Learning to Find Answers to Questions
on the Web

EUGENE AGICHTEIN
Columbia University
STEVE LAWRENCE
NEC Research Institute
and

LUIS GRAVANO
Columbia University

We introduce a method for learning to find documents on the Web that contain answers to a
given natural language question. In our approach, questions are transformed into new queries
aimed at maximizing the probability of retrieving answers from existing information retrieval
systems. The method involves automatically learning phrase features for classifying questions
into different types, automatically generating candidate query transformations from a training set
of question/answer pairs, and automatically evaluating the candidate transformations on target
information retrieval systems such as real-world general purpose search engines. At run-time,
questions are transformed into a set of queries, and reranking is performed on the documents
retrieved. We present a prototype search engine, Tritus, that applies the method to Web search
engines. Blind evaluation on a set of real queries from a Web search engine log shows that the
method significantly outperforms the underlying search engines, and outperforms a commercial
search engine specializing in question answering. Our methodology cleanly supports combining
documents retrieved from different search engines, resulting in additional improvement with a
system that combines search results from multiple Web search engines.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Anal-
ysis and Indexing—linguistic processing; H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—query formulation, retrieval models, search process; H.3.4 [Information
Storage and Retrieval]: Systems and Software—performance evaluation (efficiency and effective-
ness), information networks; H.3.5 [Information Storage and Retrieval]: Online Information
Services—web-based services

General Terms: Algorithms, Experimentation, Performance

A preliminary version of this article appeared as Agichtein et al. [2001]. The authors acknowl-
edge the NEC Research Institute, where a substantial part of this research was accomplished, as
well as support from the National Science Foundation under Grants No. IIS-97-33880 and IIS-98-
17434.

Authors’ addresses: E. Agichtein (eugene@cs.columbia.edu); S. Lawrence (lawrence@necmail.com);
L. Gravano (gravano@cs.columbia.edu).

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.

© 2004 ACM 1533-5399/04/0500-0129 $5.00

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004, Pages 129-162.

130 . E. Agichtein et al.

Additional Key Words and Phrases: Web search, query expansion, question answering, information
retrieval, meta-search

1. INTRODUCTION

Many natural language questions (e.g., “What is a hard disk?”) are submit-
ted to search engines on the Web every day, and an increasing number of
search services on the Web specifically target natural language questions. For
example, AskJeeves (www.ask.com) uses databases of precompiled information,
metasearching, and other proprietary methods, while services such as AskMe
(www.askme.com) and Google Answers (answers.google.com) facilitate interac-
tion with human experts.

Web search engines such as AltaVista (www.altavista.com) and Google
(www.google.com) typically treat natural language questions as lists of terms
and retrieve documents similar to the original query. However, documents with
the best answers may contain few of the terms from the original query and may
be ranked low by the search engine. These queries could be answered more
precisely if a search engine recognized them as questions.

Consider the question “What is a hard disk?”. The best documents for this
query are probably not the company Web sites of disk storage manufacturers,
which may be returned by a general-purpose search engine, but rather hard-
ware tutorials or glossary pages with definitions or descriptions of hard disks.
A good response might contain an answer such as: “Hard Disk: One or more
rigid magnetic disks rotating about a central axle with associated read/write
heads and electronics, used to store data. ..”. This definition can be retrieved by
transforming the original question into a query {hard disk NEAR “used to”} . In-
tuitively, by requiring the phrase “used t0”, we can bias search engines towards
retrieving this answer as one of the top-ranked documents.

We present a new system, Tritus, that automatically learns to transform
natural language questions into queries expected to retrieve answers to the
question using a given search engine (e.g., a specific Web search engine such
as Google). An example Tritus search for the question “what is a hard disk?” is
shown in Figure 1. Tritus has determined the best 15 transforms for the “what
is a” type of question (e.g., {hard disk “is usually”}, {hard disk called}) for the
specific underlying search engine (in this case, for Google). Tritus learns these
effective transformations automatically during training by analyzing a collec-
tion of question-answer pairs, and recognizing the indicative answer phrases
for each question type (e.g., Tritus learns that a phrase “is usually” is a good
transform for “what is a” questions). We describe the Tritus training process in
more detail in Section 3.

At run-time, Tritus starts with a natural language question submitted by the
user (e.g., “whatis a hard disk?”), which is transformed into a set of new, effective
queries for the search engine of interest. Tritus then retrieves and reranks the
documents returned by the underlying search engine. In our prototype, Tritus
returns the documents to the user directly (see Figure 1); alternatively, the
documents returned by Tritus can be used as input to a traditional question

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 131

3 Tutus - Mierssoft Inlermet & saloier

Type your queshon, select search engme. and push the bution!

Engine |<GOO'JE’ a Desred Answer Size: I" Paragraph (50)> i words Transforms: | <152

l Try your question at AskJeeves I Try yowr guestion at Google

Using 15 vamsfonms, Google, expected answer sizo: 30 werds

Chard dhsk s usually”] [hard dick "usally”} [hard disk "called”) (hard disk "through"} [hard
disk "sometmes”) [hard disk "is one”} {hard disk "wused”) { hard disk "through the"} { hard

dick “refersfo"] [hard dick "deccnbe”) (hard cisk tsusedto"} [hard disk "oftenused"} [hard
disk “refers"} {hard duk "specific’ § { hard disk "common”)

17 hard disk - Webopedia Definion and Lnks: FROM: GO Srore = 44,3716590007205

Using Transform: is used to ==

mo<dified may magnehc on which you can the term is wsed te distnguish & fom soft or foppy disk hard disks
standards types of computers world wide web hard disk last modified may magnetic on which you can the
url hitp fiwebopedia intemet comTERMhhard_disk html

2 hard disk - The Lycos Tech Glossary Defiution FROM: 0O, Searz = 4433169907295
Using Transform: ds used ta ==

related terms magnetic on which you can the term is used to distingush it from soft or Soppy disk hard disks
term of the day also on Iyces tech glossary hard disk related terms magnete on which vou can the term

url http ffwebopedia lycos com/TERMWhard_disk himl I‘I

Fig. 1. An example Tritus search for the question “What is a hard disk”.

answering system in order to extract the actual answers from the retrieved
documents.

The rest of the article is organized as follows. We review the related work
in the next section. Then we present our method for automatically learning
to transform natural language questions into queries containing terms and
phrases expected to appear in documents containing answers to the questions
(Section 3). As part of our evaluation, we compare the quality of the documents
retrieved by Tritus with documents retrieved by other state-of-the-art systems
(Section 4) in a blind evaluation (Section 5) over a set of questions chosen
randomly from the query logs of a public Web search engine.

2. RELATED WORK

Question Answering (QA) has been an area of active research. Recently, the
state-of-the-art in QA research has been represented in the Text Retrieval
Evaluation Conference (TREC) question answering track evaluations [Voorhees
2001], which involve retrieving a short (50 bytes long) answer to a set of test
questions. In our work we address an aspect of question answering that was
not a direct focus of the TREC QA track. We also consider a more general class
of questions, where the answers may not be short, precise facts, and the user
might be interested in multiple answers (e.g., consider the question “What are
ways people can be motivated?”).

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

132 . E. Agichtein et al.

More specifically, we focus on the first part of the question answering task,
namely, retrieving promising documents that are likely to contain an answer
to a given question. Retrieving documents to match an information need has
long been an active topic of information retrieval (IR) research. The body of the
IR research most closely related to our work focuses on automatically expand-
ing queries in order to retrieve additional relevant documents (e.g., Rocchio
[1971] and Mitra et al. [1998]). An interesting approach presented by Xu and
Croft [2000] describes how to automatically expand a query based on the co-
occurrence of query terms with other terms in the top-ranked documents for the
original query. In general, automatic query expansion systems modify queries
at run-time on a query-by-query basis, using documents returned in response
to the original query. In contrast, we will show how to derive a set of query
transformations that work best for each type of question.

Once the initial set of documents has been retrieved, typical QA systems at-
tempt to extract the answers from these documents. For example, Abney et al.
[2000] describe a system in which answers are extracted from documents re-
turned by the SMART information retrieval system. Questions are classified
into “question types” that identify the type of entity that is appropriate for the
answer. Documents are tagged to recognize entities, and passages surrounding
entities of the correct type for a given question are ranked using a set of heuris-
tics. Moldovan et al. [1999] and Aliod et al. [1998] present systems that rerank
and postprocess the results of regular information retrieval systems with the
goal of returning the best document passages. Cardie et al. [2000] describe a
system that combines statistical and linguistic knowledge for question answer-
ing and employs sophisticated linguistic filters to postprocess the retrieved
documents and extract the most promising passages to answer a question.

Most of the question answering systems presented in the TREC 8 and 9
QA track evaluations used the general approach of retrieving documents or
passages that are similar to the original question with variations of standard
TF-IDF term weighting schemes [Salton 1989]. The most promising passages
are chosen using heuristics and/or hand-crafted regular expressions. This ap-
proach is not optimal because documents that are similar to the question are
initially retrieved. However, the user is actually looking for documents contain-
ing an answer and these documents may contain few of the terms used to ask
the original question. Using effective queries is particularly important when
document retrieval is expensive or limited to a certain number of documents,
as is the case with Web search engines.

More recently, some of the traditional QA systems have begun to modify
queries to improve the chance of retrieving answers. Harabagiu et al. [2000]
describe a system that transforms questions using a hierarchy of question
types. The hierarchy is built semi-automatically using a bootstrapping tech-
nique. Other systems (e.g., Hovy et al. [2000]) used WordNet [Miller 1995] to
expand queries with word synonyms and hypernyms to retrieve additional rel-
evant documents. However, this approach has not been shown to significantly
improve the quality of the retrieved document set. Additionally, the AskMSR
system [Brill et al. 2001] used manually-crafted, question-to-query transfor-
mations to focus on promising documents. In a question answering document

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 133

retrieval approach closer to our work, Ittycheriah et al. [2000] used LCA [Xu and
Croft 2000], a form of automatic query expansion, to expand the initial query
with terms selected from encyclopedia passages matching the initial question.

Recent work has been done on reranking the candidate set of documents, or
phrases, with the goal of locating those most likely to contain answers to a ques-
tion. In contrast, we focus on learning how to generate good queries to create
a quality candidate set of documents, which can then be postprocessed by such
reranking techniques. For example, a machine-learning and term-correlation
based approach for reranking candidate answer phrases, or documents, is de-
scribed in Berger et al. [2000] and is similar in spirit to our work. However,
this work does not address learning effective queries for specific Web search en-
gines. Similarly, Mann [2002] describes a method for learning to locate an exact
answer in a passage by using co-occurrence statistics derived from question-
answer pairs used in trivia games. We use a similar training set (FAQ question-
answer pairs in our case) for the different purpose of deriving effective queries
to retrieve promising documents. Prager et al. [2002] show how to automati-
cally identify the semantic type of the expected answer to a question. All these
methods can be used to process the set of documents retrieved by Tritus to
extract short and precise answers from them.

In a study more closely related to our work, Lawrence and Giles [1998] in-
troduced Specific Expressive Forms for Web search, where questions are trans-
formed into specific phrases that may be contained in answers. For example,
the question “what is x” may be transformed into phrases such as “x is” or “x
refers to”. The main difference from our current work is that in Lawrence and
Giles [1998], the transforms are handcrafted (hard coded) and the same set of
queries is submitted to all search engines used, except for the differences in
query syntax between search engines. Joho and Sanderson [2000] use a set of
handcrafted query transformations in order to retrieve documents containing
descriptive phrases of proper nouns. Schiffman and McKeown [2000] describe
experiments in automatically building a lexicon of phrases from a collection of
documents with the goal of building an index of the collection that is better
suited for question answering.

In the research area of specialized search engines, Glover et al. [2001] present
amethod for learning topic-specific query modifications. The system starts with
a set of example documents on the topic of interest, and trains a classifier to
recognize such documents. Then, salient features are selected from the example
documents and tested on the search engine of interest by retrieving documents
using the candidate queries. Our method, which we will describe in the next
section, uses a similar approach for a different setting of question answering.

Recently, Radev et al. [2001] independently presented a method for automat-
ically weighting query reformulation operators (e.g., insertions and deletions
of terms in the original question), with the goal of transforming a natural lan-
guage question into one “best” search engine query. Our approach, methodology,
and evaluation are substantially different. For example, while the training of
the system in Radev et al. [2001] assumes a small controlled collection of docu-
ments, we address the problem of learning effective queries for general purpose
search engines over the Web at large. The system for answering questions over

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

134 . E. Agichtein et al.

the Web presented by Radev et al. [2002] does not apply any query reformu-
lation strategies, but rather uses the original question as the query. Another
recently presented system, Mulder [Kwok et al. 2001], also transforms ques-
tions into queries and extracts answers from the returned documents. The pre-
sented method uses a semi-automatically constructed taxonomy of questions in
order to match a new question to a known question type, and to use predefined
transformations to convert the question to the query.

In contrast to the previous research in question answering and query expan-
sion, we present a system that automatically learns multiple query transforma-
tions, optimized specifically for each search engine, with the goal of maximizing
the probability of an information retrieval system returning documents that
contain answers to a given question. We exploit the inherent regularity and
power of natural language by transforming natural language questions into
sets of effective search engine queries.

3. THE TRITUS SYSTEM

Submitting natural language questions (e.g., “How do I tie shoelaces?”) to search
engines in their original form often does not work very well. Search engines
typically retrieve documents similar to the original queries. Unfortunately, the
documents with the best answers may contain only one or two terms from the
original queries. Such useful documents may then be ranked low by the search
engine, and will never be examined by typical users who do not look beyond
the first page of results. To answer a natural language question, a promising
approach is to automatically reformulate the question into a query that con-
tains terms and phrases that are expected to appear in documents containing
answers to the original question.

3.1 Problem Statement

We focus on the first step of the question answering process: retrieving a set of
documents likely to contain an answer to a given question. These documents
are then returned as the output of the system. The returned documents can be
examined by a human user directly, or passed on to sophisticated answer extrac-
tion modules of a question answering system (e.g., Abney et al. [2000], Mann
[2002], Prager et al. [2002], and Radev et al. [2002]). Thus, it is crucial that the
answer to a question of interest be present in this set of initially retrieved docu-
ments. At the same time, the set of retrieved documents cannot be so large that
it overwhelms the user or the subsequent (typically computationally expensive)
answer extraction components. Therefore, our goal is to return a reasonable-
sized set of documents that, at the same time, must contain an answer to the
question. We now formally state the problem that we are addressing.

Problem Statement: We are given a general purpose search engine SE (e.g.,
Google) that operates over a document collection (e.g., the Web), and a natural
language question @py,. Our goal is to retrieve a set of documents via SE that
are likely to contain an answer to @ yz. For this, we ¢transform @y, into a set
of queries, q1, . .., qm, such that the top K documents returned by SE for each
of the queries are likely to contain an answer to the original question @ ny..

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 135

(1) Generate Question Phrases from Questions in Training Data
(Section 3.2.1)

(2) Generate Candidate Transforms from Answers in Training Data
(Section 3.2.2)

(3) Evaluate Candidate Transforms for each Search Engine
(Section 3.2.3)

(4) Output Best Transforms for each Search Engine

Fig. 2. Outline of the process used to train the Tritus system.

In the rest of this section, we describe our solution to this problem. First, we
define a strategy for transforming natural language questions into candidate
search engine queries (Section 3.2). This strategy relies on a set of question-
answer pairs for training, derived from a parsed FAQ collection (which we will
describe in detail in Section 4.1). In this section, we also describe our method
for automatically detecting the most effective of the candidate transformations
for a search engine of interest. Finally, we show how Tritus evaluates a question
at run-time by applying these transformations (Section 3.3).

3.2 Learning to Transform Questions into Effective Queries

We attempt to find transformations from natural language questions into ef-
fective queries that contain terms or phrases expected to appear in documents
that contain answers to the question. Our learning process is shown in Figure 2.

3.2.1 Selecting Question Phrases. In the first stage of the learning process
(Step (1) in Figure 2), we generate a set of phrases that identify different cat-
egories of questions where the questions in each category have a similar goal.
For example, the question “What is a hard disk?” implies that the user is look-
ing for definitions or descriptions of a hard disk. The goal of the question can
be inferred from the question phrase “what is a”.!

The input to this stage is a set of questions. These questions and their
corresponding answers constitute the training data. As we will describe in
Section 4.1, we use a collection of FAQ question and answer pairs for this stage
of training. We generate potential question phrases by computing the frequency
of all n-grams (phrases) of length minQtokens to max@Qtokens words, with all n-
grams anchored at the beginning of the questions. We use all resulting n-grams
that occur at least min@QPhrCount times.

The output of this stage is a set of question phrases that can be used to quickly
classify questions into respective question types. Sample question phrases, au-
tomatically generated from questions in the training collection described later,
are shown in Table I.

This method for selecting question phrases can produce many phrases, po-
tentially including a significant number of phrases that are too specific to be
widely applicable. Because the following stages of the training process are rel-
atively expensive and we have limited resources for training, we chose to limit

1We use the term phrase to refer to two or more consecutive words, separated by space, and not in
the technical linguistic sense.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

136 . E. Agichtein et al.

Table I. Question Type Phrases Used for Evaluation

(Section 4)
| Question Type | Question Phrase(s) |
Who “who was”, “who is”
How “how do i”, “how can i”
Where “where is”, “where can i”
What “what are”, “what is”, “what is a”

("what (is|are)\s)|(“who (is|was)\s)
| ("how (dolcan)\s) | ("“where (isl|can)\s)

Fig. 3. The regular expression used to filter the automatically-generated question phrases that
are candidates for transformation.

the training for the results reported here to phrases that match the regular
expressions shown in Figure 3. The regular expressions match common ques-
tions and allow us to concentrate our resources on the most useful phrases. The
actual phrases generated as a result of this step are the frequent superstrings
that match these regular expressions. For example, some generated phrases
that match the prefix ““what is” are “what is a”, “what is the”, and so on. Fea-
ture selection techniques, part-of-speech tagging, and other natural language
processing techniques may be used to fine-tune the filtering of generated ques-
tion phrases. Note that we do not attempt to predict the type of the expected
answer to the question (which is one of the main uses of question classification
in traditional QA systems). In contrast, we will only use the question classi-
fication to select the set of automatically learned queries into which we will
transform the question.

Although alternative approaches can be used to identify categories of ques-
tions, our n-gram approach has a number of advantages. This approach is rel-
atively inexpensive computationally, allowing the processing of large training
sets. The approach is also domain independent and will work for many lan-
guages with only minor modifications. Additionally, when evaluating a question
at run-time (Section 3.3), categorizing a question using phrase matching can be
incorporated with negligible overhead in the overall processing time of queries.

3.2.2 Generating and Filtering Candidate Transforms. Inthe second stage
of the learning algorithm (Step (2) in Figure 2), we generate candidate terms
and phrases that may be useful for reformulating questions. We apply a filter-
ing procedure to reduce the computational requirements for the following stage
(evaluating the candidate transforms for search engine effectiveness, Step (3) in
Figure 2). Candidate transforms are generated for each of the question phrases
from the previous learning stage. The procedure for generating candidate trans-
forms for each question phrase @P consists of a number of steps, namely, gener-
ating initial candidate transform phrases, filtering these phrases by minimum
co-occurrence count, and weighting and further filtering the remaining phrases.
Each step is described below in detail.

For this stage of the learning process, we use a collection of <Question,
Answer> pairs. Each pair is also assigned a FAQCategory, which corresponds to

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 137

Question Answer
| | I

A Lisp machine (or LISPM) is a computer which
What is a Lisp has been optimized to run lisp efficiently and
Machine (LISPM)? provide a good environment for programming in it.

A near field monitor is one that is designed to

be listened to in the near field. Simple, eh?

The “near field” of a loudspeaker is the area where
What is a near-field | the direct, unreflected sound from the speaker
monitor? dominates significantly over the indirect and
reflected sound, sound bouncing off walls, floors,
ceilings, the console. . ..

Fig. 4. Sample question-answer pairs from the training collection.

Table II. A Sample of Candidate Transforms
Generated Without Disregarding Phrases
Containing a Noun

Question Phrase | Candidate Transforms
“the term”
“component”

“ans”

“what is a” “a computer”
“telephone”

“collection of”

“stands for”

“unit”

the category of the original newsgroup from which this pair was extracted (e.g.,
comp.lang.C). A sample of the original collection is given in Figure 4. As we will
describe next, this stage of the learning process operates over a collection that
has been tagged with a part-of-speech tagger, which assigns a syntactic part of
speech (e.g., noun, verb) to each word in the text. We use Brill’s part-of-speech
tagger [Brill 1992], which is widely used in the natural language processing
community.?

For each <Question, Answer> pair in the training collection where a pre-
fix of Question matches QP, we generate all possible potential answer phrases
from all of the words in the prefix of Answer. For this we use n-grams of length
minAtokens to maxAtokens words, starting at every word boundary in the first
maxLen bytes of the Answer text. A sample of answer phrases generated after
this step is shown in Table II. These phrases are heavily biased towards elec-
tronics or the computer domain. They were generated because a large portion
of the documents in the training collection were on technology-related topics.
If we used these phrases in transforms, we might change the intended topic
of a query. Recall that the transformations that we are trying to learn should
improve accuracy of the retrieved set of documents, yet preserve the topic of
the original query.?

2Available at http://www.cs. jhu.edu/ brill/.
3By topic we mean a set of concepts that describe the user’s information need—roughly related to
the answer focus of the question answering community.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

138 . E. Agichtein et al.

We address this problem by using a simple heuristic that worked well in our
training experiments. We filter out candidate transform phrases containing
nouns, because we observed that in most of the queries the nouns are content
words (i.e., words expressing the topic of the query). Since the transformations
will ultimately be applied to questions, our goal is to maximize the query ef-
fectiveness while preserving the topic of the original query. We found that if
transformations including nouns are used, the resulting query is more likely
to match documents not relevant for answering the original question. For ex-
ample, consider a real question found in one of the search engine logs that we
have examined, “what is a rainbow?” When we automatically computed a set of
candidate transformations for the “what is a” question phrase (Table II) with-
out using our heuristic, one of the high-ranking candidate transformations is
the single word “telephone”. Were we to use “telephone” as a transformation
for the original question (resulting in the query {rainbow AND telephone}), the
documents matching this query will likely not contain an answer to this ques-
tion. Thus, we filter candidate transform phrases by checking if a generated
answer phrase contains a noun, and if it does, the phrase is discarded. There is
some empirical support for our decision to use this heuristic. Klavans and Kan
[1998] show that verbs are particularly useful for text filtering—namely, that
they can provide important clues to selecting relevant documents. By allowing
verbs, adverbs, and adjectives in the transformations and discarding nouns,
the heuristic attempts to utilize this notion, while preserving the topic of the
original question.

Additionally we require that candidate transform phrases have some mini-
mum support, catSupport, defined as the number of distinct FAQ categories in
which the answer phrase should appear. Filtering by FAQ category allows us
to avoid phrases that are too specific. If we were interested in domain-specific
question answering, we could use the originating categories to restrict transfor-
mations to ones that help questions on a particular topic. In contrast, our goal
is to generate queries that are generally useful and can be applied to questions
in any domain.

Of the remaining n-grams, we keep the top maxPhrCount most-frequent
answer phrases that co-occur at least minAPhrCount times with the corre-
sponding question phrase. We then apply IR techniques for term weighting
to rank these candidate transforms. The initial term weights are assigned to
each candidate transform phrase, ¢;, by applying the term weighting scheme
described in Robertson and Walker [1997]. These term weights were used in the
Okapi BM25 document ranking formula (used by the state-of-the-art Okapi in-
formation retrieval system, participating in TREC conferences since TREC-3).
Many information retrieval systems use the vector space model [Salton 1989]
to compute similarity between documents, where similarity is computed as a
dot product between vectors representing each document. The elements of each
vector are calculated as a combination of the term weight and term frequency
of each term in the document. The BM25 metric [Robertson et al. 1998] uses
a similar idea. In the original definition of BM25, each term ¢; in the docu-
ment is assigned the Robertson-Sparck Jones term weight w [Robertson and

i

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 139

Table ITII. Sample Candidate Transforms Along with Their Frequency
Count qtf;, BM25 Term Weight wgl), and the Resulting Term Selection

Weight wir;

Question Phrase | Candidate Transform | gtf; wgl) wtr;
“refers to” 30 2.71 81.3
“refers” 30 2.67 | 80.1
“meets” 12 3.21 38.52

“what is a” “driven” 14 2.72 | 38.08
“named after” 10 3.63 36.3
“often used” 12 3.00 | 36
“to describe” 13 270 | 35.1

Sparck-Jones 1976] with respect to a specific query topic and is calculated as:

(r+0.5)/(R —r+0.5)
(n—r+05)/(N—n—R+r+05)

where r is the number of relevant documents containing ¢#;, N is the number of
documents in the collection, R is the number of relevant documents, and n is
the number of documents containing #;. Intuitively, this weight is designed to
be high for terms that tend to occur in many relevant documents and few non-
relevant documents, and is smoothed and normalized to account for potential
sparseness of relevance information in the training data.

In the original definition of BM25, term weight wl@ is specific to each query
topic. We apply this metric to our task of weighting candidate transforms by
incorporating two modifications. First, we interpret query topic as question type.
In this interpretation, a relevant document is one of the answers in the training
collection that corresponds to the question phrase (question type). Therefore
wEl) is an estimate of the selectivity of a candidate transform ¢; with respect
to the specific question type. Second, we extend the term weighting scheme
to phrases. We apply the same consistent weighting scheme to phrases, and
treat them in the same way as we treat the single word terms. We compute this
weight for each candidate transform ¢r; by computing the count of <Question,
Answer> pairs where ¢r; appears in the Answer to a question matching QP as
the number of relevant documents, and consider the number of the remaining
<Question, Answer> pairs where tr; appears in the Answer as nonrelevant, and
apply the formula in Equation (1).

We then compute the term selection weights, wtr;, for each candidate trans-
form ¢r;, as described in Robertson [1990] in the context of selecting terms for
automatic query expansion as:

wtr; = qtf, - w? (2)

1 b
where gtf; is the co-occurrence count of ¢r; with @P, and w'" is the relevance-
based term weight of tr; computed with respect to @P. This term-ranking strat-
egy exploits both co-occurrence statistics and relevance weights with the aim of
filtering out noise. While wlgl) assigns higher weight to terms and phrases with
high discriminatory power, g¢f is a measure of how often a phrase occurs in
answers to relevant question types. For example, while in Table III the phrase

(D

w’ = log

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

140 . E. Agichtein et al.

Table IV. A Sample of Candidate Transforms Grouped
into Buckets According to the Transform Length for the
Question Phrase “what is a”

[Transform Length | Candidate Transform ¢r; | wtr; |

“is used to” 32.89

3 “according to the” 23.49
“to use a” 21.43
“is a” 298.89

2 “of a” 94.34
“refers to” 81.3
“usually” 128.23

1 “used” 110.39
“refers” 80.1

“named after” is a better discriminator than “refers to” for the question phrase
“whatisa”, it does not occur as often, and “refers to” is ultimately ranked higher.
This tradeoff between discrimination and frequency of occurrence, or expected
precision and recall, may be explored in future work. Sample output of this
stage is shown in Table III.

Finally, the candidate transforms are sorted into buckets according to the
number of words in the transform phrase, and up to maxBucket transforms
with the highest values of wtr; are kept from each bucket. In general, we ex-
pect that longer phrases may be processed differently by the search engines.
This step was done in order to include longer, potentially higher precision trans-
forms in the set of candidate transforms, whereas primarily shorter transforms
with higher frequency counts might be chosen otherwise. In Table IV, we show
a sample of phrases with the highest selection weights from each candidate
transform bucket.

3.2.3 Weighting and Reranking Transforms Using Search Engines. In the
third and final stage of training, we evaluate the performance of each candi-
date transform, ¢r;, on Web search engines. Figure 5 shows the algorithm for
ranking a set of candidate transforms for a single question phrase and search
engine. The procedure is repeated for all question phrases and search engines
of interest.

In Step (1) of the algorithm we retrieve a set of <Question, Answer> pairs
to be used as training examples. Recall that our goal is to select the trans-
forms for each specific question type, indicated by the corresponding question
phrase, for example, “what is a”. In order for the transforms to be general
and useful, we need to provide a representative sample to the training al-
gorithm. This training set is created by selecting the question-answer pairs
uniformly from each of the FAQ categories where the specific question phrase
occurs.

For each of the example <Question, Answer> pairs and the set of candidate
transforms generated in the previous stage of the process, we apply each trans-
form {¢r;} to the Question one at a time (Step (2)). Consider Question = {QP C},
where QP is the question phrase, and C are the remaining terms in the question.
Using transform ¢r; we remove the question phrase QP and rewrite Question as

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 141

procedure EvaluateTransforms (QP)
(1) Examples = RetrieveExamples (QP, numExamples)

for each <Question, Answer> in Examples
for each candidate transform tr;
(2) Query = ApplyTransform(Question, tr;)
(3) Results = SubmitQuery (Query, SE)
for each Document in Results
docScore =)

(4a) SubDocuments = getSubDocuments (Document, subDocLen)
for each SD; in SubDocuments
(4b) tmpScore = DocumentSimilarity (Answer, SD;)
if (tmpScore > docScore) docScore = tmpScore
(4c) updateTransformScores (tr;, docScore)

updateTransformCounts (tr;)

(5) AssignTransformWeights (TransformScores, TransformCounts)

Fig. 5. Automatically evaluating the effectiveness of candidate transforms.

Query = {C AND ¢r; }. For example, consider the candidate transform “refers to”
for the question phrase “what is a”, and the <Question, Answer> pair <“what
is a lisp machine (lispm)”, “A Lisp Machine (lispm) is a computer optimized
for running Lisp programs, ...”>. Applying the transform to the Question we
obtain a rewritten Query = {lisp machine lispm AND “refers to”}.

The syntax of the querying interface varies for each search engine. For
AltaVista we use the NEAR operator instead of AND because we found the
NEAR operator to produce significantly better results in preliminary experi-
ments. In the example above, the actual query submitted to AltaVista would be
{lisp machine lispom NEAR “refers to”}. Google treats all the terms submitted in
a query with implicit AND semantics in the absence of an explicit OR operator.
Note that Google incorporates the proximity of query terms in the document
ranking [Brin and Page 1998] and may discard some words that appear in its
stopword list.

Unfortunately, stopwords are significant in the context of question answer-
ing. A useful transformation for a question “what is X” would be “X is a”,
which contains stopwords “is” and “a”. If submitted as is, the stopwords in
this query may be discarded by a search engine. Search engines may pro-
vide a mechanism for specifying that a particular stopword in the query is
significant, and should not be ignored. For example, Google’s syntax to spec-
ify that “is” and “a” in the transform above should not be ignored is currently
“+is +a”. Unfortunately, simply putting a “+” in front of every term in the
query does not always work. For example, if a query is submitted with a “+”
in front of what Google considers not a stopword, at the time of our experi-
ments, the query was ignored completely and only a helpful error message was
returned.

Therefore, to use the stopwords properly, we need to know which terms
the search engine considers to be stopwords and would discard if submitted

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

142 . E. Agichtein et al.

normally. We use a simple algorithm that creates a list of stopwords for a search
engine automatically by probing the search engine with each term in the can-
didate transform. More specifically, we create a dictionary of all terms used in
the transforms, and probe the search engine for each term. If the search engine
responds that the term is a stopword and will be ignored, this term is added to
the list of stopwords for that search engine. Subsequently, if a transform with
that term is used, it will be specified as important using the appropriate syntax
for that search engine. For example, a question “what is a binturong” would be
transformed for Google into {binturong “refers +to”}.

In Step (3) of Figure 5 the rewritten query Query is submitted to the search
engine SE. At most 10 of the top results returned by SE are retrieved. Each of
the returned documents D is analyzed in Steps (4a), (4b), and (4c). In Step (4a),
SubDocuments of D are generated. In Step (4b), the subdocument SD; in Sub-
Documents that is most similar to Answer is found. In Step (4c), the scores and
counts for ¢r; are updated based on the similarity of D with respect to Answer.
More details on these steps follow.

In Step (4a) we generate SubDocuments from a document to calculate a more
accurate similarity measure. Consider original answer A and a document D, one
of the documents retrieved using the transformed query. We make an assump-
tion that answers are localized, that is, that the key set of terms or phrases
will appear in close proximity of each other—within subdocuments of length
subDocLen. The subdocuments overlap by subDocLen/2 words in order to min-
imize the possibility that an answer will not be entirely within one of the sub-
documents. In other words, given query @, document D, and subDocLen = N,
we break D into overlapping subdocuments SD1, SDy, SD3, SDy, ..., each start-
ing at successive positions 0, N/2, N,3-N/2, ...

In Step (4b) we calculate the score of document D with respect to An-
swer. We define docScore(Answer, D) as the maximum of the similarities of
each of the subdocuments SD; in D. More formally, docScore(Answer, D) =
Max;(BM25,},,45.(Answer, SD;)), where BM25 1,45 is an extension of the BM25
metric [Robertson and Walker 1997] modified to incorporate phrase weights,
calculated as in Equation (1).

The original BM 25 metric uses relevance weights wgl) and topic frequencies
as described previously, and is defined for a generic query @ and a document
as:

Gy (o1 + Dtf (ks + Dgtf;

BM25 = ;w (K +tf) (k3 + qtf)

where k1 = 1.2, k3 = 1000, K = k(1 — b) + b -dl/avdl),b = 0.5,dl is the
document length in terms, avd! is the average document length in terms, tf; is
the term frequency in the document, and wﬁl) and qif; are the relevance weight
and query topic frequency as described previously.*

In the BM25,}4,q45c metric, the terms in the summation (Equation (3)) in-

clude phrases with weights learned over the training data, as in Section 3.2.2.

3

4We use the simplified version of the metric that was used in the TREC evaluation, where k9 = 0.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 143

Table V. Some of the Top Ranked Transforms for the Question Phrase
“what is a”, Automatically Optimized for AltaVista and Google

Search Search

Engine Transform WT; Engine | Transform WT;
“is usually” | 377.03 “is usually” 280.68
“refers to” 373.22 “usually” 275.68

AltaVista | “usually” 371.55 || Google | “called” 256.64
“refers” 370.14 “sometimes” | 253.53
“is used” 360.07 “is one” 253.24

The weight for a term or phrase ¢ is calculated as follows.

w? if w! is defined for ¢

w = 1 logIDF(¢) if w! is not defined for ¢, but IDF(¢) is
NumTerms(t) - 3, ., logIDF(¢;) otherwise

This multi-step assignment procedure is used because terms encountered
may not be present in the training collection. We use IDF weights (Inverse
Document Frequency, which is high for rare terms, and low for common terms),
derived from a much larger sample (one million Web pages, obtained from
the collection of pages used in the TREC Web Track [Hawking et al. 1999]). The
last, fallback case is necessary in order to handle phrases not present in the
training data. Intuitively, the function assigns the weight of phrase ¢ inversely
proportionally to the probability that all the terms in ¢ appear together, scaled
to weight occurrences of multi-word phrases higher. This heuristic worked well
in our preliminary experiments, but clearly can be improved on with further
work. While document ranking is important during run-time operation of the
system as described in Section 3.3, reranking of the result set of documents was
not the focus of this work.

The overall goal of ranking candidate transforms is to weight highly the
transforms that tend to return many relevant documents (similar to the origi-
nal Answers) and few nonrelevant documents. In Step (5) we calculate weight
WT; of a transform ¢r; as the average similarity between the original training
answers and the documents returned in response to the transformed query:

> -g.a- docScore(A, Dy,)

WTi = ’
Count(Dy,)

(4)

where the sum is calculated over all of the <Question, Answer> pairs in the set
of examples.

The result of this final stage of training is a set of transforms, automatically
ranked with respect to their effectiveness in retrieving answers for questions
matching @P from search engine SE. Two samples of highly ranked transforms
for QP = “what is a”, the first optimized for the AltaVista search engine and
the second for the Google search engine, are shown in Table V.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

144 . E. Agichtein et al.

procedure EvaluateQuestion (Question, K)
(la) QP = matchQuestionPhrase (Question)
(1b) (tr,WT) = retrieveTransforms (QP, numTransforms)

(1c) Results=(), Documents={)), Scores=(

for each tr; in tr

(2) Query = ApplyTransform(Question, tr;)
(3a) Results; = SubmitQuery(Query, SE)
(3b) Documents += Results;, Results += Results;

for each Results; in Results
for each document d]' in Results;

(4a) SubDocuments = getSubDocuments (d;, subDocLen)
for each SDy in SubDocuments

(4b) tmpScorer = CommonTerms (Query, SDg)

(4c) Scores; += Maxy (tmpScorey) -WT;

(5) RankedDocuments = Sort Documents in decreasing order of Scores
(6) Return the K RankedDocuments with highest Scores

Fig. 6. Evaluating questions at run-time.

3.3 Run-Time Query Reformulation

Once the set of the best transformations is automatically trained for each ques-
tion phrase, they are stored as transformation rules. Tritus then evaluates a
given question using the procedure in Figure 6.

In Step (1a), the system determines if it can reformulate the question by
matching known question phrases, with preference for longer (more specific)
phrases. For example, “what is a” would be preferred over “what is”. In Step (1b),
the corresponding sets of transforms and their weights are retrieved. Only the
top numTransforms transforms are used. In Step (2) each transform is used to
rewrite the original question, one transform at a time, resulting in a new query.
In Step (3a) the transformed queries are submitted to the search engine and the
matching documents are retrieved and stored in Step (3b) as the current result
set Results;, and are also appended to the complete set of retrieved documents
Documents.

In Steps (4a), (4b), and (4c), the returned documents are analyzed and scored
based on the similarity of the documents with respect to the transformed query.
The CommonTerms function returns the number of non-stopword terms com-
mon between the transformed query and the subdocument. The maximum of
this value over all the subdocuments is multiplied by the weight of each of the
transforms that retrieved the document, resulting in the current incremental
score for the document. Intuitively, if a document is retrieved by multiple trans-
formed queries with high weight, it will be assigned a high score. Thus, the final
score for the document is the sum of the incremental scores computed over the
set of transformed queries that helped retrieve the document.

In our original system, described in Agichtein et al. [2001], we used a differ-
ent reranking method that used the BM25 similarity measure instead of the
CommonTerms function. This similarity measure weights terms according to

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 145

their importance, as determined by the frequency of occurrence of the terms in
the training collection. Unfortunately, determining meaningful weights for a
large variety of terms requires a prohibitively expensive training phase, hence
our choice of the simpler, more robust CommonTerms function above.

An additional benefit of using a weighted-sum model to compute the docu-
ment score becomes evident when we combine output from multiple search en-
gines. Since transform weights are specific for each search engine, each initial
document score is then scaled with respect to how that search engine performed
using that specific transform during training. Thus, the final score of each docu-
ment is the sum of all scores for the document, over all the transformed queries
that retrieved the document, over all search engines that retrieved it. Since each
individual score for the document contains the weight for the transform that
retrieved it, the final ranking of the documents is equivalent to the weighted
average of individual scores. This simple weighted average approach of com-
bining ranked results from IR systems has been shown to perform best among
various combination methods [Croft 2000].

Once all the document scores are computed, the retrieved documents are
ranked (Step (5)) with respect to their final scores, and in Step (6), the K top-
ranked documents are returned as the final result produced by the Tritus sys-
tem. An example search for the question “What is a hard disk” on our working
prototype is shown in Figure 1.

4. EXPERIMENTAL SETTING

Tritus was designed to retrieve documents from the Web that are likely to
contain answers to a given natural language question. As such, Tritus will be
trained and evaluated over the Web at large. Furthermore, since the goal of
Tritus is to retrieve a good set of documents (as opposed to extracting an exact
answer), we evaluate Tritus on the document level. Finally, since we do not
restrict the type of questions that users can ask, we will use real human judges
to evaluate the quality of documents retrieved by Tritus. In this section, we
first present the details of training Tritus for the evaluation (Section 4.1). Then,
Section 4.2 lists the retrieval systems that we use in our comparison. Section 4.3
introduces the evaluation metrics for the performance of the retrieval systems,
and details of the queries evaluated and relevance judgments are reported in
Section 4.4.

4.1 Training Tritus

We used a collection of approximately 30,000 question-answer pairs for train-
ing, obtained from more than 270 Frequently Asked Question (FAQ) files on
various subjects. Figure 4 shows a sample of the question-answer pairs. We
obtained these FAQ files from the FAQFinder project [Burke et al. 1995]. All
of the FAQ files used for evaluation are publicly available in parsed form.> We
evaluated four question types. The number of question-answer training pairs
in the collection for each of the question types is shown in Table VI.

5Available from http://tritus.cs.columbia.edu/.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

146 . E. Agichtein et al.

Table VI. The Number of Training Questions for Each Question

Type
| Type | Phrase(s) | Question-Answer Pairs in Collection |
Where | “where can i” 1035
“where is” 139
“‘what is” 2865
What “what are” 1143
“‘what is a” 443
How “how do i” 2417
“how can i” 1371
Who “‘who is” 225
“‘who was” 34

Table VII. Tritus Training Parameters

[Parameter | Value | Description |
min@QPhrCount 30 Min. frequency for generating question phrases
minAPhrCount 3 Min. frequency for generating candidate transforms
catSupport 5 Min. number of supporting FAQ categories to generate transforms
maxPhrCount 500 Max. number of most frequent candidate transforms to consider
maxQtokens 4 Max. length of question phrases (in words)
maxAtokens 5 Max. length of answer phrases (in words)
minQtokens 2 Min. length of question phrases (in words)
minAtokens 1 Min. length of answer phrases (in words)
maxLen 4096 | Max. length of the prefix of answers from

which candidate transforms are generated

Length (in words) of the subdocuments for document similarity
subDocLen 10,000 | calculation. Set high to include complete example answers in the
similarity calculation.

Max. number of highest ranked candidate transforms of each

maxBucket 25 length for the final search-engine weighting stage.

Number of example <Question, Answer> pairs used to evaluate
numExamples 100 candidate transforms for each question phrase
Timeout (sec) 30 Individual page timeout

Tritus uses a number of parameters in the training process. We performed
some experimentation with the different values of these parameters resulting
in the parameters shown in Table VII. We did not use any of these tuning
questions for the actual evaluation of our techniques. We did not test parame-
ters exhaustively and further fine-tuning may improve the performance of the
system.

4.2 Retrieval Systems Compared

Recall that Tritus starts with a natural language question submitted by a user,
and transforms the question into a set of new effective queries for the search
engine of interest. The output of Tritus is a set of documents, which can ei-
ther be shown to the user directly, or used as input to a traditional question
answering system. Hence, the TREC QA evaluation [Voorhees 1999b, 2000,
2001] is not appropriate for Tritus. The first and most important reason is that

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 147

Tritus returns documents as its output, whereas the question answering sys-
tems evaluated as part of the TREC QA track were required to return a short
50- or 250-byte answer. Additionally, the TREC QA evaluation considered a
set of specific, factoid questions, whereas we consider a more general class of
questions where there may be multiple different valuable answers (e.g., “What
are ways people can be motivated”), and answers may be lengthy, potentially
spanning entire documents. Finally, while the TREC QA evaluation was done
over a relatively small controlled collection of documents, Tritus is developed
to find answer documents on the Web, over real, Web-specific search engines
such as Google and AltaVista. Consequently, to evaluate Tritus rigorously we
proceed with an alternative experimental setting.

Tritus learns query transformations that are specifically tailored for a given
search engine. Our experimental evaluation focuses on two popular “general
purpose” search engines, Google and AltaVista. We compare the results pro-
duced by each of these systems against those of Tritus produced by using
the corresponding search engine-specific transformations. Additionally, we ex-
plored combining the results retrieved by Tritus over multiple search engines
(AltaVista and Google). We also evaluated AskdJeeves for comparison. The six
systems evaluated are:

—Google (GO): The Google search engine as is.

—Tritus optimized for Google (TR-GO): The retrieval system that results from
transforming user questions into multiple queries using transformations
specifically learned for Google, and combining the query results from Google
as in Section 3.3.

—AltaVista (AV): The AltaVista search engine as is.

—Tritus optimized for AltaVista (TR-AV): The retrieval system that results
from transforming user questions into multiple queries using transforma-
tions specifically learned for AltaVista, and combining the query results from
AltaVista as in Section 3.3.

—Tritus over both AltaVista and Google (TR-ALL): The retrieval system that
results from obtaining documents using both TR-GO and TR-AV simulta-
neously, and combining the results with the document reranking scheme of
Section 3.3.

—AskdJeeves (AdJ): The results of the AskJeeves search engine, which special-
izes in answering natural language questions.

4.3 Evaluation Metrics

Information retrieval systems are usually compared based on the quality of
the retrieved document sets. This quality is traditionally quantified using two
metrics, recall and precision [Salton 1989]. Each document in the collection at
hand is judged to be either relevant or nonrelevant for a query. Precision is cal-
culated as the fraction of relevant documents among the documents retrieved,
and recall measures the coverage of the system as the fraction of all relevant
documents in the collection that the system retrieved.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

148 . E. Agichtein et al.

To measure recall over a collection, we need to mark every document in the
collection as either relevant or nonrelevant for each evaluation query. This,
of course, is a daunting task for any large document collection, and is essen-
tially impossible for the Web, which contains billions of documents. Researchers
have addressed this problem by developing standard document collections with
queries and associated relevance judgments, and by limiting the domain of doc-
uments that are judged [Voorhees 1999a].

Recently, TREC has incorporated a Web Track [Hawking et al. 1999] that
employs a collection of Web documents (small relative to the size of the Web).
This collection of documents is a valuable resource to evaluate information
retrieval algorithms over Web data. However, the collection is not well suited to
evaluate a system like Tritus where we aim to transform user queries to obtain
improved results from existing search engines like Google and AltaVista that
operate over the Web at large.

To evaluate Tritus, we inspect the K pages returned by the various systems
that we compare (Section 4.2) for each query that we consider (Section 4.4).
We describe how we computed relevance judgments for these documents in
Section 4.4. Using these relevance judgments, we evaluate the answers that the
systems produce using the precision, helpfulness, and Mean Reciprocal Rank
(MRR) metrics that we describe next.

Definition 4.1. The precision at K of a retrieval system S for a query ¢ is
the percentage of documents relevant to ¢ among the top K documents returned
by S for q.

Example 1. Consider a query g and the top 10 documents returned by
Google for this query. If we judge that 8 of these 10 documents are relevant
to g, then the precision at 10 of Google for ¢ is % -100% = 80%.

We also compute helpfulness, or the percentage of questions where a given
system provides the best performance of all systems tested:

Definition 4.2. Consider systems Sy, ..., S, and query q. A system S;, at
document cutoff K for a query ¢, is considered (one of) the best performing
systems if S; has the highest number of relevant documents among the top K
documents that it produced, compared to all other systems. The helpfulness at
K of S is then the percentage of questions on which S was (one of) the best
performing systems.

Note that multiple systems may have identical performance on a given question,
in which case they may all be considered the best.

Example 2. Consider a query g, the top 10 documents returned by Google
for g, and the top 10 documents returned by AltaVista for the same query.
If there are 7 documents relevant to ¢ among the top 10 Google documents
and only 5 among the top 10 AltaVista documents, then Google is considered
to have the best performance at document cutoff 10 for ¢g. Intuitively, Google
gets a “vote” for ¢ because it was the best of the two retrieval systems for that

query.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 149

Finally, we compute the Mean Reciprocal Rank (MRR) [Voorhees and Tice
1999] used in the TREC QA evaluation, which synthesizes our set of precision
at K values into one real number between 0 and 1. While the performance
of Tritus for the Web document retrieval is not directly comparable with the
TREC QA system performance figures, we nevertheless report results on the
MRR metric to provide an intuitive measure of performance of the compared
document retrieval systems.

Definition 4.3. The Reciprocal Rank of a system S, for a query g, is defined
as ri where rg, is the highest rank of a document retrieved by S that is
Judged relevant for g. The Mean Reciprocal Rank (MRR) of S is the average of

the Reciprocal Rank values of S over all evaluated queries.

Note that, following the TREC QA definition of MRR, systems are not given
any credit for retrieving multiple relevant documents for each question, and
only one highest-ranked relevant document is considered from only the 5 top-
ranked documents. In contrast, Tritus and other evaluated systems return up
to 10 documents, where often more than one of these can be relevant for a query.
However, since MRR has become a standard measure for evaluating question
answering systems, we decided to implement it exactly as specified in Voorhees
and Tice [1999].

Example 3. Consider a query g and the top 5 documents returned by Google
for this query. If we judge that there are two relevant documents for q that were
ranked 3 and 5, then the Reciprocal Rank for Google for g is 5 = 0.33.

4.4 Evaluation Queries and Their Relevance Judgments

Once we have trained Tritus as discussed above, we evaluate its performance
against the retrieval systems in Section 4.2, using the metrics described in
Section 4.3. We used real user questions from a log of queries received by
the Excite search engine on the 20th of December, 1999. The portion of the
log that we have access to consists of 2.5 million queries, out of which we
estimate that around 290,000 are reasonably well-formed English questions.
We focus our evaluation on four basic question types: Where, What, How,
and Who (Table VIII). These are the most common types of questions found
in the Excite log, and have been estimated to account for more than 90%
of natural language questions submitted to the search engine [Spink et al.
2000].

The set of test questions was generated by scanning for the question phrases
in the query log. A random sample of 50 questions was chosen for each ques-
tion type. The sample was manually filtered to remove queries that might be
offensive or are likely to return offensive documents. We also checked that the
questions were not present verbatim in our training collection. None of the test
questions were used for tuning the parameters of Tritus.

The test questions, 50 of each question type from the queries in the Excite
query log (Table IX), are submitted to all of the six systems (Section 4.2) without
any modifications to the original question. From each system, we retrieve up
to 10 top-ranked URLs. The rank for each of the result URLs is stored. The

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

150 . E. Agichtein et al.

Table VIII. The Number of Questions of Each
Question Type in the Test Collection (Derived
from the Excite query log from 1999)

[Type | Phrase(s) | Queries |
| Total queries | 2,477,283 |
“where” 184,634
Where | “where can i” 162,929
“where is” 7,130
“‘what” 69,166
What “‘what is” 35,290
“what are” 10,129
“‘what is a” 5,170
How “how” 20,777
“how do i” 13,790
“how can i” 13,790
Who “‘who” 16,302
“who was” 1,862
“who is” 5,518
| Total questions | 290,000 (approx.) |

Table IX. Parameters Used for Evaluation

[Parameter | Value | Description |
numTransforms 15 Max. number of transforms to apply
subDocLen 50 Size of the sub-document used for reranking
Timeout 30 Individual page timeout

top 10 documents (or all documents if fewer than 10) are retrieved as follows:

—AV: The top 10 documents returned by AltaVista.
—GO: The top 10 documents returned by Google.

—TR-AV: The top 10 documents returned by Tritus using transforms optimized
for AltaVista and the parameters in Table IX.

—TR-GO: The top 10 documents returned by Tritus using transforms opti-
mized for Google and the parameters in Table IX.

—TR-ALL: The top 10 documents returned by Tritus by combining documents
retrieved by TR-GO and TR-AV.

—AdJ: The top 10 documents returned by AskJeeves. We had to take special
steps to process the AskJeeves results. In the AskJeeves interface, the first
page of results returned may contain one or more of the following:

(1) One or more links to best page(s) for the given question (or a similar
question), selected by a professional editor.

(2) One or more drop-down lists with a preselected value of a term (or terms)
in the question and an associated “submit” button, which, if selected, will
take the user to an answer.

We retrieved all of the results in (1) and (2) (in that order) to bring the total

number of retrieved pages to at most 10.

To assign relevance judgments fairly, the resulting URLs from all of the
systems are mixed together and presented in random order to a number of

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 151

Table X. The Number of Questions of Each Question
Type Evaluated by the Judges During the 2000

Evaluation
Presented
Type Phrase(s) tojudges | Evaluated
“where”
Where | “where can i” 46 10
“where is” 47 11
“‘what”
What “‘what is” 45 11
“‘what are” 43 12
“‘what is a” 48 15
How “how”
“how do i” 44 15
Who “‘who”
“‘who was” 40 15
| Total questions | 313 | 89 |

volunteers. The volunteers are blind to the system that returned the URLs.
We set up an evaluation script to present volunteers with the result pages for a
query one page at a time, and allow the volunteers to judge each page as “good”,
“bad” or “ignore” for the query.

The volunteers were told to use the following criteria to judge documents. A
good page is one that contains an answer to the test question on the page. If
a page is not relevant, or only contains links to the useful information, even if
links are to other documents on the same site, the page is judged bad. If a page
could not be viewed for any reason (e.g., server error, broken link), the result is
ignore.

5. EVALUATION RESULTS

In this section, we report the results of the experimental evaluation using the
methodology described in the previous section. First, in Section 5.1 we report the
results of our original evaluation performed in the Fall of 2000, which totalled
89 questions evaluated by volunteers, mostly acquaintances and colleagues of
the authors who were requested to help with the evaluation. In Section 5.2
we present the results of the new, more extensive evaluation performed in
the Spring of 2002, which additionally involved anonymous and unknown
judges that participated in evaluating all of the updated systems as described
above.

5.1 Results from the Original (2000) Evaluation

During this evaluation, 89 questions were evaluated by volunteer judges.
Table X lists the number of questions of each type that were presented to the
judges and the number of questions that were actually evaluated by the judges.

Figure 7(a) shows the average precision at K for varying K of Ad, AV, GO,
TR-GO, and TR-AV over the 89 test questions. (TR-ALL is new and was not
part of the 2000 evaluation.) As we can see, Tritus, optimized for Google, has
the highest precision at all values of document cutoff K. Also note that both

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

152 . E. Agichtein et al.

60 70
65
55 AN
60
*—&
50 55 \./’\\—9\._‘
\ 50
45 45
S 40 e |y 8 40 Mgt > —N
@ RIS £ 35
S 35 AV 2 30 Lo R v AV
& 2 25 —— GO
30 —o— GO 20 fileeene- System MRR
% TR-AV 18 e TR-AV| |AJ 0.38
2 P I . o s o ‘ med |AY 0.32
15 RGO 0 | B e E e e — | GO 051
N TR-AV 0.33
1.2 3 4 5 6 7 8 9 10
1.2 3 4 5 6 7 8 9 10
K K TR-GO 0.65

(a) (b) (©)

Fig. 7. Average precision (a), helpfulness (b), and MRR (c) of AdJ, AV, GO, TR-AV, and TR-GO
over 89 test queries for varying numbers of top documents examined during the 2000 evaluation.

TR-GO and TR-AV perform better than the underlying search engine used.
TR-AV shows a large improvement over AV.

Figure 7(b) shows the average helpfulness at K for varying K over all 89
test questions. As we can see, TR-GO performs the best on more questions
than any other system. Even though TR-AV performs relatively poorly on this
metric, its performance is comparable to the original AltaVista search engine.
Because the lower performing systems perform best for only a small number
of questions, comparison of the lower performing systems on this metric is not
very meaningful.

Figure 7(c) reports the MRR values for all systems. TR-GO performs sub-
stantially better than the other systems, noticeably improving the performance
of GO, the underlying search engine. Interestingly, while TR-AV has higher
precision than AV, their MRR values are very similar: while the documents
retrieved by TR-AV have high precision, TR-AV was not able to return any
documents for some queries, thereby not improving AV’s performance on the
helpfulness and MRR metrics.

In Figure 8, we report the average precision at K of the document sets re-
trieved by AdJ, AV, GO, TR-GO, and TR-AV, separated by question type. Note
that at least one of the Tritus systems has the highest precision at K for 3 out of
4 question types (What, Where, and Who in Figures 14(a), (¢) and (d)) for K < 8,
while GO has the highest precision for How.5

Google’s impressive performance on the How questions may be due to a com-
mon practice on the Web of linking to the pages that people find useful for
solving specific problems that, by their nature, contain good answers to How
types of questions. Since Google exploits anchor text for document retrieval, it
achieves high results for this type of question.

6The volunteer judges complained that the How questions were the hardest to evaluate. For exam-
ple, an answer to a test question “How do I create a Web page?” can take many different forms, from
a direction “Click here to create your free Web page,” to HTML references, Web hosting promotions,
and Web design software manuals. Often it was not clear whether to judge a page relevant or not
for this type of question.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 153

75
70
65
0 1\
55 1.\
s —_A S s0 —_—AJ
] B 45 NN e
‘S > AV 7] N\A > AV
@ o 40 ¢
o 3| —o— GO & o35 ——GO
TR-AV TR-AV
20 = - -
15 T —e— TR-GO ©|—e—TR-GO
1.2 3 4 5 6 7 8 9 10
K
(a) (b)
7
70
65
60
c 5
§ w0 5
&£ 45 o O " 7] X
o o
@ 40 \/_, § \
[—e—GO I A ——GO
30 30
25 L2 S TR-AV 25 & P A TR-AV
20 SR SO 20 oe—es T a
" D | g TR-GO I o —e—TR-GO
12 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10

(© (d)

Fig. 8. Average precision of AdJ, AV, GO, TR-AV, and TR-GO by question type: What (a), How
(b), Where (c), and Who (d), during the 2000 evaluation.

Itis interesting to note that the systems do not perform uniformly well across
different question types, or even across different subtypes of the basic question
type. We can explain this phenomenon by observing that questions such as
“What are” and “What is a,” even though both questions fall into the What
question type, are typically used to express different purposes. “What is a”
usually indicates a request for a definition or explanation of a term or concept,
while “What are” often indicates a request for a list of characteristics or features
of a concept.

Also note that TR-GO performs better than TR-AV on What and How types
of questions, while TR-AV is clearly better at Where and Who questions. This
suggests an approach of routing the questions to particular search engine(s)
that perform well for a given question type and transforming the question in a
manner optimal for that search engine. Note that the relatively small number
of questions in each category limits the accuracy of the results for individual
question types.

5.2 Results from the New (2002) Evaluation

We now report results from the new evaluation, performed more than a year
after the original evaluation. As expected, the performance of all of the systems
compared has improved over that time period. We discovered in our preliminary
experiments, which are not reported here, that the queries generated by Tritus

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

154 . E. Agichtein et al.

Relevanto Judgament Criteries

The oriteria for a pood page is that it containg an answer 1o the guestion. The answer dossn’t have to be cotrsot, o cotiprebansive - 5o Tong a5 thete b5 & olear way to we o passage
on the page to answer the specific question asked. Same examples of good and bad pages are below. Please be patient if you are presented with mirmrs of the same document, and
vank theta all (hopefully, with the saree seom =))
Example Question and Documents

Questhon: What i ¢ herd disk?

Documents, and Sheir relevance (good, bad ar ignore)

IGood JComtains coplete answer om the page i
[Bad [Noanswer present in document (even if on topac, andior has usefid Liks presen)

CCVLM |A cotupletely useless answer, bt perfeotly valid. ‘
lgmoe |4 broken hakipsge movedserver ermr, ete ;

Please have Javasiript ENATLED for this version of the svaluation - the cvaluation soript depends an ii

Yorn will e 4 lst of questions, eorpiled from 4 random satple of real user's questions subtitted 10 & wajor seah exgine. [T question has been alrady svaluaed, it will have o
nurber (on red bac kgrounel) next to . Thete are four types of questions being evaluated - “what i X°, “who is 2", “where i %, anl “how do 1 3* f you have the patisncs to
evalumte more than one set of dorwments, please ohoose different question types. To choose a question, please dBok an the guestion link

Two windows will pop up - the stmalley one (Window 1) will allow you 10 pate The dooument i the seoond, larger window (Window 2), by olicking on either the "Good", "Bad” o
“Tgnare" bk m Windaw 1. The scare far the document wall be stored, and i Windaw 2 you will be presented with the next document 1 the set. Use numbered Enksiarrows fo skip to
fhe doouent you'd ke 10 evaluste next. [you go baok atd re-tank & dosweend, keep it mind that only the Tast vank for sach of the dooureents will be used

Fig. 9. Evaluation directions presented to all judges during the 2002 evaluation.

were still good, and returned many documents containing answers to questions.
However, the original reranking method described in Section 3.2.3 was not
performing very well. Therefore, we adopted a more robust reranking algorithm
(Section 3.3), as well as a variation of Tritus that combined results of different
search engines in order to improve the performance of Tritus (TR-ALL).

The current evaluation was performed by two groups of judges: the first group
of volunteers, which we refer to as colleagues, was a group of acquaintances
and colleagues, whom we directly asked to help in the evaluation. The second
group, which we will refer to as CiteSeer, was recruited via a link placed on
CiteSeer (http://citeseer.org/), a large online repository of computer science re-
lated publications [Lawrence et al. 1999]. Because of the large time commitment
required to perform the evaluation, we thought that recruiting participants
with CiteSeer might help increase the number of questions evaluated, although
we were concerned that unknown participants obtained in this manner might
not perform very careful evaluations. Both groups were shown the same direc-
tions (Figure 9) and each judge then proceeded to rate pages retrieved by each
system in response to a particular question as described above. The ratings of
both groups together form the combined results. The number of test questions
of each type presented tojudges during the 2002 evaluation is shown in Table XI.
The same test questions were presented to each of the groups of judges.

The results of the evaluation by the colleagues group are similar to the
encouraging results of the 2000 evaluation, and are shown in Figure 10. As
before, both TR-GO and TR-AV perform substantially better than the under-
lying search engines, GO and AV. Interestingly, on this evaluation TR-AV also
noticeably improves the MRR score of the underlying search engine, AV. As we

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 155

Table XI. The Number of Questions of Each
Question Type Evaluated by the Judges During the
2002 Evaluation

Presented

Type Phrase(s) tojudges | Evaluated
“where”

Where | “where can i” 40 5
“where is” 49 10
“‘what”

What “‘what is” 47 15
“‘what are” 48 10
“‘what is a” 50 19

How “how”
“how do i” 47 8
“how can i” 47 12

Who “who”
“‘who was” 49 22
“‘who is” 47 12

| Total questions | 424 | 113 |

75

80

—AJ
AV

TR-AV

Helpfulness

g —o—GO0 System | MRR
g —e— TR0 || [A] 0.27
—a—TRALL|[|AV 0.39

TR-AV | 0.61

2 GO 0.58
12 3 45 6 7 8 9 10 TR-GO | 0.76

K TR-ALL | 0.77

(a) ©

Fig. 10. Average precision (a), helpfulness (b), and MRR (c) of AJ, AV, GO, TR-AV, TR-GO, and
TR-ALL evaluated by the colleagues group of judges during the 2002 evaluation.

expected, TR-ALL provides an additional modest improvement over TR-GO,
and narrowly outperforms TR-GO as the best performing system on precision,
helpfulness, and MRR metrics for all values of K.

The results of the evaluation by the CiteSeer group are more noisy. Many of
the volunteer judges were not motivated enough to complete the 20-30 minute
evaluation and rated only some of the pages in the set. As we thought, the time
commitment required to carefully read and follow the instructions was too much
to ask from unknown participants. For example, by examining a sample of the
ratings, we observed that participants did not always follow the directions and
assigned a good rating to pages that did not actually contain an answer, but
rather had a link to the answer in a different document. Despite this, we did not
manually filter any of the ratings. The results are shown in Figure 11. In this
evaluation, TR-GO did not improve GO’s performance on the precision metric,
but did improve performance on the helpfulness metric, suggesting that TR-GO
more consistently performs well across questions. The decrease of performance

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

156

. E. Agichtein et al.

60

55

50

60

55

50

45 4.
40 4

c 8 a5
'g — —N g 30
S RATIN g e Ay 2]) System MRR
= 20 1/ F| o trav | £ 201 \ S = —e—TRAV || |AJ 0.2
co 15 —o— GO AV 0.3
35 || —e—rc0 12 —e—TRGO [|TR-AV 0.35
w TRALL . —s—TRALL| [GO 0.35
1 2 3 4 s é 7 8 9 1‘0 1.2 3 4 5 6 7 8 9 10 TR-GO 0.4
K K TR-ALL | 0.41
(a) (b) (©

Fig. 11. Average precision (a), helpfulness (b), and MRR (c) of AdJ, AV, GO, TR-AV, TR-GO, and
TR-ALL evaluated by the CiteSeer group of judges during the 2002 evaluation.

65

60

55

50

< - @ 40 > -
: 0T T —A - \
8 40 N\.A : AV 2 30 |
S s N 2 5]\ rav || |System | MRR
35 TR-AV ——
N 20 | \ o AJ 0.24
30 = k—O—GO 15 \ meo 1AY 0.34
2 —e—TRGO b TP TR-AY | 044
—aTRALL : —— T lGo 0.46
20 . ———————————
12 3 4 5 6 7 8 9 10 12345 678 910 TR-GO | 0.54
K K TR-ALL| 0.55

(b)

(©

Fig. 12. Average precision (a), helpfulness (b), and MRR (c¢) of Ad, AV, GO, TR-AV, TR-GO, and
TR-ALL as calculated using the combined results from the colleagues and CiteSeer ratings
during the 2002 evaluation.

for Tritus in this evaluation may be related to the tendency of the unknown
participants to mark pages good if they contained a link to an answer, especially
with regard to GO, which tends to return authoritative sites that link to a
lot of information. The increase in performance for AV and AJ according to
the CiteSeer evaluators provides additional support for our belief that the
CiteSeer group did not perform careful and accurate evaluations (compared to
the colleagues group, the results tend to move towards the mean, which would
happen with random evaluations). TR-AV still substantially outperforms AV
in this evaluation. Furthermore, both TR-GO and TR-AV noticeably improve
the MRR values of the underlying search engines, GO and AV.

Finally, results from the combined group are shown in Figure 12. These re-
sults are the most comprehensive (containing evaluation results for 113 ques-
tions), but still contain some noise inherited from the incomplete and less care-
ful evaluations from the CiteSeer group. However, we can still see the large
improvement of TR-AV over AV, and a modest improvement of TR-GO and
TR-ALL over GO. Also note that the actual precision of the respective Tritus

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 157

100 100 100

80
70

60 g il

‘/'/_ M
M

30 -tof /

20 j

50
40
30

Document overlap (%)

Document overlap (%)
S
o

Document overlap (%)
E el
S 3

10

10 30 50 70 90 110 130 150 10 30 50 70 90 110 130 150 10 30 50 70 90 110 130 150

N TR-AV N TR-AV N TR-AV
—e—TR-GO ——TR-GO
—e—TR-GO —=— TR-ALL —=TR-ALL

(a) (b) (c)

Fig. 13. Average percentage of all (a), top 10 (b), and relevant in top 10 (¢c) TR-GO, TR-AV, and TR-
ALL documents contained in top N documents returned for each original query by the underlying
search engine during the 2002 evaluation.

implementations is somewhat higher than the corresponding precision from
the 2000 evaluation.

In the rest of this section, we analyze the performance of Tritus in more detail.
We first consider the overlap of the documents retrieved by Tritus compared to
the information retrieval system using the original queries, but retrieving more
documents. We then examine the effect that a successful reranking strategy has
on the quality of the final top 10 documents returned to the user.

We have considered the possibility that the documents returned by Tritus
could also be retrieved simply by examining more documents returned by the
search engines for the original query. We report the percentage of Tritus docu-
ments contained in the set of responses to the original query as more documents
are examined in Figure 13. Figure 13(a) reports the percentage of all Tritus doc-
uments (without reranking) that are contained in the top N (10-150) search
engine responses for the original query. In Figure 13(b), we plot the percentage
of top 10 Tritus documents (after reranking) contained in the original search
engine results, and in Figure 13(c), we show the percentage of relevant Tritus
documents contained in the original search engine results. For TR-ALL, the
overlap is measured against the union of the top 150 documents from both AV
and GO. Only the top 10 Tritus documents had relevance judgments assigned.
The figures show that, for TR-AV, there is very little overlap between result
sets retrieved in response to the transformed queries and the documents re-
trieved for the original query. For TR-GO, the overlap is low for all of TR-GO
documents (without reranking), but increases and levels off at around 50% for
the top 10, and between 50% and 60% for the relevant Tritus documents as
more of the underlying search engine documents are examined. These experi-
ments indicate that a significant fraction of the relevant documents retrieved
by Tritus would not be found using an underlying search engine. Interestingly,
the overlap is quite high (as high as 69%) for TR-ALL, since the reranking al-
gorithm that we use tends to rank the more “popular” pages higher (i.e., those
retrieved by multiple search engines and by multiple transformed queries).

In Figure 14, we report the average precision at K of the document sets
retrieved by Ad, AV, GO, TR-GO, TR-AV, and TR-ALL, separated by question
type. At least one of the Tritus systems has the highest precision at all values

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

158 . E. Agichtein et al.

, ——AJ
AV - AV
s 5 TR-AV
2 o—TRAV a -
° ——GO 3 i —GO
& o
e TRGO | | ——TRGO
—@—TR-ALL —=—TR-ALL
K K
(a) (b)
—A ¢ —A
AV AV
H TR-AV s TR-AV
2 2
3 ——GO0 3 ——GO
o —e—TR-GO o ——TRGO
—=—TRALL —=— TRALL
04— o —
12 3 456 7 8 910 1 2 3 45 6 7 8 910
K K
() (d)

Fig. 14. Average precision of AdJ, AV, GO, TR-AV, TR-GO, and TR-ALL by question type: What
(a), How (b), Where (c), and Who (d) using the combined set of results on the 2002 evaluation.

of K for 2 out of 4 question types (What and Who in Figures 14(a) and (d)),
while Google has the highest precision for How (as in the original evaluation),
and Google and AskJeeves share the best performance for Where. However, note
that Where and How had the smallest number of questions evaluated, especially
from the colleagues group, so the results for these questions types may not be
significant.

One of the challenges in evaluating a system like Tritus is that it is difficult to
separate the querying formulation performance and the reranking performance
of the system in a real evaluation. Unfortunately, since a human judge needs
to read the retrieved documents, evaluating all documents retrieved before
the reranking is not feasible. Thus, we are forced to solve the additional hard
problem of reranking and merging output from information retrieval systems.
Alternative reranking and answer extraction from the retrieved documents
could substantially improve performance. For example, a system such as the
one described in Radev et al. [2002] could be used to select the best candidate
answer phrases among all of the documents retrieved by Tritus.

Since we focus on the problem of learning effective queries for retrieving a
good candidate set of documents, a revealing performance characteristic is the
overall quality of the complete retrieved document set, rated by the human
judges, as opposed to just the top 10 documents after reranking. Since we
found that there is significant overlap among the documents retrieved by the
systems, we can exploit this extra information to estimate the relevance of
some of the documents that were retrieved by the systems, but not ranked in
the top 10 documents for that system. By using the combined pool of relevant

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 159

oAl

AV
aTR-AY
GO
ETR-GO

mad
AV
OTR-AY
GO
ETR-GO

mAd

AV
aTR-AY
GO
BTR-GO

Fig. 15. Average precision of AdJ, AV, GO and Tritus (TR-AV, TR-GO) in the 2002 evaluation for
all 150 documents retrieved (a), the top 10 documents using the current reranking method (b), and
the top 10 documents if a perfect reranking method was used (c).

and nonrelevant documents as rated for all of the systems in question, we can
estimate the average precision of the complete document set retrieved by each
system.

The overall precision for all basic systems is shown in Figure 15. Note that
the current reranking methods used by each evaluated system do not appear
to substantially improve the quality of the documents: the average precision
across the top 10 documents for each system is estimated to be similar to the
average precision across the complete set of the top 150 documents. For exam-
ple, the average precision of TR-GO over all 150 documents (but considering
only documents for which we have relevance judgments) is 50%, while the pre-
cision of the top 10 documents selected by the current reranking method is
48%. In contrast, if a perfect reranking method was used to select the top 10
documents, the quality of the top 10 documents increases substantially. For
example, the average precision of the top 10 documents reranked from the
set retrieved by TR-GO would increase from 48% to 75%, while the precision
of GO would increase from 46% to 53%. The precision of this “perfect” set of
top 10 documents is calculated by assuming that a perfect reranking mecha-
nism would float all of the known relevant documents for each question to the
top 10, and the remaining slots in the top 10, if any, would be filled with the
documents that have been rated as nonrelevant for that question. Most en-
couragingly, the precision of TR-GO and TR-AV increases dramatically if the
perfect reranking is used to rerank documents returned by all of the evaluated
systems.

It is clearly not ideal that the evaluation of the system depends, even if
implicitly, on the quality of reranking. One way to avoid this problem in the
future might be to adopt a more automatic method of evaluation, which would
allow us to examine all of the documents retrieved by the transformed queries
from Tritus, not just the top 10, and compare them to the documents retrieved
by the original queries. Automatic evaluation could be performed with a sub-
set of questions where automatically identifying the known correct answer
is easy; however, the results might not accurately represent performance on
a more general class of questions. In contrast, we have evaluated the sys-
tems over a set of questions drawn from query logs of a real Web search
engine.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

160 . E. Agichtein et al.

6. FUTURE WORK AND SUMMARY

Many avenues exist for future research and improvement of our system. For ex-
ample, existing methods for extracting the best passages from documents could
be implemented. Domain knowledge, heuristics, and natural language parsing
techniques could be used to improve the identification of question types. Multi-
ple transformations could be combined into a single query. Questions could be
routed to search engines that perform best for the given question type. Addi-
tionally, an interesting direction to explore is creating phrase transforms that
contain content words from the questions. Yet another direction of research
would be to make the transformation process dynamic. For example, transfor-
mations where we expect high precision could be submitted first. Based on the
responses received, the system could try lower precision transforms or fall back
to the original query.

In summary, we have introduced a method for learning query transforma-
tions that improves the ability to retrieve documents with answers to ques-
tions using an information retrieval system. The method involves classifying
questions into different question types, generating candidate query transforma-
tions from a training set of question/answer pairs, and evaluating the candidate
transforms on the target information retrieval systems. We have implemented
and thoroughly evaluated the method as applied to Web search engines. In
two separate and extensive blind evaluations more than a year apart, we have
shown that the method substantially outperforms the underlying Web search
engines.

ACKNOWLEDGMENTS

We thank Robin Burke for graciously giving us the training collection of FAQ
files in semi-structured format and Nick Craswell for providing the docu-
ment frequency counts collected over 1 million web pages. We also thank Eric
Glover for his help throughout the project, and Regina Barzilay, Min-Yen Kan,
Kathy McKeown, Kazi Zaman, and the anonymous referees for their valuable
comments.

REFERENCES

ABNEY, S., CoLLINS, M., AND SINGHAL, A. 2000. Answer extraction. In Proceedings of the Applied
Natural Language Processing Conference (ANLP-2000). 296-301.

AGICHTEIN, E., LAWRENCE, S., AND GravanNo, L. 2001. Learning search engine specific query trans-
formations for question answering. In Proceedings of the World Wide Web Conference (WWW-10).
169-178.

Aviop, D., BErri, J., aND Hess, M. 1998. A real world implementation of answer extraction. In Pro-
ceedings of the 9th International Workshop on Database and Expert Systems, Workshop: Natural
Language and Information Systems (NLIS-98). 143-148.

BERGER, A., CARUANA, R., ConN, D., FrEITAG, D., AND MITTAL, V. O. 2000. Bridging the lexical chasm:
statistical approaches to answer-finding. In Proceedings of the ACM SIGIR Conference. 192—
199.

Briir, E. 1992. A simple rule-based part of speech tagger. In Proceedings of the Applied Natural
Language Processing Conference (ANLP-92). 152-155.

Briii, E., Ly, J., Banko, M., Dumats, S., aND NG, A. 2001. Data-intensive question answering. In
Proceedings of the TREC-10 Question Answering Track. 393-400.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

Learning to Find Answers to Questions on the Web . 161

Brin, S. anD Page, L. 1998. The anatomy of a large-scale hypertextual Web search engine. Comput.
Netw. ISDN Syst. 30, 1-7, 107-117.

Burke, R., Hammonn, K., anp KozLovsky, J. 1995. Knowledge-based information retrieval for semi-
structured text. In AAAI Fall Symposium on Al Applications in Knowledge Navigation and Re-
trieval. 19-24.

CARDIE, C., Na, V., PIERCE, D., AND BuckLEy, C. 2000. Examiningthe role of statistical and linguistic
knowledge sources in a general-knowledge question answering system. In Proceedings of the
Applied Natural Language Processing Conference (ANLP-2000). 180-187.

Crort, W. B. 2000. Combining approaches to information retrieval. Advan. Info. Retrieval. 1-36.

GLOVER, E., FLAKE, G., LAWRENCE, S., BIRMmINGHAM, W. P., KRUGER, A., GILES, C. L., AND PENNOCK, D.
2001. Improving category specific Web search by learning query modifications. In Symposium
on Applications and the Internet (SAINT-2001). 23-31.

Haragacry, S. M., Pasca, M. A., anp Maiorano, S. J. 2000. Experiments with open-domain textual
question answering. In Proceedings of the International Conference on Computational Linguistics
(COLING-2000). 292-298.

Hawxking, D., CRASWELL, N., THISTLEWAITE, P., AND HArRMAN, D. 1999. Results and challenges in Web
search evaluation. Computer Networks (Amsterdam, Netherlands) 31, 11-16, 1321-1330.

Hovy, E., GErBER, L., HERMJAKOB, U., Junk, M., anp Lin, C.-Y. 2000. Question answering in
Webclopedia. In Proceedings of the TREC-9 Question Answering Track. 655—-672.

ITTYCcHERIAH, A., FrRANZ, M., ZHU, W.-J., AND RATNAPARKHI, A. 2000. IBM'’s statistical question an-
swering system. In Proceedings of the TREC-9 Question Answering Track. 231-234.

Jono, H. AND SaNDERSON, M. 2000. Retrieving descriptive phrases from large amounts of free
text. In Proceedings of the International Conference on Knowledge Management (CIKM-2000).
180-186.

Kravans, J. L. anp Kan, M.-Y. 1998. Role of verbs in document analysis. In Proceedings of the
International Conference on Computational Linguistics (COLING/ACL-98). 680-686.

Kwoxg, C. C. T.,, Etziont, O., anD WELD, D. S. 2001. Scaling question answering to the Web. In
Proceedings of the World Wide Web Conference (WWW-10). 150-161.

LAWRENCE, S., BoLLACKER, K., AND GiLEs, C. L. 1999. Indexing and retrieval of scientific litera-
ture. In Proceedings of the International Conference on Information and Knowledge Management
(CIKM-99). 139-146.

LAWRENCE, S. AND GILES, C. L. 1998. Context and page analysis for improved web search. IEEE
Internet Comput. 2, 4, 38—46.

Mann, G. 2002. Learning how to answer questions using trivia games. In Proceedings of the
International Conference on Computational Linguistics (COLING-2002).

MiLLER, G. A. 1995. Wordnet: A lexical database for English. Comm. ACM. 39-41.

MiTrA, M., SINGHAL, A., AND BUckLEY, C. 1998. Improving automatic query expansion. In Proceed-
ings of the ACM SIGIR Conference. 206-214.

Morpovan, D., HaraBaGiy, S., Pasca, M., MiHALCEA, R., GooprumM, R., GirJu, R., anD Rus, V. 1999.
Lasso: A tool for surfing the answer net. In Proceedings of the TREC-8 Question Answering
Track. 175-184.

PRAGER, J., CHU-CAROLL, J., AND CzuBa, K. 2002. Statistical answer-type identification in open-
domain question answering. In Proceedings of the Human Language Technology Conference (HLT-
2002). 137-143.

Rapey, D., Fan, W, Q1, H., Wy, H., aAND GREwWAL, A. 2002. Probabilistic question answering on the
Web. In Proceedings of the World Wide Web Conference (WWW-2002). 408-419.

Rapev, D. R., Q1, H., ZHENG, Z., BLAIR-GOLDENSOHN, S., FAN, Z. Z. W., AND PRAGER, J. M. 2001. Mining
the web for answers to natural language questions. In Proceedings of the International Conference
on Knowledge Management (CIKM-2001). 143-150.

RoBERTSON, S. 1990. On term selection for query expansion. In J. Document. 46, 359-364.

ROBERTSON, S. AND SpaRCK-JoNES, K. 1976. Relevance weighting of search terms. J. Amer. Soc.
Info. Sci. 27, 129-146.

ROBERTSON, S. AND WALKER, S. 1997. On relevance weights with little relevance information. In
Proceedings of the ACM SIGIR Conference. 16-24.

ROBERTSON, S., WALKER, S., AND BEauLIEU, M. 1998. Okapi at TREC-7: automatic ad hoc, filtering,
VLC and interactive track. In TREC-7 Proceedings. 253—264.

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

162 . E. Agichtein et al.

Roccrio, J. 1971. Relevance feedback in information retrieval, G. Salton, Ed. The SMART Re-
trieval System-Experiments in Automatic Document Processing. 313—-323.

Sarron, G. 1989. Automatic Text Processing: The transformation, analysis, and retrieval of infor-
mation by computer. Addison-Wesley.

ScuirFMaN, B. anp McKeown, K. R. 2000. Experiments in automated lexicon building for
text searching. In Proceedings of the International Conference on Computational Linguistics
(COLING-2000). 719-725.

SPINK, A., MILCHAK, S., SOLLENBERGER, M., AND HURrsoN, A. 2000. Elicitation queries to the Excite
Web search engine. In Proceedings of the International Conference on Knowledge Management
(CIKM-2000). 134-140.

Vooruges, E. 1999a. Overview of the Eighth Text REtrieval Conference (TREC-8). In Proceedings
of TREC-8. 1-24.

Vooruees, E. 1999b. The TREC-8 question answering track report. In Proceedings of TREC-8.
77-82.

Vooruees, E. 2000. Overview of the TREC-9 question answering track. In Proceedings of TREC-
9. 71-80.

Vooruees, E. 2001. Overview of the TREC-2001 question answering track. In Proceedings of
TREC-10. 42-51.

VooragEes, E. anp Tice, D. M. 1999. The TREC-8 question answering track evaluation. In Pro-
ceedings of TREC-8. 84-106.

Xy, J. anp Crorr, W. B. 2000. Improving the effectiveness of information retrieval with local
context analysis. ACM Trans. Info. Syst. (TOIS) 18, 1, 79-112.

Received May 2002; revised November 2002; accepted February 2003

ACM Transactions on Internet Technology, Vol. 4, No. 2, May 2004.

