In RECOMB. 39–48.

Roberto Baragona. 2000. Genetic algorithms and cross-correlation clustering of time series. (2000). Accessed
on October 2015 from http://citeseer.ist.pse.edu/baragona00genetic.html.

Gustavo E. A. P. A. Batista, Eamonn J. Keogh, Oben Moses Tataw, and Vinı́cius M. A. de Souza. 2013. CID:
An efficient complexity-invariant distance for time series. Data Mining and Knowledge Discovery 28
(2013), 634–669.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

http://citeseer.ist.pse.edu/baragona00genetic.html

8:46 J. Paparrizos and L. Gravano

Nurjahan Begum, Liudmila Ulanova, Jun Wang, and Eamonn Keogh. 2015. Accelerating dynamic time
warping clustering with a novel admissible pruning strategy. In SIGKDD. 49–58.

Donald J. Berndt and James Clifford. 1994. Using dynamic time warping to find patterns in time series. In
Proceedings of the AAAI Workshop on Knowledge Discovery and Data Mining. 359–370.

James C. Bezdek. 2013. Pattern Recognition with Fuzzy Objective Function Algorithms. Springer Science.
Yuhan Cai and Raymond Ng. 2004. Indexing spatio-temporal trajectories with Chebyshev polynomials. In

SIGMOD. 599–610.
B. B. Chaudhuri. 1996. A new definition of neighborhood of a point in multi-dimensional space. Pattern

Recogn. Lett. 17, 1 (1996), 11–17.
Lei Chen and Raymond Ng. 2004. On the marriage of lp-norms and edit distance. In VLDB. 792–803.
Lei Chen, M Tamer Özsu, and Vincent Oria. 2005. Robust and fast similarity search for moving object

trajectories. In SIGMOD. 491–502.
Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. 2007a. Indexable PLA for efficient

similarity search. In VLDB. 435–446.
Yueguo Chen, Mario A. Nascimento, Beng Chin Ooi, and Anthony K. H. Tung. 2007b. Spade: On shape-based

pattern detection in streaming time series. In ICDE. 786–795.
James W. Cooley and John W. Tukey. 1965. An algorithm for the machine calculation of complex Fourier

series. Math. Comp. 19, 90 (1965), 297–301.
Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic Smyth. 1998. Rule discovery

from time series. In KDD. 16–22.
Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7

(2006), 1–30.
Evgenia Dimitriadou, Andreas Weingessel, and Kurt Hornik. 2002. A combination scheme for fuzzy cluster-

ing. Int. J. Pattern Recogn. Artif. Intell. 16, 7 (2002), 901–912.
Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn Keogh. 2008. Querying and

mining of time series data: Experimental comparison of representations and distance measures. Proc.
VLDB 1, 2 (2008), 1542–1552.

Rui Ding, Qiang Wang, Yingnong Dang, Qiang Fu, Haidong Zhang, and Dongmei Zhang. 2015. Yading: Fast
clustering of large-scale time series data. Proc. VLDB 8, 5 (2015), 473–484.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In SIGKDD. 226–231.

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast subsequence matching in time-
series databases. In SIGMOD. 419–429.

Maurizio Filippone, Francesco Camastra, Francesco Masulli, and Stefano Rovetta. 2008. A survey of kernel
and spectral methods for clustering. Pattern Recogn. 41, 1 (2008), 176–190.

Elias Frentzos, Kostas Gratsias, and Yannis Theodoridis. 2007. Index-based most similar trajectory search.
In ICDE. 816–825.

Milton Friedman. 1937. The use of ranks to avoid the assumption of normality implicit in the analysis of
variance. J. Am. Statist. Assoc. 32 (1937), 675–701.

Matteo Frigo and Steven G. Johnson. 2005. The design and implementation of FFTW3. Proc. IEEE 93, 2
(2005), 216–231.

Martin Gavrilov, Dragomir Anguelov, Piotr Indyk, and Rajeev Motwani. 2000. Mining the stock market:
Which measure is best? In KDD. 487–496.

Rafael Giusti and Gustavo E. A. P. A. Batista. 2013. An Empirical Comparison of Dissimilarity Measures for
Time Series Classification. In BRACIS. 82–88.

Steve Goddard, Sherri K. Harms, Stephen E. Reichenbach, Tsegaye Tadesse, and William J. Waltman. 2003.
Geospatial decision support for drought risk management. Commun. ACM 46, 1 (2003), 35–37.

Xavier Golay, Spyros Kollias, Gautier Stoll, Dieter Meier, Anton Valavanis, and Peter Boesiger. 1998. A new
correlation-based fuzzy logic clustering algorithm for fMRI. Magn. Reson. Med. 40, 2 (1998), 249–260.

Dina Q. Goldin and Paris C. Kanellakis. 1995. On similarity queries for time-series data: Constraint specifi-
cation and implementation. In CP. 137–153.

Gene H. Golub and Charles F. Van Loan. 2012. Matrix Computations. Vol. 3. JHU Press.
Jianping Gou, Zhang Yi, Lan Du, and Taisong Xiong. 2012. A local mean-based k-nearest centroid neighbor

classifier. Comput. J. 55, 9 (2012), 1058–1071.

Cyril Goutte, Peter Toft, Egill Rostrup, Finn Å Nielsen, and Lars Kai Hansen. 1999. On clustering fMRI time
series. NeuroImage 9, 3 (1999), 298–310.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:47

Lalit Gupta, Dennis L. Molfese, Ravi Tammana, and Panagiotis G. Simos. 1996. Nonlinear alignment and
averaging for estimating the evoked potential. IEEE Trans. Biomed. Eng. 43, 4 (1996), 348–356.

Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. 2001. On clustering validation techniques. J.
Intell. Inf. Syst. 17, 2–3 (2001), 107–145.

Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data Mining: Concepts and Techniques (3rd ed.). Morgan
Kaufmann Publishers Inc.

Pierre Hansen and Brigitte Jaumard. 1997. Cluster analysis and mathematical programming. Math. Pro-
gram. 79, 1–3 (1997), 191–215.

Rie Honda, Shuai Wang, Tokio Kikuchi, and Osamu Konishi. 2002. Mining of moving objects from time-series
images and its application to satellite weather imagery. J. Intell. Inf. Syst. 19, 1 (2002), 79–93.

Frank Hőppner and Frank Klawonn. 2009. Compensation of translational displacement in time series clus-
tering using cross correlation. In Advances in Intelligent Data Analysis VIII. Springer, 71–82.

Bing Hu, Yanping Chen, and Eamonn Keogh. 2013. Time series classification under more realistic assump-
tions. In SDM. 578–586.

Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. 2001. Distance measures for effective
clustering of ARIMA time-series. In ICDM. 273–280.

Yitzhak Katznelson. 2004. An Introduction to Harmonic Analysis. Cambridge University Press.
Leonard Kaufman and Peter J. Rousseeuw. 2009. Finding Groups in Data: An Introduction to Cluster Anal-

ysis. Vol. 344. John Wiley & Sons.
Eamonn Keogh. 2006. A decade of progress in indexing and mining large time series databases. In VLDB.

1268–1268.
Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra. 2001. Locally adaptive

dimensionality reduction for indexing large time series databases. In SIGMOD. 151–162.
Eamonn Keogh and Jessica Lin. 2005. Clustering of time-series subsequences is meaningless: Implications

for previous and future research. Knowl. Inf. Syst. 8, 2 (2005), 154–177.
Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact indexing of dynamic time warping. Knowl.

Inf. Syst. 7, 3 (2005), 358–386.
Eamonn Keogh, Xiaopeng Xi, Li Wei, and Chotirat Ann Ratanamahatana. The ucr time series classifica-

tion/clustering homepage. Accessed October 2015 from www.cs.ucr.edu/∼eamonn/time_series_data.
Chan Kin-pong and Fu Ada. 1999. Efficient time series matching by wavelets. In ICDE. 126–133.
Flip Korn, H. V. Jagadish, and Christos Faloutsos. 1997. Efficiently supporting ad hoc queries in large

datasets of time sequences. In SIGMOD. 289–300.
Chung-Sheng Li, Philip S. Yu, and Vittorio Castelli. 1998. MALM: A framework for mining sequence database

at multiple abstraction levels. In CIKM. 267–272.
Xiang Lian, Lei Chen, Jeffrey Xu Yu, Guoren Wang, and Ge Yu. 2007. Similarity match over high speed

time-series streams. In ICDE. 1086–1095.
Jessica Lin, Michail Vlachos, Eamonn Keogh, and Dimitrios Gunopulos. 2004. Iterative incremental cluster-

ing of time series. In EDBT. 106–122.
Jason Lines and Anthony Bagnall. 2014. Ensembles of elastic distance measures for time series classification.

In SDM. 524–532.
Jason Lines and Anthony Bagnall. 2015. Time series classification with ensembles of elastic distance mea-

sures. Data Min. Knowl. Discov. 29, 3 (2015), 565–592.
James MacQueen. 1967. Some methods for classification and analysis of multivariate observations. In

BSMSP. 281–297.
Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. 2009. The planar k-means problem is

NP-hard. In WALCOM. 274–285.
Rosario N. Mantegna. 1999. Hierarchical structure in financial markets. Eur. Phys. J. B. 11, 1 (1999), 193–

197.
Warissara Meesrikamolkul, Vit Niennattrakul, and Chotirat Ann Ratanamahatana. 2012. Shape-Based

clustering for time series data. In PAKDD. 530–541.
Vasileios Megalooikonomou, Qiang Wang, Guo Li, and Christos Faloutsos. 2005. A multiresolution symbolic

representation of time series. In ICDE. 668–679.
Yoshihiro Mitani and Yoshihiko Hamamoto. 2000. Classifier design based on the use of nearest neighbor

samples. In ICPR, Vol. 2. 769–772.
Yoshihiro Mitani and Yoshihiko Hamamoto. 2006. A local mean-based nonparametric classifier. Pattern

Recogn. Lett. 27, 10 (2006), 1151–1159.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

http://www.cs.ucr.edu/~eamonn/timeseriesdata

8:48 J. Paparrizos and L. Gravano

Michael D. Morse and Jignesh M. Patel. 2007. An efficient and accurate method for evaluating time series
similarity. In SIGMOD. 569–580.

Abdullah Mueen, Hossein Hamooni, and Trilce Estrada. 2014. Time series join on subsequence correlation.
In ICDM. 450–459.

Abdullah Mueen, Eamonn Keogh, and Neal Young. 2011. Logical-shapelets: An expressive primitive for time
series classification. In KDD. 1154–1162.

Peter Nemenyi. 1963. Distribution-free Multiple Comparisons. Ph.D. Dissertation. Princeton University.
Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2002. On spectral clustering: Analysis and an algorithm.

In NIPS. 849–856.
Vit Niennattrakul and Chotirat Ann Ratanamahatana. 2009. Shape averaging under time warping. In

ECTI-CON. 626–629.
Tim Oates. 1999. Identifying distinctive subsequences in multivariate time series by clustering. In KDD.

322–326.
Spiros Papadimitriou, Jimeng Sun, and Philip S. Yu. 2006. Local correlation tracking in time series. In

ICDM. 456–465.
Panagiotis Papapetrou, Vassilis Athitsos, Michalis Potamias, George Kollios, and Dimitrios Gunopulos. 2011.

Embedding-based subsequence matching in time-series databases. TODS 36, 3 (2011), 17.
John Paparrizos and Luis Gravano. 2015. k-Shape: Efficient and accurate clustering of time series. In

SIGMOD. 1855–1870.
John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and accurate clustering of time series. ACM

SIGMOD Rec. 45, 1 (2016), 69–76.
Tuomas Pelkonen, Scott Franklin, Justin Teller, Paul Cavallaro, Qi Huang, Justin Meza, and Kaushik

Veeraraghavan. 2015. Gorilla: A fast, scalable, in-memory time series database. Proc. VLDB 8, 12
(2015), 1816–1827.

François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, and Eamonn
Keogh. 2014. Dynamic time warping averaging of time series allows faster and more accurate classifi-
cation. In ICDM. 470–479.

François Petitjean, Germain Forestier, Geoffrey I. Webb, Ann E. Nicholson, Yanping Chen, and Eamonn
Keogh. 2015. Faster and more accurate classification of time series by exploiting a novel dynamic time
warping averaging algorithm. Knowl. Inf. Syst. 47 (2015), 1–26.

François Petitjean and Pierre Gançarski. 2012. Summarizing a set of time series by averaging: From steiner
sequence to compact multiple alignment. Theor. Comput. Sci. 414, 1 (2012), 76–91.

François Petitjean, Alain Ketterlin, and Pierre Gançarski. 2011. A global averaging method for dynamic
time warping, with applications to clustering. Pattern Recogn. 44, 3 (2011), 678–693.

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang
Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching and mining trillions of time series subsequences
under dynamic time warping. In KDD. 262–270.

Thanawin Rakthanmanon, Eamonn J. Keogh, Stefano Lonardi, and Scott Evans. 2011. Time series epenthe-
sis: Clustering time series streams requires ignoring some data. In ICDM. 547–556.

William M. Rand. 1971. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66,
336 (1971), 846–850.

Chotirat Ann Ratanamahatana and Eamonn Keogh. 2004. Making time-series classification more accurate
using learned constraints. In SDM. 11–22.

John Rice. 2006. Mathematical Statistics and Data Analysis. Cengage Learning.
Alex Rodriguez and Alessandro Laio. 2014. Clustering by fast search and find of density peaks. Science 344,

6191 (2014), 1492–1496.
Eduardo J. Ruiz, Vagelis Hristidis, Carlos Castillo, Aristides Gionis, and Alejandro Jaimes. 2012. Correlating

financial time series with micro-blogging activity. In WSDM. 513–522.
Sartaj Sahni and Teofilo Gonzalez. 1976. P-complete approximation problems. J. ACM 23, 3 (1976), 555–565.
Naoki Saito. 1994. Local Feature Extraction and Its Applications Using a Library of Bases. Ph.D. Dissertation.

Yale University.
Hiroaki Sakoe and Seibi Chiba. 1978. Dynamic programming algorithm optimization for spoken word recog-

nition. IEEE Trans. Acoust. Speech Sign. Process. 26, 1 (1978), 43–49.
Yasushi Sakurai, Spiros Papadimitriou, and Christos Faloutsos. 2005. Braid: Stream mining through group

lag correlations. In SIGMOD. 599–610.
Stan Salvador and Philip Chan. 2004. Determining the number of clusters/segments in hierarchical cluster-

ing/segmentation algorithms. In ICTAI. 576–584.

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

Fast and Accurate Time-Series Clustering 8:49

José Salvador Sánchez, Filiberto Pla, and Francesc J. Ferri. 1997. On the use of neighbourhood-based non-
parametric classifiers. Pattern Recogn. Lett. 18, 11 (1997), 1179–1186.

Patrick Schäfer. 2015. Scalable time series classification. Data Min. Knowl. Discov. 30 (2015), 1273–1298.
Yutao Shou, Nikos Mamoulis, and David Cheung. 2005. Fast and exact warping of time series using adaptive

segmental approximations. Machine Learning 58, 2–3 (2005), 231–267.
Diego F. Silva, Gustavo E. A. P. A. Batista, and Eamonn Keogh. 2016. Prefix and suffix invariant dynamic

time warping. In ICDM. IEEE, 1209–1214.
Antoniu Stefan, Vassilis Athitsos, and Goutam Das. 2013. The move-split-merge metric for time series. IEEE

Trans. Knowl. Data Eng. 25, 6 (2013), 1425–1438.
Kuniaki Uehara and Mitsuomi Shimada. 2002. Extraction of primitive motion and discovery of association

rules from human motion data. In Progress in Discovery Science. 338–348.
Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Eamonn Keogh. 2006. Indexing multi-

dimensional time-series. VLDB J. 15, 1 (2006), 1–20.
Michail Vlachos, George Kollios, and Dimitrios Gunopulos. 2002. Discovering similar multidimensional

trajectories. In ICDE. 673–684.
Hao Wang, Yong-fu Cai, Yin Yang, Shiming Zhang, and Nikos Mamoulis. 2014. Durable queries over historical

time series. IEEE Trans. Knowl. Data Eng. 26, 3 (2014), 595–607.
Lusheng Wang and Tao Jiang. 1994. On the complexity of multiple sequence alignment. J. Comput. Biol. 1,

4 (1994), 337–348.
Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. 2013.

Experimental comparison of representation methods and distance measures for time series data. Data
Min. Knowl. Discov. 26, 2 (2013), 275–309.

Xiaozhe Wang, Kate Smith, and Rob Hyndman. 2006. Characteristic-based clustering for time series data.
Data Min. Knowl. Discov. 13, 3 (2006), 335–364.

T. Warren Liao. 2005. Clustering of time series data—A survey. Pattern Recogn. 38, 11 (2005), 1857–1874.
Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometr. Bull. (1945), 80–83.
D. Randall Wilson and Tony R. Martinez. 1997. Instance pruning techniques. In ICML. Vol. 97. 403–411.
D. Randall Wilson and Tony R. Martinez. 2000. Reduction techniques for instance-based learning algorithms.

Mach. Learn. 38, 3 (2000), 257–286.
Di Wu, Yiping Ke, Jeffrey Xu Yu, S. Yu Philip, and Lei Chen. 2010. Detecting leaders from correlated time

series. In DASFAA. 352–367.
Yimin Xiong and Dit-Yan Yeung. 2002. Mixtures of ARMA models for model-based time series clustering. In

ICDM. 717–720.
Jaewon Yang and Jure Leskovec. 2011. Patterns of temporal variation in online media. In WSDM. 177–186.
Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: A new primitive for data mining. In KDD.

947–956.
Jamaluddin Zakaria, Abdullah Mueen, and Eamonn Keogh. 2012. Clustering time series using unsupervised-

shapelets. In ICDM. 785–794.
Yunyue Zhu and Dennis Shasha. 2002. Statstream: Statistical monitoring of thousands of data streams in

real time. In VLDB. 358–369.

Received March 2016; revised December 2016; accepted January 2017

ACM Transactions on Database Systems, Vol. 42, No. 2, Article 8, Publication date: June 2017.

