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ABSTRACT

The integration of data produced and collected across autonomous
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site crawling and direct access to remote databases via web proto-
cols. The integration of such web data exhibits many semantics-

heterogeneous web services is an increasingly important and chal-2nd performance-related challenges.

lenging problem. Due to the lack of global identifiers, the same
entity (e.g., a product) might have different textual representations
across databases. Textual data is also often noisy because of tra
scription errors, incomplete information, and lack of standard for-
mats. A fundamental task during data integration is matching of
strings that refer to the same entity.

In this paper, we adopt the widely used and established cosine

similarity metric from the information retrieval field in order to

Consider a price-comparison web site, backed by a database, that
combines product information from different vendor web sites and

rpresents the results under a uniform interface to the user. In such

a situation, one cannot assume the existence of global identifiers
(i.e., unique keys) for products across the autonomous vendor web
sites. This raises a fundamental problem: different vendors may use
different names to describe the same product. For example, a ven-
dor might list a hard disk as “Western Digital 120Gb 7200 rpm,”

identify potential string matches across web sources. We then useVNile another might refer to the same disk as “Western faigi

this similarity metric to characterize this key aspect of data inte-

gration as a join between relations on textual attributes, where the
similarity of matches exceeds a specified threshold. Computing an

exact answer to the text join can be expensive. For query process
ing efficiency, we propose a sampling-based join approximation

HDD 120Gb” (due to a spelling mistake) or even as “WD 120Gb
7200rpm” (using an abbreviation). A simple equality comparison
on product names will not properly identify these descriptions as
referring to the same entity. This could result in the same product
entity from different vendors being treated as separate products,

strategy for execution in a standard, unmodified relational databased_efe""t'ng the purpose of Fhe price-comparison web site. To eff_ec-
management system (RDBMS), since more and more web sites aretlvely address the integration problem, one needs to match multiple

powered by RDBMSs with a web-based front end. We implement
the join inside an RDBMS, using SQL queries, for scalability and
robustness reasons.

Finally, we present a detailed performance evaluation of an im-
plementation of our algorithm within a commercial RDBMS, us-

ing real-life data sets. Our experimental results demonstrate the

efficiency and accuracy of our techniques.

Categories and Subject Descriptors

H.2.5 [Database Managemerjt Heterogeneous Databases; H.2.4
[Database Managemerjt Systems—Relational databases, Tex-
tual databasesH.2.8 [Database Managemerjt Database Appli-
cations—bata mining
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1. INTRODUCTION

The integration of information from heterogeneous web sources
is of central interest for applications such as catalog data integra-

tion and warehousing of web data (e.g., job advertisements and an-
nouncements). Such data is typically textual and can be obtained

from disparate web sources in a variety of ways, including web
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textual descriptions, accounting for:
e erroneous information (e.g., typing mistakes)
e abbreviated, incomplete or missing information
o differences in information “formatting” due to the lack of
standard conventions (e.g., for addresses)
or combinations thereof.

Any attempt to address the integration problem has to specify a
measure that effectively quantifies “closeness” or “similarity” be-
tween string attributes. Such a similarity metric can help establish
that “Microsoft Windows XP Professional” and “Windows XP Pro”
correspond to the same product across the web sites/databases, and
that these are different from the “Windows NT” product. Many ap-
proaches to data integration use a text matching step, where sim-
ilar textual entries are matched together as potential duplicates.
Although text matching is an importacbmponenibf such sys-
tems [1, 21, 23], little emphasis has been paid on the efficiency of
this operation.

Once a text similarity metric is specified, there is a clear require-
ment for algorithms that process the data from the multiple sources
to identify all pairs of strings (or sets of strings) that are sufficiently
similar to each other. We refer to this operation aex join To
perform such a text join on data originating at different web sites,
we can utilize “web services” to fully download and materialize the
data at a local relational database management system (RDBMS).
Once this materialization has been performed, problems and incon-
sistencies can be handled locally via text join operations. It is de-
sirable for scalability and effectiveness to fully utilize the RDBMS
capabilities to execute such operations.

In this paper, we present techniques for performing text joins ef-
ficiently and robustlyn an unmodified RDBM®ur text joins rely
on thecosine similaritymetric [20], which has been successfully
used in the past in the WHIRL system [4] for a similar data inte-
gration task. Our contributions include:



e A purely-SQL sampling-based strategy to compute approxi- Cohen’s WHIRL system [4]. Given a collection of docume@tsa
mate text joins; our technique, which is based on the approxi- simple version of théf.idf weight for a termw and a documend
mate matrix multiplication algorithm in [2], can be fully exe-  is defined asf,, log(idf.), wheretf,, is the number of times that
cuted within standard RDBMSs, with no modification of the appears in document andidf., is Lﬂ wheren,, is the num-
underlying query processing engine or index infrastructure.  per of documents in the collectiafi that contain termu. Thetf.idf

¢ A thorough experimental evaluation of our algorithms, in- weight for a termw in a document is high ify appears a large num-
cluding a study of the accuracy and performance of our ap- ber of times in the document andis a sufficiently “rare” term in
proach against other applicable strategies. Our experimentsthe collection (i.e., ifw’s discriminatory power in the collection is

use large, real-life data sets. potentially high). For example, for a collection of company names,
e Adiscussion of the merits of alternative string similarity met-  relatively infrequent terms such as “AT&T” or “IBM” will have
rics for the definition of text joins. higheridf weights than more frequent terms such as “Inc.”

The remainder of this paper is organized as follows. Section 2  For our problem, the relation tuples are our “documents,” and
presents background and notation necessary for the rest of the disthe tokens in the textual attribute of the tuples are our “terms.”
cussion, and introduces a formal statement of our problem. Sec-Consider thej-th tokenw in D and a tuplel from relation R;.
tion 3 presents SQL statements to preprocess relational tables sd Nen tf. is the number of times that appears int. Also, idf.,
that we can apply the sampling-based text join algorithm of Sec- is ‘fu’;‘, wheren,, is the total number of tuples in relatia; that
tion 4. Then, Section 5 presents the implementation of the text join contain tokemw. The tf.idf weight for tokenw in tuplet € R;
algorithm in SQL. A preliminary version of Sections 3 and 5 ap- IS v:(j) = tfu log(idf.,). To simplify the computation of vector
pears in [12]. Section 6 reports a detailed experimental evaluation similarities, we normalize vectar, to unit length in the Euclidean
of our techniques in terms of both accuracy and performance, and inspace after we define it. The resulting weights correspond to the
comparison with other applicable approaches. Section 7 discussedmpactof the terms, as defined in [24]. Note that the weight vec-
the relative merits of alternative string similarity metrics. Section 8 tors will tend to be extremely sparse for certain choices of tokens;
reviews related work. Finally, Section 9 concludes the paper and We shall seek to utilize this sparseness in our proposed techniques.
discusses possible extensions of our work.

DEFINITION 1. Giventuples, € R; andtz € R», letv, and
v, be their corresponding normalized weight vectors andldie
2. BACKGROUND AND PROBLEM the set of all tokens i, and R2. Thecosine similarity(or just

In this section, we first provide notation and background for text Similarity, for brevity) ofv;, andw., is defined agim(vs,, vt,) =
joins, which we follow with a formal definition of the problem on  S~12! v, (j) v, (j).
which we focus in this paper.

We denote witiE™* the set of all strings over an alphali&tEach
string inX* can be decomposed into a collection of atomic “enti-
ties” that we generally refer to askens What constitutes a token
can be defined in a variety of ways. For example, the tokens of a
string could simply be defined as the “words” delimited by special
characters that are treated as “separators” (e.g., ‘ '). Alternatively,
the tokens of a string could correspond to all ofgitgrams which
are overlapping substrings of exactlyconsecutive characters, for
a giveng. Our forthcoming discussion treats the term token as
generic, as the particular choice of token is orthogonal to the design
of our algorithms. Later, in Section 6 we experiment with different
token definitions, while in Section 7 we discuss the effect of token
choice on the characteristics of the resulting similarity function.

Let R; and R» be two relations with the same or different at-
tributes and schemas. To simplify our discussion and notation we
assume, without loss of generality, that we assess similarity be-  DeriniTION 2. Given two relations?; and R., together with
tween the entire sets of attributes Bf and R.. Our discussion a similarity threshold) < ¢ < 1, thetext join R, X, R returns
extends to the case of arbitrary subsets of attributes in a straight-a|| pairs of tuples(t1, ¢2) such thatt; € Ry andt, € R, and
forward way. Given tuple$; € R; andtz € R, we assume sim(ve,,ve,) > .
that the values of their attributes are drawn frarh We adopt the
widely used vector-space retrieval model [20] from the information The text join “correlates” two relations for a given similarity thresh-
retrieval field to define the textual similarity betwegrandt,. old ¢. It can be easily modified to correlate arbitrary subsets of

Let D be the (arbitrarilyordered set of alluniquetokens present  attributes of the relations. In this paper, we address the problem
in all values of attributes of bottf; and R.. According to the ~ ©f computing the text join of two relatioreficientlyandwithin an
vector-space retrieval model, we conceptually map each tuple ~ unmodified RDBMS
R; to a vectory, € RIP!. The value of thg-th componeni (5)

of v, is a real number that corresponds to the weight of jtile similarity threshold) < ¢ < 1, we want to efficiently compute (an

tokep of D in Vt. Drawing an analogy Wlth information retr_leval approximation of) the text joiR X, R» using “vanilla” SQL in an
terminology, D is the set of altermsandv; is adocument weight unmodified RDBMS

Since vectors are normalized, this measure corresponds to the
cosine of the angle between vectofs andv,,, and has values be-
tween 0 and 1. The intuition behind this scheme is that the magni-
tude of a component of a vector expresses the relative “importance”
of the corresponding token in the tuple represented by the vector.
Intuitively, two vectors are similar if they share many important to-
kens. For example, the string "ACME” will be highly similar to
“ACME Inc,” since the two strings differ only on the token “Inc,”
which appears in many different tuples, and hence has low weight.
On the other hand, the strings “IBM Research” and “AT&T Re-
search” will have lower similarity as they share only one relatively
common term.

The following join between relation®; and R brings together
the tuples from these relations that are “sufficiently close” to each
other, according to a user-specified similarity threshpld

PROBLEM 1. Given two relationsk; and Rz, together with a

vector.

Rather than developing new ways to define the weight vagtor In the sequel, we first describe our methodology for deriving,
for a tuplet € R;, we exploit an instance of the well-established in a preprocessing step, the vectors corresponding to each tuple
tf.idf weighting scheme from the information retrieval fieldf.idf of relationsR; and Ry using relational operations and represen-

stands for “term frequency, inverse document frequency.”) Our tations. We then present a sampling-based solution for efficiently
choice is further supported by the fact that a variant of this gen- computing the text join of the two relations using standard SQL in
eral weighting scheme has been successfully used for our task byan RDBMS.



3. TUPLE WEIGHT VECTORS

In this section, we describe how we define auxiliary relations to
represent tuple weight vectors, which we later use in our purely-
SQL text join approximation strategy.

As in Section 2, assume that we want to compute the text join
R1R4 R of two relationsR; andR». D is the ordered set of all
the tokens that appear iR; and R.. We use SQL expressions to

relation RiWeights where|R;.t;| is the number of characters in
R;.t;. Furthermore, each tuple RiWeightsconsists of a tuple id
tid, the actuatoken(i.e., g-gram in this case), and its associated
weight Then, if C' bytes are needed to repres#idtand weight
the total size of relatioRiWeightswill not exceedzgiil‘ (C+q)-
|Ri.tj] = (C+¢q) - Z']’;‘ |R;.t;], which is a (small) constant
times the size of the original tablB,. If words are used as the

greate the weight vector as;ouated with each tuple in the two rela- token of choice, then we have at md&’z‘t” tokens per tuple in
tions. Since —for some choice of tokens— each tuple is expected t0r  Also. to store théokenattribute ofRiWeightave need no more

contain only a few of the tokens iP, the associated weight vec-

tor is sparse. We exploit this sparseness and represent the weigh

vectors by storing only the tokens with non-zero weight. Specifi-
cally, for a choice of tokens (e.g., wordsg@grams), we create the
following relations for a relatiorR;:

e RiTokens(tid, token)Each tuple(tid, w) is associated with
an occurrence of tokew in the R; tuple with idtid. This
relation is populated by inserting exactly one tupiéd, w)

for each occurrence of token in a tuple of R; with tuple id

tid. This relation can be implemented in pure SQL and the
implementation varies with the choice of tokens. (See [10]
for an example on how to create this relation whegrams
are used as tokens.)

RilDF(token, idf) A tuple (w, idf.,) indicates that tokem
has inverse document frequengdf,, (Section 2) in relation
R;. The SQL statement to populate relatl®iDF is shown

in Figure 1(a). This statement relies on a “dummy” relation
RiSize(sizeJFigure 1(f)) that has just one tuple indicating
the number of tuples iR;.

RITF(tid, token, tf) A tuple (tid, w, #f,,) indicates that token
w has term frequencyf,, (Section 2) forR; tuple with tuple
id tid. The SQL statement to populate relatRiTFis shown
in Figure 1(b).

RiLength(tid, len) A tuple (¢id, 1) indicates that the weight
vector associated witlR; tuple with tuple idtid has a Eu-
clidean norm ofl. (This relation is used for normalizing
weight vectors.) The SQL statement to populate relation
RiLengthis shown in Figure 1(c).

RiWeights(tid, token, weight)A tuple (tid, w,n) indicates
that tokenw has normalized weight in R; tuple with tuple
id tid. The SQL statement to populate relatiRiWeightss
shown in Figure 1(d). This relation materializes a compact
representation of the final weight vector for the tuple®in

RiSum(token, total)A tuple (w, t) indicates that tokew has

a total added weightin relation R;, as indicated in relation
RiWeights These numbers are used during sampling (see
Section 4). The SQL statement to populate relaRiBumis
shown in Figure 1(e).

Given two relations?; and R», we can use the SQL statements
in Figure 1 to generate relatiom®1Weightsand R2Weightsawith
a compact representation of the weight vector for fheand R»
tuples. Only the non-zert.idf weights are stored in these tables.
Interestingly,RiWeightsandRiSumare the only tables that need to
be preserved for the computation Bf X, R that we describe in

the remainder of the paper: all other tables are just necessary to

constructRiWeightsandRiSum The space overhead introduced by
these tables is moderate. Since the siz&i&umis bounded by
the size ofRiWeights we just analyze the space requirements for
RiWeights

Consider the case whegegrams are the tokens of choice. (As
we will see, a good value ig = 3.) Then each tuple?;.t; of
relation R; can contribute up to approximatelf;.t;| g-grams to

than one byte for each character in tRet; tuples. Therefore, we
Ean bound the size driWeightsby 1 + % times the size ofR;.
Again, in this case the space overhead is linear in the size of the
original relationR;.

Given the relation®R1Weightsand R2Weights a baseline ap-
proach[13, 18] to computeR; X, R» is shown in Figure 2. This
SQL statement performs the text join by computing the similar-
ity of each pair of tuples and filtering out any pair with similar-
ity less than the similarity threshol@l. This approach produces
an exact answer t®:X, R, for ¢ > 0. Unfortunately, as we
will see in Section 6, finding an exact answer with this approach is
prohibitively expensive, which motivates the sampling-based tech-
nique that we describe next.

4. SAMPLING-BASED TEXT JOINS

The result ofR, X4 R» only contains pairs of tuples fro;, and
R, with similarity ¢ or higher. Usually we are interested in high
values for thresholdb, which should result in only a few tuples
from R typically matching each tuple frorR:. The baseline ap-
proach in Figure 2, however, calculates the similarity of all pairs of
tuples fromR; and R, that share at least one token. As a result,
this baseline approach is inefficient: most of the candidate tuple
pairs that it considers do not make it to the final result of the text
join. In this section, we describe a sampling-based technique [2]
to execute text joins efficiently, drastically reducing the number of
candidate tuple pairs that are considered during query processing.

The sampling-based technique relies on the following intuition:
R1%4 R, could be computed efficiently if, for each tugleof Ry,
we managed to extract a sample fréta containing mostly tuples
suspected to be highly similar tg. By ignoring the remaining
(useless) tuples ik2, we could approximaté; X, R efficiently.
The key challenge then is how to define a sampling strategy that
leads to efficient text join executions while producing an accurate
approximation of the exact query results. The discussion of the
technique is organized as follows:

e Section 4.1 shows how to sample the tuple vectorgoto
estimate the tuple-pair similarity values.
e Section 4.2 describes an efficient algorithm for computing an
approximation of the text join.

The sampling algorithm described in this section is an instance of
the approximate matrix multiplication algorithm presented in [2],
which computes an approximation of the proddct A; -...- A,
where eachy; is a numeric matrix. (In our problem, = 2.) The
actualmatrix multiplication A’ = A, - ... - A,, happens during a
preprocessing, off-line step. Then, the on-line part of the algorithm
works by processing the matrix; row by row.

4.1 Token-Weighted Sampling

Consider tuple, € R, with its associated token weight vector
v, and each tuple; € Rz with its associated token weight vector
vg,. Whent, is clear from the context, to simplify the notation we
useo; as shorthand fosim(v:,,vs;). We extract a sample at
tuples of sizeS for ¢, as follows:

e ldentify each tokery in ¢, that has non-zero weight, (),
1<j<|DJ



INSERT INTO RIilDF(token, idf)

SELECT  T.token, LOG(S.size)-LOG(COUNT(UNIQUE(*)))
FROM RiTokens T, RiSize S

GROUP BY T.token, S.size

(a) Relation with tokendf counts

INSERT INTO RiLength(tid, len)

SELECT  T.tid, SQRT(SUM(Lidf*Lidf*T.tf*T.tf))
FROM RilDF |, RITF T
WHERE l.token = T.token

GROUP BY T.tid
(c) Relation with weight-vector lengths

INSERT INTO RiSum(token, total)
SELECT R.token, SUM(R.weight)
FROM RiWeights R

GROUP BY R.token

(e) Relation with total token weights

INSERT INTO RiTF(tid, token, tf)
SELECT  T.tid, T.token, COUNT(*)
FROM RiTokens T

GROUP BY T.tid, T.token

(b) Relation with toketf counts

INSERT INTO RiWeights(tid, token, weight)

SELECT T.tid, T.token, Lidf*T.tf/L.len
FROM RiIDF |, RiTF T, RiLength L
WHERE l.token = T.token AND T.tid = L.tid

(d) Final relation with normalized tuple weight vectors
INSERT INTO RiSize(size)
SELECT  COUNT(*)
FROM Ri

(f) Dummy relation used to cr&atBF

Figure 1: Preprocessing SQL statements to create auxiliary relations for relatiorR;.

SELECT riw.tid AS tidl, r2w.tid AS tid2
FROM R1Weights rlw, R2Weights r2w
WHERE rlw.token = r2w.token

GROUP BY rilw.tid, r2w.tid

HAVING SUM(riw.weight*r2w.weight) > ¢

Figure 2: Baseline approach for computing the exact value of
led)RQ.

e For each such tokej, performS Bernoulli trials over each
ti € {t1,...,tr,|}, Where the probability of picking; in
a trial depends on the weight of tokgnin tuplet, € R;
and in tuplet; € R,. Specifically, this probability i;; =

vig (3)ve, (4) R :
T whereTv (t4) = Z'.:Zl' o; is the sum of the

similarity of tuplet, with each tuplet; € R». In Section 5
we show how we can implement the sampling step even if

we do not know the value &fy (¢,).

Let C; be the number of times that appears in the sample of size
S. It follows that:

THEOREM 1. The expected value &f - Ty (t,) is 0;. O

The proof of this theorem follows from an argument similar to that

This strategy guarantees that we can identify all pairs of tuples with
similarity of at leasty, with a desired probability, as long as we
choose an appropriate sample siZe So far, the discussion has
focused on obtaining aR, sample of sizeS individually for each
tuplet, € Ri. A naive implementation of this sampling strat-
egy would then require a scan of relati®a for each tuple inRy,
which is clearly unacceptable in terms of performance. In the next
section we describe how the sampling can be performed with only
one sequential scan of relatidty.

4.2 Practical Realization of Sampling

As discussed so far, the sampling strategy requires extracting a
separate sample froR, for each tuple inR;. This extraction of
a potentially large set of independent samples fi@m(i.e., one
per R; tuple) is of course inefficient, since it would require a large
number of scans of th&; table. In this section, we describe how
to adapt the original sampling strategy so that it requiressamgle
sample ofR;, following the “presampling” implementation in [2].
We then show how to use this sample to create an approximate
answer for the text joitR; Xy, Ro.

As we have seen in the previous section, for each ttpke R,
we should sample a tupte from R, in a way that depends on the
v, (7)-ve, (7) values. Since these values are different for each tuple
of Ry, a straightforward implementation of this sampling strategy

in [2] and from the observation that the mean of the process that requires multiple samples of relatid. Here we describe an alter-

B e G )
generateg’; is T ( = Ty (i)

t

Theorem 1 establisheqsz that, given a tugles R, we can obtain
a sample of siz&' of tuplest; such that the frequenay; of tuple
t; can be used to approximate. We can then reportt,, ;) as
part of the answer aR: X, R, for each tuple; € R2 such that its
estimated similarity witht, (i.e., its estimated;) is ¢’ or larger,
where¢’ = (1 — €)¢ is a threshold slightly lowérthane.

Given Ry, Rz, and a threshol@, our discussion suggests the
following strategy for the evaluation of thg;X, R, text join, in
which we process one tuplg € R, at atime:

e Obtain an individual sample of size¢from R; for ¢, using
vectorv;, to sample tuples oR. for each token with non-
zero weight inv;,,.

e If C; is the number of times that tuple appears in the sam-
ple fort,, then use%Tv (tq) as an estimate of;.

e Include tuple pairty, t;) in the result only if £ Ty (t,) >

é (or equivalentlyC; > %d), and filter out the re-
maining R tuples.

Irorall practical purposes,is treated as a positive constant less than 1.

native sampling strategy that requires just one sampleofFirst,
we sampleR; usingonly the v, (j) weights from the tuples; of
R,, to generate ainglesample ofR;. Then, we use the single
sample differently for each tuptg of R;. Intuitively, we “weight”
the tuples in the sample according to the weighigj) of thet,
tuples of Ry. In particular, for a desired sample sigeand a target
similarity ¢, we realize the sampling-based text jdih X, R2 in
three steps:
1. Sampling: We sample the tuple idsand the correspond-
ing tokens from the vectors,, for each tuplet; € Rs.
We sample each tokep from a vectorv,, with probabil-

ity o) (We defineSum(j) as the total weight of the
|Ra|

Jj-th token in relationRy, Sum(j) = >, %' v, (j). These
weights are kept in relatioR2Sun) We performsS trials,
yielding approximatelyS samples for each token We in-
sert into R2Sample tuples of the form(z, j) as many times
as there were successful trials for the pair. Alternatively, we
can create tuples of the for(y, 7, ¢), wherec is the number
of successful trials. This results in a compact representation
of R2Sample, which is preferable in practice.

2. Weighting: The Samplingstep uses only the token weights
from R» for the sampling, ignoring the weights of the tokens



SELECT
FROM
WHERE

rw.tid, rw.token, rw.weight/rs.total AS P
RiWeights rw, RiSum rs
rw.token = rs.token

Figure 3: Creating an auxiliary relation that we sample to cre-
ate RiSample(tid,token)

in the other relationR; . The cosine similarity, however, uses
the products of the weights froboth relations. During the
Weightingstep we use the token weights in the non-sampled
relation to get estimates of the cosine similarity, as follows.
For eachR2Sample tuple (4, j), with ¢ occurrences in the
table, we compute the value, () - Sum(j) - ¢, which is

an approximation ob:, (j) - v, (j) - S. We add this value to

a running counter that keeps the estimated similarity of the
two tuplest, and¢;. The Weightingstep thus departs from
the strategy in [2], for efficiency reasons, in that we do not
use sampling during the join processing.

. Thresholding: After the Weightingstep, we include the tu-
ple pair(tq, t;) in the final result only if its estimated similar-
ity is no lower than the user-specified threshold (Section 4.1).

Such a sampling scheme identifies tuples with similarity of at
least¢ from R, for each tuple inR;. By samplingR. only once,

the sample will be correlated. As we verify experimentally in Sec-

tion 6, this sample correlation has a negligible effect on the quality

of the join approximation.
As presented, the join-approximation strategysymmetridn

the sense that it uses tuples from one relatiBn) (o weight sam-

ples obtained from the otheR(}). The text join problem, as de-

INSERT INTO RiSample(tid,token,c)

SELECT rw.tid, rw.token,

ROUNDE * rw.weight/rs.total, 0) AS c
FROM RiWeights rw, RiSum rs
WHERE rw.token = rs.token AND

ROUNDE * rw.weight/rs.total, 0)>0

Figure 4: A deterministic version of the Samplingstep, which
results in a compact representation oRiSample

SELECT  rlw.tid AS tidl, r2s.tid AS tid2

FROM R1Weights rlw, R2Sample r2s,
R2Sum r2sum, R1V rlv

WHERE rlw.token = r2s.token AND

rlw.token = r2sum.token AND
riw.tid = rlv.tid
GROUP BY riw.tid, r2s.tid, rlv.Tv

HAVING SUM(rlw.weight*r2sum.total/rlv.Tv) > S % ¢'Irlv.Tv

Figure 5: Implementing the Weightingand Thresholdingsteps
in SQL. This query corresponds to the asymmetric execution of
the sampling-based text join, where we sampl&, and weight
the sample usingR; .

trial, we insert the corresponding tupléd, token) in a relation
RiSample(tid, token), preserving duplicates. Thgtrials can be
implemented in various ways. One (expensive) way to do this is as
follows: We add “AND P> RAND()” in the WHERE clause of the
Figure 3 query, so that the execution of this query corresponds to
one “trial.” Then, executing this querytimes and taking the union

fined, is symmetric and does not distinguish or impose an ordering of the all results provides the desired answer. A more efficient al-
on the operands (relations). Hence, the execution of the text join ternative, which is what we implemented, is to open a cursor on the
R1R4 Ro naturally faces the problem of choosing which relation result of the query in Figure 3, read one tuple at a time, perform
to sample. For a specific instance of the problem, we can break $ trials on each tuple, and then write back the result. Finally, a

this asymmetry by executing the approximate join twice. Thus, we
first sample from vectors dR, and useR; to weight the samples.
Then, we sample from vectors & and useR; to weight the sam-

pure-SQL “simulation” of theSamplingstep deterministically de-
fines that each tuple will result Round@ - Z-7eishis- ueight y ugy

cesses” aftef trials, on average. This deterministic version of the

ples. Then, we take the union of these as our final result. We refer query is shown in Figure’4 We have implemented and run exper-

to this as asymmetrictext join. We will evaluate this technique
experimentally in Section 6.

In this section we have described how to approximate the text
join R1&4 Rs by using weighted sampling. In the next section, we
show how this approximate join can be completely implemented in
a standard, unmodified RDBMS.

5. SAMPLING AND JOINING TUPLE VEC-
TORS IN SQL

We now describe our SQL implementation of the sampling-based
join algorithm of Section 4.2. Section 5.1 addressesSampling
step, while Section 5.2 focuses on Weightingand Thresholding
steps for the asymmetric versions of the join. Finally, Section 5.3

discusses the implementation of a symmetric version of the approx-

imate join.

5.1 Implementing the Sampling Step in SQL

Given theRi Weights relations, we now show how to implement
the Samplingstep of the text join approximation strategy (Sec-
tion 4.2) in SQL. For a desired sample siZand similarity thresh-
old ¢, we create the auxiliary relation shown in Figure 3. As the
SQL statement in the figure shows, we join the relatiBad/eights
and RiSum on thetokenattribute. TheP attribute for a tuple in
the result is the probability™* 7 ishis:weight with which we should
pick this tuple (Section 4.2). Conceptually, for each tuple in the
output of the query of Figure 3 we need to perfashtrials, pick-
ing each time the tuple with probabiliti’. For each successful

iments using the deterministic version, and obtained virtually the
same performance as with the cursor-based implementation of sam-
pling over the Figure 3 query. In the rest of the paper —to keep the
discussion close to the probabilistic framework— we use the cursor-
based approach for ttf&amplingstep.

5.2 Implementing the Weighting and Thresh-
olding Steps in SQL

Section 4.2 described th#&keightingand Thresholdingsteps as
two separate steps. In practice, we can combine them into one SQL
statement, shown in Figure 5. Théeightingstep is implemented
by the SUM aggregate in the HAVING clause. We weight each

H lWeights.weight- R2Sum.total
tuple from the sample according & RIVTy ,

which corresponds tg%e) 547

T ) (see Section 4.2). Then, we
can count the number of times that each particular tuple pair ap-
pears in the results (see GROUP BY clause). For each group, the
result of the SUM is the number of timé&$; that a specific tuple
pair appears in the candidate set. To implementTthesholding
step, we apply the count filter as a simple comparison in the HAV-
ING clause: we check whether the frequency of a tuple pair at least
matches the count threshold (i.€; > ﬁmd). The final out-
put of this SQL operation is a set of tuple id pairs with expected
similarity of at leastp. The SQL statement in Figure 5 can be fur-
ther simplified by completely eliminating the join with tielV

2Note that this version oRRiSample uses the compact representation in which each
tid-token pair has just one associated row.



SELECT tid1, tid2
FROM

SELECT  rlw.tid AS tidl, r2s.tid AS tid2,
SUM(rlw.weight * r2sum.total) AS Ci

FROM R1Weights rlw, R2Sample r2s, R2Sum r2sum

WHERE rlw.token = r2s.token AND
rlw.token = r2sum.token

GROUP BY rilw.tid, r2s.tid

UNION ALL

SELECT rls.tid AS tidl, r2w.tid AS tid2,
SUM(r2w.weight * rlsum.total) AS Ci

FROM R2Weights r2w, R1Sample rls, R1Sum rlsum

WHERE r2w.token = rls.token AND
r2w.token = rlsum.token

GROUP BY r2w.tid, rls.tid

) SYM

GROUP BY tid1, tid2

HAVING AVG(Ci) > S * ¢’

Figure 6: A symmetric sampling-based text joinR: X, Rs.

We implemented the proposed SQL-based techniques and per-
formed a thorough experimental evaluation in terms of both accu-
racy and performance in a commercial RDBMS. In Section 6.1, we
describe the techniques that we compare and the data sets and met-
rics that we use for our experiments. Then, we report experimental
results in Section 6.2.

6.1 Experimental Settings

We implemented the schema and the relations described in Sec-
tion 3 in a commercial RDMBS, Microsoft SQL Server 2000, run-
ning on a multiprocessor machine with 2x2Ghz Xeon CPUs and
with 2Gb of RAM. SQL Server was configured to potentially uti-
lize the entire RAM as a buffer pool. We also compared our SQL
solution against WHIRL, an alternative stand-alone technique, not
available under Windows, using a PC with 2Gb of RAM, 2x1.8Ghz
AMD Athlon CPUs and running Linux.

Data Sets: For our experiments, we usedal data from an

AT&T customer relationship database. We extracted from this da-
tabase a random sample of 40,afi6tinct attribute values of type
string. We then split this sample into two data seks,and Ro.
Data setR; contains about 14,000 strings, while data Betcon-
tains about 26,000 strings. The average string lengttRfors 19
characters and, on average, each string consists of 2.5 words. The
average string length faR- is 21 characters and, on average, each
string consists of 2.5 words. The length of the strings follows a
close-to-Gaussian distribution for both data sets and is reported
in Figure 8(a), while the size oR1X4 R for different similar-
ity thresholds¢ and token choices is reported in Figure 8(b). We
briefly discuss experiments over other data sets later in this section.
Metrics: To evaluate the accuracy and completeness of our tech-
nigues we use the standagrcecisionandrecall metrics:

SELECT rls.tid AS tidl, r2s.tid AS tid2

FROM R1Sample rls, R2Sample r2s,
R1Sum rlsum, R2Sum r2sum

WHERE rls.token = rlsum.token AND
r2s.token = r2sum.token AND
rls.token = r2s.token

GROUP BY ris.tid, r2s.tid

HAVING  SUM(rlsum.total * r2sum.total) >S*Sx*¢

Figure 7: A symmetric sampling-based text join R1&X4 Ry in-
volving only the relation samples.

relation. TheR1V.Ty values are used only in the HAVING clause,
to divide both parts of the inequality. The result of the inequality is
not affected by this division, hence tli&l V' relation can be elim-
inated when combining the/eightingand theThresholdingstep
into one SQL statement.

DEFINITION 3. Consider two relations?; and R and a user-
specified similarity thresholg. Let Answers be an approximate
answer for text joinR1X4R». Then, theprecisionand recall of
Answer g4 with respect taR, X, R, are defined as:

5.3 Implementing a Symmetric Text Join Ap-

proximation in SQL precision | Answery N (R1%4R2)|

Up to now we have described only asymmetrigext join ap- |Answer|
proximation approach, in which we sample relati®nand weight recall — |Answers 0 (BiXg Ro)|
the samples according to the tuplesin (or vice versa). However, |R: Xy Ro|

as we described in Section 4.2, the text j&inX, R, treatsR, and

R, symmetrically. To break the asymmetry of our sampling-based  Precision and recall can take values in the 0-to-1 range. Preci-

strategy, we execute the two different asymmetric approximations sion measures the accuracy of the answer and indicates the fraction

and report the union of their results, as shown in Figure 6. Note that of tuples in the approximation d¢, X4 R that are correct. In con-

a tuple pair(tidl, tid2) that appears in the result of the two inter-  trast, recall measures the completeness of the answer and indicates

vening asymmetric approximations needs high combined “support” the fraction of theR; X R tuples that are captured in the approx-

to qualify in the final answer (see HAVING clause in Figur.6 imation. We believe that recall is more important than precision.
An additional strategy naturally suggests itself: Instead of exe- The returned answer can always be checked for false positives in

cuting the symmetric join algorithm by joining the samples with a post-join step, while we cannot locate false negatives without re-

the original relations, we can just join tlsamples ignoring the running the text join algorithm.

original relations. We sample each relation independently, join the  Finally, to measure the efficiency of the algorithms, we measure

samples, and then weight and threshold the output. We implementthe actuakxecution timef the text join for different techniques.

the Weightingstep by weighting each tuple witftSum.total . Choice of Tokens:We present experiments for different choices

R1V.T
R2Sum.total - The count threshold in this case becon&/éis > of tokens for the similarity computation. (Section 7 discusses the
55 , ) . effect of the token choice on the resulting similarity function.) The
Tty Ty ¢ (@gain thely values can be eliminated from the  yqyen types that we consider in our experiments are:

SQL implementation if we combine th®¥eightingand theThresh-
olding steps). Figure 7 shows the SQL implementation of this ver-
sion of the sampling-based text join.

e Words All space-delimited words in a tuple are used as to-
kens (e.g., “AT&T” and “Labs” for string “AT&T Labs”).

e Q-grams All substrings ofq consecutive characters in a tu-
ple are used as tokens (e.g., “BA," “AT,” “T&,” “&T,” “T " “
L, “La,” “ab,” “bs,” “s#,” for string “AT&T Labs” and ¢ = 2,
after we add dummy characters “$” and “#” at the beginning
and end of the tuple [11]). We considger 2 andg = 3.

6. EXPERIMENTAL EVALUATION

3Alternatively, we can use a different “combination” function instead of AVG, such
as MAX or MIN.
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The R1Weightgable has 30,933 rows faklords 268,458 rows for
Q-gramswith ¢ = 3, and 245,739 rows foQ-gramswith ¢ = 2.
For theR2Weightgable, the corresponding numbers of rows are

R1X4 R, join WHIRL ran out of memory. We then followed ad-
vice from WHIRL's author [5] and limited the maximum heap size
to produce arapproximateanswer forR:X, R,. We measure the
precision and recall of the WHIRL answers, in addition to the run-
ning time to produce them.

WHIRL natively supports only word tokenization, but negt
grams. To test WHIRL withy-grams, we adopted the following
strategy: We generated all tliegrams of the strings iR; and
R,, and stored them as separate “words.” For example, the string
“ABC” was transformed into “$A AB BC C#" forg = 2. Then
WHIRL used the transformed data set as if egeffram were a
separate word.

Besides the specific choice of tokens, three other main param-
eters affect the performance and accuracy of our techniques: the
sample size5, the choice of the user-defined similarity threshold
¢, and the choice of the error margéin We now experimentally
study how these parameters affect the accuracy and efficiency of
sampling-based text joins.

6.2 Experimental Results

Comparing Different Techniques: Our first experiment eval-
uates the precision and recall achieved by the different versions
of the sampling-based text joins and for WHIRL (Figure 9). For
sampling-based joins, a sample sizeSof 128 is used (we present
experiments for varying sample sigebelow). Figure 9(a) presents
the results foWordsand Figures 9(b)(c) present the results for
Q-grams for ¢ = 2 andqg = 3. WHIRL has perfect precision
(WHIRL computes the actual similarity of the tuple pairs), but it
demonstrates very low recall f@p-grams The low recall is, to
some extent, a result of the small heap size that we had to use to
allow WHIRL to handle our data sets. The sampling-based joins,
on the other hand, perform better. Rabrds they achieve recall
higher than 0.8 for thresholds > 0.1, with precision above 0.7
for most cases whear > 0.2 (with the exception of the R1sR2
technigue). WHIRL has comparable performancefaor 0.5. For
Q-gramswith ¢ = 3, sR1R2 has recall around 0.4 across different
similarity thresholds, with precision consistently above 0.7, outper-
forming WHIRL in terms of recall across all similarity thresholds,
except forgp = 0.9. Wheng = 2, none of the algorithms performs
well. For the sampling-based text joins this is due to the small

61,715, 536,982, and 491,515. In Figure 8(b) we show the number number of different tokens fog = 2. By comparing the differ-

of tuple pairs in the exact result of the text jaita X, R2, for the
different token choices and for different similarity threshofds

Techniques Compared:We compare the following algorithms
for computing (an approximation ofg; X, R2. All of these algo-
rithms can be deployed completely within an RDBMS:

e Baseline This expensive algorithm (Figure 2) computes the
exact answer foR; X, Rz by considering all pairs of tuples
from both relations.

e R1sR2: This asymmetric approximation dt; <R, sam-
ples relationk, and weights the sample usidy (Figure 5).

e sR1R2: This asymmetric approximation @t <R, sam-
ples relationR; and weights the sample usitit.

e R1R2: This symmetric approximation d¢; Xy Rs is shown
in Figure 6.

e sR1sR2: This symmetric approximation aR;&4 R, joins
the two sample®1SamplandR2Sampl€Figure 7).

ent versions of the sampling-based joins we can seestRat R2
performs worse than the other techniques in terms of precision and
recall. Also, R1sR2 is always worse thanR1R2: Since R; is
larger thanR, and the sample size is constant, the sampl& pf
represents th&; contents better than the corresponding sample of
R, does forRs.

Effect of Sample SizeS: The second set of experiments evalu-
ates the effect of the sample size (Figure 10). As we increase the
number of samples$' for each distinct token of the relation, more
tuples are sampled and included in the final sample. This results
in more matches in the final join, and, hence in higher recall. It is
also interesting to observe the effect of the sample size for differ-
ent token choices. The recall f¢)-gramswith ¢ = 2 is smaller
than that forQ-gramswith ¢ = 3 for a given sample size, which in
turn is smaller than the recall faords Since we independently
obtain a constant number of samples per distinct token, the higher
the number of distinct tokens the more accurate the sampling is ex-
pected to be. This effect is visible in the recall plots of Figure 10.

In addition, we also compare the SQL-based techniques againstThe sample size also affects precision. When we increase the sam-

the stand-alone WHIRL system [4]. Given a similarity threshold
¢ and two relationsRk; and R2, WHIRL computes the text join

R1%4 Ry. The fundamental difference with our techniques is that
WHIRL is a separate application, not connected to any RDBMS.
Initially, we attempted to run WHIRL over our data sets using
its default settings. Unfortunately, during the computation of the

ple size, precision generally increases. However, in specific cases
we can observe that smaller sizes can in fact achieve higher preci-
sion. This happens because for a smaller sample size we may get

“For Wordsthe exact command wasét maxheap 10000 ". For Q-gramsthe
command wasdet maxheap 8000 ”. This was the maximum heap size that al-
lowed our@-gramsexperiments to finish using WHIRL.
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Figure 9: Average precision and recall of different algorithms for (a) Words (b) Q-gramswith ¢ = 2, and (c) Q-gramswith ¢ = 3, as
a function of the similarity threshold ¢ (sample sizeS = 128, € = 0).

anunderestimat®f the similarity value (e.g., estimated similarity ~WHIRL keeps the data in main memory, while we keep the weights
0.5 for real similarity 0.7). Underestimates dot have a nega- in materialized relations inside the RDBMS.
tive effect on precision. However, an increase in the sample size TheBaselinetechnique (Figure 2) could only be run féfords
might result in aroverestimatef the similarity, even if the abso-  For@Q-grams SQL Server executed tigaselinequery for approx-
lute estimation error is smaller (e.g., estimated similarity 0.8 for imately 24 hours, using more than 60Gb of temporary disk space,
real similarity 0.7). Overestimates, though, affect precision nega- without producing any results. At that point we decided to stop the
tively when the similarity threshol¢h happens to be between the execution. Hence, we only report results Ydordsfor the Baseline
real and the (over)estimated similarity. technique.
Effect of Error Margin e: As mentioned in Section 4.1, the Figure 12(a) reports the execution time of sampling-based text
threshold for count filter i%(l — €)¢. Different values of join variations forWords for different sample sizes. The execu-
e affect the precision and recall of the answer. Figure 11 shows tion time of the join did not change considerably for different sim-
how different choices of affect precision and recall. When we ilarity thresholds®, and is consistently lower than that fBase-
increasee, we lower the threshold for count filter and more tuple line. For example, forlS = 64, a sample size that results in high
pairs are included in the answer. This, of course, increases recall, atrecision and recall (Figure 10(a)k1 R2 is more than 10 times
the expense of precision: the tuple pairs included in the result havefaster tharBaseline The speedup is even higher foR1R2 and
estimatedsimilarity lower than the desired threshald The choice ~ R1sR2. Figures 12(b) and 12(c) report the execution timeer
of ¢ is an “editorial” decision, and should be set to either favor re- gramswith ¢ = 2 andg = 3. Surprisingly,s R1sR2, which joins
call or precision. As discussed above, we believe that higher recall only the two samples, is not faster than the other variations. For all
is more important: the returned answer can always be checked forchoices of tokens, the symmetric versién k2 has an associated
false positives in a post-join step, while we cannot locate false neg- €xecution time that is longer than the sum of the execution times
atives without re-running the text join algorithm. of sR1R2 and R1sR2. This is expected, sincR1R2 requires
Execution Time: To analyze efficiency, we measure the ex- executingsR1R2 and R1sR2 to compute its answer. Finally, Fig-
ecution time of the different techniques. Our measurements do ure 12(d) reports the execution time for WHIRL, for different sim-
not include the preprocessing step to build the auxiliary tables in ilarity thresholds. (Note that WHIRL was run on a slightly slower
Figure 1: This preprocessing step is common to the baseline andmachine; see Section 6.1.) F@-gramswith ¢ = 3, the exe-
all sampling-based text join approaches. This preprocessing stepcution time for WHIRL is roughly comparable to that ef21 k2
took less than one minute to process both relatiBnsnd R, for whensS = 128. For this settings R1R2 has recall generally at or
Words and about two minutes f@p-grams Also, the time needed above 0.4, while WHIRL has recall above 0.4 only for similarity
to create theRiSamplerelations is less than three seconds. For thresholdg > 0.8. ForWords WHIRL is more efficient than the
WHIRL we similarly do not include the time needed to export the sampling-based techniques for high values'pivhile WHIRL has
relations from the RDBMS to a text file formatted as expected by Significantly lower recall for low to moderate similarity thresholds
WHIRL, the time needed to load the text files from disk, or the time  (Figure 9(a)). For example, fdf = 128 sampling-based text joins
needed to construct the inverted indexeBhe preprocessing time  have recall above 0.8 wheh > 0.1 and WHIRL has recall above
for WHIRL is about five seconds faNordsand thirty seconds for 0.8 only whenp > 0.5.
Q-grams which is smaller than for the sampling-based techniques: ~ Alternative Data Sets: We also ran experiments for five addi-

SWe used the commandridex (relation)” to force WHIRL to create the inverted 5The results in Figure 12 were computed for similarity threskiple: 0.5; the execu-
lists before the join computation [5]. tion times for other values af are not significantly different from those fgr= 0.5.
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tional data set pairs]'1 throughT'5, using agairreal data from to handle large data volumes in an efficient and scalable way.

different AT&T customer database§’1 consists of two relations

with approxmately 26,000 and 26.0,000.str|ng_s respectively. The 7. DIFFERENT SIMILARITY EUNCTIONS

respective numbers for the remaining pairs 4rg: 500 and 1,500 i ) o o

strings; T'3: 26,000 and 1,500 stringsF4: 26,000 and 26,000 Section 6 studied the accuracy and efficiency of text join execu-

strings; and’5: 30,000 and 30,000 strings. tions, for different token choices and for a distance metric based
Most of the results (reported in Figures 13 and 14) are analogous N tf.idf token weights (Section 2). We now compare this distance

to those for the data sef#; and R,. The most striking difference ~ Metric against string edit distance, especially in terms of the effec-

is the extremely low recall for the data §&% and similarity thresh- tiveness of the metrics in helping data integration applications.
olds¢ = 0.7 and¢ = 0.8, for Q-gramswith ¢ = 3 (Figure 13). Theedit distancq16] between two strings is the minimum num-
This behavior is due to peculiarities of th& data setT’5 includes ber of edit operations (i.einsertions deletions andsubstitutiony

7 variations of the string “CompanyA .”” (4 variations in eachre-  of single cha.rac.ters needed to transform the first string inlto the sec-
lation) that appear in a total of 2,160 and 204 tuples in each relation, ©"d- The edit distance metric works very well for capturing typo-
respectively. Any pair of such strings has real cosine similarity of 9raphical errors. For example, the strings “Computer Science” and
at least 0.8. Hence the text join contains mafgnticaltuple pairs ~ Computer Scince” have edit distance one. Also edit distance can
with similarity of at least 0.8. Unfortunately, our algorithm gives an  ¢apture insertions of short words (e.g., “Microsoft” and “Microsoft
estimated similarity of around 0.6 for 5 of these pairs. This results C0” have edit distance three). Unfortunately, a small increase of the
in low recall foronly 5 distincttuple pairs that, however, account ~ distance threshold can capture many false matches, especially for
for approximately 300,000 tuples in the join, considerably hurting short strings. For example, the string “IBM” is within edit distance
recall. Exactly the same problem appears with 50 distinct entries of three of both "ACM” and “IBM Co.”
the form “CompanyB . .” (25 in each relation) that appear in 3,750 The S|mple_ edit _dlstance metric does not work well Wher_l the
tuples in each relation. These tuples, when joined, result in only 50 Compared strings involve block moves (e.g., “Computer Science
distinct tuple pairs in the text join with similarity above 0.8 that Department”and “Department of Computer Science”). In this case,
again account for 300,000 tuples in the join. Our algorithm under- We can usdlock edit distancea more general edit distance metric
estimates their similarity, which results in low recall for similarity ~that allows for block moves as a basic edit operation. By allowing
thresholdsp = 0.7 and¢ = 0.8. for block moves, .the. block edit distance can glso capture Worq re-
In general, the sampling-based text joins, which are executed in &rangements. Finding the exact bloqk let distance of two strings
an unmodifiedRDBMS, have efficiency comparable to WHIRL, IS @n NP-hard p_roblem [17]. Block edit distance cannot capture all
when WHIRL has sufficient main memory availabWHIRL is mlsmatches. [?lﬁerences between records also occur due to inser-
a stand-alone application that implements a main-memory version tions and deletions of common words. For example, “KAR Corpo-
of the A* algorithm. This algorithm requires keeping large search ation International” and “KAR Qorporatlon” have block edit dis-
structures during processing; when main memory is not sufficiently tance 14. If we allow large edit distance thresholds to capture such
large for a data set, WHIRL's recall suffers considerably. e mlsmatches, the answer will contain a large number of false posi-
strategy of WHIRL could be parallelized [5], but a detailed dis- tivé matches. .
cussion of this is outside the scope of this paper. In contrast, our 1 Nhe insertion and deletion of common words can be handled ef-
techniques are fully executed within RDBMSs, which are designed fectively with the cosine similarity metric that we have described
in this paper if we use words as tokens. Common words, like “In-
"For privacy reasons, we do not report the real name of the company. ternational,” have lowdf weight. Hence, two strings are deemed
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Figure 12: The execution time of the algorithms for different sample sizes and token choices.

| Similarity Function | Mismatches Captured | Mismatches not Captured |
Edit distance Spelling errors, insertions and deletions of short words | Variations of word order, insertions and
deletions of long words
Block edit distance Spelling errors, insertions and deletions of short wordBjsertions and deletions of long words

variations of word order
Cosine  similarity  with| Insertions and deletions of common words, variationg &pelling errors

words as tokens word order
Cosine similarity with g- | Spelling errors, insertions and deletions of short or commen
grams as tokens words, variations of word order

Table 1: Different similarity functions for data integration, and the types of string mismatches that they can capture.

similar when they share maigenticalwords (i.e., with no spelling both words. Finally, this metric handles the insertion and deletion
mistakes) that do not appear frequently in the relation. This met- of words nicely. The string “Gateway Communications” matches
ric also handles block moves naturally. The use of words as to- with high similarity the string “Communications Gateway Interna-
kens in conjunction with the cosine similarity as distance metric tional” since theg-grams of the word “International” appear often
was proposed by WHIRL [4]. Unfortunately, this similarity metric  in the relation and have low weight. Table 1 summarizes the quali-
does not capture word spelling errors, especially if they are perva- tative properties of the distance functions described above.
sive and affect many of the words in the strings. For example, the The choice of similarity function impacts the execution time of
strings “Compter Science Department” and “Deprtment of Com- the associated text joins. The use of the cosine similarity with
puter Scence” will have zero similarity under this metric. words leads to fast query executions as we have seen in Section 6.
Hence, we can see that (block) edit distance and cosine similarity When we us@-grams, the execution time of the join increases con-
with words serve complementary purposes. Edit distance handlessiderably, resulting nevertheless in higher quality of results with
spelling errors well (and possibly block moves as well), while the matches that neither edit distance nor cosine similarity with words
cosine similarity with words nicely handles block moves and inser- could have captured. Given the improved recall and precision of the

tions of words. sampling-based text join when= 3 (compared to the case where
A similarity function that naturally combines the good proper- ¢ = 2), we believe that the cosine similarity metric with 3-grams
ties of the two distance metrics is the cosine similarity wjth can serve well for data integration applications. A more thorough

grams as tokens. A block move minimally affects the set of com- study of the relative merits of the similarity metrics for different
mon g-grams of two strings, so the two strings “Gateway Com- applications is a subject of interesting future work.

munications” and “Communications Gateway” have high similar-

ity under this metric. A related argument holds when there are 8. RELATED WORK

spelling mistakes in these words. Hence, “Gteway Communica-
tions” and “Comunications Gateway” will also have high similarity
under this metric despite the block move and the spelling errors in

Integrating data from various sources is a problem that has at-
tracted significant attention in different research communities. Var-
ious measures have been adopted to assess similarity or closeness
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Figure 13: Average precision and recall of theR1R2 algorithm
for the data setsT'1 through T'5, for different similarity thresh-
olds (¢ = 0.1, S = 128, Q-gramswith ¢ = 3).

Figure 11: Average precision and recall of theR1R2 algorithm,
for different similarity thresholds and different values of ¢ (S =
128, @-gramswith ¢ = 3).

between collections of entities to identify approximate matches.  function. Cohen and Richman [3] use clustering in conjunction
In the statistical literature, the problem is referred to asé¢berd with the cosine similarity metric to create clusters of potential du-
linkageproblem [8, 25]. In this body of work similarity is quanti-  plicate entries.
fied via a probabilistic framework that is aimed at minimizing the The information retrieval field has produced approaches to speed
probability of “misclassification,” i.e., declaring two entities as dif- up query execution that involve computation of the cosine similar-
ferent when they are actually the same. Learning the probabilities ity metric using inverted indexes [26]. A key idea is to exploit
involves a training and a validation phase that can be quite com- inverted indexes for fast computation of term weights. These tech-
plex to realize in practice. The bulk of work in this direction has niques are of limited applicability for our approach: since we cal-
concentrated on the modeling aspect, however, as opposed to orculate and store the token weights during the preprocessing step of
performance related issues. The typical assumption is that recordsSection 3, we avoid the overhead of weight calculation during the
fit in memory and/or that evaluation of the cross product of two join operation. However, we can apply some of these techniques
files (and sometimes its materialization) is viable. This is not true to speed up thereprocessingtep. Other optimizations described
with very large data collections. in [26] describe how to efficiently compute the document “lengths”
Approximate matching of strings is a problem of central interest to calculate the cosine similarity between documents. Since we
for data integration and cleansing applications [9, 11]. The problem use normalized weights, we do not have to calculate the document
of approximate string matching has attracted interest in the algo- lengths on the fly. Additional optimizations, such as “quantization
rithms and combinatorial pattern matching communities [19] and of weights,” [26] can be easily implemented inside a database sys-
commonly the stringedit distancgwith its numerous variants) is  tem both for the baseline and for the sampling approach. Finally,
adopted for approximate string match quantification. Gravano et some techniques also make special use of the available main mem-
al. [11] presented a method to integrate approximate string match ory to improve query-processing performance. These techniques
via edit distance into a database and realize it as SQL statementsare not compatible with our key objective of running the text joins
They exploited a series of filters to speed join operations between in anunmodifiedRDBMS. Techniques that are based on the prun-
string attributes using the edit distance as a join predicate. More ing of the inverted index [22, 24] are close in spirit to our work,
specifically, this operation reports, for any string in an attribute of a especially if we implement the sampling step using the ROUND
relationR;, all strings in an attribute of a relatid®. that are within function (Figure 4), which effectively prunes all the tokens with
a given edit distance. Heandez and Stolfo [14] studied how to  small weights.
identify approximate duplicate records in large databases. Their Sampling has been utilized in a variety of tasks of database inter-
approach relies on the ability to form a “pseudo-key” for each tuple est including data mining, estimation and optimization of queries,
by concatenating elements from its attributes. Then, sorting and and query answering. A range of database vendors provide declar-
band joins [6] on the pseudo keys can be used to identify approxi- ative interfaces that support a variety of sampling techniques inside
mate duplicates. Pseudo-key formation is an application-dependentthe database engine [15]. Iceberg queries [7] utilize sampling for
operation that requires domain knowledge. Sarawagi and Bhamidi- efficient answering of group-by queries. In particular, the tech-
paty [21] describe an active learning algorithm for combining dif- niques proposed by Fang et al. [7] utilize approximate counting
ferent similarity functions. The system is based on users to man- technigues based on variants of hashing to efficiently estimate ag-
ually mark a small set of “potential duplicates” as real duplicates gregate functions on groups of tuples.
or not, and then uses these examples to optimize the combination Grossman et al. [13] present techniques for representing text doc-
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Figure 14: Average precision and recall of theR1R2 algorithm
for the data setsT'1 through T'5, for different similarity thresh- 5]

olds (¢ = 0.1, .S = 128, Words.

uments and their associated term frequencies in relational tables[16]
as well as for mapping boolean and vector-space queries into stan-
dard SQL queries._ They also use a query-pruning techniqL_Je, baseclm
on word frequencies, to speed up query execution. In this paper,
we follow the same general approach of translating complex func- [18]
tionality not natively supported by a RDBMS into operations and
queries that a RDBMS can optimize and execute efficiently. Gross-
man et al.’s technique can be adapted for our text join problem; we [19]
evaluate a version of this approach experimentally in Section 6.

Finally, the approximate matrix multiplication algorithm in [2]  [20]
and Cohen’s WHIRL system [4] are closest to our work, and have 21]
been discussed in Sections 4 and 6, respectively. In particular, Sec-
tion 4 summarizes the strategy in [2] as applied to our problem.

~
N

9. CONCLUSIONS AND FUTURE WORK

In this paper, we studied the problem of matching textual at- 23]
tributes that refer to the same entity. For this, we adopted the well
established measure of cosine similarity over the vector-space re-
trieval model and proposed a SQL implementation of a sampling-
based strategy to compute text joins in an unmodified RDBMS.
Our algorithms are approximate, and we experimentally evaluated
the accuracy/performance tradeoffs.

The work presented herein raises various issues for further study.
As a notable example, conducting a thorough qualitative study of ¢
the properties of the different similarity functions for data integra-
tion applications is an interesting piece of future work.

[24]

[25]
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