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ABSTRACT

We introduce the REEL (RElation Extraction Learning)
framework, an open source framework that facilitates the
development and evaluation of relation extraction systems
over text collections. To define a relation extraction system
for a new relation and text collection, users only need to
specify the parsers to load the collection, the relation and
its constraints, and the learning and extraction techniques
to be used. This makes REEL a powerful framework to
enable the deployment and evaluation of relation extraction
systems for both application building and research.

1. INTRODUCTION

Relation extraction systems are sophisticated information
extraction tools that automatically discover structured re-
lations between entities in natural language text. For ex-
ample, a properly trained relation extraction system would
extract the tuple (Mark Chapman, second-degree murder,
1981) of the relation Charged(Person, Charge, Date) from
the text excerpt “John Lennon’s killer, Mark Chapman, was
sentenced in 1981 to 20 years to life in prison after pleading
guilty to second-degree murder.” To extract such structured
information from text documents, state-of-the-art relation
extraction systems usually employ a variety of text process-
ing tools, such as entity recognition and part-of-speech tag-
ging, and many times require enforcing constraints on the
extracted information, such as requiring that extracted en-
tities be of a certain type or that entities in an extracted
relation be mentioned within N words of each other [1].

Many relation extraction systems have been proposed in
the literature [1]. However, few such systems are publicly
available and, even when they are, it is usually problematic
to adapt and evaluate them over new relations and text col-
lections. To avoid implementing such complex systems from
scratch, developers often rely on toolkits. One such toolkit
is T-Rex [2], which splits the relation extraction task into
relatively coarse modules for text processing and learning.
Such coarse modules are hard to reuse across relation extrac-
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tion tasks, and hence complicate the implementation of new
systems. Also, T-Rex does not impose restrictions on the
output of its modules, which complicates the experimental
comparison of different extraction strategies and their out-
put. As a result, to experimentally evaluate and compare
relation extraction systems in T-Rex, developers must rely
on ad-hoc solutions, which is far from ideal.

Other toolkits originally proposed for related text-centric
tasks, such as text processing (e.g., UIMA [3]), machine
learning (e.g., MALLET [4]), natural language processing
(e.g., StanfordNLP [5], GATE [6]), and entity extraction
(e.g., MinorThird [7]) provide low-level building blocks that
are helpful for relation extraction, but lack the code and in-
frastructure to directly support relation extraction. To use
these frameworks for relation extraction we could extend
them by including the infrastructural elements missing in
each framework. However, this would require in many cases
a significant implementation effort and a drastic redesign of
the toolkits, since we would have to incorporate full support
for the missing pieces. A more promising approach, which
we advocate in our work, is to integrate and complement
valuable text processing toolkits—to exploit their powerful
implementations of low-level text operations—and machine
learning toolkits—to exploit their powerful implementations
of relevant learning operations—for our extraction task.

2. THE REEL FRAMEWORK

We introduce the REEL (RElation Extraction Learning)
framework, an open-source framework—publicly available at
http://reel.cs.columbia.edu/ under the General Public Li-
cense Version 3 (GPLv3)—to easily develop and evaluate
relation extraction systems. REEL provides the code and
infrastructure to: (i) handle various input text formats, en-
abling operations over different text collections; (ii) plug in
appropriate text processing steps and tools, enabling diverse
processing of the text with minimal effort; (iii) define and
combine conceptual relation constraints that are automat-
ically enforced; (iv) decouple learning and extraction from
the text processing, enabling the straightforward integration
and reusability of different extraction algorithms; and (v)
uniformly execute and evaluate relation extraction systems,
enabling the testing and fair assessment of these systems.

In contrast to existing toolkits, REEL effectively modular-
izes the key components involved in relation extraction. To
define an extraction system for a new relation and new text
collections, users only need to specify the parsers to load the
collections, the relation and its constraints, and the learning
and extraction techniques, which makes REEL a powerful
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Figure 1: REEL system architecture.

framework to enable the deployment of relation extraction
systems for both research and application building. Figure 1
shows REEL’s flexible, modular architecture, with two types
of components. The Text Processing components transform
the input text documents into the input format for the rela-
tion extraction techniques. Then, the Learning and Extrac-
tion components learn, execute, and evaluate classification
models that perform relation extraction.

The Text Processing components include the Text Seg-
ment Loading, Candidate Generation, and Feature Extrac-
tion and Operable Structure Generation components (see
Figure 1). First, the Text Segment Loading component loads
the documents in a text collection and transforms them into
text segments (e.g., sentences) tagged with named entities.
The Text Segment Loading component enables the integra-
tion of different text processing tools (e.g., XML parsers)
to easily allow different types of collections. Second, the
Candidate Generation component produces candidate text
sentences. In a nutshell, a candidate text sentence is a men-
tion of a potential tuple in a sentence that fulfills predefined
constraints. This component enables a flexible definition of
constraints over entities and relations (e.g., entities need to
be of a certain type, say, Person, or entities need to be men-
tioned within N words of each other). Finally, the Feature
Extraction and Operable Structure Generation component
extracts the features required by a specific relation extrac-
tion algorithm [8, 9] and produces the data structures for the
extraction algorithm (e.g., sequences or trees of features).
These data structures, or operable structures, are a feature-
enriched version of the candidate text segments on which
the learning and extraction algorithms will operate. To pro-
duce operable structures, REEL provides a unified interface
for extracting a wide and extensible variety of features and
structures that different learning algorithms may require.

The Learning and Extraction components include the Re-
lation Extraction Training, Tuple Extraction, and Relation
Extraction Evaluation components. First, the Relation Ex-
traction Training component automatically produces a rela-
tion extraction model using, as training input, labeled oper-
able structures, which indicate whether the relation of inter-
est holds among their entities. Second, the Tuple Extraction
component uses this model to extract tuples correspond-
ing to related entities. Notably, Tuple Extraction performs
a classification task over unlabeled operable structures and
produces tuples of entities that are likely related. Third, the
Relation Extraction Evaluation component evaluates the re-
lation extraction systems according to an easily extensible
set of evaluation metrics. The most important characteris-
tic of the learning and extraction components is that they
provide a unified interface for different relation extraction

techniques. This interface helps to train, execute, and eval-
uate the resulting models for different relation extraction
techniques with minor changes in the code.

3. CONCLUSIONS

We introduced REEL, an open-source framework to eas-
ily develop and evaluate relation extraction systems. REEL
provides end-to-end infrastructure to perform relation ex-
traction tasks, and leverages powerful existing toolkits for
both text processing and learning. Moreover, REEL effec-
tively addresses the complex requirements of relation ex-
traction and helps developers and researchers produce sim-
ple and easy-to-understand source code for their relation
extraction systems. As part of the REEL distribution—
available at http://reel.cs.columbia.edu/ as open source un-
der the General Public License Version 3 (GPLv3)—we have
included ready-to-use systems (e.g., [8, 9]); we have also in-
tegrated several text processing and learning toolkits, to il-
lustrate how to incorporate and leverage external algorithms
and toolkits. For further details about REEL, please refer
to [10].
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