
Quality Impact of Value Matching and Scoring
in Top-k Entity Attribute Extraction ∗

Matthew Solomon
Columbia University

solomon@cs.columbia.edu

Luis Gravano
Columbia University

gravano@cs.columbia.edu

Cong Yu
Google Research

congyu@google.com

ABSTRACT
The entity attribute extraction problem, or how to extract
entities and their attribute values from natural language
Web documents, is of critical importance for Web search and
information access in general. Unfortunately, because of the
noisy nature of the Web and its scale, entity attribute extrac-
tion is notoriously challenging in terms of both extraction
efficiency and quality. In our earlier work [24], we proposed
a top-k extraction processing approach that addressed the
efficiency challenge: Our approach leveraged a popularity-
based scoring function to rank Web pages according to their
entity-specific importance, and focused the extraction effort
over the highly ranked pages for each entity of interest. The
extraction quality resulting from this efficiency-motivated
extraction approach, however, has not been studied and is
the focus of this paper. Specifically, we make progress to-
ward addressing the quality challenge through an in-depth
analysis of two critical components of the extraction process,
namely, matching and scoring of extracted attribute values.
The design choices for these components can substantially
impact the quality of the entity attribute extraction process,
as we demonstrate with experiments with a state-of-the-art
extraction system and entities from two domains of interest.

1. INTRODUCTION
Many sophisticated user search tasks involve searching

and reasoning about real-world entities (e.g., people, organi-
zations) and their attributes and properties. For these tasks,
the traditional Web search paradigm is sometimes insuffi-
cient. As an example, consider a user who is interested in
learning about all local politicians, together with attributes
such as their party affiliations and positions. Ideally, with
help from information extraction techniques, we should pro-
vide the user with the desired attributes directly, so that the
user is not forced to gather the information manually from

∗This material is based upon work supported by a Yahoo!
Faculty Research and Engagement Gift, and by the National
Science Foundation under Grant IIS-08-11038.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. This article was presented at:
Fifth International Workshop on Ranking in Databases (DBRank 2011).
Copyright 2011.

a long list of documents, as would be required with tradi-
tional Web search. The focus of this paper is on the entity
attribute extraction problem, or how to extract entities and
attribute values from natural language Web documents.

The entity attribute extraction problem requires process-
ing individual documents with an information extraction
system (e.g., Snowball [1], MALLET [21], SystemT [5]) and
extracting attributes (e.g., position or date of birth) of spe-
cific entities (e.g., athletes or politicians). Information ex-
traction is an expensive process, so processing all avail-
able documents should be avoided for efficiency, because
(1) domain- and application-specific extraction tasks arise
continuously, and (2) existing extraction programs are re-
peatedly refined and improved over time. Together, these
two observations make the exhaustive, one-size-fits-all pro-
cessing of all available Web documents (e.g., as in [4]) un-
desirable for our entity attribute extraction problem.

In recent work [24], we posed the entity attribute extrac-
tion problem as a top-k extraction processing task, where
the goal is to return the k attribute values with the high-
est “score” for each entity of interest, as extracted from the
available documents. Because information extraction is an
error-prone task, a scoring function [7, 8, 11, 26] is typically
used to assign a score to each extracted attribute value for
an entity, indicating our confidence in the extracted value.
With a scoring function, we can return the extracted at-
tribute values that are most likely to be correct, while ig-
noring the rest. We showed that, if the scoring function
assigns a high weight to information from important doc-
uments, identifying the top-k attribute values for a given
entity will not require processing every available document.
Our earlier work hence focused on the efficiency of the top-k
extraction process, and is summarized in Section 2.

Unfortunately, this earlier work did not analyze the qual-
ity of the output of the top-k extraction process, which is
the subject of this paper. Specifically, we will study the im-
pact on extraction quality of two important factors in the
top-k extraction process. First, in Section 3 we discuss how
to match extracted information to appropriate entity names
and attribute values, an instantiation of the entity resolution
or record linkage problem to our extraction scenario. Sec-
ond, in Section 4 we discuss the efficiency-motivated, entity-
specific importance weighing of the documents for the scor-
ing of the extracted information. As a key contribution of
this paper, in Section 5 we report a revealing experimental
analysis of these two important factors, involving entities
from two different domains of interest, real-world Web doc-
uments and statistics derived from a large-scale commercial

1

search engine query log. As we will see, the design choices
for the above two factors can substantially impact the qual-
ity of the entity attribute extraction process.

2. BACKGROUND
In [24], we posed the entity attribute extraction problem

as a top-k extraction processing task, where the goal is to
return the k attribute values with the highest score for each
entity of interest, as extracted from the available documents.
We showed that, if we use a scoring function that assigns
a high weight to information from important documents,
identifying the top-k attribute values for a given entity and
attribute will not require processing every document in the
input set. Intuitively, at some point before all documents
are processed, we can safely stop processing documents, as
further processing could not change the identity of the top-k
values. Specifically, (a slightly modified version of) the top-
k extraction processing approach that we used in [24], and
which we continue to explore in this paper, is as follows:

Input: set of entities E; information extraction system
X for attribute A; document set D; scoring function S.

Output: for each e ∈ E, the top-k values of A that can
be extracted from D using X, according to S.

4-Step Process:
Step 1: Document Selection. Select a batch of unprocessed
documents from D.
Step 2: Extraction and Matching. Process each document in
the batch with extraction system X and match extractions
to appropriate entities and attribute values.
Step 3: Scoring and Top-k Calculation. Update the score of
each extracted attribute value.
Step 4: Stopping Condition. If top-k values for each e ∈ E
have been found, stop; otherwise, go to Step 1.

Our earlier work in [24] used a flexible definition of scor-
ing function that can be instantiated to model alternative
options from the literature:

Definition 1 (Scoring Function). Consider a doc-
ument set D, an entity e, a value a for an attribute A of e,
and an information extraction system X. A scoring function
S assigns a score to value a for entity e over document set D
as: score(S , e, a,D) =

P

d∈D
γd,e ·conf X(e, a, d), where γd,e

represents the “importance” of d for e, and conf X(e, a, d)
represents the confidence of (e, a) as extracted from docu-
ment d by extraction system X.

We showed that, by instantiating γd,e with the “popularity”
of document d for entity e, as determined from a large-scale
search engine log [24], we can substantially improve the ef-
ficiency of the top-k extraction process, in comparison with
alternative definitions that do not prioritize certain docu-
ments over others for extraction.

Our earlier work focused on efficiency considerations and
did not analyze the impact on the quality of the output of
the top-k extraction process of the choice of (1) matching
strategy for Step 2 and (2) scoring function instantiations
for Step 3. In particular, the matching component of Step 2
was defined in a rudimentary manner, by just matching enti-
ties and attribute values whenever the corresponding strings
were identical after removing capitalization. We now de-
scribe robust, principled matching strategies and analyze
their impact—and that of instantiations of the above scoring
function—on the quality of the top-k extraction process.

3. MATCHING EXTRACTED VALUES
In Step 2, we process each document from Step 1 using an

extraction system to extract entity and attribute value pairs.
Given an extracted pair (e, a), we need to integrate it into
{(e1, A1), (e2, A2), . . . , (en, An)}, where each ei is an entity
of interest and each Ai = {a1

i , a
2

i , . . .} is the (possibly empty)
set of already extracted values for ei. For this, we need to
determine (1) if any entity ei corresponds to e (Section 3.1)
and (2) if so, if an already extracted a

j
i value matches a or

if a is a new, distinct value (Section 3.2).

3.1 Entity Matching
The quality of the top-k results is strongly affected by

how we match extracted entity values. (In the next sec-
tion, we discuss the complementary problem of matching
extracted attribute values.) Once an attribute value a for
an entity e has been extracted from a document, identifying
the entity—if any—that e matches, among the set of entities
of interest in E, is a challenging problem. If we only accept
entity names that match the name of an entity in E exactly,
then we may miss a large number of valuable extractions
(e.g., the same soccer player might be referred to as “Steven
Gerrard,” “Stevie Gerrard,” or even “Stevie G.”) [9, 12].

Fortunately, we can exploit the extensive literature on en-
tity resolution (also known as record linkage or synonym
resolution; see [9] for a survey). For example, we can use
approximate string matching to verify if, say, the edit dis-
tance between two names surpasses some matching thresh-
old [9]. Unfortunately, it is costly to calculate edit distance
for large sets of entities and extractions, and this approach
misses nicknames that differ substantially from the input
name (e.g., “Stevie G.” vs. “Steven Gerrard”). An alterna-
tive approach leverages large databases of entities and multi-
ple attributes to “learn” synonymous entity names based on
co-reference (e.g., both “Iker Casillas” and “Casillas” have
the “goalkeeper” attribute) [27, 6]. However, this general
method requires a large number of extractions for each entity
and attribute of interest to obtain substantial co-reference
statistics. In our entity attribute extraction scenario, this
requirement is problematic for all but the most popular enti-
ties of interest; not-so-popular entities generally do not have
a sufficiently large mass of associated extractions to enable
such statistical approaches effectively.

An alternative approach, which we use in our experiments,
is to leverage existing Web resources (e.g., DBpedia.org)
and compile a list of acceptable candidate names for each en-
tity. For each extraction (e, a), we compare the text string
for e, normalized for case and punctuation, against all of
the candidate name variations for each entity, and produce
a match if the e string exactly (or, alternatively, approxi-
mately) matches a candidate name for any of the entities
of interest. This technique is efficient, only requiring some
pre-processing (namely, compiling the list of variations for
the entities of interest, in an offline step) and a small num-
ber of exact (or, alternatively, approximate) string match-
ing comparisons for each extracted entity name, during the
extraction processing. Furthermore, this technique greatly
improves the robustness of the extraction process.

3.2 Value Matching through Clustering
Once an extraction (e, a) has been matched to a specific

entity ei in E, we check if the attribute value a, or an equiva-
lent variation thereof, already appears among the extracted

2

{”captain”}

{”captain”, “national team”}

{”goalkeeper”}

sc
o

re

0

{”spain”, “goalkeeper”}

{”captain”}

{”captain”, “national team”}

{”spain”, “national team”, ”member”}

Before adding

{”spain”, “national team”, ”member”}

After adding

{”spain”, “national team”, ”member”}

{”goalkeeper”}

{”spain”, “goalkeeper”}

sc
o

re

0

Figure 1: Problematic “merging” of two clusters for
entity “Iker Casillas” and attribute position.

values Ai. If we do not resolve synonymous attribute val-
ues, we will produce redundant top-k entries (e.g., a “soccer
player” may equivalently be referred to as a “professional
soccer player” or a “footballer”). Additionally, we have ob-
served that splitting an attribute value’s “true” score among
different versions has a significant impact on the efficiency of
the processing. By matching these corresponding attribute
values we avoid returning duplicate attribute values, result-
ing in diverse and useful results as well as in more reliable
value scoring. Proposed approaches for matching attribute
values are similar to those for entity resolution (see above),
using string matching and learning approaches. For domain-
and application-specific extraction systems, which may tar-
get specific or unique information, there will generally not be
a large number of mentions of any particular value; in partic-
ular, our entities often have relatively rare attribute values
(e.g., position instance “captain of the West Indies cricket
team”) that are not suitable for statistical approaches that
rely on millions of extracted values to function. An alter-
native is to use existing semantic databases (e.g., Word-
Net [3]) to identify equivalent attribute values. However,
these databases are unable to cover the lexical variability
in domain-specific, noisy extracted attribute values (e.g.,
“good goalie,” “first-rate goalkeeper”).

In our work, we synthesize an alternate two-step method
to normalize and cluster attribute values, by leveraging rel-
evant research results in novel ways. Specifically, the first
step identifies the most critical components, or “concepts,”
in each attribute value. Many noisy attribute values con-
tain incorrectly extracted terms due to segmentation errors
(e.g., “good goalkeeper,” “hot goalkeeper”), and we must
distinguish these noisy cases from correct extractions (e.g.,
“Spain goalkeeper”). To efficiently identify the most criti-
cal concepts in each attribute value, we develop a filter to
eliminate noisy terms. This filter takes an attribute value
string as input, and outputs a concept set, where each con-
cept is an n-gram (for n ≤ 4) that matches a concept from a
domain-specific list compiled offline in a pre-processing step
(e.g., see [23]), excluding subsets of other n-gram concepts.
We then use this concept set as a representation of the orig-
inal input attribute value (e.g., “last few years Real Madrid
goalkeeper” becomes {“real madrid”, “goalkeeper”}).

The second step makes the decision to either cluster an
extracted attribute with an existing cluster of one or more
concept sets extracted for the entity (i.e., the new value cor-
responds to already extracted values), or start a new cluster
(i.e., the new value introduces a new, unseen attribute value
for the entity in question). We make the clustering decision
based on a similarity function for concept sets, to compare
an extracted attribute value concept set and a concept set

cluster. The similarity function can be defined in different
ways; we choose to explore a set of functions that measure
the overlap in concepts between two sets, such as the famil-
iar Jaccard coefficient [13], as well as a binary function that
measures whether a concept set is a subset of, a superset
of, or equivalent to another concept set. Using set overlap
guarantees that the concept sets share similar information;
other functions (e.g., based on term similarity) result in a
large number of “false positive” matches.

Beyond the choice of similarity function, another key deci-
sion is the choice of clustering algorithm, to group together
extracted values that are, conceptually, just variations of
each other. This choice is restricted to clustering algorithms
that are compatible with the top-k extraction processing ap-
proach. At its core, the top-k approach processes documents
incrementally—in an online manner—so that the processing
can stop early, for efficiency, once the “current” top-k clus-
ters for each entity can be shown to correspond to its actual
top-k attribute values [24]. Intuitively, we need to focus on
“stable” clustering algorithms that do not arbitrarily merge
or substantially alter existing clusters. Otherwise, attribute
values (i.e., clusters) with arbitrarily low scores might be
promoted into the top-k values, through a series of merges
or substantial alterations, preventing the early stopping of
the top-k extraction processing. See Figure 1 for an example
of a step in the execution of such “unstable” clustering (a
single-link hierarchical agglomerative algorithm [19]), where
two position values (i.e., clusters) for entity “Iker Casillas”
get (incorrectly) merged together after a new value that
“connects” the two clusters is extracted from a new doc-
ument. Based on this important observation, we focus on
stable clustering algorithms, such as a complete-link hierar-
chical agglomerative algorithm [13] or an online single-pass
clustering algorithm [22], which have been proved effective
and robust for many text-processing tasks [14, 22, 13] (see
Section 5.1). In these stable algorithms, new extracted val-
ues can be added to existing clusters or, alternatively, they
can start new clusters, without collapsing existing clusters.
Hence these algorithms are a natural fit for the top-k ex-
traction processing approach.

4. SCORING EXTRACTED VALUES
Once each extraction has been matched in Step 2 to an

entity, and to an associated attribute value cluster, we pro-
ceed to score the extractions with a scoring function (see
Section 2) and update the top-k rankings for each entity
(Step 3). As we discussed in [24], and as reflected in Defini-
tion 1, different instantiations of the scoring function vary
on how they incorporate (or do not incorporate) three main
factors: (1) an extraction confidence score provided by the
extraction system, which indicates the system’s internal con-
fidence in the correctness of each individual extraction; (2)
the (entity-specific) document importance of the documents
where an attribute value originates; and (3) the redundancy
of an attribute value across documents.

With a first instantiation of the scoring function that we
will study in this paper, we will capture state-of-the-art,
redundancy-based functions that assign higher estimates of
correctness to extractions that appear more frequently [7, 8,
11, 26]. Since these functions treat every document equally,
we can instantiate the general scoring function to model
these existing functions by setting γd,e = 1 for all d ∈ D

and e ∈ E. In our experiments, we refer to this generic

3

function as Uniform-All. As we will see, this function leads
to high-quality top-k results. Unfortunately, this is achieved
at a prohibitively high execution cost, given the absence of
any form of document selection or prioritization.

As an alternative to Uniform-All, we could direct the
extraction effort for each entity exclusively to documents
that are strongly associated with the entity. For exam-
ple, we can determine these associations by analyzing ac-
tual entity-specific user-access patterns from search engine
logs [24], entity-specific resource directories (e.g., http:
//www.daylife.com/topic/Iker_Casillas for “Iker
Casillas”), or via carefully chosen queries (e.g., [2]). Such
an instantiation of the scoring function, which we refer to
as Uniform-Ind in our experiments, is modeled by setting
γd,e = 1 for documents associated with entity e, and γd,e = 0
for the remaining documents. This function has the advan-
tage of focusing the extraction effort on a reduced set of
documents for each entity, hence leading to more efficient—
but potentially lower-quality—top-k extraction executions
than for the Uniform-All function. Uniform-Ind intuitively
classifies each document as relevant or not for an entity, but
does not prioritize the extraction among the relevant docu-
ments, hence missing a key opportunity towards efficiency.

Our third, and final, alternative scoring function instanti-
ation moves beyond the binary document classification of
Uniform-Ind and attempts to capture the importance of
each document for the top-k extraction process in an entity-
specific manner. This function, which we refer to as User-
Guided, allows for arbitrary real values for γd,e between 0
and 1, and is based on the observation that not all doc-
uments for an entity are equally reliable, trustworthy, or
useful for the extraction of information for the entity. For
example, consider two athlete entities, e1 = “Iker Casillas”
and e2 = “David Beckham.” The Wikipedia page for Casil-
las might have a value γd,e1

= 0.2, a relatively high score. In
contrast, γd,e2

= 0, given that this document is not promis-
ing for the extraction of data about Beckham. The ex-
act value for document importance can be determined in
a number of different ways. For example, we can consider
the “authoritativeness” of a document for an entity [18].
One possible instantiation of importance, whose efficiency
implications we studied in [24] and whose effects on extrac-
tion quality we explore in this paper (Section 5.1), leverages
search engine statistics to examine how often each document
is accessed by users when searching for information related
to an entity. The rationale is that the more frequently a doc-
ument is requested by users for an entity, the more likely it
contains important information for the entity in question.

Once we have determined the scores of each extraction
based on one of the above scoring functions, we then update
the top-k values for each entity accordingly. As we discussed
in [24], we can define a stopping condition (Step 4) so that
the top-k extraction processing sometimes finishes early, for
efficiency, once the top-k extracted attribute values for each
entity of interest can be guaranteed not to change, even if
all unseen documents were to be processed [24].

5. EXPERIMENTS
We now turn to evaluating the impact of the two main ex-

traction quality aspects discussed above, namely, the match-
ing and scoring of extracted values. We first report our ex-
perimental settings (Section 5.1) and then summarize our
evaluation results (Section 5.2).

5.1 Experimental Settings
Entity sets: We use two entity sets: politicians and ath-
letes. The politicians set contains 547 United States politi-
cians, with senators, representatives, governors, and a few
prominent political figures such as Sarah Palin. The ath-
letes set contains 5128 athletes, extracted from Wikipedia
and Yahoo! Sports. We focus on one attribute, position, as it
is both multi-valued (i.e., each entity typically has multiple
positions) and applicable to both entity sets.
Data set: We collected 24,244 Web pages for politicians
and 208,637 for athletes. We identified and retrieved these
Web pages based on entity-specific access data from a large-
scale, three-month, real-user search log from Yahoo! We de-
scribed the data collection process in detail in [24]. We have
made this data set available to the academic community, as
part of the Yahoo! Labs WebScope program1.
Extraction system: We use OpenCalais2, a high-accuracy,
state-of-the-art extraction system that is suitable to our en-
tity domains. OpenCalais does not return a confidence value
for extractions. Therefore, without impacting the relative
performance of the various algorithms, we set conf(e, a, d) =
1 (Definition 1).
Training set: We randomly removed 12 politicians and
114 athletes—and their associated Web documents—to use
them as a training set to tune our techniques.
Scoring functions: We compare the quality associated
with the three scoring functions discussed in Section 4, namely,
Uniform-All (which, as discussed, represents state-of-the-art
scoring functions based on extraction redundancy), Uniform-
Ind, and User-Guided. Uniform-Ind focuses on a set of
entity-specific documents for each entity, while User-Guided
goes a step further and exploits the entity-specific “impor-
tance” γd,e (Definition 1) of each document d for an entity
e. For our experiments, we derived this entity-specific infor-
mation for Uniform-Ind and User-Guided from the Yahoo!
search log [24].
Attribute-value normalization: After extracting an at-
tribute value, we normalize it to facilitate the matching
against variations of the same value. This “concept filtering”
step (Section 3.2) [23] requires a domain-specific training
corpus, which we extract from en.wikipedia.org cate-
gory pages. We start in two root category pages, namely,
“category:Sportspeople” and “category:Politicians,” and col-
lect all descendants, without duplicates. As a result of this
process, we extracted 19.5 million unique n-grams for politi-
cians and 81.2 million for athletes, with n = [1, 4].
Attribute-value clustering: We cluster extracted attribute
values for an entity in order to match variations of the same
values (Section 3.2). As mentioned above, we focus on “sta-
ble” algorithms that are compatible with the top-k extrac-
tion approach. Specifically, we evaluate three alternatives:

Single-Pass Centroid (Centroid): When a new value is ex-
tracted, we compare it against the “centroid” (defined as a
weighted average of concepts) of each existing cluster, using
the Jaccard coefficient [19]. The new value is added to the
closest cluster, if a sufficiently similar cluster—according to
an empirically determined threshold θ (see below)—exists
(ties are broken in favor of the highest-ranked cluster); oth-
erwise, a new cluster with the new value is created.

1http://webscope.sandbox.yahoo.com/ (data set:
ydata-ysearch-location-entity-sources-v1 0).
2http://www.opencalais.com/

4

Complete-Link Hierarchical Agglomerative Clustering
(Complete-Link): When a new value is extracted, we assign
it to a cluster such that all of its members are sufficiently
close to the new value, according to the Jaccard coefficient
and a similarity threshold θ (see below).

Set Containment (Subset): When a new value a is ex-
tracted, we assign it to a cluster C such that either a is a
subset of all values in C or, alternatively, a superset thereof.
If no such cluster exists, we start a new cluster with a. In-
tuitively, this clustering algorithm ensures that all values in
a cluster are represented by one “largest,” most informative
value.

We compared Centroid, Complete-Link, and Subset over
the training set, with different values of threshold θ for Cen-
troid and Complete-Link. Over our training set, we ob-
served that Complete-Link with the Jaccard coefficient and
a threshold θ = 0.5 resulted in top-k values with the highest
average nDCG (see below), or marginally close to the high-
est, for both domains and across several alternative scoring
functions. Therefore, we use only Complete-Link with these
settings for the rest of the experiments.
Evaluation metrics: We evaluate the quality of each en-
tity’s top-k values according to the normalized Discounted
Cumulative Gain (nDCG) metric [17]. This order-sensitive
metric considers the rank of correct elements, according to
some “ground truth” or gold standard, among the top-k val-
ues. We built the gold standard value set for each politician
and athlete entity from DBpedia.org, with additional re-
sults for politicians from an online directory3. Additionally,
we account for the fact that multiple attribute values may
refer to the same real-world “fact” (e.g., “goalkeeper” and
“goalkeeper, Spain”), so we calculate the number of dis-
tinct facts that appear in the top-k values for each entity,
giving half credit to “partial facts” (e.g., “goalkeeper” with-
out “Spain”). Therefore, in addition to nDCG, we measure
the fact recall for each entity, as the fraction of distinct ex-
tractable facts that appear among the top-k extracted val-
ues. Finally, we supplement the DBpedia-based gold stan-
dard with a manual annotation. We observed that many of
the (more obscure) entities were not represented properly in
DBpedia. To obtain meaningful results, we then randomly
selected a sample of 50 politicians and 250 athletes, and
supplemented the gold standard with each correct attribute
value—with their correctness determined manually by one
of the authors—extracted from the full data set.

5.2 Experimental Results
We start by looking at the impact of scoring in terms of the

way we account for document importance. Figure 2 presents
the average nDCG of top-k results (we focus on k = 10 for
brevity; different values of k have similar results) over the
manually checked extractions (Section 5.1). We split enti-
ties into “popular” (with over 30 matched extractions) and
non-popular sets, where the former accounts for 20% of the
distinct entities but close to 80% of the query volume. Not
surprisingly, Uniform-All achieves better nDCG than User-
Guided for both entity sets and regardless of the popularity.
This is mainly due to the fact that User-Guided directs the
extraction effort solely toward highly influential pages such
as those on Wikipedia and ignores the rest of the pages,
even when they are relevant to the entity of interest. Still,

3http://www.gpoaccess.gov/cdirectory/
browse-cd-09.html.

of extractions/entity

A
ve

ra
ge

 n
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0−30 31+

User−Guided
Uniform−Ind
Uniform−All

(a) politicians

of extractions/entity

A
ve

ra
ge

 n
D

C
G

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0−30 31+

User−Guided
Uniform−Ind
Uniform−All

(b) athletes

Figure 2: nDCG of top-10 results, with entities split
by extraction frequency, for (a) politicians and (b)
athletes.

k
R

ec
al

l
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

1 3 5 10 20

User−Guided
User−Guided w/ Clustering
Uniform−Ind
Uniform−Ind w/ Clustering
Uniform−All
Uniform−All w/ Clustering

(a) politicians

k

R
ec

al
l

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1 3 5 10 20

User−Guided
User−Guided w/ Clustering
Uniform−Ind
Uniform−Ind w/ Clustering
Uniform−All
Uniform−All w/ Clustering

(b) athletes

Figure 3: Fact recall as a function of k for (a) politi-
cians and (b) athletes.

User-Guided manages to recover close to 80% of the nDCG
values. More interestingly, Uniform-Ind is able to achieve
roughly the same level of extraction quality as Uniform-All
for popular entities but not for non-popular entities. The
reason is that, for popular entities, most true values can be
extracted from the set of entity-specific documents, which is
not the case for non-popular entities.

For the impact of value matching (i.e., clustering), we turn
to the fact recall metric as described in Section 5.1. We ex-
pect clustering to improve recall by reducing cases where
multiple values of the same fact dominate the top-k results,
preventing other values from being returned. As shown in
Figure 3, the results here are mixed. For the politician entity
set, clustering does not provide any significant boost to the
recall and can occasionally make things worse by wrongly
grouping values for different facts. For the athletes entity
set, however, clustering provides a noticeable improvement
in recall especially for small values of k, which are (arguably)
the most important values. We speculate that the positions
of politicians are, in general, referred to consistently across
documents, which limits the role of clustering. In contrast,
the positions of athletes can be referred to in many differ-
ent ways (e.g., with emotional descriptors like “amazing”),
so the role of clustering is important. We again note that
Uniform-All achieves the highest recall, which is expected
since it processes all the documents, and the other two al-
ternatives perform reasonably well.

Finally, Figure 4 confirms our previous conclusion from
[24] that leveraging document importance can significantly
speed up the extraction process by reducing the number of
documents being processed, at a reasonably cost regarding
extraction quality.

5

5 10 15 20

0
10

00
0

20
00

0
30

00
0

40
00

0

k

N
um

be
r

of
 D

oc
um

en
ts

 P
ro

ce
ss

ed

x
x x x x

x

x x x x

x
x
o
o

User−Guided
User−Guided w/ Clustering
Uniform−Ind
Uniform−Ind w/ Clustering
Uniform−All
Uniform−All w/ Clustering

(a) politicians

5 10 15 20

0
50

00
0

15
00

00
25

00
00

35
00

00

k

N
um

be
r

of
 D

oc
um

en
ts

 P
ro

ce
ss

ed

x x x x x
x x x x x

x
x
o
o

User−Guided
User−Guided w/ Clustering
Uniform−Ind
Uniform−Ind w/ Clustering
Uniform−All
Uniform−All w/ Clustering

(b) athletes

Figure 4: Number of documents processed as a func-
tion of k for (a) politicians and (b) athletes.

6. RELATED WORK
Our work builds upon various previous studies on extrac-

tion quality [11, 28, 7, 8, 11, 26], which leverage pattern
frequency and value redundancy to estimate extraction cor-
rectness, and on extraction scalability [4], which focuses on
“one-size-fits-all” super-efficient extraction from all docu-
ments. The approach that we take in this study and in [24]
focuses on domain- and application-specific extraction sys-
tems that might co-exist and evolve (e.g., to improve accu-
racy) over time, so it is critical to carefully select a relatively
small set of documents for extraction processing.

Our top-k extraction processing approach, which we in-
troduced in [24], also leverages top-k query processing over
structured data (e.g., TA [10] and Upper [20]). For informa-
tion extraction, Jain and Srivastava [16] showed that, when
using state-of-the-art, redundancy-based scoring functions,
it is necessary to process most of the available documents to
return the true top-k extraction results. They then propose
to relax the problem definition and return k values from a
proportion of the top results, for efficiency [16]. We showed
in [24] that, by defining our scoring function appropriately
using entity-specific document weights, we can leverage effi-
cient top-k processing algorithms for efficient executions.

Recent work considers both quality and efficiency in ex-
traction processing [15, 25], and integrates the document
processing and extraction management steps, with model
parameters to exchange quality for processing efficiency. In
[24], we showed that our document-importance scoring func-
tions enabled efficient top-k executions. This paper comple-
ments our earlier efficiency study and shows that these top-
k executions maintain high-quality results. Our approach is
similar in spirit to work by Wu and Marian [26], who query
the Web and analyze extraction redundancy from Web doc-
uments for the narrower problem of resolving single-valued
numerical attribute conflicts efficiently.

7. CONCLUSION
In this paper, we focused on the entity attribute extraction

problem, or extracting entities and their attribute values
from Web documents. This problem presents both efficiency-
and quality-related challenges. Our earlier work [24] stud-
ied efficiency challenges, in the context of a top-k extraction
approach guided by a measure of entity-specific document
“importance.” Our current work complements this earlier
research by examining the quality of the top-k extraction
output. Specifically, we evaluated the impact of two critical
extraction steps, namely, the matching of the extracted val-
ues as well as the scoring of the extracted information based
on document importance. Our experiments show that the

design choices for these important extraction components
impact the quality of the overall top-k extraction process,
and that using clustering and adopting document impor-
tance for scoring extracted values can achieve a good balance
of extraction quality and extraction efficiency.

8. REFERENCES
[1] E. Agichtein and L. Gravano. Snowball: Extracting relations

from large plain-text collections. In DL, 2000.

[2] E. Agichtein and L. Gravano. Querying text databases for
efficient information extraction. In ICDE, 2003.

[3] E. Agirre, E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and
A. Soroa. A study on similarity and relatedness using
distributional and WordNet-based approaches. In
NAACL-HLT, 2009.

[4] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and
O. Etzioni. Open information extraction from the web. In
IJCAI, 2007.

[5] L. Chiticariu, R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,
and S. Vaithyanathan. SystemT: an algebraic approach to
declarative information extraction. In ACL, 2010.

[6] W. W. Cohen. Data integration using similarity joins and a
word-based information representation language. ACM Trans.

Inf. Syst., 2000.

[7] D. Downey, O. Etzioni, and S. Soderland. A probabilistic model
of redundancy in information extraction. In IJCAI, 2005.

[8] D. Downey, O. Etzioni, and S. Soderland. Analysis of a
probabilistic model of redundancy in unsupervised information
extraction. In AI, 2010.

[9] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate record detection: A survey. In TKDE, 2007.

[10] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. In PODS, 2001.

[11] Y. Fang and K. C.-C. Chang. Searching patterns for relation
extraction over the web: rediscovering the pattern-relation
duality. In WSDM, 2011.

[12] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text
joins in an RDBMS for web data integration. In WWW, 2003.

[13] A. Griffiths, L. A. Robinson, and P. Willett. Hierarchic
agglomerative clustering methods for automatic document
classification. Journal of Documentation, 40, 1984.

[14] V. Hatzivassiloglou, L. Gravano, and A. Maganti. An
investigation of linguistic features and clustering algorithms for
topical document clustering. In SIGIR, 2000.

[15] P. G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. Towards
a query optimizer for text-centric tasks. TODS, 2007.

[16] A. Jain and D. Srivastava. Exploring a few good tuples from
text databases. In ICDE, 2009.

[17] K. Järvelin and J. Kekäläinen. IR evaluation methods for
retrieving highly relevant documents. In SIGIR, 2000.

[18] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. J. ACM, 46(5):604–632, 1999.

[19] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to
Information Retrieval. Cambridge University Press, 2008.

[20] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries
over web-accessible databases. ACM Trans. Database Syst.,
29(2):319–362, 2004.

[21] A. K. McCallum. Mallet: A machine learning for language
toolkit. http://mallet.cs.umass.edu, 2002.

[22] R. Papka and J. Allen. On-line new event detection using single
pass clustering. UMASS Computer Science Technical Report,
1998.

[23] A. Parameswaran, H. Garcia-Molina, and A. Rajaraman.
Towards the web of concepts: extracting concepts from large
datasets. In PVLDB, 2010.

[24] M. Solomon, C. Yu, and L. Gravano. Popularity-guided top-k
extraction of entity attributes. In WebDB, 2010.

[25] D. Z. Wang, M. J. Franklin, M. Garofalakis, and J. M.
Hellerstein. Querying probabilistic information extraction. In
PVLDB, 2010.

[26] M. Wu and A. Marian. Corroborating answers from multiple
web sources. In WebDB, 2007.

[27] A. Yates and O. Etzioni. Unsupervised resolution of objects
and relations on the web. In HLT-NAACL, 2007.

[28] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J.-R. Wen. StatSnowball:
A statistical approach to extracting entity relationships. In
WWW, 2009.

6

