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Abstract—Repositories of multimedia objects having multiple types of attributes (e.g., image, text) are becoming increasingly

common. A query on these attributes will typically request not just a set of objects, as in the traditional relational query model (filtering),

but also a grade of match associated with each object, which indicates how well the object matches the selection condition (ranking).

Furthermore, unlike in the relational model, users may just want the k top-ranked objects for their selection queries for a relatively small

k. In addition to the differences in the query model, another peculiarity of multimedia repositories is that they may allow access to the

attributes of each object only through indexes. In this paper, we investigate how to optimize the processing of top-k selection queries

over multimedia repositories. The access characteristics of the repositories and the above query model lead to novel issues in query

optimization. In particular, the choice of the indexes used to search the repository strongly influences the cost of processing the filtering

condition. We define an execution space that is search-minimal, i.e., the set of indexes searched is minimal. Although the general

problem of picking an optimal plan in the search-minimal execution space is NP-hard, we present an efficient algorithm that solves the

problem optimally with respect to our cost model and execution space when the predicates in the query are independent. We also

show that the problem of optimizing top-k selection queries can be viewed, in many cases, as that of evaluating more traditional

selection conditions. Thus, both problems can be viewed together as an extended filtering problem to which techniques of query

processing and optimization may be adapted.

Index Terms—Top-k query processing, multimedia databases, information search, information retrieval.
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1 INTRODUCTION

THE problem of content management of multimedia

repositories is becoming increasingly important with

the development of multimedia applications and the Web

[21]. For example, digitization of photo and art collections is

becoming popular, multimedia mail and groupware appli-

cations are becoming widely available, and satellite images

are being used for weather predictions. To access such large

repositories efficiently, we need to store information on

attributes of the multimedia objects. Such attributes include

the date the multimedia object was authored, a free-text

description of the object, and features like color histograms.

These attributes provide the ability to recall one or more

objects from the repository. There are at least three major

ways in which accesses to a multimedia repository differ

from that of a structured database (e.g., a relational

database). First, rarely does a user expect an exact match

with the features of a multimedia object (e.g., color

histogram). Rather, an object does not either satisfy or fail

a condition, but has instead an associated grade of match

[13], [14], [15]. Thus, an atomic filter condition will not be an

equality between two values (e.g., between a given color c0
and the color oid.color of an object), but instead an inequality

involving the grade of match between the two values and

some target grade (e.g., Gradeðcolor; c0ÞðoidÞ � 0:7). Next,

every condition on an attribute of a multimedia object may

only be evaluated through calls to a system or index that

handles that particular attribute. This is in contrast to a

traditional database where, after accessing a tuple, all

selection predicates can be evaluated on the tuple. Finally,

the process of querying and browsing over a multimedia

repository is likely to be interactive, and users will tend to

ask for only a few best matches according to a ranking

criterion.
The above observations lead us to investigate a query

model with filter conditions as well as ranking expressions and

to study the cost-based optimization of such queries.1 In

general, a query will specify both a filter condition F and a

ranking expression R. The query answer is a rank of the

objects that satisfy F , based on their grade of match for the

ranking expression R.
Optimizing a filter condition in this querying model

presents new challenges. An atomic condition can be

processed in two ways: by a search, where we retrieve all

the objects that match the given condition (access by value),

and by a probe, where, instead of using the condition as an

access method, we only test it for each (given) object id

(access by object id). For example, consider a filter condition

consisting of a conjunction of two atomic conditions. If we

search on the first condition and probe on the second, the

latter benefits from the reduction in the number of objects
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1. The queries identify a candidate set (or list) of objects for displaying.
How to actually display these objects is an important problem that we do
not address in this paper.

1041-4347/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



that need probing due to the selectivity of the first
condition.

The costs of these two kinds of accesses, search and
probe, in multimedia repositories can vary for a single data
and attribute type as well as across types. How to order a
sequence of probes without considering the search costs, as
well as how to determine a set of search conditions when
the probing cost is zero (or a constant), has been studied
before. When the filter condition is a conjunction of atomic
conditions, the problem becomes closely related to that of
ordering joins. However, to the best of our knowledge, no
work has studied the optimization problem when both
searches and probes have nonzero costs and the filter
condition is an arbitrary boolean expression.

To optimize the processing of a filter condition, we
define a space of search-minimal executions and show an
optimal strategy in that space for the case when the
conditions present in the filter condition are independent.
Although the search-minimal execution space is a restricted
space, our experiments indicate that if we introduce a
simple post-optimization step for conjunctive conditions,
we obtain plans that are nearly always as efficient as the
plans obtained when plans are not restricted to be search
minimal. Our experiments also show that considering both
the search and probe costs during query optimization
impacts the choice of an execution plan significantly. Also,
we prove that if the conditions in the filter condition are not
independent, the problem of determining an optimal
search-minimal execution is NP-hard.

Our paper also contributes to the problem of optimizing
the evaluation of queries that contain a ranking expression.
Previous significant work in this area is due to Fagin [13],
[14], [15], who shows his approach to be asymptotically
optimal under broad assumptions. A key contribution of
our paper is to show that ranking expressions can be
processed “almost” like filter conditions efficiently. Our
experimental results indicate that such processing of
ranking expressions as filter conditions is often quite
efficient. Unlike Fagin’s work, our optimization and
evaluation technique is heuristic (as in relational query
optimization). However, from a practical systems perspec-
tive, our technique is of significance since, for the first time,
it provides an ability to treat queries that contain both filter
conditions and ranking expressions in a uniform framework
for query optimization and evaluation with few extensions
to core query processing techniques.

The rest of the paper is organized as follows: Section 2
describes the query model that we use. Sections 3 and 4
present the results on evaluating filter conditions and
ranking expressions, respectively. Section 5 discusses our
experimental results. Section 6 is devoted to related work.
We conclude the paper in Section 7.

2 QUERY MODEL

In this section, we introduce a query model to select
multimedia objects from a repository. (See [31] for a similar
model.) Such a query model needs to satisfy the following
requirements: 1) consider that a match between the value of
an attribute of a multimedia object and a given constant is
not exact, i.e., must account for the grade of match, 2) allow

users to specify thresholds on the grade of match of the
acceptable objects, and 3) enable users to ask for only a few
top-matching objects.

Given an object o, an attribute attr, and a constant value,
the notion of a grade of match Grade(attr, value)(o) between o
and the given value for attribute attr addresses the first
requirement. Such a grade is a real number in the ½0; 1�
range and designates the degree of equality (match)
between o:attr and value.

We address the second requirement by introducing the
notion of a filter condition. The atomic filter conditions are of
the form Gradeðattr; valueÞðoÞ � grade. An object o satisfies
this condition if the grade of match between its value o.attr
for attribute attr and constant value is at least grade.
Additional filter conditions are generated from the atomic
conditions by using the ^ (“and”) and _ (“or”) Boolean
connectives. Filter conditions evaluate to either true or false.
Exact matches such as o:attr ¼ value can be represented by
the filter condition Gradeðattr; valueÞðoÞ � 1. However, in
this paper, we will not discuss how exact matches can be
treated especially.

Following [13], [14], [15], we address the third require-
ment for the query model through the notion of a ranking
expression. The ranking expression computes a composite
grade for an object from individual grades of match and the
composition functions Min and Max. (Fagin’s expressions
are more general in that he allows other composition
functions.) Every object has a grade between 0 and 1 for a
given ranking expression. Users can then use a ranking
expression in their queries and ask for k objects with the top
grades for the given ranking expression. In this paper, we
assume that ties are broken arbitrarily. An alternative
semantics, which we do not pursue in this paper, is that if
there are ties, all objects with the same grade are returned,
even if that exceeds the required number of objects k.

We use the following SQL-like syntax to describe the
queries in our model:

SELECT oid

FROM Repository

WHERE Filter_condition

ORDER [k] by Ranking_expression

The above query asks for k objects in the object repository
with the highest grade for the ranking expression among
those objects that satisfy the filter condition. Intuitively, the
filter condition eliminates unacceptable matches, while the
ranking expression orders the acceptable objects.

2.1 Expressivity of the Query Model

The filter condition F in a query Q selects the set of objects
in the repository that satisfy the condition, whereas the
ranking expression R computes a grade for each object. We
use these grades for ordering the objects that satisfy the
filter condition.

Given a filter condition F and a ranking expression R, an
interesting expressivity question is whether we actually
need both F and R. In other words, we would like to know
whether we can “embed” the filter condition F in a new
ranking expression RF such that the top objects according to
RF are the top objects for R that satisfy F . (Note that a filter
condition does not impose an order on the objects, therefore,
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we cannot express R and F using a single filter condition FR.
However, see Section 4.)

More formally, given F and R, a ranking expression RF

that replaces F and R should verify the following two
conditions for any database db and for any given k,
assuming that at least k objects satisfy F in database db. (If
k0 objects satisfy F in db and k0 < k, then use k0 instead of k
below.)

1. An object o 2 db is among the top k objects according
to RF only if o satisfies F .

2. If objects o; o0 2 db satisfy F and RðoÞ < Rðo0Þ, then
RF ðoÞ < RF ðo0Þ.

The following example establishes the need for both a
filter condition and a ranking expression in our model. It
shows that it is not possible to find such a ranking
expression RF for an arbitrary filter condition F and an
arbitrary ranking expression R.

Example 1. Let e1 ¼ GradeðA1; v1Þ and e2 ¼ GradeðA2; v2Þ,
where A1 and A2 are different attributes and v1 and v2 are
constants. Consider the filter condition F ¼ e1 � 0:2 and
the ranking expression R ¼ e2. The query associated with
F and R ranks the objects that have grade 0.2 or higher for
e1 according to their grade for e2. Suppose that there is a
ranking expression RF that satisfies the two conditions
above. Then, RF is necessarily equivalent to (i.e., always
produces the same grades as) one of the following
expressions: e1, e2, Minðe1; e2Þ, or Maxðe1; e2Þ. Consider
the database of three objects described in Table 1 and that
we are interested in the top object (k ¼ 1) forR that satisfies
F . The actual answer to the query should be object o2,
which has the highest grade for R (0.4) among the two
objects (o2 and o3) that pass the filter condition F . We will
show that any of the four possibilities for RF produces a
wrong answer for the query:

. Case RF ¼ e1 or RF ¼ Minðe1; e2Þ: The top object
for RF is o3, which is a wrong answer.

. Case RF ¼ e2 or RF ¼ Maxðe1; e2Þ: The top object
for RF is o1, which is a wrong answer.

2.2 Storage Level Interfaces

A repository has a set of multimedia objects. We assume
that each object has an id and a set of attribute values,
which we can only access through indexes. Given a value
for an attribute, an index supports access to the ids of the
objects that match that value closely enough, as we will
discuss below. Indexes also support access to the attribute
values of an object given its oid.

The following are several storage-level access interfaces
that we assume multimedia repositories support. (See, for

example, [28].) Key to these interfaces is that the objects
match attribute values with a grade of match, as we
discussed above.

. GradeSearch(attribute, value, min_grade): Given a value
for an attribute and a minimum grade requirement,
returns the set of objects that match the attribute
value with at least the specified grade, together with
the grades for the objects.

. TopSearch(attribute, value, count): Given a value for an
attribute and the count of the number of objects
desired, returns a list of count objects that match the
attribute value with the highest grades in the
repository, together with the grades for the objects.

. Probe(attribute, value, {oid}): Given a set of object ids
and a value for an attribute, returns the grade of
each of the specified objects for the attribute value.

Not all repositories have to support all of these interfaces
at the physical level. For example, a repository may
implement a Probe call atop GradeSearch by requesting all
objects that match a given attribute value with at least some
specified grade and then decreasing this grade until the
grade for the object requested in the Probe call is obtained. A
similar strategy could be implemented atop TopSearch.

3 FILTER CONDITIONS

In this section, we will consider processing and cost-based
optimization of queries that have only a filter condition, i.e.,
they are of the form:

SELECT oid

FROM Repository

WHERE Filter_condition

We will assume that the filter conditions are independent.
Similar restrictions have been traditionally adopted since
the System-R optimization effort [34].

Definition 1. We say that a filter condition f is independent
over a database db if:

1. Every atomic filter condition occurs at most once in f .
2. Every n atomic filter conditions a1; . . . ; an

2 in f satisfy
that Selða1^...^anÞ ¼ �n

i¼1SelðaiÞ, where SelðaÞ is the
fraction of objects in db for which the filter condition a is
true.

Independence rules out filter conditions with repeated
attributes and also filter conditions with correlated atomic
conditions (e.g., with conditions a1 and a2 such that a1 is
true (or false) whenever a2 is true).

We assume that our repository requires that we use an
index to evaluate every atomic filter condition. One way to
process such queries is to retrieve object ids using one
GradeSearch for each atomic condition in the filter condition
and then merge these sets of object ids through a sequence
of unions and intersections. Alternatively, we can retrieve a
set of object ids using GradeSearch for some conditions and
check the remaining conditions on these objects through
Probe operations.
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2. We use aj as shorthand for an atomic condition specifying an attribute,
value, and grade, e.g., Gradeðattr; valÞðoÞ � grade.

TABLE 1
The Three Objects in the Database and Their Grades

for Each of the Four Possible Definitions of RF



The key optimization problem is to determine the set of
filter conditions that are to be evaluated using GradeSearch.
The rest of the conditions will be evaluated by using Probe.
In order to efficiently execute the latter step, we will exploit
the known techniques in optimizing the processing of
expensive filter conditions [25], [22], [23], [26], [11].

In this section, we first define a space of search-minimal
executions, which access as few attributes as possible using
GradeSearch, and sketch the cost model and the optimization
criteria. Next, we describe an optimization algorithm and
explain the conditions under which it is optimal. Finally, we
show how we can further improve the execution plan
produced by our algorithm through a simple “postoptimi-
zation” step to lower the cost of the original plan and
conclude with a result that indicates that the general
problem of determining an optimal search-minimal execu-
tion is NP-hard.

The results in this section are complemented by the
experiments in Section 5, which show that considering both
the search and probe costs leads to significantly better
execution strategies and that postoptimized search-minimal
executions behave almost as well as the best (not necessarily
search-minimal) executions.

3.1 Execution Space

As an introduction, we begin by discussing the possible space
of execution for simple filter conditions, i.e., conditions that
consist of a disjunction (or a conjunction) of atomic condi-
tions. We will then generalize our description for arbitrary
filter conditions with disjunctions and conjunctions.

To process an atomic condition Gradeðattr; valueÞ
ðoÞ � grade, we use the GradeSearch(attr, value, grade) access
method described in the previous section.

Consider now the case where the filter condition is a
disjunction of atomic filter conditions a1 _ . . . _ an. All
objects that satisfy at least one of the ai satisfy the entire
filter condition. Evaluation of an atomic condition ai
requires the use of the GradeSearch access method associated
with ai. Since we assume that the atomic conditions are
independent, use of a GradeSearch is needed for each atomic
condition not to miss any object that satisfies the entire
condition.

Consider now the case where the filter condition is a
conjunction of atomic filter conditions a1 ^ . . . ^ an. There
are several execution alternatives. In particular, we can
retrieve all the objects that may satisfy the filter condition
by using GradeSearch on any of the atomic conditions
a1; . . . ; an. Subsequently, we can test each retrieved object to
verify that it satisfies all of the remaining conditions. The
cost of using one atomic condition for GradeSearch instead of
another may lead to significant differences in the cost. Thus,
we can process a conjunction of atomic filter conditions by
executing the following steps:

1. Search: Retrieve objects based on one atomic condi-
tion (using GradeSearch).

2. Probe: Test that the retrieved objects satisfy the other
conditions (using Probe).

An important optimization step is to carry out Step 2
efficiently by ordering the atomic-condition probes
(Section 3.3).

We call the above class of execution alternatives for a
conjunctive query search-minimal since only a minimal set of
conditions (in this case, only one condition) is used for
GradeSearch. The search-minimal strategies represent a
subset of the possible executions. In particular, for a
conjunctive filter condition, instead of searching on a single
subcondition and probing on the others, it is possible to
search on any subset of the atomic conditions and to take
the intersection of the sets of object ids retrieved. However,
the space of all such executions is significantly larger. In
particular, there are exponentially many subsets of con-
juncts to search on, but only a linear number of minimal
conjunct sets for searching.

Intuitively, a search-minimal execution evaluates a
minimal set of atomic conditions using GradeSearch and
evaluates the rest of the conditions using Probe. A simple
conjunctive filter condition needs to use GradeSearch for
only one atomic condition. However, an arbitrary filter
condition involving ^s and _s might need to search more
than one atomic condition, like the disjunction above.

We are motivated by several factors to focus on search-
minimal executions. First, as discussed in the context of
conjunctive queries, search-minimal executions avoid an
explosion in the search space. Next, as we will discuss in
Section 3.4 as well as demonstrate experimentally in
Section 5, simple postoptimizations allow us to derive from
the chosen search-minimal execution a cheaper execution
that is not necessarily search-minimal.

By searching on a condition using GradeSearch, we obtain
a set of objects. However, we may need to do additional
probes to determine the subset of objects that satisfy the
entire filter condition. Thus, given an atomic condition ai
and a filter condition f , the residue of f for ai, Rðai; fÞ, is a
Boolean condition that the objects retrieved using ai should
satisfy to satisfy the entire condition f . The following
definition captures how we construct residues for indepen-
dent filter conditions:

Definition 2. Let f be an independent filter condition,

represented as a tree in which the internal nodes correspond

to the Boolean connectives (hence there are “^ nodes” and

“_ nodes”) and the leaf nodes correspond to the atomic

conditions in f . Let a be an atomic condition of f . Consider the

path from the leaf node for (the only occurrence of) a to the root

of the tree for f . For every ^ node i in this path, let �i be the

condition consisting of the conjunction of all the subtrees that

are children of the node i and that do not contain a. Then, the

residue of f for a, Rða; fÞ, is
V

i �i. If there are no such nodes,

then Rða; fÞ ¼ true.

Example 2. Consider the filter condition

f ¼ a4 ^ ðða1 ^ a2Þ _ a3Þ:

Consider the residue of the atomic condition a2 using the
definition above. Thus, �1 ¼ a1 and �2 ¼ a4. Hence,

Rða2; fÞ ¼ a1 ^ a4:

As another example,

Rða4; fÞ ¼ ða1 ^ a2Þ _ a3:
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Then, any object that satisfies a4 and also satisfies
Rða4; fÞ satisfies the entire condition f .

Proposition 1. Let f be an independent filter condition, and a be
an atomic condition of f . Then, a ^Rða; fÞ ) f .

Proof. Please refer to Appendix A. tu

Given a filter condition f , we would like to characterize
the smallest sets of atomic conditions such that, by searching
the conditions in any of these sets, we retrieve all of the
objects that satisfy f (plus some extra ones that are pruned
out by probing).

Definition 3. A complete set of atomic conditions m for a filter
condition f is a set of atomic conditions in f such that any
object that satisfies f also satisfies at least one of the atomic
conditions in m. A complete set m for f is a search-minimal
condition set for f if there is no proper subset ofm that is also
complete for f .

Example 3. Consider Example 2. Each of fa4g, fa2; a3g, and
fa1; a3g is a search-minimal condition set. If we decide to
search on fa2; a3g, the following steps yield exactly the
objects that satisfy f :

1. Search on a2 and probe the retrieved objects with
residue Rða2; fÞ ¼ a1 ^ a4. Return the objects that
satisfy Rða2; F Þ.

2. Search on a3 and probe the retrieved objects with
residue Rða3; fÞ ¼ a4. Return the objects that
satisfy Rða3; F Þ.

Proposition 2. Letm be a complete set of atomic conditions for an
independent filter condition f . Then, f �

W
a2mða ^Rða; fÞÞ.

In particular, the above holds ifm is a search-minimal condition
set for f .

Proof. Please refer to Appendix A. tu

Now we are ready to define the space of search-minimal
executions.

Definition 4. A search-minimal execution of an independent
filter condition f searches the repository using a search-
minimal condition set m for f , and executes the following
steps:

. For each condition a 2 m:

- Search on a to obtain a set of objects Sa.
- Probe every object in Sa with the residual

condition Rða; fÞ to obtain a filtered set S0
a of

objects that satisfy f .
. Return the union

S
a2m S0

a.

We now present algorithms to pick a plan from the space
of search-minimal executions. We then show how to further
optimize these plans to lower their cost (Section 3.4). The
strategies that result from these postoptimizations are not
search-minimal executions.

3.2 Assumptions and Cost Model

Our optimization algorithm is cost-based and makes
statistical assumptions about the query conditions as well

as about the availability of certain statistical estimates. We
describe these assumptions in this section.

Statistical Parameters: We associate the following
statistics with each atomic condition a. We assume that
we may extract these statistics from the underlying object
repository and its indexes.

. Selectivity Factor SelðaÞ: Fraction of objects in the
repository that satisfy condition a.

. Search Cost SCðaÞ: Cost of retrieving the ids of the
objects that satisfy condition a using GradeSearch.

. Probe Cost PCða; pÞ: Cost of checking condition a for
p objects, using the Probe access method.

The probe cost PCða; pÞ depends on p, the number of
probes that need to be performed. If p is large enough, it
might be cheaper to implement the p probes by doing a
single search on a, at cost SCðaÞ. This observation will be
the key of the postoptimization step of Section 3.4.

We now sketch how to estimate these parameters over
multimedia repositories for text and image attributes.
Consider first a textual attribute that is handled by a
vector-space retrieval system. Typically, such a system has
inverted lists associated with each term in the vocabulary
[33], [1]. For each term we can extract the number of
documents d that contain the term, and the added
“importance” weight w (e.g., according to a tf � idf
weighting scheme [33]) of the term in the documents that
contain it. Thus, we can use the methodology in [20] to
estimate the selectivity of an atomic filter condition, as well
as the cost of processing the inverted lists that the condition
requires.

Consider now an attribute over an image that is handled
with an R tree. We can then use the methodology in [18],
which uses the concept of the fractal dimension of a data set to
estimate the selectivity of atomic conditions, and the expected
cost of processing such conditions using the R tree.

AssumptionsonConditions:As we mentioned before, we
will restrict our discussion to optimizing independent filter
conditions. We can compute the selectivities of complex
independent filter conditions as Selðe1 ^ . . . ^ enÞ ¼ �n

i¼1

SelðeiÞ and Selðe1 _ . . . _ enÞ ¼ 1��n
i¼1ð1� SelðeiÞÞ; follow-

ing traditional query optimization [34].

3.3 Optimization Algorithm

In this section, we present the results on optimization of
filter conditions. First, we define our optimization metric
over the search-minimal execution space. Next, we sketch
how we can use the past work in optimizing Boolean
expressions for the task of determining a strategy for
probing. Subsequently, we present our algorithm, which is
optimal with respect to our cost model and execution space
for independent filter conditions, and discuss how we can
adapt it for nonindependent filter conditions. We conclude
with an NP-hardness result that shows that if the filter
condition is not independent, then the complexity of
determining an optimal execution is NP-hard.

Cost of Search Minimal Executions. To pick the least
expensive search-minimal execution, we need to define the
cost of such executions. As we can see from the definition of
the search-minimal executions, the cost of one such
execution depends on 1) the choice of the search conditions,
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2) the probing costs of the remaining conditions, and 3) the
cost of taking the union of the answer sets. Value 3)
dominates only when the selectivity of the filter condition is
low. Therefore, to simplify the optimization problem, we
focus only on the search and probe costs.

Given a search-minimal condition set m for a filter
condition f and an algorithm w for probing conditions, we
now define the cost of searching the conditions in m plus the
cost of probing the other conditions using algorithm w as
Cwðf;mÞ ¼

P
a2mðSCðaÞ þ PCwðRða; fÞ; jOajÞÞ, where jOaj is

the number of objects that satisfy condition a and
PCwðRða; fÞ; jOajÞ is the cost of probing condition Rða; fÞ
for jOaj objects using algorithm w. This cost depends on the
probing algorithm w, as we discuss next. Note that if there
are O objects in the repository, jOaj ¼ SelðaÞ �O.

Optimizing Evaluation of Residues. Given a residue
Rða; fÞ, the task of determining an optimal evaluation for
Rða; fÞ maps to the well-studied problem of optimizing the
execution of selection conditions containing expensive
predicates [25]. (See also [23], [26], [22], [11].)

If Rða; fÞ is a conjunction of atomic conditions

a1 ^ . . . ^ an, there is an efficient algorithm w that finds the

optimum probing strategy. Specifically, it can be shown [23],

[26] that the order in which the atomic conditions for each

object should be probed is given by the rank of each

condition ai, defined as SelðaiÞ�1
ci

if we assume that PCðai; pÞ ¼
ci � p for some constant ci and where p is the number of

objects to probe. Then, assuming for simplicity that a1 . . . an
represents the increasing rank ordering of the conjuncts, we

can calculate the cost

PCðRða; fÞ; pÞ ¼
Xn

i¼1

Si;

where Si ¼ Selða1Þ � . . . � Selðai�1Þ � p � ci. (Note that Selða1Þ �
. . . � Selðai�1Þ � p is the number of objects that satisfy
conditions a1; . . . ; ai�1 out of the original p objects; we only
need to probe these objects for condition ai, at a cost of ci for
each object.) This result is well-known and was observed in
the database context by [23], [26]. We can take a similar
approach to order the evaluation of a disjunction of atomic
conditions.

Example 4. Consider the filter condition a1 ^ a2 ^ a3, where
Selða1Þ ¼ 0:01, Selða2Þ ¼ 0:02, and Selða3Þ ¼ 0:05. Let
c1 ¼ c2 ¼ 1, and c3 ¼ 0:5. The increasing rank sequence is
then a3; a1; a2. Then, the probing cost for 1,000 objects is
ð0:5þ 0:05 � 1þ 0:05 � 0:01 � 1Þ � 1; 000 ¼ 550:5.

In case Rða; fÞ is an arbitrary Boolean condition, the
problem of evaluating it optimally is known to be
intractable. However, several good heuristics are available
[25]. Therefore, we assume that we exploit one of these
available techniques to optimize the evaluation of residues.
As we mentioned above, depending on the strategy w used
to evaluate Rða; fÞ, we can parameterize our cost function.
Thus, we denote the cost corresponding to evaluation
strategy w by Cw. However, for the rest of the discussion,
we assume that such a choice of w is implicit and therefore
omit references to w.

S-optimality. Given that we can compute the cost
metric Cðf;mÞ for any independent filter condition f and
condition set m, our goal is to pick a good search-minimal
condition set. Let MðfÞ be the set of all search-minimal
condition sets for f .

Definition 5. A search-minimal condition set m for an
independent filter condition f is S-optimal if Cðf;mÞ ¼
minm02MðfÞ Cðf;m0Þ.

We now describe how we determine an S-optimal
search-minimal condition set for an independent filter
condition. The algorithm is implicit in the following
inductive definition. Intuitively, the algorithm traverses
the condition tree in a bottom-up fashion to create the
S-optimal set of search-minimal conditions. Such an
inductive definition requires the notion of search-minimal
condition set for a subcondition with respect to its enclosing
filter condition, as explained below:

Definition 6. Let f be a filter condition and f 0 be a subcondition
of f . The inductive search-minimal condition set for f 0 with
respect to f , SMfðf 0Þ, is defined inductively as follows:

1. Case f 0 ¼ a: SMfðf 0Þ ¼ fag, where a is an atomic
condition.

2. Case f 0 ¼ f1 ^ . . . ^ fn: SMfðf 0Þ ¼ SMfðfiÞ, where

Cðf; SMfðfiÞÞ
¼ minfCðf; SMfðf1ÞÞ; . . . ; Cðf; SMfðfnÞÞg:

(Break ties arbitrarily.)
3. Case f 0 ¼ f1 _ . . . _ fn: SMfðf 0Þ ¼ SMfðf1Þ [ . . . [

SMfðfnÞ:

Theorem 1. Let f be an independent filter condition. Then,
SMfðfÞ is an S-optimal search-minimal condition set for f .

Before we can prove Theorem 1, we need the following
auxiliary result.

Proposition 3. Let f1 and f2 be two independent filter conditions
with no atomic conditions in common. Then:

1. Mðf1 ^ f2Þ ¼ Mðf1Þ [Mðf2Þ:
2. Mðf1 _ f2Þ ¼ Mðf1Þ �Mðf2Þ, where m 2 Mðf1Þ �

Mðf2Þ if and only if 9m1 2 Mðf1Þ, m2 2 Mðf2Þ such
that m ¼ m1 [m2:

Proof. Please refer to Appendix A. tu
Proof (Theorem 1). FromProposition3, it isclearthatSMfðf 0Þ

is a search-minimal condition set for f 0. We will use
induction on the structure of f 0 to show that8 subcondition
f 0 of f , 8m 2 Mðf 0Þ; Cðf; SMfðf 0ÞÞ � Cðf;mÞ:

. Case f 0 ¼ a: Straightforward.

. Case f 0 ¼ f1 ^ . . . ^ fn: Let m ¼ SMfðf 0Þ. Suppose
that 9m0 2 Mðf 0Þ such that Cðf;m0Þ < Cðf;mÞ.
From Proposition 3, m0 2 MðfiÞ, for some
1 � i � n. From the inductive hypothesis,
Cðf;m0Þ � Cðf;miÞ, where mi ¼ SMfðfiÞ. And
from construction of SMfðf 0Þ, Cðf;mÞ � Cðf;miÞ.
Therefore, Cðf;m0Þ � Cðf;mÞ, contradicting our
choice of m0.
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. Case f 0 ¼ f1 _ . . . _ fn: Let m ¼ SMfðf 0Þ. Suppose
that 9m0 2 Mðf 0Þ such that Cðf;m0Þ < Cðf;mÞ.
From Proposition 3, m0 ¼ [i¼1;...;nm

0
i, where

m0
i 2 MðfiÞ. From the inductive hypothesis,

Cðf;m0
iÞ � Cðf;miÞ, where mi ¼ SMfðfiÞ, i ¼

1; . . . ; n. Therefore, because f is independent
and using the definition of SMf ,

Cðf;mÞ ¼
Xn

i¼1

Cðf;miÞ �
Xn

i¼1

Cðf;m0
iÞ ¼ Cðf;m0Þ;

contradicting our choice of m0. tu
Our strategy requires that we compute the cost of each

atomic condition at most once since the cost and search-
minimal set are computed “bottom-up.”

The problem of determining an S-optimal evaluation
strategy for a filter condition as discussed in this paper is
related to the problem of choosing access paths for
traditional selection queries in the presence of indexes for
a query processor that supports index union and intersec-
tion [32], [27]. In this paper, we restrict ourselves to search-
minimal executions, but do allow for probe costs. Please see
the related work section for additional details.

The proof of S-optimality of SMfðfÞ depends on the fact
that the given filter condition f is independent.3 None-
theless, with the following simple modification, we can still
provide a search-minimal condition set in case the given
condition is not independent. However, this set is is no
longer guaranteed to be S-optimal:

1. Derive SMfðfÞ assuming f is an independent
condition and treating each occurrence of a condi-
tion as a new atomic condition.

2. Identify a subset m � SMfðfÞ that is search minimal
for f .

Observe that the first step ensures completeness, whereas the
second step ensures that the set m is minimal and can be
determined efficiently. However, as the following example
shows, such a heuristic does not always result in anS-optimal
search-minimal condition set.

Example 5. Assume that the filter condition is
ða ^ bÞ _ ða ^ cÞ. The first step of the algorithm treats
every instance of a as a different condition. So, the query
is viewed by Step 1 as ða1 ^ bÞ _ ða2 ^ cÞ. Assume that the
algorithm determines SMfðfÞ ¼ fb; cg. Step 2 of the
algorithm does not change SMfðfÞ, although fag could
be a significantly better search-minimal condition set.
Therefore, the algorithm may fail to identify the best
search-minimal condition set if the subconditions are not
independent, as in this example.

The above result is not surprising given that the general
S-optimality problem, where no assumptions are made
about independence, is intractable even for the very simple
cost model where search cost is 1 and probe cost is 0, as the
following theorem shows.

Theorem 2. The problem of determining an S-optimal search-
minimal condition set for a filter condition is NP-hard.

Proof. We prove the result by a reduction from the vertex-
cover problem. To map an instance of the vertex-cover
problem G ¼ ðV ;EÞ to our problem, we generate a filter
condition F such that G has a vertex cover of size k or
less if and only if there is a processing strategy for F that
retrieves objects using searches over k or fewer atomic
conditions. We associate a unit cost for every search and
zero cost for the probes to complete the proof.

Given the (undirected) graph G ¼ ðV ;EÞ, we generate

the filter condition F ¼
W

ðvi;vjÞ2Eðvi ^ vjÞ, where the vis
are atomic conditions. We define PCðf; pÞ ¼ 0 for all f , p,

and SCðviÞ ¼ 1 for all the vis. Therefore, the cost of any

search-minimal condition set m is the number of atomic

conditions in m.
Now, G has a vertex cover of size k or less if and only

if there is a search-minimal condition set for F with
k conditions or less:

. ) : Assume G has a vertex cover V 0 of size k or
less. Then, there is a set of atomic conditions V 0 of
size k or less such that for each subcondition vi ^
vj of F , either vi 2 V 0 or vj 2 V 0.

. ( : Assume that there is a search-minimal
condition set m for F with k or fewer conditions.
Suppose that there is a subexpression vi ^ vj such
that vi; vj 62 m. Then, suppose that there is an
object o that satisfies only atomic conditions vi
and vj and none of the others. Then, o satisfies F ,
from the construction of F , but it does not satisfy
any of the conditions in m, contradicting the
completeness of m. Therefore, either vi or vj are in
m. Consequently, m defines a vertex cover for G
with k or fewer elements. tu

3.4 Postoptimization: Beyond Picking a Search-
Minimal Set

While choosing an S-optimal search-minimal condition set
is a key step in selecting an efficient execution plan, there
are several other opportunities for optimization.

First, we note that a search-minimal execution for a filter
condition f always handles the residue of a search
condition a by probing the condition Rða; fÞ. However,
when the number of objects to be probed is high, the cost of
probing Rða; fÞ may exceed the cost of searching on its
atomic conditions using GradeSearch. Thus, in case of a
conjunctive query, it may be more efficient to use more than
one condition for searching. In other words, it could be
convenient to allow the conditions that are used for
searching to no longer form a search-minimal condition
set. However, our optimization algorithm does not consider
such a plan.

To address this lack of flexibility, we introduce a
postoptimization step that locally replaces probes on one
or more conditions by the corresponding searches, as the
following example illustrates.

Example 6. Assume that the S-optimal search-minimal
execution for a1 ^ a2 ^ a3 searches on condition a1 and
probes on conditions a2 and a3. Let the number of objects
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3. Less expensive executions might be possible if independence does not
hold and extra information is available during query planning. As a simple
example, consider a filter condition a1 _ a2, where a2 is true only if a1 is
true. In this case, there would be no need to search on a2 to find all objects
that match the whole condition.



probed by a2 be 1,000 and the probe cost be 1 unit for
every probe. Thus, the total cost of probing on a2 is
1,000 units. If the search cost on a2 is 800, then we can
modify the execution plan a posteriori to search on
conditions a1 and a2 and to probe just on a3.

In Section 5, we report results on an experimental
evaluation of this simple postoptimization step.

In addition to turning certain probes into searches, our
algorithm presents other less critical opportunities for
postoptimization. For example, when processing several
atomic conditions, we could also improve how we “merge”
the objects retrieved using each of these conditions: 1) An
object that is retrieved by searches on both a1 and a2 can be
probed using either the residue Rða1; fÞ or the residue
Rða2; fÞ. Such a choice can be cost-based and influences the
order in which we merge results from multiple searches.
2) The merging order is also influenced by the cost of
detecting and eliminating duplicate objects and by the size
of the answer sets resulting from searches. Evaluating
alternatives for this “merging” and determining their effect
on the execution costs remains as future work.

4 FILTER CONDITIONS AND RANKING EXPRESSIONS

In this section, we consider queries, each of which consists
not only of a filter condition, but also of a ranking
expression. The answer to such queries consists of the top
objects for the ranking expression that also satisfy the filter
condition. We first look at queries consisting only of
ranking expressions (Section 4.1). Section 4.2 describes an
algorithm for processing this type of queries that has been
presented in references [13], [14], [15]. Finally, Section 4.3
presents our main result regarding this class of queries. We
show that we can map a given ranking expression into a
filter condition and process the ranking expression “al-
most” as if it were a filter condition. This mapping is central
to processing queries with ranking expressions applying the
techniques of Section 3 for processing filter conditions. The
experimental results of Section 5 show that, in some cases,
the number of objects retrieved and probed when proces-
sing a ranking expression as a filter condition can be
considerably smaller than when processing the ranking
expression using the algorithm in [13], [14], [15].

4.1 Ranking Expressions

A query consisting of only a ranking expression has the
form:

SELECT oid

FROM Repository

ORDER [k] by Ranking_expression

The result of this query is a list of k objects in the
repository with the highest grade for the given ranking
expression. The ranking expressions are built from atomic
expressions that are combined using the Min and Max
operators that we defined in Section 2.

4.2 Fagin’s Strategy

Fagin presented a novel approach to processing a query
consisting of a ranking expression in references [13], [14],

[15]. In this section, we briefly describe his approach. In
Section 5, we experimentally compare this algorithm
against our approach for processing ranking expressions
using a modified version of our techniques of Section 3.

Consider a ranking expression R ¼ Minða1; . . . ; anÞ,
where the ais are independent atomic expressions. Suppose
that we are interested in k objects with the highest grades
for R. Fagin’s algorithm uses the TopSearch access method to
retrieve these objects from the repository. It does so by
retrieving the top objects from each of the subexpressions
ai, i ¼ 1; . . . ; n, until there are at least k objects in the
intersection of the n streams of objects that he retrieves.
(There is one stream per subexpression of R.) Fagin proved
that the set of objects retrieved contains the necessary k top
objects. Therefore, he can compute the final grade for R of
each of the objects retrieved, doing the necessary probes,
and output the k objects with the highest grades. Fagin has
proved the important result that the above algorithm to
retrieve k of the best objects for an expression R that is a Min
of independent atomic expressions is asymptotically opti-
mal with arbitrarily high probability.

Now, consider a ranking expression R ¼ Maxða1; . . . ; anÞ,
where the ais are independent atomic expressions. Suppose
that we are interested in k objects with the highest grades for
R. In this case, another algorithm by Fagin requests exactly k
objects from each of the subexpressions ai, i ¼ 1; . . . ; n, with
no need to probe any objects. It follows that there are k top
objects for R among these k � n objects.

4.3 Processing Ranking Expressions as Filter
Conditions

As discussed in Section 2, a query may have both a filter
condition as well as a ranking expression. A naive query-
execution strategy might stage the processing of these two
components of the query, leading to two alternatives:
1) evaluate the filter condition first using the techniques
in Section 3.3 and then rank the results by probing on the
necessary attributes, or 2) use techniques for efficient top-k
query processing to identify the top-k0 objects for the
ranking expression (for some k0 � k) and then filter out any
objects that do not satisfy the filter condition by probing on
the necessary attributes. Note that the second strategy
requires deriving a value of k0 from the given k by somehow
taking into account the selectivity of the filter condition.
Both of these alternatives ignore the possible synergy in
optimizing the execution of queries by considering filter
conditions and ranking expressions simultaneously. Our goal
in this section is to precisely identify if we could view
filtering and ranking in a uniform framework. This brings
up the challenge of “mapping” ranking expressions into a
filter condition without significant loss of efficiency as
compared to using techniques that are optimized for
ranking expressions. However, since such mapping takes
place as part of query optimization, we must depend on
estimation techniques to derive a suitable filter condition.
We do so by techniques similar to those adopted for cost
estimation in traditional relational databases. Thus, our
“mapped” ranking expressions are optimized not in an
absolute sense, but leveraging approximate statistics that
are available. This is in sharp contrast to the techniques by
Fagin [13], [14], [15] that we outlined above, which provide
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theoretical performance guarantees. However, our mapping
technique has the benefit of enabling a smooth integration
with the broader class of queries involving filter conditions.
Moreover, as our experiments will suggest, our technique
compares favorably to Fagin’s.

Although in this section we show how to process a
ranking expression as a filter condition, the semantics of
both the filter condition and the ranking expression remain
distinct. (See Section 2.) We still need to specify a ranking
expression to get a sorted set of objects. Filter conditions
have unordered sets as their answers. In the strategy that
we describe below, after processing a ranking expression as
a filter condition, we will have to compute the grade of the
retrieved objects for the ranking expression and sort them
before returning them as the answer to the query.

Given a ranking expression R and the number k of
objects desired, we give an algorithm to assign a grade to
each atomic expression in R and a filter condition F with
the same “structure” as R that retrieves the top objects
according to R.

Example 7. Consider a ranking expression

e ¼ MinðGradeðA1; v1Þ; GradeðA2; v2ÞÞ;

where Ai is an attribute and vi a constant value. We want
two objects with the top grades for e. Now, suppose that
we can somehow find a grade G such that there are at
least two objects with grade G or higher for expression e.
Therefore, if we retrieve all of the objects with grade G or
higher for e, we can simply order them according to their
grades and return the top two as the result to the query.
Furthermore, such a grade G should be as high as
possible to retrieve as few objects as possible.

In other words, we can process e by processing the
following associated filter condition f , followed by a
sorting step of the answer set for

f ¼ ðGradeðA1; v1ÞðoÞ � GÞ ^ ðGradeðA2; v2ÞðoÞ � GÞ:

By processing f using the strategies in Section 3, we
obtain all of the objects with grade G or higher for A1 and
v1 and for A2 and v2. Therefore, we obtain all of the
objects with grade G or higher for the ranking
expression e. If there are enough objects in this set (i.e.,
if there are at least two objects), then we know we have
retrieved the top objects that we need to answer the
query with ranking expression e.

Analogously, a ranking expression

e0 ¼ MaxðGradeðA1; v1Þ; GradeðA2; v2ÞÞ

would be mapped to a filter condition

f 0 ¼ ðGradeðA1; v1ÞðoÞ � G0Þ _ ðGradeðA2; v2ÞðoÞ � G0Þ;

for an appropriate grade G0. By processing f 0, we retrieve
all of the objects having grade G0 or higher for the
ranking expression e0, with no need to probe any objects.
If there are at least two such objects, then we can answer
e0 by returning two objects with the top grades for e0 from
among the set of objects that we retrieved.

As we have seen in the example above, we can process a
ranking expression e as a filter condition f followed by a

sorting step. The key point in the mapping of the problem
from a ranking problem to a (modified) filtering problem
lies in finding the grade G to use in f , as in the example.
Ideally, grade G should be the kth largest grade of any
object in the database: The resulting filter condition f that
uses such a value of G would then retrieve exactly the top
objects for the query. Unfortunately, such a grade is
unknown at query-optimization time, so we need to rely
on estimates to approximate it.

To determine the grade G for the filter condition f for e,
we find the largest (or a close-to-largest) grade G such that
the selectivity of f is at least k

O, where O is the number of
objects in the repository. If the selectivity estimates used to
determine G are accurate (see Section 3.2) and the
independence assumption holds for e, then f is likely to
retrieve the desired top-k objects, based on cost and
cardinality estimates derived as in relational-model opti-
mization as described above. However, in a realistic setting
the selectivity estimates might not be completely accurate,
which might result in f retrieving fewer or more than
k objects. In case the number of objects retrieved is less than
k, we say that query f needs to be restarted using a lower
value for G and the process repeats until we retrieve at least
k objects.

We now present the algorithm Rank, which takes as
input a ranking expression e, the desired number of
objects k, and the number of objects in the database O,
and produces the top-k objects for e using selectivity
statistics. Rank relies on two auxiliary functions, FilterGrade,
which finds a suitable grade G for the filter condition used
to compute the query results,4 and FilterMap, which simply
maps a ranking expression to a filter condition that is
equivalent “in structure,” for a given grade. These two
auxiliary functions are defined below.

Algorithm Rank(ranking expression e; objects desired k;
objects in database O)

// Returns top-k objects for e among the O objects in

database.

1. reqK ¼ k //Number of objects requested; might be

adjusted later if restarts needed.

2. G=FilterGradeð0; 1; e; reqK;OÞ // Identify search grade.

3. f=FilterMapðe;GÞ // Build filter condition equivalent to e

“in structure” using grade G.
4. Use algorithm in Section 3 to find set of objects M that

satisfy filter condition f

5. If jMj < k: // Not enough objects retrieved; need to

restart query.

6. If jMj > 0: // Some objects retrieved.

7. reqK ¼ dreqK � reqKjMj e // Increase number of objects

requested, to get lower search grade.

8. newG ¼ FilterGradeð0; 1; e; reqK;OÞ
9. Else: newG ¼ G2 // No objects retrieved; object

grades “squeezed” in ½0; GÞ range.

10. G ¼ minfnewG;maxf0; G� �gg //Decrease G by at

1000 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 8, AUGUST 2004

4. In [9], we presented a different strategy for identifying grade G; our
experimental evaluation of this alternative strategy revealed that it is
comparable to, or less efficient than, the version that we present here.
Furthermore, the older strategy suffers in performance when the distribu-
tion of grades varies significantly across attributes.



least a small constant � > 0, for termination.
11. Go to Step 3.

12. Else: Return k objects from M with highest grade for e

// Enough objects retrieved; done.

Steps 5-11 handle the case where the original filter
condition f with associated grade G did not manage to
identify k or more objects. In this case, the query needs to be
restarted, as explained above. This undesirable scenario is
due to inaccurate selectivity estimations. We distinguish
two cases: 1) If f matched k0 objects with 0 < k0 < k

(Steps 6-8), then a new, lower grade G is computed by
inflating the number of objects requested proportionally to
the k

k0 ratio. 2) If f matched no objects (Step 9), then all
objects in the database have grades in the ½0; GÞ range. The
original grade G was computed assuming that grades were
distributed in the ½0; 1� range, so we shrink grade G to the
½0; GÞ range by multiplying it by G, the new upper bound
on the object grades.

The auxiliary functions FilterMap and FilterGrade are
defined next. Given a grade G, FilterMap maps a ranking
expression e into a filter condition f with e’s same basic
structure such that f matches exactly those objects that have
a grade of G or higher for e. FilterGrade implements binary
search to find a grade that yields the desired selectivity for a
filter condition. (Reference [12] followed a similar approach
to evaluate top-k queries over relational databases.)

Function FilterMap(ranking expression e; search grade G)

// Maps e into a filter condition f with the same structure,
such that any objects that satisfy f have a grade no lower

than G for e.

1. If e ¼ GradeðAi; viÞ: f ¼ GradeðAi; viÞðoÞ � G // e is an

atomic expression.

2. Else: // e is not an atomic expression.

3. If e ¼ Minðe1; . . . ; enÞ: f ¼ ðFilterMapðe1; GÞ ^ . . . ^
FilterMapðen;GÞÞ

4. Else: f ¼ ðFilterMapðe1; GÞ _ . . . _ FilterMapðen;GÞÞ
// e ¼ Maxðe1; . . . ; enÞ

5. Return f

Function FilterGrade(grade-range bounds ‘, h; ranking

expression e; objects desired k; objects in database O)

// Binary-searches for high grade G in ½‘; h� range with

SelðFilterMapðe;GÞÞ � k
O .

1. If selectivity-estimate granularity too coarse to

distinguish between ‘ and h:

2. Return ‘ //Return ‘ rather than h to help avoid

restarts.

3. Else:

4. G ¼ ‘þh
2

5. If SelðFilterMapðe;GÞÞ < k
O : h ¼ G

6. Else: ‘ ¼ G

7. Return FilterGradeð‘; h; e; k; OÞ
The Rank algorithm maps an arbitrary ranking expres-

sion into a filter condition. Note that, when a query contains
a filter condition F and a ranking expression R, the query
asks for the k top objects by the ranking expression R that
satisfy F . Using Rank, we can translate the problem of
optimizing such a query into the problem of optimizing the

filter condition F ^ F 0, where F 0 is the filter condition
associated with R and k0 ¼ k

SelðF Þ . We can then apply the
query-processing methodology of Section 3 over this
composite filter condition. In practice, it is likely that some
attribute might appear both in F and in R in the original
query. In such a case, the filter condition F ^ F 0 will not be
independent and, hence, the guarantees of Section 3.3 will
not hold. However, the experimental evaluation that we
report next shows that the filter-condition processing
techniques of Section 3.3 perform well even when the
independence assumption does not hold and the data set
exhibits attribute correlation.

5 EXPERIMENTAL RESULTS

In this section, we report an experimental evaluation of the
techniques presented in Section 3 and 4 over synthetic data.
In the “default” setting of our experiments, the number of
objects O in each generated data set is 10,000 and objects
have six attributes Ai, 1 � i � 6. We vary these and other
parameters throughout our experiments.

Individual attribute grades for each object are generated
in three different ways:

. Uniform data set: We assume that attributes are
independent of each other; grades are uniformly
distributed within each attribute (default setting).

. Correlated data set: We assume that attributes are
divided in two groups so that the grades of objects
for attributes within the same group are correlated;
grades are uniformly distributed within each attri-
bute. We use this data set to study the performance
of our algorithms when independence assumptions
do not hold.

. Gaussian data set: We assume that attributes are
independent of each other; grades are generated
via five overlapping multidimensional Gaussian
bells [36].

We build exact selectivity estimates over the generated
data with information at a grade granularity of 0.01. We
also report experiments over selectivity estimates that do
not represent the data accurately.

For each attribute Ai, the probe cost PCðai; pÞ to check
condition ai associated with Ai for p objects is defined to be
equal to the number of objects probed p times the cost of an
individual probe ci (i.e., PCðai; pÞ ¼ p � ci). We assume the
search cost SCðaiÞ to be linear in the number of objects
retrieved for condition ai: SCðaiÞ ¼ SelðaiÞ �O � di, where O

is the number of objects in the data set and di is the cost of
retrieving one object. In our default setting, both ci and di
are chosen randomly from the ½1; 10� range.

The filter conditions that we use in our experiments have
exactly one atomic condition for each of the available
attributes; the grade associated with each of these atomic
conditions is chosen randomly from the ½0; 1� range. The
ranking expressions also involve all attributes and ask for
k ¼ 10 objects in the default setting of the experiments.

Our default setting for the different experiment para-
meters is summarized in Table 2. We now report on
experimental results for the default setting and when
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varying the different parameters. For our experiments, we

measure the cost of processing a query q as

CostðqÞ ¼
Xn

i¼1

di � RetrievedðAiÞ þ
Xn

i¼1

ci � ProbedðAiÞ;

where RetrievedðAiÞ is the overall number of objects

retrieved via GradeSearch over attribute Ai (including

restarts and counting multiply retrieved objects) and

ProbedðAiÞ is the number of objects probed for attribute Ai

(including restarts and assuming we never probe an object

on the same condition twice, but rather keep this informa-

tion to save probes).

5.1 Filter Conditions

In this section, we report experimental results on query

processing strategies for filter conditions. Throughout this

section, we use a conjunctive filter condition a1 ^ . . . ^ an,

where ai is an atomic filter condition involving attribute Ai.

For our experiments, we ran 1,000 queries and averaged

their results. We compare the following strategies:

. Filter: Strategy Filter is the search-minimal algorithm
of Section 3.

. Filter-PostOptimization: Strategy Filter-PostOptimiza-
tion is the algorithm that results from applying the
postoptimization step of Section 3.4 over Filter.

. Sep: Strategy Sep is determined by first choosing the
best atomic conditions on which to search, consider-
ing the search cost and the selectivity of the
conditions, but not the probe costs. Then, Sep probes
the remaining conditions in an optimal order. Filter
differs from Sep in that Filter takes into account the
probing costs when choosing the conditions on
which to search.

. Exh: Strategy Exh exhaustively considers at query-
planning time all possible nonempty subsets of the
atomic conditions to retrieve the objects and then
probes the remaining conditions optimally accord-
ing to the cost and selectivity statistics. This strategy
does not restrict the search space to search-minimal
executions as do Filter and Sep.

Fig. 1 shows the performance of the four techniques for
conjunctive queries for the default parameter setting on
data sets generated using different grade distributions. The
correlated data sets consist of three different sets in which
we divided the attributes into two groups so that an object’s
grades for attributes within the same group are correlated.
The groups are defined as follows: (1, 5): One group has one
attribute and the other five attributes; (2, 4): One group has
two attributes and the other four attributes; and (3, 3): Both
groups have three attributes. For all data sets, Filter
performs better than Sep, showing that considering probing
costs when evaluating search-minimal executions results in
lower query costs. Filter-PostOptimization gives results close
to the Exh technique in which all combinations of plans are
considered. Interestingly, Filter-PostOptimization then al-
lows us to have close-to-optimal results without consider-
ing all execution plans, which can be expensive. Results for
the Gaussian distribution are slightly better than for the
Uniform distribution since fewer objects tend to satisfy the
selection conditions. For the correlated data sets—over
which the independence assumption underlying the con-
struction of the algorithms does not hold—all techniques
have better performance when the attributes are evenly split
into two groups: This configuration results in fewer probes
being performed as objects can be discarded more easily.

Effect of the Number of Attributes. We studied the
effect of the number of attributes in the filter condition. As
the number of attributes increases, the selectivity of the

1002 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 8, AUGUST 2004

TABLE 2
Default Setting of Some Experiment Parameters

Fig. 1. Comparison of the different techniques for data sets generated using different grade distributions: (a) Uniform and Gaussian data sets;
(b) Correlated data sets.



conjunctive query, which then consists of more conditions,
decreases. This results in turn in fewer objects being
considered and in lower query-execution costs.

Effect of the Cost Ratio. Our algorithms of Section 3.3
rely on cost estimations to select a query plan. Additionally,
the postoptimization step of Filter-PostOptimization com-
pares the relative cost of searching and probing for attributes
that do not belong in the search-minimal condition set to
make further optimization choices. We now study the effect
on the query processing cost of the relative values of ci, the
cost of probing one object, and di, the cost of retrieving one
object using GradeSearch (Fig. 2). The probing cost ci is
chosen from ½1; 10�, while the range of values of di varies
from ½0:1; 1� to ½10; 100�. As expected, when di increases, the
overall cost of a query increases as well since retrieving
objects becomes more expensive. When the di=ci ratio is
high, the cost of retrieving objects dominates: All techniques
tend to select a plan that minimizes the number of objects
retrieved using GradeSearch. Hence, probes are favored
because they are relatively inexpensive. In contrast, when
the di=ci ratio is low, retrieving objects via the GradeSearch
interface is less expensive than using probes. Exh and Filter-
PostOptimization, both of which consider plans with more
search attributes than strictly necessary, are then cheaper
than Filter and Sep, which only consider search-minimal
executions.

Effect of the Condition Grades. Fig. 3 studies the effect
of the selectivity of a query on its cost. For these
experiments, all atomic conditions in the query have the
same associated grade and we vary this grade from 0 to 1.
When the grade is low, many objects satisfy the filter
condition and have to be processed, resulting in high cost.
In contrast, when the grade condition is high, the selectivity
of the query is low and so is query processing cost.

A clear conclusion from the experiments above is that
Filter is consistently more efficient than Sep: This conclusion
highlights the benefits of considering the probe costs in
addition to the search costs during query optimization.
Another conclusion is that Filter-PostOptimization is sig-
nificantly more efficient than Filter: In fact, its simple
postoptimization step makes Filter-PostOptimization almost
indistinguishable from the exhaustive-search Exh algorithm
in our experiments. We have performed experiments over
disjunctive filter conditions as well: Processing such queries

always involves searching on all atomic conditions via
GradeSearch, with no probes. Therefore, the techniques in
Section 3.3 are all equivalent for disjunctive queries.

5.2 Ranking Expressions

In this section, we report experiments on query-processing
strategies for ranking expressions. In Section 4.3, we
presented Rank, an algorithm to map the execution of a
ranking expression into the execution of a filter condition.
We now compare Rank experimentally with Fagin’s algo-
rithm (Section 4.2), which we will refer to as FA. For the
filter processing part of the Rank algorithm (Step 4 of the
algorithm), we use algorithm Filter-PostOptimization. Our
experiments use two ranking expressions over six attri-
butes, RMin ¼ Minðe1; . . . ; e6Þ and RMax ¼ Maxðe1; . . . ; e6Þ,
where ei is an atomic expression over attribute Ai.

The goal of this section is to demonstrate that our
heuristic technique for mapping ranking expressions to a
filter condition compares favorably experimentally to
Fagin’s algorithm, which carries optimality guarantees.
Recall that the key strength of our approach is the unifying
framework for answering queries involving both filter
conditions and ranking expressions.

Fig. 4 presents results for Rank and FA for the default
settings over both Uniform and Gaussian data sets and the
Correlateddata set with two groups of three attributes (results
over the other Correlated data sets are similar). We present
results forRank for two different values of the “granularity” of
the selectivity estimates: 0.01 and 0.001. Fig. 4a shows that
Rank outperforms FA for the RMin query. Using detailed
analysis, we traced the reasons for our efficiency. First, Rank
uses statistics on selectivity estimates (via Filter-PostOptimi-
zation) to decide on which conditions to search and on which
to probe. This results in retrieving fewer objects than FA in
these experiments, although the average smallest grades seen
by both Rank and FA are close (the average grade G used by
Rank (0.01), including restarts, is 0.67235, while the average
lowest grade seen by FA for each attribute is 0.685709 for the
Uniformdata set). Second,Rank tends to use fewer probes than
FA: Unlike FA, Rank does not compute the complete grade of
each object retrieved, but rather stops probing an object as
soon as the object has failed to satisfy one condition in the
filter. This early termination results in significant savings in
probe costs.
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Fig. 2. Effect of the cost ratio di=ci on the cost of processing filter

conditions.

Fig. 3. Effect of the condition grades on the cost of processing filter

conditions.



These two key aspects of our processing explain our
performance reported in Fig. 4a. The granularity of the
selectivity estimates slightly affects Rank’s query cost: A too
fine granularity (see results for granularity 0.001) results in
more restarts and, thus, higher query costs; we discuss this
issue in more detail below. Interestingly, Rank’s perfor-
mance on RMax functions (Fig. 4b)), which involve search-
ing on all attributes but do not require any probing, is very
sensitive to the granularity of the selectivity estimates.
Specifically, if the granularity of the selectivity estimate is
too coarse, the grade that Rank uses to map the ranking
expression into a filter condition might result in a condition
that matches more than k objects.

Our experiments confirm that Rank (0.01) retrieves more
objects than FA for RMax: The average lowest grade seen by
FA using sorted access (0.999003 for the Uniform data set) is
slightly higher than the grade G used by Rank (0.99 for the
Uniform data set). Note that the queries in the default setting
ask for just the top 10 objects and that 0.99 is the highest
grade that Rank (0.01) could pick for the default selectivity-
estimate granularity of 0.01 used in these experiments. The
grade G associated with Rank (0.001) is 0.999 and the
performance of Rank for this finer-granularity case is almost
identical to that of FA.

Effect of the Number of Objects Requested k. Fig. 5
studies the effect of the number of objects requested k on the
query costs of FA and Rank. Fig. 5a shows that the cost of

both techniques for RMin increases slightly with k since
more objects are processed to compute the query result.
Fig. 5b shows that FA’s performance for RMax is linear in the
number of objects requested k, while Rank’s performance is
constant for the values of k that we tried: The highest
grade G that Rank can use, given the default setting of the
selectivity-estimate granularity, generally results in more
objects being retrieved than needed, hence this “flat”
behavior. Note that Rank’s cost will increase in steps each
time G has to be decreased for k objects to be retrieved.

Effect of the “Granularity” of the Selectivity Estimates.

Fig. 6 studies the effect on the query costs of Rank of the
“granularity” with which our techniques make selectivity
estimates. Fig. 6a shows that the performance of Rank for
RMin suffers if the granularity is too fine or too coarse: If the
granularity is too fine, Rank is prone to restarts since a slight
error in selectivity estimation might decrease the number of
objects that satisfy the filter condition below k. (As usual,
the costs reported in Fig. 6 include the costs of “restarts” for
Rank, as discussed above.) If the granularity is too coarse,
Rank will process more objects to identify the top-k objects
since more objects are expected to satisfy the filter
condition. FA does not use statistics on data, and is
therefore unaffected by variations of the granularity of the
selectivity estimates. For the setting of this experiment, FA’s
cost is higher than 290,000. Rank’s performance is still much

1004 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 8, AUGUST 2004

Fig. 4. Comparison of the techniques for RMin (a) and RMax (b) over data sets generated using different grade distributions.

Fig. 5. Effect of the number of objects requested k for RMin (a) and RMax (b) on the query costs of Rank and FA.



better than FA’s, for all granularities of the selectivity
estimates that we tried. Fig. 6b shows that the performance
of Rank for RMax improves when the granularity of the
selectivity estimates becomes finer, as discussed above.

Effect of the Selectivity-Estimate Error. Rank relies on
selectivity estimates to map ranking expressions into filter
conditions. We have already reported on the effect of the
“granularity” of such estimates on the quality of the mapping.
Now, we study the effect of inaccurate estimates on Rank. For
this experiment, we use two configurations. In the first
configuration, the actual data set is generated using a
Gaussian distribution with only one bell [36]. The selectivity
estimates thatRankuses are then created using ð1� noiseÞ �O
objects from the actual data set and noise �O objects from
another data set generated using aUniformdistribution. Thus,
when thenoise is equal to 0, the selectivity estimates are exact,
while, when noise is equal to 1, the selectivity estimates are
highly inaccurate and based on a completely different data set
generated using a different grade distribution. Results for this
first configuration are shown in Fig. 7. In the second
configuration, the actual data set is generated using aUniform
distribution, and the selectivity estimates are created using
ð1� noiseÞ �O objects from the actual data set and noise �O
objects from another data set generated using a Gaussian
distribution (Fig. 8). For the first configuration, selectivity

estimates tend to overestimate the number of objects
retrieved for a given grade. Fig. 7a shows that the query cost
is affected by the noise and increases as expected as the noise
value increases (and the data set and its associated selectivity
estimates become increasingly further apart). However,
Rank’s query cost is lower than FA’s, even for high values of
data setnoise. Fig. 7b shows that the number of queries in need
of restarts increases as noise increases and so does the number
of restarts per query. The increase in the number of restarts
results from the selectivity estimates overestimating the
actual number of objects retrieved for a given grade.
However, the vast majority of the queries do not need to be
restarted more than once because of the grade adjustment by
our “restarts” strategy, which is based on query feedback:
Even whennoise ¼ 1, only 14 percent of the queries require to
be restarted more than once. For the second configuration,
selectivity estimates tend to underestimate the number of
objects retrieved for a given grade, resulting in smaller G
grades. As seen in Fig 8a, the query cost is moderately affected
by the noise since more objects than needed are being
retrieved asG is lower. Fig 8b shows that underestimating the
number of objects retrieved results in fewer restarts since
more objects than estimated are actually retrieved. In
summary, these results, together with those for varying
selectivity-estimate granularities, suggest that Rank works
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Fig. 6. Effect of the “granularity” of the selectivity estimates for RMin (a) and RMax (b) on the query costs of Rank.

Fig. 7. Effect on the query cost (a) and restarts (b) of Rank of the divergence of data sets and their corresponding selectivity estimates, for RMin

(Gaussian data set).



well even with less-than-ideal selectivity estimates, espe-
cially in conjunction with our “restarts” strategy (Steps 5-11 of
AlgorithmRank), which adjusts the search grade based on the
query-result feedback from the first filter-condition execu-
tion. We also ran similar experiments for RMax and observed
that, in that case, Rank is not significantly affected by the
divergence of the data set and the selectivity estimates,
probably because the values of k that we tried are smaller than
the expected number of objects usually retrieved using the
filter condition.

6 RELATED WORK

Our query model captures the aspects of filtering based on
graded search and ranking. The concept of a graded match
has been used extensively. For example, the query model in
[31] allows specifying a grade of match as well as ranking.
However, the processing of queries in [31] is based on
searches (i.e., no probes are considered).

Many database systems have been built and prototyped
with varying degrees of support for processing user-
defined functions [4]. As a notable example, the QBIC
system [28] from IBM Almaden allows users to query image
repositories using a variety of attributes of the images, like
color, texture, and shapes. The answer to a query is a rank
of the images that best match the query values for the
attributes. References [35], [19] discuss various methods for
indexing and querying image and video repositories. The
problem of optimizing user-defined filter conditions has
been addressed in the literature. Work in [23], [26], [22], [11]
focuses on conjunctive selection conditions. Techniques to
optimize arbitrary Boolean selection conditions have been
studied in [25], [24], [30]. Our work draws upon the known
results in this area. (See Section 3.)

The problem of determining an optimal set of conditions to
search arises naturally when optimizing single-table queries
with multiple indexes [32], [27] where the problem translates
into the task of identifying the appropriate set of indexes to
union and to intersect.5 By imposing the search minimality
criterion, we have eliminated the need to consider index
intersection and we always choose a single condition among

conjuncts on which to search. This imposes implicitly the
assumption that search cost is significantly higher compared
to probe cost. On the other hand, we do account for non-zero
probe costs, unlike [27], and are able to prove that our
optimization algorithm produces an S-optimal search-mini-
mal plan with low computational overhead if atomic
conditions are independent. This optimization problem can
also be cast as optimization of relational queries that involve
joins as well as unions. As above, such a formulation fails to
capture characteristics that are particular of selection queries,
as exploited in our algorithms.

In the context of the Garlic project at IBM Almaden [5],
Fagin’s work [13], [14], [15] focuses on how to evaluate
queries that ask for a few top matches for a ranking
expression. (See Section 4.2.) In his queries, the notions of
true and false are replaced by graded matches and Boolean
operators are reinterpreted to give the semantics of composi-
tion functions that take two grades of match and produce a
composite grade (e.g., Min, Max). Thus, our ranking expres-
sions are a special case of Fagin’s queries. Under broad
assumptions on the cost model, Fagin demonstrates the
optimality of his FA algorithm for a class of composition
functions. Also, Fagin and Wimmers [17] discuss how to
modify the scoring function to incorporate user preferences
so that, say, an attribute might be twice as important to a user
as the other attributes mentioned in the query. Finally,
Wimmers et al. [37] describe their experience in implement-
ing Fagin’s original algorithm on Garlic. Fagin’s algorithm
was markedly more efficient in “joining” multiple multi-
media sources compared to traditional join techniques.
However, the paper also points to intrinsic difficulties arising
from heterogeneity of sources that makes establishing object
identity difficult and describes the steps that were needed in
Garlic to overcome these issues.

Ortega et al. [29] support ranked retrieval over image
databases as part of their MARS system. One of their key
contributions is an adaptation of FA that has the flavor of a
“merge-join” algorithm. Top-k query processing over
traditional relational data has also received attention [6],
[7], [10], [12].

Recently, Fagin et al. [16] proposedTA, an algorithm that is
more efficient than FA: Unlike FA, TA is “instance optimal”
[16], does not need an unbounded buffer, and considers object
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Fig. 8. Effect on the query cost (a) and restarts (b) of Rank of the divergence of data sets and their corresponding selectivity estimates, for RMin

(Uniform data set).

5. The problem of sequencing the order of accesses to subfiles of
transposed files is also related in a similar way [2].



grades to decide when to stop retrieving new objects. TA
stops retrieving new objects when it finds a “threshold”
grade G such that 1) at least k objects with grade G or higher
have been identified and 2) no unretrieved object can have a
grade greater thanG. Unlike ourRank algorithm,TAdoes not
determine G using selectivity statistics, but rather refines G’s
value dynamically based on the grades of retrieved objects.
As a result, TA never needs to “restart” a query. Other recent
work includes Bruno et al.’s Upper algorithm [3], which picks
the most “promising” object-attribute pair to process at any
given time based on the result of previous accesses. Bruno
et al. also proposedTA-EP, an optimization ofTA that exploits
existing techniques for processing selections with expensive
predicates, and is thus related to the strategy in Section 3.
Finally, Chang and Hwang [8] presented a top-k processing
algorithm for expensive predicates that relies on identifying
“necessary” probes. An experimental comparison of our
techniques with these strategies is subject of interesting
future work.

7 SUMMARY

In this paper, we addressed the problem of cost-based
optimization of queries over multimedia repositories, where
specifying conditions on the degree of match between values
is important. In many of these repositories, the only way to
evaluate conditions is through an index, which can be used to
either evaluate a search condition or to probe a condition. We
studied the cost-based optimization of filter conditions in this
framework. Specifically, we defined a space of search-
minimal executions and presented an efficient algorithm to
choose a search-minimal condition set for filter conditions
with independent atomic conditions. Our experimental
results indicate that the cost of the strategies can be
significantly lowered by considering search and probe costs
compared to the cost of strategies adopted by optimizing for
only the search or the probe costs separately. Although
search-minimal executions minimize the number of condi-
tions to search on, our experiments indicate that, through a
postoptimization step, the quality of our plans is almost as
good as those obtained over an exhaustive search of the plan
space. Another aspect of our query scenario is that often the
user is interested in just a few best matches for a ranking
expression. A key contribution of our paper has been to show
that such a ranking expression can be mapped into and
executed as a filter condition with a final sorting step over just
the top objects. Our experimental evaluation indicates that
this approach is efficient even when the selectivity estimates
on which it relies are inaccurate for a variety of data
distributions and query settings.

APPENDIX A

PROOFS

Proposition 1. Let f be an independent filter condition and a be
an atomic condition of f . Then, a ^Rða; fÞ ) f .

Proof. By induction on the structure of the filter condition f . If
f ¼ a, then Rða; fÞ ¼ true. Thus, the proposition follows
trivially.

Now, consider the case f ¼ f1 ^ . . . ^ fn. Assume that
a appears in f1 (and nowhere else because f is
independent). From the definition of residue,

Rða; fÞ ¼ Rða; f1Þ ^ f2 ^ . . . ^ fn. From the inductive hy-
pothesis, a ^Rða; f1Þ ) f1. Then,

a ^Rða; fÞ ¼a ^Rða; f1Þ ^ f2 ^ . . . ^ fn

) f1 ^ f2 ^ . . . ^ fn ¼ f:

Next, consider the case f ¼ f1 _ . . . _ fn. Assume that a
appears in f1. From the definition of residue,
Rða; fÞ ¼ Rða; f1Þ. From the inductive hypothesis,
a ^Rða; f1Þ ) f1. Then,

a ^Rða; fÞ ¼ a ^Rða; f1Þ ) f1 _ . . . _ fn ¼ f:

ut

Proposition 2. Let m be a complete set of atomic conditions for
an independent filter condition f . Then,

f �
_

a2m
ða ^Rða; fÞÞ:

In particular, the above holds if m is a search-minimal
condition set for f .

Proof.

.
W

a2mða ^Rða; fÞÞ ) f : Follows directly from Pro-
position 1 and from the fact that every condition
has at least one atomic condition.

. f )
W

a2mða ^Rða; fÞÞ: By induction on the struc-
ture of f . If f ¼ a, then the results follows directly.

Now, consider the case f ¼ f1 ^ . . . ^ fn. Be-
cause m is complete for f , there must exist mi � m
such that mi is a complete set of atomic conditions
for fi for some 1 � i � n. Sincemi is complete for fi,
using the inductive hypothesis, it follows that
fi )

W
a2mi

ða ^Rða; fiÞÞ. Then,

f ¼ f1 ^ . . . ^ fn

)
_

a2mi

ða ^Rða; fiÞ ^ f1 ^ . . . fi�1 ^ fiþ1 ^ . . . ^ fnÞ

)
_

a2m
ða ^Rða; fÞÞ:

Finally, consider the case f ¼ f1 _ . . . _ fn. Be-
cause m is complete for f , there exists mi � m
such that mi is a complete set of atomic conditions
for fi, for all i ¼ 1; . . . ; n. From the inductive
hypothesis, fi )

W
a2mi

ða ^Rða; fiÞÞ. Then,

f1 _ . . . _ fn )
_

a2m
ða ^Rða; fÞÞ

because Rða; fiÞ ¼ Rða; fÞ, for all i ¼ 1; . . . ; n. tu

Proposition 3. Let f1 and f2 be two independent filter conditions
with no atomic conditions in common. Then:

1. Mðf1 ^ f2Þ ¼ Mðf1Þ [Mðf2Þ
2. Mðf1 _ f2Þ ¼ Mðf1Þ �Mðf2Þ, where m 2 Mðf1Þ �

Mðf2Þ if and only if 9m1 2 Mðf1Þ, m2 2 Mðf2Þ such
that m ¼ m1 [m2

Proof. We will first show that Mðf1 ^ f2Þ ¼ Mðf1Þ [Mðf2Þ
(part 1 of the proposition):
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. Mðf1 ^ f2Þ � Mðf1Þ [Mðf2Þ. Consider m 2 M
ðf1 ^ f2Þ: Then, either 9m1 complete for f1 such
that m1 � m, or 9m2 complete for f2 such that
m2 � m. (Otherwise, m would not be complete for
f1 ^ f2.) Assume that 9m1 complete for f1 such that
m1 � m. Any object that satisfies f1 ^ f2 also
satisfies f1 and at least one condition ofm1, because
m1 is complete for f1. Then, m1 is also complete for
f1 ^ f2. But, m1 � m, and m 2 Mðf1 ^ f2Þ. There-
fore, m ¼ m1 2 Mðf1Þ.

. Mðf1Þ [Mðf2Þ � Mðf1 ^ f2Þ. Consider m 2 Mðf1Þ
[Mðf2Þ. Furthermore, suppose that m 2 Mðf1Þ. It
is easy to see that m is complete for f1 ^ f2. To see
that m is also search-minimal for f1 ^ f2, consider
m0 	 m that is also complete for f1 ^ f2. Because m
is search-minimal for f1, it must be the case that m0

is not complete for f1. Then, there is an object o that
satisfies f1 and none of the conditions in m0. But
then, we can build a new object o0 that also satisfies
f2 and still does not satisfy any of the conditions in
m0 because f1 and f2 do not share any conditions
and m0 	 m 2 Mðf1Þ. However, o0 would contra-
dict the completeness of m0 for f1 ^ f2. Therefore,
m is also search-minimal for f1 ^ f2.

Now, we will show that Mðf1 _ f2Þ ¼ Mðf1Þ �Mðf2Þ
(part 2 of the proposition):

. Mðf1 _ f2Þ � Mðf1Þ �Mðf2Þ. Consider m 2 M
ðf1 _ f2Þ. Let m1 (resp., m2) be the restriction of m
to conditions in f1 (resp., in f2). It is easy to see that
m1 2 Mðf1Þ and m2 2 Mðf2Þ. Therefore,

m ¼ m1 [m2 2 Mðf1Þ �Mðf2Þ:

. Mðf1Þ �Mðf2Þ � Mðf1 _ f2Þ. Straightforward. tu
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Informática (ESLAI), Argentina in 1990. He has
been on the faculty of the Computer Science
Department, Columbia University since Septem-
ber 1997, where he has been an associate
professor since July 2002. From January

through August 2001, he was a senior research scientist at Google
(on leave from Columbia University). Luis is a recipient of a CAREER
award from the National Science Foundation.
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