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Abstract—Time is an important dimension of relevance for a large number of searches, such as over blogs and news archives. So far,

research on searching over such collections has largely focused on locating topically similar documents for a query. Unfortunately,

topic similarity alone is not always sufficient for document ranking. In this paper, we observe that, for an important class of queries that

we call time-sensitive queries, the publication time of the documents in a news archive is important and should be considered in

conjunction with the topic similarity to derive the final document ranking. Earlier work has focused on improving retrieval for “recency”

queries that target recent documents. We propose a more general framework for handling time-sensitive queries and we automatically

identify the important time intervals that are likely to be of interest for a query. Then, we build scoring techniques that seamlessly

integrate the temporal aspect into the overall ranking mechanism. We present an extensive experimental evaluation using a variety of

news article data sets, including TREC data as well as real web data analyzed using the Amazon Mechanical Turk. We examine

several techniques for detecting the important time intervals for a query over a news archive and for incorporating this information in

the retrieval process. We show that our techniques are robust and significantly improve result quality for time-sensitive queries

compared to state-of-the-art retrieval techniques.

Index Terms—Information search and retrieval, processing time-sensitive queries, time-sensitive search.
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1 INTRODUCTION

TIME is an important dimension of relevance for a large
number of searches, such as over blogs and news

archives. So far, research on searching over such collections
has largely focused on retrieving topically similar documents
for a query. Unfortunately, ignoring or not fully exploiting
the time dimension can be detrimental for a large family of
queries for which we should consider not only the document
topical relevance but the publication time of the documents
as well, as demonstrated by the following example:

Example 1. Consider the query [Madrid bombing] over the news

archive of a state-of-the-art multidocument summarization

system that crawls and summarizes news articles from the web

on a daily basis. Fig. 1 zooms in on a portion of the histogram for

the query results, reporting the number of matching documents

in the news archive for each day between January and December

2004. This histogram reveals particular time intervals that are

likely to be of special interest for the query, such as the month of

March 2004, when a terrorist group bombed trains in Madrid.

The same figure shows an analogous histogram for query

[Google IPO]: the “peaks” in the histogram coincide with two

important events, namely, the announcement of the Google IPO

and, a few months later, the actual IPO.

These examples motivate two observations on searching
over news archives. First, topic-similarity ranking does not
model time explicitly, which means that the important
dimension of time is not considered directly when deciding
on the results that are returned for a user query. The various
“peaks” in the Fig. 1 histograms, which reveal important
information for the queries, are thus not leveraged to
produce high-quality query results. Second, a topic-simi-
larity ranking of the query results often does not reflect the
distribution of relevant documents over time. In fact, for
many queries, users have a general—but often vague and
unspecified—idea about the relevant time periods for the
queries. For example, the query [Madrid bombing] might
(implicitly) be after articles from March and April 2004. So
perhaps a better formulation of the query would be [Madrid
bombing prefer: 03/11/2004-04/30/2004], indicating the rele-
vant time interval for the event.

In this paper, we observe that, for an important class of
queries over news archives that we call time-sensitive queries,
topic similarity is not sufficient for ranking. For such
queries, the publication time of the documents is important
and should be considered in conjunction with the topic
similarity to derive the final document ranking. Most
current methods for searching over large archives of timed
documents incorporate time in a relatively crude manner:
users can submit a keyword query, say [Madrid bombing],
and restrict the results to articles written between March
and April 2004, or alternatively sort the results on the
publication date of the articles. Unfortunately, searchers do
not always know the appropriate time intervals for their
queries, and placing the burden on the users to explicitly
handle time during querying is not desirable.

Toward helping users understand the temporal distribu-
tion of matching articles for a query, Google’s News Archive
Search1 supplements query results with a “timeline,”
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showing the distribution of query matches over time. Google
also highlights key time periods for each query (e.g., the year
2004 is marked for the query [Madrid bombing]), so users can
explicitly restrict the search to a specific time period.
Similarly, Jones and Diaz [1] show how to exploit query
result timelines to decide whether to ask users to select
appropriate time periods for their queries. In Section 3, we
discuss several techniques to estimate the temporal rele-
vance of a day to a query at hand. These estimation
techniques use the temporal distribution of matching articles
for the query to compute the probability that a day in the
archive has a relevant document for the query.

Beyond asking for explicit user input, earlier work by Li
and Croft [2] focused on handling recency queries, which are
queries that are after recent events or breaking news.
Examples of recency queries are [NYC crane collapse] in May
2008, or [Sarkozy French elections] in April 2007. Li and
Croft’s time-sensitive approach processes a recency query
by computing traditional topic-similarity scores for each
document, and then “boosts” the scores of the most recent
documents, to privilege recent articles over older ones. In
contrast to traditional models, which assume a uniform
prior probability of relevance pðdÞ for each document d in a
collection, Li and Croft define the prior pðdÞ to be a function
of document d’s creation date. The prior probability pðdÞ
decreases exponentially with time, and hence recent
documents are ranked higher than older documents. Li
and Croft’s strategy is designed for queries that are after
recent documents, but it does not handle other types of
time-sensitive queries, such as [Madrid bombing], [Google
IPO], or even [Sarkozy French elections] (in May 2008), that
implicitly target one or more past time periods.

In this paper, we propose a more general framework for
answering time-sensitive queries that builds on and sub-
stantially expands the earlier work on recency queries. If the
relevant time period for a time-sensitive query is unspeci-
fied, several query processing approaches are possible. One
alternative is to automatically suggest, based on the query
terms, relevant time ranges for the query and allow users to
explicitly select appropriate time intervals [1]. As an
alternative that demands less input from the users, and
which we follow in this paper, we can automate the
previous procedure and prioritize results from periods that
we automatically identify as relevant. We can then naturally
define the relevance of a document as a combination of
topic similarity and time relevance.

Specifically, in this paper, we propose a general frame-
work to incorporate time into the retrieval task in a
principled manner. For a given time-sensitive query over a

news archive, our approach automatically identifies impor-
tant time intervals for the query. These intervals are then
used to adjust the document relevance scores by boosting the
scores of documents published within the important inter-
vals. We have implemented our system on top of Indri,2 a
state-of-the-art search engine that combines language mod-
els and inference networks for retrieval [3], as well as over
Lemur,3 into its implementation of BM25 [4], [5], [6], [7]. Our
system provides a web interface for searching the News-
blaster archive,4 an operational news archive and summar-
ization system, and for experimenting with variations of our
approach. We present an extensive evaluation of our system,
using both TREC data and real web data analyzed using the
Amazon Mechanical Turk.5 Our experiments show that the
quality of the results produced by our techniques for time-
sensitive queries is significantly higher than that of the
(strong) baselines that we consider.

The rest of the paper is organized as follows: Section 2
discusses a general class of queries that we call time-sensitive
queries. In Section 3, we introduce the notion of temporal
relevance, which is the probability of a document published
at a certain time to be relevant to a given query, and we also
present three techniques for computing this probability. In
Section 4, we integrate temporal relevance with state-of-the-
art retrieval models, including a query likelihood (QL)
model, a relevance model (RM), a probabilistic relevance
model (PRM), and a query expansion with pseudorelevance
feedback model, to naturally process time-sensitive queries.
In these models, we combine topical relevance and temporal
relevance to determine the overall relevance of a document.
Then, Section 5 reports the experimental settings and results.
Finally, Sections 6 and 7 describe related work and conclude
the paper. A short description of a preliminary version of this
work appeared in [8].

2 TIME-SENSITIVE QUERIES

For recency queries [2], the bulk of the relevant documents is,
by definition, from recent days. For other families of queries,
the relevant documents may be distributed differently over
the time span of a news archive. For example, the query
[Madrid bombing] (Fig. 1) executed on a news archive might
be after articles about the specific details of the Madrid train
bombing at the time it happened, so this query might be
considered a past query. More generally, relevant results for
some queries may exist in certain time periods, in which
sudden, large-scale news coverage relevant to the queries
takes place and diminishes after a period of time. Other
queries, such as [Barack Obama], are likely to be after relevant
results from multiple “events.” These queries are examples
of time-sensitive queries, which we define as follows:

Definition 1. A query over an archive of time stamped news
documents is time sensitive if relevant documents for the query
are not spread uniformly over time but rather tend to be
concentrated in restricted time intervals.
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Fig. 1. Histograms for queries [Madrid bombing] and [Google IPO],
showing the number of documents with all query words for each day
from January to December 2004 in a news archive.

2. http://www.lemurproject.org/indri.
3. http://www.lemurproject.org.
4. Due to copyright-related issues, Newsblaster is password protected.
5. http://www.mturk.com.



To illustrate the difference between time-sensitive and
time-insensitive queries, Fig. 2 shows a histogram of both a
time-sensitive query (TREC query number 311) and a time-
insensitive query (TREC query number 304), from the TREC
ad hoc title queries 301-350. Unlike the histograms we
showed in Fig. 1, Fig. 2 shows the true distribution of the
relevant documents, not of the matching documents. Fig. 3
shows the histograms of the number of matching docu-
ments for several real-life, time-sensitive queries.

News archives often include many matching documents
for time-sensitive queries. For example, the query [Saddam
Hussein capture] has 936 matching stories in The New York
Times archive, as of March 2009. We claim that traditional
topic-similarity ranking alone may not be desirable for
time-sensitive queries, where we can explicitly account for
time to produce high-quality query results. Our basic
intuition is that the relevance of one document for a given query
provides us with useful information about the relevancy of other
documents with similar content that were published around the
same time. This is in contrast to “traditional” information
retrieval engines, which consider the relevancy of each
document in isolation. In the next section, we discuss our
first step in accounting for time by introducing techniques
to estimate temporal relevance, which is the probability that
a time period is relevant to a query at hand.

3 TEMPORAL RELEVANCE

Typically, documents in archival collections are stamped
with their publication dates. Unfortunately, queries often are
answered and ranked without consideration of these time
stamps, with the exception of some user feedback to sort by
date or restrict answers to a time range. To answer the type
of time-sensitive queries discussed in Section 2 over a news
archive, we would like to use the temporal information

implicitly available in the archive. For this, we observe that
time-sensitive queries are generally after documents from
specific time periods. For example, the majority of docu-
ments relevant to the TREC query [Industrial Espionage]

(Fig. 2) are located within a specific time period.
This observation suggests that it is important to know the

distribution of relevant documents over time for a given
query. We hypothesize that this distribution can be used to
improve the answer quality for a retrieval task (see Section 4).
Therefore, we could attempt to compute the probability pðtjqÞ
that a day t is relevant to a query q using the distribution of
relevant documents, and use this value for answering the
query q. Unfortunately, we usually have no a priori knowl-
edge of the relevant documents for a given query and, as a
result, we cannot accurately compute this distribution. In this
section, we investigate several ways to estimate pðtjqÞ based
on statistics readily extractable from a news archive.

3.1 Estimation Using “Ground Truth”

We first discuss a hypothetical situation in which we know,
for a given query q, its complete set of relevant documents
Rq, which we refer to as the “ground truth” for the query. In
this situation, we can estimate pðtjqÞ based solely on Rq.
Specifically, consider a news archive D. Then, according to
Bayes’ rule, pðtjqÞ is

pðtjqÞ ¼ pðqjtÞ � pðtÞ
pðqÞ ¼ pðqjtÞ � pðtÞP

t̂2datesðDÞ pðqjt̂Þ � pðt̂Þ
; ð1Þ

where datesðDÞ is the time span of D; pðtÞ is the probability
that day t contains a document (relevant to q or not),
multinomially distributed over t; pðqjtÞ follows a Bernoulli
distribution and is the probability that the documents
published in t are relevant for answering query q (e.g., a
random news document selected among the documents
published in April 2008, when Barack Obama lost the
Democratic primaries in Pennsylvania, has higher chances
of being relevant to the query [Obama Pennsylvania],
compared to a random news document selected among
the documents published in April 2007); and pðqÞ is the
prior probability of finding a document relevant to q, and
serves as a normalizing factor.
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Fig. 2. Relevant-document histograms of a time-sensitive (a) and a time-
insensitive (b) query from a TREC ad hoc query set. (a) Query #311,
[Industrial Espionage], a time-sensitive query. (b) Query #304,
[Endangered Species (Mammals)], a time- insensitive query.

Fig. 3. Histograms for several queries, revealing different distributions of
the query terms over the Newsblaster archive from January to
December 2004.



Now, since we (assume that we) know the complete set
of documents Rq that are relevant to q, we can directly
estimate pðqjtÞ using the distribution of the documents in Rq

over time as follows:

pðqjtÞ ¼ countðRq; tÞ
countðD; tÞ ; ð2Þ

where countðRq; tÞ is the number of (relevant) documents in
Rq that were published at time t and countðD; tÞ is the number
of documents that were published at time t in the collectionD.
Since pðtÞ ¼ countðD;tÞ

jDj , combining (2) with (1) results in

pðtjqÞ ¼ countðRq; tÞ
jRqj

; ð3Þ

where the relevance of the day t is then estimated as the
fraction of the relevant documents published at time t.

Unfortunately, we generally do not know the ground
truth Rq for a given query q, as mentioned above. Because of
this, we now present three approaches to estimate pðtjqÞ
without knowing the set of relevant documents Rq.

3.2 Direct Estimation Using the Distribution of
Matching Documents

To estimate pðtjqÞ for a query q and time t in the absence of
knowledge of the relevant documents for q and time t, Jones
and Diaz [1] suggested using the top matching documents
for q and their relevance scores, as provided by some
underlying retrieval model. Specifically, pðtjqÞ is defined as
a normalized, weighted sum of the relevance scores of the
top-k matching documents published at day t, as follows:

pðtjqÞ �
X

d2Dq;k

pðtjdÞ � pðdjqÞ
P

d̂2Dq;k
pðd̂jqÞ

; ð4Þ

where Dq;k are the top-k documents from D for query q,
according to some underlying retrieval model, and pðtjdÞ ¼ 1
if d’s publication time is equal to t, otherwise pðtjdÞ ¼ 0. To
select the best k, Jones and Diaz train the model using a set of
queries and their relevance judgments.

Based on this definition, most days are assigned a
probability of zero for a query as the top-k documents for
the query will tend to cover just a small portion of the days
represented in the news archive. In addition, this definition
does not account for the differing number of documents
published each day and assumes the number to be constant.
To rectify this, Jones and Diaz apply a background
probability smoothing using the distribution of documents
across collection D on (4) as follows:

p̂ðtjqÞ � � � pðtjqÞ þ ð1� �Þ � 1

jDj
X

d2D
pðtjdÞ; ð5Þ

� � � pðtjqÞ þ ð1� �Þ � pðtÞ: ð6Þ

To take into account the fact that news stories about a single
topic or event may occur over a period of several days, a
second step of smoothing is necessary. To connect the
temporal relevance value of a day t with days in the near
past, Jones and Diaz [1] apply simple moving-average
smoothing, a technique that has been explored in the field
of time series analysis, on (6) as follows:

�pðtjqÞ � 1

x
�
Xx�1

i¼0

p̂ðt� ijqÞ; ð7Þ

where x is the number of days we consider for smoothing.
In the following section, we present techniques that

estimate pðtjqÞ in a different fashion, to be less dependent on
the underlying retrieval model, to have a choice of several
smoothing alternatives, as well as to have full control on the
“shape” of the probability distribution.

3.3 Estimation Using Binning

The previous technique, from Jones and Diaz [1], relies
heavily on the underlying retrieval model to estimate pðtjqÞ.
The retrieval model not only suggests the top-k matching
documents as an approximation to the true relevant
documents, but also weights these documents based on
their relevance scores. These scores are, in turn, used to
determine the contribution of each top-k document to the
final temporal relevance value of the document’s publica-
tion day. This direct dependency on the relevance scores for
estimating the pðtjqÞ values is somewhat problematic,
because these scores were designed for a different purpose,
namely, document ranking. Furthermore, the previous
technique is not conducive to exploring different “shapes”
of the pðtjqÞ probability distribution. Now, we suggest a
general framework to estimate pðtjqÞ that addresses these
issues, so that it is less dependent on the underlying
retrieval model by considering only the top-k matching
documents without using their relevance scores directly.

In Section 3.1, we defined pðtjqÞ to be proportional to

pðqjtÞ � pðtÞ. Since pðtÞ can be either uniform, if all days in the

archive have roughly the same number of documents, or

directly computed as countðD;tÞ
jDj , we focus on estimating pðqjtÞ.

Specifically, we explore defining pðqjtÞ for a query q and

time t by analyzing the number of documents matching the

query q over time. Our conjecture is that certain patterns of

matching frequencies over time might help identify time

periods relevant to the query. For example, an abrupt

change in frequency between consecutive days might

indicate the presence of an event that is relevant to the

query. To illustrate this observation, consider query [Google

IPO]. The number of matching documents for this query

was historically very low, but it increased by a large margin

around the time when Google announced its IPO and also

when it went public, as discussed above. In other words, we

may use the number of matches found to estimate the

probability of generating the query q from the documents

published in a given time t.
Specifically, to estimate pðqjtÞ, we propose to arrange all

time periods into bins, such that each bin represents a
different “priority level.” We then order these bins based on
their priority and assign estimated relevance values to the
time periods in these bins accordingly. For example, the
query-frequency histogram of the query [Barack Obama]

reveals relevant time intervals in the years 2002 and 2004
(and beyond); accordingly, these time periods will be
assigned to a “high priority” bin. Note that Li and Croft’s
work [2] on recency queries can be easily mapped to this
framework if we arrange the documents in bins according
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to their creation date, so that recent documents are located
in bins with the highest prior level.

Algorithm 1 describes our method to estimate the value
pðqjtÞ of each time t for a given query q over a news archive
D, based on the publication time of the documents in D. We
follow three basic steps: Step 1 generates a query-frequency
histogram (Section 3.3.1); then, Step 2 analyzes the histo-
gram and partitions the time periods into bins accordingly
(Section 3.3.2); and finally, Step 3 estimates the pðqjtÞ values
based on the binning of the time periods (Section 3.3.3).

Algorithm 1. General time-based approach for estimat-
ing the value pðqjtÞ of each time t and a query q.

Input: Query q, document collection D

Output: Time-based probability pðqjtÞ for each time t

Step 1: Compute the query-frequency histogram for q

using the publication time of the documents in D

(Section 3.3.1).

Step 2: Partition the times into bins b0; . . . ; b‘ based on the
histogram characteristics (Section 3.3.2).

Step 3: Define the value pðqjtÞ of each time t based on t’s

bin, such that a time in bi will have a higher value

than a time in bj if i < j (Section 3.3.3).

3.3.1 Generating Query-Frequency Histograms

As the first step of our approach (Algorithm 1), we produce
a query-frequency histogram for a user query executed over
a news archive by identifying all the documents in the
archive that match the query. For certain queries, using
conjunctive Boolean semantics for matching is sufficient to
draw an expressive histogram that approximates the real
distribution of relevant time periods. However, for most of
the TREC queries with which we experimented (Section 5.1),
the conjunctive Boolean model returns very few or no
documents at all, so we resorted to the more flexible query
likelihood model. Specifically, we use the query likelihood
model [9], [10] to retrieve the top-k documents for query q
with the highest pðqjdÞ values.6 Then, we use the publication
time of the returned documents to generate the query-
frequency histogram over time.

3.3.2 Analyzing Histograms

After generating the query-frequency histogram, we move
to Step 2 of our approach (Algorithm 1) and analyze the
histogram to organize all times (days) into bins. The first bin
corresponds to the most “important” times for the query,
according to the histogram, the second bin corresponds to
the next level of importance, and so on. We explore
alternate binning techniques based on different underlying
hypotheses on how to identify the important time intervals.

Daily frequency (DAY). Consider query [Goldman report
earnings]. This query is likely to be after documents
discussing earnings reports for the Wall Street investment
bank Goldman Sachs, which are published once per quarter

and cause news coverage to spike briefly. Hence, the
“events” that this query likely targets last one or two days
and, as a result, the query-frequency histogram of such a
query will usually have sharp, thin “spikes” indicating
these events. Then, to characterize time-sensitive queries,
we might attempt to isolate daily spikes and use them to
estimate the pðqjtÞ values. For this, we simply assign a day t
to a bin based on the number of matching documents for
the query that were published in the same day t. In the end,
our documents are organized in bins b0; . . . ; b‘, where bin b0

will contain the day(s) with the highest number of
published documents, b1 will correspond to the day(s) with
the second-largest frequency, and so on.

Fixed interval frequency (FIXED). News events can last
for longer than one or two days. As a result, spikes across
multiple consecutive days that correspond to such an event
appear in the query-frequency histogram, creating the
shape of a “bump.” The query frequency during these
periods is relatively higher than during other time periods.
To determine if a particular day is part of a bump, we
measure the average daily query frequency in each day of a
time interval of a fixed size starting on that day. This is a
modified version of the previous technique, where instead
of studying each individual day in isolation, we consider
the average daily frequency in a larger interval of x
consecutive days. (We experimented with different values
of x, as we will discuss in Section 5.3.) In the end, b0 will
contain all the days with the highest average frequency in
their windows, b1 will correspond to the second-largest
average frequency, and so on.

Moving window (WIN). In this technique, we consider
the query frequency in both past and future days to
determine if a particular day is part of a bump. This
technique is a generalization of the previous one. For each
day, we compute the average daily query frequency in a
window of x days into the past and x days into the future.
(We experimented with different values of x, as we will
discuss in Section 5.3.) In the end, bin b0 will contain all the
days with the highest average daily frequency in their
windows, b1 will correspond to the second-largest average
frequency, and so on.

Running mean (MEAN). Phrases or words such as war
on terror, WMD, Shiite, and iPod used to be infrequent. At
one point, major events, such as the 11 September 2001
terror attack or the war on Iraq, occur and cause new terms
and phrases to come into common usage. The above
binning techniques assumed that if two days have the
same query-frequency value (raw value or averaged value),
then documents from both days should be placed in the
same bin. However, this assumption does not account for
relative changes of frequency over time. To address this
issue, we consider the running mean, or the average daily
query frequency across the archive, to calibrate the
popularity of a query in the archive over time. For this,
we reduce the query frequency of a day by subtracting the
average daily query frequency computed up to that day.
We use the reduced query frequencies to sort times into
bins, so that bin b0 will contain the days with the largest
reduced frequency, b1 will correspond to the second-largest
reduced frequency, and so on.

Bump shapes (BUMP). In the above techniques, we
considered windows of fixed size around each day for
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binning. But events, of course, vary in their duration, so
now we do not force time intervals to have a fixed size.
Instead, we identify continuous time intervals of variable
length where the query frequency on each day is greater
than the average query frequency per day in the entire
collection. For each interval that we discover, we sum the
daily query frequencies and organize the interval days into
bins based on these sums. In the end, b0 will contain all the
days in intervals with the largest bumps, b1 will correspond
to intervals with the second-largest bumps, and so on.

We can use any of the above techniques for Step 2 of our
algorithm; we will evaluate their relative merits in Section 5.4.

3.3.3 Computing Temporal Probability Values

In Step 3 of our algorithm, we define the pðqjtÞ values based
on the assignment of times to bins b0; . . . ; b‘ from Step 2. As
discussed, we define the binning so that bin bi should be
associated with pðqjtÞ values that are higher than those for
bin bj whenever i < j. Note that a bin does not necessarily
correspond to a single, uninterrupted time range. Now, we
determine the final “priority level” of each time t bin using
a distribution function F of our choice that depends on the
bin, as follows:

pðqjtÞ ¼ F ðbinðtÞÞ;

where binðtÞ returns the index of the time t bin (see
Section 3.3.2). Following Li and Croft’s work on recency
queries [2], we can reduce the estimated relevance of bins
exponentially with their distance to the time(s) of interest,
and define:

pðqjtÞ ¼ � � expð�� � binðtÞÞP
ti2datesðDÞ � � exp ð�� � binðtiÞÞ

;

where � is the parameter of the exponential distribution,
often called the rate parameter, and datesðDÞ is the time
span of the news archive D, as before.

Next, we discuss yet another approach to estimate pðtjqÞ,
with a focus on efficiency.

3.4 Estimation Using Word Tracking

So far, the techniques for estimating pðtjqÞ that we have
discussed in Sections 3.2 and 3.3 relied on obtaining the top-k
matching documents for q as a first step, typically with
k � 500. This step is unnecessarily time consuming when
performed on top of an unmodified search engine, since
some of the processing needed to answer a search-engine
query, such as snippet generation, is not required to compute
pðtjqÞ. Furthermore, query processing in a state-of-the-art
search engine is often optimized to return the top-10 results
and is not efficient for producing a larger set of results. In this
section, we investigate an alternative and efficient technique
that relies on a word temporal-tracking index that is updated
as new documents are created and discovered.

The strategies in Sections 3.2 and 3.3 rely on analyzing
the distribution of matching documents for a query q across
time to estimate pðtjqÞ for each t, a potentially expensive
proposition. To estimate pðtjqÞ efficiently, we refine pðqjtÞ
one step further and assume independence between query
terms, to get

pðtjqÞ / pðtÞ � pðqjtÞ � pðtÞ �
Y

w2q
pðwjtÞ; ð8Þ

where pðwjtÞ is the probability of generating query word w
at day t.

To capture the fact that news topics sometimes evolve
over a period of several days, we apply a similar step as in
Section 3.2 for smoothing using the simple moving-average
technique for adjacent days, as follows:

�pðtjqÞ � 1

x
�
Xx�1

i¼0

pðt� ijqÞ; ð9Þ

where x is the number of past days for smoothing. Of
course, we can also use smoothing strategies similar to what
we used in Section 3.3. For instance, we can follow the WIN
strategy, which examines past and future days, as follows:

�pðtjqÞ � 1

2 � xþ 1
�
Xx

i¼�x
pðtþ ijqÞ; ð10Þ

where x is the number of past and future days for
smoothing.

To efficiently compute pðwjtÞ, we now describe a word
temporal-tracking index that supplies and maintains pðwjtÞ.
Specifically, this index stores the values pðwjtÞ for all terms in
the collection’s vocabulary and for each day t. The index can
be built and maintained in different ways. The simplest way
is to associate each wordwwith an inverted list of the days in
whichw appeared, including the document frequency ofw in
each day. These frequencies can be used to compute pðwjtÞ
according to (8). We leverage this simple approach by using
Indri to build an index over a new “collection” consisting of
one “large” document per day. Specifically, for each day t,
we conceptually create a large document Lt that contains the
concatenation of all the documents produced on day t. From
the index, we then know pðwjLtÞ for each word w and each
time t. Note that this index is small, because it covers just one
(large) document per day. With this index, we can now
efficiently estimate pðwjtÞ to be pðwjLtÞ. In other words, since
pðwjtÞ is the probability of generating the word w from the
documents published at day t and is computed based on the
frequency ofw in these documents, we can estimate pðwjtÞ by
just using the probability pðwjLtÞ of generating word w from
Lt, which contains all the text of these documents.

In fact, we can now directly use our special index and
Indri to compute the term pðqjtÞ from (8), rather than pðwjtÞ.
We can then ignore the word independence assumption
and rely on Indri, over the special index, to compute pðqjLtÞ
and use it as an estimate of pðqjtÞ.

Now, after exploring techniques for estimating pðtjqÞ, we
investigate alternatives to integrate pðtjqÞ into several state-
of-the-art retrieval models.

4 INTEGRATING TEMPORAL RELEVANCE IN SEARCH

In Section 2, we discussed the general family of time-
sensitive queries and claimed that “traditional” information
retrieval engines do not take temporal relevance into
account when answering these queries. For example, the
top-10 results that The New York Times search engine
returns for the time-sensitive query [Madrid bombing], as of
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24 March 2009, are recent articles, not including any articles
from the time of the actual bombing of the Madrid trains
system in 2004. In Section 3, we investigated three
techniques to estimate pðtjqÞ, the temporal relevance of
time t for a given query q. In this section, we naturally
integrate pðtjqÞ into several retrieval models. We use pðtjqÞ
to adjust the document relevance scores by boosting the
scores of documents published within important intervals
for q. Specifically, Section 4.1 discusses an approach from
the literature for answering recency queries (see Section 1).
Then, Sections 4.2 through 4.4 present our work for
integrating pðtjqÞ into several state-of-the-art retrieval
models, to answer all time-sensitive queries.

4.1 Background: Answering “Recency” Queries

Sometimes queries issued over a news archive are after
recent events or breaking news, as we discussed in Section 1.
Li and Croft [2] developed a time-sensitive approach for
processing recency queries. Their approach processes a
recency query by computing traditional topic relevance
scores for each document, and then “boosting” the scores of
the most recent documents, to privilege recent articles over
older ones. Language models [9] have been used as a
successful approach to rank documents in a collection
according to their topic relevance for a query. To estimate
the relevance of a document d to a query q; pðdjqÞ, the
conditional probability that d is topically relevant to q is
computed. This retrieval model defines pðdjqÞ as being
proportional to pðdÞ � pðqjdÞ, where pðdÞ is the prior
probability that d is relevant, and pðqjdÞ is the probability
that query q will be generated from document d.7 In the
original language models and in later modifications, the
prior pðdÞ is ignored since it is assumed to be uniform and
constant for all documents. For recency queries, Li and
Croft suggest modifying pðqjdÞ to combine two elements,
time relevance and topical relevance. Specifically, Li and
Croft define the prior pðdÞ of document d as a function of
the document creation date, so that recent documents are
given a greater prior value than older documents.

4.2 Answering Time-Sensitive Queries with
Language Models

In contrast to recency queries, for a general time-sensitive
query, we do not know beforehand either the relevant time
periods or the expected distribution of relevant documents
over time. Therefore, we cannot directly estimate the prior
pðdÞ of document d as described in Li and Croft [2] for
recency queries. Now, we show how to integrate the
temporal relevance pðtjqÞ of Section 3 into the framework
of language models [9], so that we can answer general time-
sensitive queries.

Language models are a state-of-the-art general approach
for ranking documents in a collection according to their
topic similarity with a query. In particular, the query
likelihood model [9], [10] estimates the relevance of a
document d to a query q by computing the conditional
probability pðdjqÞ that d is topically relevant to q, which is
defined as

pðdjqÞ / pðdÞ � pðqjdÞ: ð11Þ

We can read this expression as indicating that pðdjqÞ is
proportional to pðdÞ � pðqjdÞ, where pðdÞ is the prior
probability that d is relevant and pðqjdÞ is the likelihood
that query q will be generated from document d.8

To answer general time-sensitive queries, we want to
identify not just the relevant documents for the query, but
also the relevant time periods. Craswell et al. [11]
introduced a framework to complement the topical rele-
vance of a document for a query with additional evidence
(e.g., PageRank [12] or ClickDistance [11]). We build on this
framework and on the idea of splitting a document d into a
content component cd as well as a temporal component td.

9

We can then write pðdjqÞ as pðcd; tdjqÞ, which expresses the
probability that cd is topically relevant to q and that td is a
time period relevant to q, where cd is the content of the
document d and td is the time when d was published. Using
basic probability rules, we have

pðdjqÞ ¼ pðcd; tdjqÞ ¼ pðcdjqÞ � pðtdjcd; qÞ:

To handle the term pðtdjcd; qÞ in the equation, we can ignore
cd since the temporal relevance of day td for query q does
not depend on the content of one particular document cd
but rather, as we have seen in Section 3, on the density of
relevant documents around time td. As a result, we get

pðdjqÞ / pðcdjqÞ � pðtdjqÞ
/ pðqjcdÞ � pðcdÞ � pðtdjqÞ:

Note that cd is what we traditionally refer to as d in
language models and our use of cd is to emphasize that a
document in our modified model consists of the traditional
textual content component cd and the temporal information
td. The document prior pðcdÞ is typically assumed to be
uniform for all documents, considering that there is no
document that is more likely to be relevant across all possible
queries. (However, some techniques use query-independent
metrics, such as PageRank [12], to assign higher prior
values pðdÞ to some of the documents in a collection.) The
term pðqjcdÞ corresponds to the probability of generating
query q from document text component cd and can be
computed using existing techniques, such as the QL model
[9], [10] or the relevance language model [13]. Finally,
pðtdjqÞ is in fact the temporal relevance pðtjqÞ from Section 3.
As a result, we can further develop pðcd; tdjqÞ as follows:

pðdjqÞ ¼ pðcd; tdjqÞ / pðqjcdÞ � pðcdÞ � pðqjtdÞ � pðtdÞ;

where both pðqjtdÞ and pðtdÞ are as discussed in Section 3.
The factor pðqjtdÞ corresponds to the probability of “obser-
ving” q in the documents published in time td, while the
time prior pðtdÞ can be defined proportionally to the total
number of documents published at time td. In this case,
since the volume of news is typically lower during the
weekends, pðtdÞ would be lower if td corresponds to a
weekend than if it corresponds to a weekday.

Next, we show how to incorporate pðtjqÞ as another source
of relevance evidence in the probabilistic relevance model.
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7. pðqÞ is constant across documents.

8. pðqÞ is constant across documents.
9. Note that Craswell et al. [11] choose to split the document into a

content component and an additional score component, such as PageRank,
whereas our second component is actual temporal information associated
with the document.



4.3 Answering Time-Sensitive Queries with BM25

In the previous section, we showed how to integrate the
temporal relevance pðtjqÞ into language models. We now
describe a similar integration into the probabilistic rele-
vance model, a leading state-of-the-art approach suggested
by Robertson et al. [6], [7], [14]. In defining PRM, Robertson
et al. state the following principle: “To produce the optimal
ranking of a set of documents as an answer for a query at hand,
the documents should be ranked by the posterior probability of
belonging to the relevance class R of the query.” According to
this principle, Robertson et al. showed that ranking the
documents by the odds of their being observed in R
produces the optimal ranking, and introduced the following
general PRM framework:

pðRjd; qÞ /q log
pðRjd; qÞ
pðRjd; qÞ

/q log
pðdjR; qÞ
pðdjR; qÞ

; ð12Þ

where R is the irrelevant class and /q implies same rank
order, as usual. In the last step, Bayesian inversion is applied.

BM25 [4], [5], [6], [7], [14], [15], [16], the basic version of
PRM, starts from this probability ranking principle and a set
of discrete attributes that are present in the document, and
defines a general ranking model as a sum of weights over
discrete attributes, as follows:

log
pðdjR; qÞ
pðDjR; qÞ

/q BM25ðd; qÞ �
Y

V

pðtfijR; qÞ
pðtfijR; qÞ

�
Y

qt

pðtfijR; qÞ
pðtfijR; qÞ

/q
X

qt

log
pðtfijR; qÞ
pðtfijR; qÞ

� � � /q
X

qt;tfi>0

logWiðtfiÞ;

ð13Þ

where V ¼ fw1; . . . ; wjV jg is the set of words that appear in
database D; tfi is the frequency of word wi inD, and qt is the
set of words in query q. In the first step, word independence
is assumed. In the second, only query words are used.
Finally, log is applied for the linear combination of the odds
of relevance of each tfi, which is approximated by the sum
over the query word weight functions WiðtfiÞ. Typically,
WiðtfiÞ is defined by the specifics of the model that follows
this principle (e.g., BM25) and is tuned over a set of queries.

The original BM25 model does not handle nontextual
features of the documents. Following Craswell et al. [11]
once again, we revisit (12) and introduce cd and td for a
document d (see Section 4.2) as follows:

log
pðdjR; qÞ
pðdjR; qÞ

¼ log
pðcd; tdjR; qÞ
pðcd; tdjR; qÞ

¼ log
pðcdjR; qÞ
pðcdjR; qÞ

þ log
pðtdjcd; R; qÞ
pðtdjcd; R; qÞ

/q BM25ðcd; qÞ þ log
pðtdjcd; R; qÞ
pðtdjcd; R; qÞ

;

ð14Þ

where BM25ðcd; qÞ is the same as BM25ðd; qÞ in (13). By
doing so, we linearly combine BM25, in a similar manner as
in [11], with a term that depends on modeling time with
respect to cd; R, and q.

To handle the second term in the equation, we can ignore
cd since the temporal relevance of day td for query q does
not depend on the content of one particular document cd
but rather, as we have seen in Section 3, on the density of
relevant documents around time td. Based on this observa-
tion, we can use temporal relevance as follows:

log
pðdjR; qÞ
pðdjR; qÞ

/q BM25ðcd; qÞ þ log
pðtdjR; qÞ
pðtdjR; qÞ

/q BM25ðcd; qÞ þ log
pðtdjqÞ

1� pðtdjqÞ
:

ð15Þ

Another possibility that we explore here is to directly
follow Craswell et al. [11] and separate each document d
into two components, namely, a content cd and a “score” sd.
In our scenario, the score for a document is the actual
temporal relevance score of the publication date of the
document. According to Craswell et al., we can then rewrite
(12) as follows:

log
pðdjR; qÞ
pðdjR; qÞ

¼ log
pðcd; sdjR; qÞ
pðcd; sdjR; qÞ

¼ log
pðcdjR; qÞ
pðcdjR; qÞ

þ log
pðsdjcd; R; qÞ
pðsdjcd; R; qÞ

/q BM25ðcd; qÞ þ log
pðsdjR; qÞ
pðsdjR; qÞ

/q BM25ðcd; qÞ þ w �
s�d

k� þ s�d
;

ð16Þ

where we assume that the score sd is independent of the
content cd. For the second term, Craswell et al. suggest
learning a transformation function that converts the score sd
into a relevance weight. Craswell et al. evaluated several
functions for different nontextual feature scores, and
showed that a function of the form w � s�

d

k�þs�
d

, known as
sigm, performed the best [11]. We adopt sigm as our
transformation function of choice and tune it in Section 5.3.

4.4 Answering Time-Sensitive Queries with
Pseudorelevance Feedback

We now discuss our efforts to integrate temporal relevance
into a pseudorelevance feedback technique. Specifically, we
focus on Indri’s pseudorelevance feedback technique, which
is an adaptation of Lavrenko and Croft’s relevance models
[13]. In the first stage of this technique, a baseline retrieval is
performed to identify the top-k documents for a query at
hand. According to Lavrenko and Croft, these top-k docu-
ments are then used to analyze the universe of unigram
distributions and estimate pðwjRÞ, the probability that a word
w appears in a document that is relevant to the query. This
estimated probability is used to select the top-m representa-
tive words or phrases that are most related to the query. In the
second stage, a second retrieval with query expansion is
performed using the identified words or phrases.

To integrate time into this pseudorelevance feedback
technique, we can account for time by biasing, in an
appropriate manner, the choice of the top-k documents that
are used in the first stage of query processing. We
experimented with several ways to bias this choice of
top-k documents based on time, but unfortunately none of
these variations resulted in any gain in result accuracy for
time-sensitive queries. It seems that a technique that
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reranks the most topically relevant documents, and then
mines them for other words related to the query, does not
discover any useful words that were not already captured
by the original technique. The cause of this shortcoming is
most likely that the techniques are limited by their
exposure to the same sets of documents. For brevity, we
omit any further discussion of this technique.

5 EXPERIMENTS

We now report our experimental results. Section 5.1
describes our data collections and queries. Then, Section 5.2
summarizes our experimental settings. Finally, Sections 5.3
and 5.4 discuss the results on the training and test data,
respectively.

5.1 Collections and Queries

Our experiments require a large archive of news stories
spread over several continuous years, as well as queries
over the archive with corresponding relevance judgments.
We used two document collections and two query sets, as
we describe next:

5.1.1 TREC News Archive (TREC)

This collection is a portion of the TREC volumes 4 and 5,
with news articles from the Financial Times (1991, 1992,
1993, and 1994) and the Los Angeles Times (1989 and 1990).
We excluded the documents from the Congressional Record
of the 103rd Congress (1993) and the Federal Register (1994)
because these documents were not time stamped.

5.1.2 TREC Time-Sensitive Queries

(TQ301, TQ351, and TQ401)

We use the subset of TREC ad hoc title queries 301-350, 351-
400, and 401-450 that we identified manually as being time-
sensitive queries, according to the following simple criteria.
First, we discard all queries with fewer than 20 matching
documents: it would not be meaningful to analyze time-
distribution patterns over fewer than 20 documents. (We
use conjunctive Boolean semantics for matching, following
our approach in Section 3.3.1.) Second, we manually
examine the title, description, and narrative of each of the
remaining queries, and classify a query as time sensitive if it
targets documents that are associated with specific news
events (see Definition 1). For these queries, the relevant
documents are not spread uniformly over time but rather
tend to concentrate in restricted time intervals. When the
information about a query is not sufficient to make the
classification decision, we build and analyze a relevant-
document histogram, using the human relevance judg-
ments from TREC. After this manual procedure, the time-
sensitive queries form three query sets, namely, TQ301,10

TQ351,11 and TQ401.12 TQ301 is used for training and
includes 31 time-sensitive queries out of the TREC ad hoc

queries 301-350. TQ351 and TQ401 are used for testing and
include 25 and 30 time-sensitive queries from TREC ad hoc
queries 351-400 and 401-450, respectively. As an alternative
to this manual identification of the time-sensitive queries
for our experiments, we could have used the classification
strategy in [1]. (See Section 6.) We did not follow this
alternative approach to be able to crisply evaluate our
retrieval approach without potentially introducing query
classification errors into the picture.13

As a baseline, we also considered running our algorithms
on all queries, without any query filtering (manual or
automatic). The results indicated that the performance of
our system was statistically indistinguishable from the
unmodified, baseline systems. Therefore, we expect the
performance of a system that includes an automatic query
classification component to be close to a linear combination
of the results with “perfect” query classification accuracy
and the current baseline results, with the exact performance
values depending on the accuracy of the classification
algorithm. An almost perfect classification algorithm will
replicate the results that we report in this paper, while a
random classifier will result in performance close to the one
of the baseline. (Jones and Diaz [1] report that their temporal
query classifier has accuracy around 70 to 75 percent.)

5.1.3 Newsblaster Archive (BLASTER)

This collection includes the six-year archive of Newsblaster
[17], with news articles crawled daily from 25 news sources
from September 2001 to December 2006.

5.1.4 Newsblaster Time-Sensitive Queries

(TQBLASTER)

Unlike TREC, Newsblaster does not provide queries or
relevance judgments. To build a query set for Newsblaster,
we recruited five journalists who volunteered their daily
queries issued on news archive engines. We gathered
125 queries and followed the same guidelines as for the
TREC queries to identify the time-sensitive queries among
the 125 queries. We refer to the set of 76 time-sensitive
queries that we gathered as the TQBLASTER query set.

To obtain the relevance judgments for our queries, we
launched a large-scale user study using the Amazon
Mechanical Turk service. In our study, each Mechanical
Turk annotator was presented with queries and associated
documents, and decided on the relevance of each document
for each query, following TREC-style guidelines. To ensure
the quality of this distributed labeling effort, annotators had
to pass a qualification test. Specifically, each prospective
annotator was presented with a TREC query and seven
TREC documents, and was only allowed to proceed with
the TQBLASTER labeling task if he or she agreed with the
TREC annotations of at least six of the seven documents in
the qualification test. (The queries and documents of the
qualification test were picked randomly for each prospec-
tive annotator, from among 10 TREC queries and 70 TREC
documents.) Also, an annotator was allowed to label at
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10. TQ301 queries are: 301, 302, 306, 307, 311, 313, 315, 316, 318, 319, 320,
321, 322, 323, 324, 326, 329, 330, 331, 332, 333, 334, 337, 340, 341, 343, 345, 346,
347, 349, 350.

11. TQ351 queries are: 352, 354, 357, 358, 359, 360, 366, 368, 372, 374, 375,
376, 378, 383, 385, 388, 389, 390, 391, 392, 393, 395, 398, 399, 400.

12. TQ401 queries are: 401, 402, 404, 407, 408, 409, 410, 411, 412, 418, 420,
421, 422, 424, 425, 427, 428, 431, 432, 434, 435, 436, 437, 438, 439, 442, 443, 446,
448, 450.

13. Unfortunately, we could not use the hand-labeled queries by Jones
and Diaz [1] because they considered different collections and queries for
their work.



most seven TQBLASTER queries before being required to
take another qualification test.14

For each query, we created a pool of the top-20 results
from six retrieval techniques: four time-sensitive techniques
that performed well on the TREC data along with two
baseline techniques (see Section 5.4). On average, for each
query, the union of the six sets of (up to) 20 documents from
each technique consists of 39 unique documents. We used
three annotators to get relevance judgments for each query-
document pair and we accepted the annotations only when
there was perfect agreement across the annotators (this was
the case for 61.25 percent of the instances). In the case of
disagreement, we asked for two additional annotations for
each query-document pair and we took the majority opinion
as the final label for such pairs. In total, 371 human subjects
passed at least one of the qualification tests, and 136 of them
actually participated in the study, overall producing rele-
vance judgments for 2,822 query-document pairs.

5.2 Experimental Settings

We now elaborate on our experimental settings, which
include the techniques that we compare, the associated
parameters, and the metrics for our evaluation. All the
techniques listed below have two versions, based on the
query likelihood [9] and the relevance models [13].
We implemented all techniques using Indri and Lemur. All
documents and queries were stemmed using the Krovetz
stemmer [18] and stopped using Indri’s and Lemur’s stop
words list. To experiment with the time-sensitive BM25-
based techniques of Section 4.3, we use Lemur’s implemen-
tation of BM25.

5.2.1 LM-Based Baseline Techniques

We experiment with state-of-the-art versions of topic-based
retrieval techniques, namely, QL and RM (see Section 4.2),
to which we refer as QL-TOPIC and RM-TOPIC, respec-
tively. We also evaluate our techniques against two versions
of Li and Croft’s strategy for recency queries [2] (see
Section 6), one for QL and one for RM, to which we refer as
QL-RECENCY and RM-RECENCY, respectively.

5.2.2 BM25-Based Baseline Techniques

We experiment with Lemur’s implementation of BM25 and
refer to it as BM25-TOPIC.

5.2.3 Time-Sensitive Language Model Variations

(Section 4.2)

Our time-sensitive approach for language models has
several parameters, including the histogram construction
strategies, with DAY, FIXED, WIN, MEAN, and BUMP as
options (Section 3.3.2), the parameters of each histogram
construction strategy, such as parameter x of WIN and
FIXED, and parameter � of the distribution function for the
time periods (Section 3.3.3). We experimented with the five
possible histogram construction strategies—with different
settings for each—and with alternate parameter values. This
resulted in 18 variations of our time-sensitive approaches:
nine variations have QL as the underlying retrieval model

and various values for x, shown in Table 1; the other nine

variations have RM as the underlying retrieval model. In

Section 5.3, we will discuss how we set the value of � over

the training set. For our experiments, and for simplicity, we

assume that the time prior pðtÞ is constant across the

different values of t (see Section 4.2).
To explore the impact of our binning technique of

Section 3.3, we consider an alternative definition pðtjqÞ that

does not rely on binning. Specifically, we leverage recent

work by Jones and Diaz on analyzing temporal character-

istics of queries [1] (see Section 6) and define

pðtjqÞ ¼ �d2RpðtjdÞ �
pðdjqÞ

�d̂2Rpðd̂jqÞ
;

where pðtjdÞ ¼ 1 if d was published on day t and 0
otherwise, and R is a set with the top-k ranked documents
for q, according to the QL model, which is used to compute
the pðdjqÞ values (see Section 5.3). For our experiments, and
following [19], we set k ¼ 1;000. The pðtjqÞ values are then
normalized using a background probability of the collection

and smoothed using an average of 14 days [1]. We refer to
the alternative technique that results from this definition of
pðtjqÞ as SUM-QL. We also consider the corresponding
version using RM instead of QL, and refer to it as SUM-RM.

5.2.4 Time-Sensitive BM25 Variations (Section 4.3)

In the first time-sensitive BM25 variation, which we refer to

as DIRECT-BM25, we compute the time-based relevance

weight as in (15) using the temporal relevance values as

described in Section 4.3. In the second BM25 variation,

which we refer to as APPROX-BM25, we estimate the time-

based relevance weight as in (16), using a sigm transforma-

tion function [11] with parameters w; k, and �, which we

will determine in Section 5.3.

5.2.5 Index-Based Time-Sensitive Computations

(Section 3.4)

We explore the impact of computing pðtjqÞ efficiently using

our temporal word tracking index of Section 3.4. We refer to

the search techniques that use this method as WORD-QL

and WORD-RM.
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TABLE 1
The QL-Based Techniques that We Compared Experimentally

(We Also Evaluated the RM-Based Counterparts)

14. This requirement ensures that annotators that contribute a large
number of judgments also pass more qualification tests.



5.2.6 Evaluation Metrics

We follow TREC’s evaluation procedure for evaluating ad
hoc queries using the trec_eval package.15 This package
reports precision and recall at different levels for each query.
It also outputs summary measures across all queries. We
report results for the following measures [20]:

1. The “recall level precision averages” table, which
contains the average precision at 11 standard recall
levels (0 to 1 in increments of 0.1). We only consider
precision at the top recall cutoffs, namely, 0.0, 0.1,
0.2, 0.3, 0.4, and 0.5 (P@0; P@0:1; P@0:2; P@0:3;
P@0:4, and P@0:5, respectively).

2. The recall-precision graph, which plots the previous
table.

3. The mean (noninterpolated) average precision
(MAP), which is the average of the precision value
obtained after each relevant document is retrieved.

4. The “document level precision” table, which con-
tains the average precision at nine document levels;
we consider precision at 5, 10, 15, and 20 documents
(P@5; P@10; P@15, and P@20, respectively).

5. The average R-Precision (RAP), which is the preci-
sion after R documents has been retrieved and R is
the number of relevant documents.

5.3 Results on Training Queries

In this section, we describe our choice of parameters for our
techniques over the training queries, namely, over the
TQ301 query set.

5.3.1 Tuning the Language Model Variations

To determine the window size x for WIN (Section 3.3.2), we
experimented with values 3, 7, 14, and 28. Surprisingly, the
window size did not make any significant difference for our
performance metrics across several different � values. This is
mainly due to the bursty posting of news documents:
typically, there is high activity around the date of an event,
and minimal posting activity in other days. In our test set, we
did not have cases where two distinct events, corresponding
to the same query, overlapped within a time period of
28 days. So for the rest of our experiments, we set the window
size x ¼ 7 (i.e., we use the WIN7-QL and WIN7-RM versions
for WIN). In the cases where distinct events may overlap
within periods of seven days (e.g., news about the games of a
sports team), it would be advisable to keep the window time
small, to better capture the distinct nature of the events.

We now turn to choosing the � value for each binning
technique (Section 3.3.3). For this, we ran our techniques over
the TQ301 training queries with 12 different values of �, from
0.0001 to 0.2, and using QL. For brevity, we do not show the
performance of our techniques across these values. Also, we
only report a portion of the trec_eval output. In general, for
all techniques except WIN7-QL,16 decreasing � up to a
certain value improves the result quality, but quality either
drops or stays constant after that. Since high values of �
eliminate differences between time periods, this illustrates
that focusing on specific time periods is important. However,
very small values of � decrease rapidly the relevance scores
for documents that are not in the top bin, and equates the
scores of these (relevant) documents with the scores of
documents that are nonrelevant.

For each technique, we checked the statistical significance
(using Wilcoxon’s signed rank test [21]) for MAP with� equal
to 0.2, 0.01, and 0.005, and found � ¼ 0:01 or � ¼ 0:005 are
generally better than � ¼ 0:2 and that the difference is
statistically significant (p < 0:001). We also verified similar
observations for P@20 and MAP. We ultimately chose to
select the parameter values based on P@20, then P@10, and
finally using MAP to break ties. Table 2 summarizes the
results for our techniques with the best � values as well as the
results for the baselines. All the QL-based binning techniques
improve MAP by 7 percent against QL-TOPIC and by
25 percent against QL-RECENCY over the training queries,
a statistical significant difference (p < 0:001, Wilcoxon’s
signed rank test). The results are similar for the RM-based
binning techniques. For our test data, we choose to run our
experiments for BUMP-QL, MEAN-QL, and TEN-QL, for the
QL model, and for MONTH-RM, BUMP-RM, and TEN-RM,
for the RM model, with the � values in Table 2.

5.3.2 Tuning SUM-QL and SUM-RM

Analogous to our tuning of the binning techniques, we
examined the performance of the SUM techniques with pðtjqÞ
computed on TQ301 using the QL model with and without
conjunctive Boolean filtering. The results were better without
the conjunctive Boolean filtering, so for our test evaluation,
we do not use conjunctive Boolean semantics.

5.3.3 Tuning the BM25 Variations

To keep our experiments manageable, for the BM25
variations, we first settle on the choice of temporal relevance
formulation by examining the performance of the DIRECT-
BM25 technique over our training set. (We focus on
DIRECT-BM25 simply to reduce the amount of tuning.)
Then, we decide on the parameters for the sigm function that
we use in APPROX-BM25. Table 3 shows the performance of
DIRECT-BM25 using four different temporal relevance
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TABLE 3
The Performance of DIRECT-BM25 for
Different Temporal Relevance Variants

TABLE 2
Top Performing QL- and RM-Based Techniques
versus Baseline Alternatives over Training Data

15. http://trec.nist.gov/trec_eval/.
16. For WIN7-QL, the � value seems to make no difference in

performance for the values that we examined.



formulations, namely, SUM, MEAN, BUMP, and WORD.

While all DIRECT-BM25 variations have a different perfor-

mance in terms of P@10 and P@20, they all have similar

MAP values. Since MEAN and BUMP maintain a slight

advantage over WORD and SUM, we use MEAN for the rest

of our evaluation.
We believe that this advantage is attributable to the fact

that both the MEAN and BUMP values are determined by a

distribution function, unlike the WORD and SUM values. For

example, the probability values according to MEAN and

BUMP are distributed exponentially, whereas that is not the

case for the WORD and SUM values. This difference is critical

for DIRECT-BM25 since we use these temporal relevance

values to directly estimate, by computing the odds (15), the

relevance weights of the time component in the modified

BM25. This is not as critical for APPROX-BM25, since it uses a

sigm transformation function to convert the temporal
relevance values to relevance weights.

Finally, APPROX-BM25 uses a transformation function
with the parameters w; k, and � (16). Via an exhaustive
exploration of parameter-value combinations, we obtained
w ¼ 8; k ¼ 0:00002, and � ¼ 1:6 as the best values. Table 4
shows the results of the top-10 performing settings, while
Fig. 4 shows the tuning of k across several values of � and
for w ¼ 8.

5.4 Results on Test Queries

5.4.1 Results Using Time-Sensitive TREC Queries

Tables 5, 6, 7, and 8 summarize the recall and precision of
the various QL- and RM-based techniques. In terms of
MAP, BUMP-QL resulted in an improvement of 17 and
26 percent against QL-TOPIC and QL-RECENCY over
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Fig. 4. P@20 values for APPROX-BM25, over the training data set, for
w ¼ 8 and across several k and � values.

TABLE 6
Performance of QL-Based Techniques over the

TREC45 Data Set for the TQ401 Query Set, Following
the Reporting Conventions of Table 5 but with Respect

to the Best Performing Baseline

TABLE 5
Performance of QL-Based Techniques over the

TREC45 Data Set for the TQ351 Query Set

The + sign indicates performance that is better, in a statistically
significant manner, than the QL-TOPIC baseline. (There were no cases
of a time-sensitive algorithm having lower performance in a statistically
significant manner.) The boldfaced numbers mark the techniques with
the highest performance for the particular metric. (Multiple boldfaced
numbers indicate that the performance of the algorithms is statistically
indistinguishable.)

TABLE 4
Top-10 Performing Settings for APPROX-BM25,

for P@20 and over Training Data

TABLE 7
Performance of RM-Based Techniques over the TREC45

Data Set for the TQ351 Query Sets, Following the
Reporting Conventions of Table 5 but with Respect

to the RM-TOPIC Baseline

TABLE 8
Performance of RM-Based Techniques over the TREC45

Data Set for the TQ401 Query Set, Following the Reporting
Conventions of Table 5 but with Respect

to the RM-TOPIC Baseline



TQ351, and in an improvement of 11 and 31 percent over
TQ401. As anticipated by the training results, MEAN-QL
and TEN-QL also achieve similar results. The results for the
RM-based binning techniques are analogous to those for
their QL-based counterparts: BUMP-RM shows a statisti-
cally significant improvement for MAP of 5 and 24 percent
against the RM-TOPIC and RM-RECENCY baselines over
TQ351, and a statistically significant improvement of 10 and
37 percent over TQ401. Fig. 5 shows precision-recall curves
for the BUMP techniques. The results for SUM-QL and
SUM-RM support our earlier observation that these
techniques exhibit high precision for the top recall cutoff
levels. In terms of P@5, SUM-QL results in an improvement
of 11 percent against QL-TOPIC over TQ351, and in an
improvement of 11 percent over TQ401. SUM-RM results in
more consistent improvements over TQ401 across P@5;
P@10, and P@20.

Tables 9 and 10 summarize the recall and precision of the
various BM25-based techniques. In terms of P@20, both
DIRECT-BM25 and APPROX-BM25 resulted in an improve-
ment of 7 percent against BM25-TOPIC over TQ351.
DIRECT-BM25 also resulted in an improvement of 5, 6,
and 3 percent against BM25-TOPIC over TQ351 in terms of
P@5; P@10, and P@15, respectively. APPROX-BM25 does
not improve P@5 over TQ351 against BM25-TOPIC but it
improves P@10 and P@15. Similar observations follow for
TQ401. In terms of P@20, DIRECT-BM25 resulted in an
improvement of 8 percent against BM25-TOPIC, while
APPROX-BM25 resulted in an improvement of 4 percent.

Both DIRECT-BM25 and APPROX-BM25 improve P@5 and
P@15 but achieve negligible or no improvement for P@10.

An example of a query that benefited from our
techniques is [Industrial Espionage]. The vast majority of
the relevant documents for this query are concentrated
within a small time period. Our binning techniques and the
SUM-based techniques capture this fact and return more
documents from this period than the baseline techniques
do. For example, BUMP-RM returned 19 more documents
from this period than RM-TOPIC did, considering the top
100 results returned by each technique. Moreover, over the
TQ301 query set BUMP-RM returned, overall, 2,004 docu-
ments that had not been retrieved by any TREC participants
for these queries and, therefore, did not have associated
relevance judgments. To circumvent this problem of
missing relevance judgments, we now report experimental
results on the TQBLASTER queries, with relevance judg-
ments gathered using Amazon’s Mechanical Turk service.
An advantage of this query set over the TREC set is that we
obtained complete relevance judgments for the top-20
results retrieved by each of the techniques that we compare.

5.4.2 Results Using Time-Sensitive Newsblaster

Queries

We now report results for TQBLASTER, for BUMP-QL,
BUMP-RM, SUM-QL, SUM-RM, QL-TOPIC, and RM-
TOPIC with the same � values used for TQ351 and
TQ401. We selected the best two baseline techniques and
four time-sensitive techniques according to the TREC
experiments, and excluded the other techniques to keep
the amount of human annotations that we needed at
manageable levels. Table 11 summarizes the recall and
precision values, while Fig. 6 shows precision-recall curves
for the various techniques and the baselines. As an
interesting observation, both BUMP-QL and BUMP-RM
have improved precision at the top recall cutoff levels
significantly relative to the baseline techniques QL-TOPIC
and RM-TOPIC. This is also true for the SUM-based
techniques. However, the precision of our techniques and
the SUM-based techniques drops for higher recall cutoff
levels. For example, for P@10, using BUMP-QL and SUM-
QL resulted in an improvement of 31 and 32 percent,
respectively, against QL-TOPIC, while BUMP-RM and
SUM-RM resulted in an improvement of 29 and 27 percent,
respectively, against RM-TOPIC; in contrast, P@30 values
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TABLE 9
Performance of the BM25-Based Techniques

over the TREC45 Data Set and for the
TQ351 Query Set, Following the Reporting
Conventions of Table 5 but with Respect

to the BM25-TOPIC Baseline

For APPROX, we use w ¼ 8; k ¼ 0:00002, and � ¼ 1:6.

TABLE 10
Performance of the BM25-Based Techniques
over the TREC45 Data Set and for the TQ401

Query Set, Following the Reporting
Conventions of Table 5 but with Respect

to the BM25-TOPIC Baseline

For APPROX, we use w ¼ 8; k ¼ 0:00002, and � ¼ 1:6.

Fig. 5. Precision-recall curve for the BUMP techniques over the TREC45
data set, for the TQ351 and TQ401 query sets.



are almost the same for all techniques. We also noticed that,

for certain queries, the time-sensitive techniques introduce

relevant documents that the baseline techniques could not

capture: across all queries in the TQBLASTER query set,

we counted 118 relevant documents that were not captured

by QL-TOPIC or RM-TOPIC.

5.4.3 Summary

We have showed that considering time as an additional

factor for ranking query results may be valuable for

answering time-sensitive queries. Our results indicate that

using temporal evidence derived from news archives often

increases precision and reveals new relevant documents

from important time intervals.

6 RELATED WORK

Our approach expands Li and Croft’s [2] strategy to process

recency queries, which utilizes a language modeling

framework [9], [10], [13], [22]. Most language modeling

approaches assume that the prior probability pðdÞ that a

document is relevant to a query is constant. Li and Croft

modified the prior pðdÞ to reflect the fact that recently

published documents are more likely to be relevant to

recency queries. In our approach, which handles a broader

class of time-sensitive queries, including nonrecency

queries, it is not appropriate to modify the document prior

pðdÞ, as we would have to introduce query-specific

information (i.e., the temporal characteristics of the query)

in the document prior probability pðdÞ, which is assumed to

be query independent. In Section 5, we experimentally

compared our techniques against Li and Croft’s strategies,

which we dubbed QL-RECENCY and RM-RECENCY.
Recently, Mishne [23] introduced a temporally aware

technique for event search over blogs. Specifically, Mishne

estimates a temporal prior for the blog postings using a

histogram of the top-500 posts that are most topically

relevant to a given query, similarly to the DAY technique

of Section 3.3, and linearly combines this temporal prior with

topical relevance to rerank the top query results. Changing

the document prior probabilities has been exploited in

several other contexts, such as imposing prior beliefs on

the retrieval task using PageRank or inlink [11], handling

webpages from different categories with appropriate prior
values [24], dealing with the absence of topic [25], and so on.

Time has also been used to model the evolution of topics
over time. For example, Blei and Lafferty [26] introduced
techniques that examine how scientific topics evolve over
time. The topics, identified using a variation of Latent
Dirichlet Allocation (LDA), are modeled as distributions of
words. One possible extension of our technique would be to
match the user query with the LDA topics instead of using a
word-based language model. In this scenario, we could use
our techniques together with the temporal topic frequencies
identified by Blei and Lafferty’s technique to locate time
periods of interest. The problem of locating emerging topics
[27] has also been studied extensively mainly in the context
of novelty detection [28], [29], [30]. However, there is very
little work on incorporating time information to improve
the quality of search results.

Finally, Jones and Diaz [1], [31] analyze various temporal
characteristics of queries. Specifically, they study the dis-
tribution of query results over a timeline to identify events
for the queries and attempt to predict the precision of the
query results. Jones and Diaz also automatically categorize
queries as atemporal, temporally ambiguous, or temporally

unambiguous. For our work, we focused on answering queries
that were manually identified as being time sensitive
(Section 2). As we discussed, we opted to use the manual
classification of queries as time sensitive or not to disentangle
the effects of query classification from the performance of the
retrieval algorithms. In the future, we will explore combining
our work with Jones and Diaz’s query categorization
strategy. Finally, in this paper, we experimentally explored
a definition of pðtjqÞ (see Section 5.2) that is based on Jones
and Diaz’s work [1]. We referred to the resulting document
ranking strategies as SUM-QL and SUM-RM.

7 CONCLUSIONS AND FUTURE WORK

We presented a method for processing time-sensitive
queries over a news archive, with techniques for identifying
important time periods for a query. We presented an
extensive experimental evaluation, including TREC as well
as an archive of news articles, and showed that our
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Fig. 6. Precision-recall curves over the BLASTER data set, for the
TQBLASTER query set.

TABLE 11
Performance over the BLASTER Data Set, for the
TQBLASTER Query Set, Following the Reporting

Conventions of Table 5 but with Respect
to the Best Performing Baseline



techniques improve the quality of search results, compared
to the existing state-of-the-art algorithms.

Our work demonstrates that integrating time in the
retrieval task can improve the quality of the retrieval
results, and motivates further research in the area.
Currently, we rely on the publication time of the documents
to locate time periods of interest. However, a document
published at a later date (e.g., a review article, summarizing
an event) may also be relevant; an interesting direction for
future research is to infer the temporal relevance of a
document by analyzing its contents [32], and not by relying
solely on its publication date. Another promising research
direction is to introduce time-based diversity in query
results by grouping the results into clusters of relevant time
ranges, enabling users to be aware of and interact with time
information when examining the query results. Along the
same lines, as future work, we are interested in integrating
our retrieval techniques with algorithms for query refor-
mulation, so that searchers are shown reformulations of
their queries that target specific time periods, as suggested
by Jones and Diaz for temporally ambiguous queries [1].

Another interesting direction for future work is to
examine techniques that consider a time-sensitive definition
of relevance at the document level. For example, queries
such as [presidential election 2012] return documents that
have varying relevance over time. For example, (relevant)
documents returned today for the query [presidential election
2012] are unlikely to be considered highly relevant in 2012,
where new information about the event will appear. Of
course, handling such a time-varying definition of relevance
may require extensive rethinking of the existing ways of
evaluating retrieval performance, as static definitions of
relevance (the case with current experimental testbeds) are
not suitable for this task.17

Overall, we believe that seamlessly integrating tempor-
al information into web search—for news articles or
otherwise—is a promising direction for future research
that can significantly improve the web search experience.

ACKNOWLEDGMENTS

Panagiotis G. Ipeirotis was supported by the US National
Science Foundation (NSF) under Grant No. IIS-0643846 and
by an NYU/Poly Seed Grant.

REFERENCES

[1] R. Jones and F. Diaz, “Temporal Profiles of Queries,” ACM Trans.
Information Systems, vol. 25, no. 3, article 14, 2007.

[2] X. Li and W.B. Croft, “Time-Based Language Models,” Proc. 12th
ACM Conf. Information and Knowledge Management (CIKM ’03), 2003.

[3] D. Metzler and W.B. Croft, “Combining the Language Model and
Inference Network Approaches to Retrieval,” Information Proces-
sing and Management, vol. 40, no. 5, pp. 735-750, Sept. 2004.

[4] S.E. Robertson, S. Walker, M. Hancock-Beaulieu, A. Gull, and M.
Lau, “Okapi at TREC,” Proc. Fourth Text REtrieval Conf. (TREC-4),
1994.

[5] S.E. Robertson, “Overview of the Okapi Projects,” J. Documenta-
tion, vol. 53, no. 1, pp. 3-7, 1997.

[6] K.S. Jones, S. Walker, and S.E. Robertson, “A Probabilistic Model
of Information Retrieval: Development and Comparative Experi-
ments - Part 1,” Information Processing and Management, vol. 36,
no. 6, pp. 779-808, 2000.

[7] K.S. Jones, S. Walker, and S.E. Robertson, “A Probabilistic Model
of Information Retrieval: Development and Comparative Experi-
ments - Part 2,” Information Processing and Management, vol. 36,
no. 6, pp. 809-840, 2000.

[8] W. Dakka, L. Gravano, and P.G. Ipeirotis, “Answering General
Time-Sensitive Queries,” Proc. 17th ACM Conf. Information and
Knowledge Management (CIKM ’08), pp. 1437-1438, 2008.

[9] J.M. Ponte and W.B. Croft, “A Language Modeling Approach to
Information Retrieval,” Proc. 21st Ann. Int’l ACM SIGIR Conf.
Research and Development in Information Retrieval (SIGIR ’98), 1998.

[10] F. Song and W.B. Croft, “A General Language Model for
Information Retrieval,” Proc. Eighth ACM Conf. Information and
Knowledge Management (CIKM ’99), 1999.

[11] N. Craswell, S.E. Robertson, H. Zaragoza, and M. Taylor,
“Relevance Weighting for Query Independent Evidence,” Proc.
28th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’05), 2005.

[12] S. Brin and L. Page, “The Anatomy of a Large-Scale Hypertextual
Web Search Engine,” Proc. Seventh Int’l World Wide Web Conf.
(WWW ’98), 1998.

[13] V. Lavrenko and W.B. Croft, “Relevance-Based Language Mod-
els,” Proc. 24th Ann. Int’l ACM SIGIR Conf. Research and
Development in Information Retrieval (SIGIR ’01), 2001.

[14] S.E. Robertson, “The Probability Ranking Principle in IR,” Read-
ings in Information Retrieval, pp. 281-286, Morgan Kaufmann, 1997.

[15] S.E. Robertson, S. Walker, and M. Hancock-Beaulieu, “Okapi at
TREC-7: Automatic Ad Hoc, Filtering, VLC and Interactive
Track,” Proc. Seventh Text REtrieval Conf. (TREC-7), 1998.

[16] N. Craswell, H. Zaragoza, and S.E. Robertson, “Microsoft Cam-
bridge at TREC-14: Enterprise Track,” Proc. 14th Text REtrieval
Conf. (TREC-14), 2005.

[17] K. McKeown, R. Barzilay, D. Evans, V. Hatzivassiloglou, J.
Klavans, A. Nenkova, C. Sable, B. Schiffman, and S. Sigelman,
“Tracking and Summarizing News on a Daily Basis with
Columbia’s Newsblaster,” Proc. Second Int’l Conf. Human Language
Technology (HLT ’02), 2002.

[18] R. Krovetz, “Viewing Morphology as an Inference Process,” Proc.
16th Ann. Int’l ACM SIGIR Conf. Research and Development in
Information Retrieval (SIGIR ’93), 1993.

[19] F. Diaz, “Personal Communication,” 2007.
[20] E.M. Voorhees and D. Harman, “Overview of TREC-9,” Proc.

Ninth Text REtrieval Conf. (TREC-9), 2001.
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