
Text Joins in an RDBMS for Web Data Integration

Luis Gravano Panagiotis G. Ipeirotis Nick Koudas Divesh Srivastava
Columbia University AT&T Labs–Research

{gravano, pirot}@cs.columbia.edu {koudas, divesh}@research.att.com

ABSTRACT
The integration of data produced and collected across autonomous,
heterogeneous web services is an increasingly important and chal-
lenging problem. Due to the lack of global identifiers, the same
entity (e.g., a product) might have different textual representations
across databases. Textual data is also often noisy because of tran-
scription errors, incomplete information, and lack of standard for-
mats. A fundamental task during data integration is matching of
strings that refer to the same entity.

In this paper, we adopt the widely used and established cosine
similarity metric from the information retrieval field in order to
identify potential string matches across web sources. We then use
this similarity metric to characterize this key aspect of data inte-
gration as a join between relations on textual attributes, where the
similarity of matches exceeds a specified threshold. Computing an
exact answer to the text join can be expensive. For query process-
ing efficiency, we propose a sampling-based join approximation
strategy for execution in a standard, unmodified relational database
management system (RDBMS), since more and more web sites are
powered by RDBMSs with a web-based front end. We implement
the join inside an RDBMS, using SQL queries, for scalability and
robustness reasons.

Finally, we present a detailed performance evaluation of an im-
plementation of our algorithm within a commercial RDBMS, us-
ing real-life data sets. Our experimental results demonstrate the
efficiency and accuracy of our techniques.

Categories and Subject Descriptors
H.2.5 [Database Management]: Heterogeneous Databases; H.2.4
[Database Management]: Systems—Relational databases, Tex-
tual databases; H.2.8 [Database Management]: Database Appli-
cations—Data mining

General Terms
Algorithms, Measurement, Performance, Experimentation

Keywords
text indexing, data cleaning, approximate text matching

1. INTRODUCTION
The integration of information from heterogeneous web sources

is of central interest for applications such as catalog data integra-
tion and warehousing of web data (e.g., job advertisements and an-
nouncements). Such data is typically textual and can be obtained
from disparate web sources in a variety of ways, including web

Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

site crawling and direct access to remote databases via web proto-
cols. The integration of such web data exhibits many semantics-
and performance-related challenges.

Consider a price-comparison web site, backed by a database, that
combines product information from different vendor web sites and
presents the results under a uniform interface to the user. In such
a situation, one cannot assume the existence of global identifiers
(i.e., unique keys) for products across the autonomous vendor web
sites. This raises a fundamental problem: different vendors may use
different names to describe the same product. For example, a ven-
dor might list a hard disk as “Western Digital 120Gb 7200 rpm,”
while another might refer to the same disk as “Western Digiral
HDD 120Gb” (due to a spelling mistake) or even as “WD 120Gb
7200rpm” (using an abbreviation). A simple equality comparison
on product names will not properly identify these descriptions as
referring to the same entity. This could result in the same product
entity from different vendors being treated as separate products,
defeating the purpose of the price-comparison web site. To effec-
tively address the integration problem, one needs to match multiple
textual descriptions, accounting for:
• erroneous information (e.g., typing mistakes)
• abbreviated, incomplete or missing information
• differences in information “formatting” due to the lack of

standard conventions (e.g., for addresses)
or combinations thereof.

Any attempt to address the integration problem has to specify a
measure that effectively quantifies “closeness” or “similarity” be-
tween string attributes. Such a similarity metric can help establish
that “Microsoft Windows XP Professional” and “Windows XP Pro”
correspond to the same product across the web sites/databases, and
that these are different from the “Windows NT” product. Many ap-
proaches to data integration use a text matching step, where sim-
ilar textual entries are matched together as potential duplicates.
Although text matching is an importantcomponentof such sys-
tems [1, 21, 23], little emphasis has been paid on the efficiency of
this operation.

Once a text similarity metric is specified, there is a clear require-
ment for algorithms that process the data from the multiple sources
to identify all pairs of strings (or sets of strings) that are sufficiently
similar to each other. We refer to this operation as atext join. To
perform such a text join on data originating at different web sites,
we can utilize “web services” to fully download and materialize the
data at a local relational database management system (RDBMS).
Once this materialization has been performed, problems and incon-
sistencies can be handled locally via text join operations. It is de-
sirable for scalability and effectiveness to fully utilize the RDBMS
capabilities to execute such operations.

In this paper, we present techniques for performing text joins ef-
ficiently and robustlyin an unmodified RDBMS. Our text joins rely
on thecosine similaritymetric [20], which has been successfully
used in the past in the WHIRL system [4] for a similar data inte-
gration task. Our contributions include:

• A purely-SQL sampling-based strategy to compute approxi-
mate text joins; our technique, which is based on the approxi-
mate matrix multiplication algorithm in [2], can be fully exe-
cuted within standard RDBMSs, with no modification of the
underlying query processing engine or index infrastructure.
• A thorough experimental evaluation of our algorithms, in-

cluding a study of the accuracy and performance of our ap-
proach against other applicable strategies. Our experiments
use large, real-life data sets.
• A discussion of the merits of alternative string similarity met-

rics for the definition of text joins.

The remainder of this paper is organized as follows. Section 2
presents background and notation necessary for the rest of the dis-
cussion, and introduces a formal statement of our problem. Sec-
tion 3 presents SQL statements to preprocess relational tables so
that we can apply the sampling-based text join algorithm of Sec-
tion 4. Then, Section 5 presents the implementation of the text join
algorithm in SQL. A preliminary version of Sections 3 and 5 ap-
pears in [12]. Section 6 reports a detailed experimental evaluation
of our techniques in terms of both accuracy and performance, and in
comparison with other applicable approaches. Section 7 discusses
the relative merits of alternative string similarity metrics. Section 8
reviews related work. Finally, Section 9 concludes the paper and
discusses possible extensions of our work.

2. BACKGROUND AND PROBLEM
In this section, we first provide notation and background for text

joins, which we follow with a formal definition of the problem on
which we focus in this paper.

We denote withΣ∗ the set of all strings over an alphabetΣ. Each
string inΣ∗ can be decomposed into a collection of atomic “enti-
ties” that we generally refer to astokens. What constitutes a token
can be defined in a variety of ways. For example, the tokens of a
string could simply be defined as the “words” delimited by special
characters that are treated as “separators” (e.g., ‘ ’). Alternatively,
the tokens of a string could correspond to all of itsq-grams, which
are overlapping substrings of exactlyq consecutive characters, for
a givenq. Our forthcoming discussion treats the term token as
generic, as the particular choice of token is orthogonal to the design
of our algorithms. Later, in Section 6 we experiment with different
token definitions, while in Section 7 we discuss the effect of token
choice on the characteristics of the resulting similarity function.

Let R1 andR2 be two relations with the same or different at-
tributes and schemas. To simplify our discussion and notation we
assume, without loss of generality, that we assess similarity be-
tween the entire sets of attributes ofR1 andR2. Our discussion
extends to the case of arbitrary subsets of attributes in a straight-
forward way. Given tuplest1 ∈ R1 and t2 ∈ R2, we assume
that the values of their attributes are drawn fromΣ∗. We adopt the
widely used vector-space retrieval model [20] from the information
retrieval field to define the textual similarity betweent1 andt2.

LetD be the (arbitrarilyordered) set of alluniquetokens present
in all values of attributes of bothR1 andR2. According to the
vector-space retrieval model, we conceptually map each tuplet ∈
Ri to a vectorvt ∈ <|D|. The value of thej-th componentvt(j)
of vt is a real number that corresponds to the weight of thej-th
token ofD in vt. Drawing an analogy with information retrieval
terminology,D is the set of alltermsandvt is adocument weight
vector.

Rather than developing new ways to define the weight vectorvt
for a tuplet ∈ Ri, we exploit an instance of the well-established
tf.idf weighting scheme from the information retrieval field. (tf.idf
stands for “term frequency, inverse document frequency.”) Our
choice is further supported by the fact that a variant of this gen-
eral weighting scheme has been successfully used for our task by

Cohen’s WHIRL system [4]. Given a collection of documentsC, a
simple version of thetf.idf weight for a termw and a documentd
is defined astfw log(idfw), wheretfw is the number of times that
w appears in documentd andidfw is |C|

nw
, wherenw is the num-

ber of documents in the collectionC that contain termw. Thetf.idf
weight for a termw in a document is high ifw appears a large num-
ber of times in the document andw is a sufficiently “rare” term in
the collection (i.e., ifw’s discriminatory power in the collection is
potentially high). For example, for a collection of company names,
relatively infrequent terms such as “AT&T” or “IBM” will have
higheridf weights than more frequent terms such as “Inc.”

For our problem, the relation tuples are our “documents,” and
the tokens in the textual attribute of the tuples are our “terms.”
Consider thej-th tokenw in D and a tuplet from relationRi.
Then tfw is the number of times thatw appears int. Also, idfw
is |Ri|

nw
, wherenw is the total number of tuples in relationRi that

contain tokenw. The tf.idf weight for tokenw in tuple t ∈ Ri
is vt(j) = tfw log(idfw). To simplify the computation of vector
similarities, we normalize vectorvt to unit length in the Euclidean
space after we define it. The resulting weights correspond to the
impactof the terms, as defined in [24]. Note that the weight vec-
tors will tend to be extremely sparse for certain choices of tokens;
we shall seek to utilize this sparseness in our proposed techniques.

DEFINITION 1. Given tuplest1 ∈ R1 andt2 ∈ R2, let vt1 and
vt2 be their corresponding normalized weight vectors and letD be
the set of all tokens inR1 andR2. Thecosine similarity(or just
similarity, for brevity) ofvt1 andvt2 is defined assim(vt1 , vt2) =∑|D|
j=1 vt1(j)vt2(j).

Since vectors are normalized, this measure corresponds to the
cosine of the angle between vectorsvt1 andvt2 , and has values be-
tween 0 and 1. The intuition behind this scheme is that the magni-
tude of a component of a vector expresses the relative “importance”
of the corresponding token in the tuple represented by the vector.
Intuitively, two vectors are similar if they share many important to-
kens. For example, the string “ACME” will be highly similar to
“ACME Inc,” since the two strings differ only on the token “Inc,”
which appears in many different tuples, and hence has low weight.
On the other hand, the strings “IBM Research” and “AT&T Re-
search” will have lower similarity as they share only one relatively
common term.

The following join between relationsR1 andR2 brings together
the tuples from these relations that are “sufficiently close” to each
other, according to a user-specified similarity thresholdφ:

DEFINITION 2. Given two relationsR1 andR2, together with
a similarity threshold0 < φ ≤ 1, the text joinR11̃φR2 returns
all pairs of tuples(t1, t2) such thatt1 ∈ R1 and t2 ∈ R2, and
sim(vt1 , vt2) ≥ φ.

The text join “correlates” two relations for a given similarity thresh-
old φ. It can be easily modified to correlate arbitrary subsets of
attributes of the relations. In this paper, we address the problem
of computing the text join of two relationsefficientlyandwithin an
unmodified RDBMS:

PROBLEM 1. Given two relationsR1 andR2, together with a
similarity threshold0 < φ ≤ 1, we want to efficiently compute (an
approximation of) the text joinR11̃φR2 using “vanilla” SQL in an
unmodified RDBMS.

In the sequel, we first describe our methodology for deriving,
in a preprocessing step, the vectors corresponding to each tuple
of relationsR1 andR2 using relational operations and represen-
tations. We then present a sampling-based solution for efficiently
computing the text join of the two relations using standard SQL in
an RDBMS.

3. TUPLE WEIGHT VECTORS
In this section, we describe how we define auxiliary relations to

represent tuple weight vectors, which we later use in our purely-
SQL text join approximation strategy.

As in Section 2, assume that we want to compute the text join
R11̃φR2 of two relationsR1 andR2. D is the ordered set of all
the tokens that appear inR1 andR2. We use SQL expressions to
create the weight vector associated with each tuple in the two rela-
tions. Since –for some choice of tokens– each tuple is expected to
contain only a few of the tokens inD, the associated weight vec-
tor is sparse. We exploit this sparseness and represent the weight
vectors by storing only the tokens with non-zero weight. Specifi-
cally, for a choice of tokens (e.g., words orq-grams), we create the
following relations for a relationRi:

• RiTokens(tid, token): Each tuple(tid, w) is associated with
an occurrence of tokenw in theRi tuple with id tid. This
relation is populated by inserting exactly one tuple(tid, w)
for each occurrence of tokenw in a tuple ofRi with tuple id
tid. This relation can be implemented in pure SQL and the
implementation varies with the choice of tokens. (See [10]
for an example on how to create this relation whenq-grams
are used as tokens.)

• RiIDF(token, idf): A tuple (w, idfw) indicates that tokenw
has inverse document frequencyidfw (Section 2) in relation
Ri. The SQL statement to populate relationRiIDF is shown
in Figure 1(a). This statement relies on a “dummy” relation
RiSize(size)(Figure 1(f)) that has just one tuple indicating
the number of tuples inRi.

• RiTF(tid, token, tf): A tuple(tid, w, tfw) indicates that token
w has term frequencytfw (Section 2) forRi tuple with tuple
id tid. The SQL statement to populate relationRiTF is shown
in Figure 1(b).

• RiLength(tid, len): A tuple (tid, l) indicates that the weight
vector associated withRi tuple with tuple idtid has a Eu-
clidean norm ofl. (This relation is used for normalizing
weight vectors.) The SQL statement to populate relation
RiLengthis shown in Figure 1(c).

• RiWeights(tid, token, weight): A tuple (tid, w, n) indicates
that tokenw has normalized weightn in Ri tuple with tuple
id tid. The SQL statement to populate relationRiWeightsis
shown in Figure 1(d). This relation materializes a compact
representation of the final weight vector for the tuples inRi.

• RiSum(token, total): A tuple(w, t) indicates that tokenw has
a total added weightt in relationRi, as indicated in relation
RiWeights. These numbers are used during sampling (see
Section 4). The SQL statement to populate relationRiSumis
shown in Figure 1(e).

Given two relationsR1 andR2, we can use the SQL statements
in Figure 1 to generate relationsR1Weightsand R2Weightswith
a compact representation of the weight vector for theR1 andR2

tuples. Only the non-zerotf.idf weights are stored in these tables.
Interestingly,RiWeightsandRiSumare the only tables that need to
be preserved for the computation ofR11̃φR2 that we describe in
the remainder of the paper: all other tables are just necessary to
constructRiWeightsandRiSum. The space overhead introduced by
these tables is moderate. Since the size ofRiSumis bounded by
the size ofRiWeights, we just analyze the space requirements for
RiWeights.

Consider the case whereq-grams are the tokens of choice. (As
we will see, a good value isq = 3.) Then each tupleRi.tj of
relationRi can contribute up to approximately|Ri.tj | q-grams to

relation RiWeights, where|Ri.tj | is the number of characters in
Ri.tj . Furthermore, each tuple inRiWeightsconsists of a tuple id
tid, the actualtoken(i.e., q-gram in this case), and its associated
weight. Then, ifC bytes are needed to representtid andweight,
the total size of relationRiWeightswill not exceed

∑|Ri|
j=1(C + q) ·

|Ri.tj | = (C + q) · ∑|Ri|j=1 |Ri.tj |, which is a (small) constant
times the size of the original tableRi. If words are used as the
token of choice, then we have at most

|Ri.tj |
2

tokens per tuple in
Ri. Also, to store thetokenattribute ofRiWeightswe need no more
than one byte for each character in theRi.tj tuples. Therefore, we
can bound the size ofRiWeightsby 1 + C

2
times the size ofRi.

Again, in this case the space overhead is linear in the size of the
original relationRi.

Given the relationsR1Weightsand R2Weights, a baseline ap-
proach [13, 18] to computeR11̃φR2 is shown in Figure 2. This
SQL statement performs the text join by computing the similar-
ity of each pair of tuples and filtering out any pair with similar-
ity less than the similarity thresholdφ. This approach produces
an exact answer toR11̃φR2 for φ > 0. Unfortunately, as we
will see in Section 6, finding an exact answer with this approach is
prohibitively expensive, which motivates the sampling-based tech-
nique that we describe next.

4. SAMPLING-BASED TEXT JOINS
The result ofR11̃φR2 only contains pairs of tuples fromR1 and

R2 with similarity φ or higher. Usually we are interested in high
values for thresholdφ, which should result in only a few tuples
fromR2 typically matching each tuple fromR1. The baseline ap-
proach in Figure 2, however, calculates the similarity of all pairs of
tuples fromR1 andR2 that share at least one token. As a result,
this baseline approach is inefficient: most of the candidate tuple
pairs that it considers do not make it to the final result of the text
join. In this section, we describe a sampling-based technique [2]
to execute text joins efficiently, drastically reducing the number of
candidate tuple pairs that are considered during query processing.

The sampling-based technique relies on the following intuition:
R11̃φR2 could be computed efficiently if, for each tupletq of R1,
we managed to extract a sample fromR2 containing mostly tuples
suspected to be highly similar totq. By ignoring the remaining
(useless) tuples inR2, we could approximateR11̃φR2 efficiently.
The key challenge then is how to define a sampling strategy that
leads to efficient text join executions while producing an accurate
approximation of the exact query results. The discussion of the
technique is organized as follows:
• Section 4.1 shows how to sample the tuple vectors ofR2 to

estimate the tuple-pair similarity values.
• Section 4.2 describes an efficient algorithm for computing an

approximation of the text join.

The sampling algorithm described in this section is an instance of
the approximate matrix multiplication algorithm presented in [2],
which computes an approximation of the productA = A1 ·. . .·An,
where eachAi is a numeric matrix. (In our problem,n = 2.) The
actualmatrix multiplicationA′ = A2 · . . . · An happens during a
preprocessing, off-line step. Then, the on-line part of the algorithm
works by processing the matrixA1 row by row.

4.1 Token-Weighted Sampling
Consider tupletq ∈ R1 with its associated token weight vector

vtq , and each tupleti ∈ R2 with its associated token weight vector
vti . Whentq is clear from the context, to simplify the notation we
useσi as shorthand forsim(vtq , vti). We extract a sample ofR2

tuples of sizeS for tq as follows:

• Identify each tokenj in tq that has non-zero weightvtq (j),
1 ≤ j ≤ |D|.

INSERT INTO RiIDF(token, idf)
SELECT T.token, LOG(S.size)-LOG(COUNT(UNIQUE(*)))
FROM RiTokens T, RiSize S
GROUP BY T.token, S.size

INSERT INTO RiTF(tid, token, tf)
SELECT T.tid, T.token, COUNT(*)
FROM RiTokens T
GROUP BY T.tid, T.token

(a) Relation with tokenidf counts (b) Relation with tokentf counts

INSERT INTO RiLength(tid, len)
SELECT T.tid, SQRT(SUM(I.idf*I.idf*T.tf*T.tf))
FROM RiIDF I, RiTF T
WHERE I.token = T.token
GROUP BY T.tid

INSERT INTO RiWeights(tid, token, weight)
SELECT T.tid, T.token, I.idf*T.tf/L.len
FROM RiIDF I, RiTF T, RiLength L
WHERE I.token = T.token AND T.tid = L.tid

(c) Relation with weight-vector lengths (d) Final relation with normalized tuple weight vectors

INSERT INTO RiSum(token, total)
SELECT R.token, SUM(R.weight)
FROM RiWeights R
GROUP BY R.token

INSERT INTO RiSize(size)
SELECT COUNT(*)
FROM Ri

(e) Relation with total token weights (f) Dummy relation used to createRiIDF

Figure 1: Preprocessing SQL statements to create auxiliary relations for relationRi.

SELECT r1w.tid AS tid1, r2w.tid AS tid2
FROM R1Weights r1w, R2Weights r2w
WHERE r1w.token = r2w.token
GROUP BY r1w.tid, r2w.tid
HAVING SUM(r1w.weight*r2w.weight) ≥ φ

Figure 2: Baseline approach for computing the exact value of
R11̃φR2.

• For each such tokenj, performS Bernoulli trials over each
ti ∈ {t1, . . . , t|R2|}, where the probability of pickingti in
a trial depends on the weight of tokenj in tuple tq ∈ R1

and in tupleti ∈ R2. Specifically, this probability ispij =
vtq (j)·vti (j)
TV (tq)

, whereTV (tq) =
∑|R2|
i=1 σi is the sum of the

similarity of tupletq with each tupleti ∈ R2. In Section 5
we show how we can implement the sampling step even if
we do not know the value ofTV (tq).

LetCi be the number of times thatti appears in the sample of size
S. It follows that:

THEOREM 1. The expected value ofCi
S
· TV (tq) is σi. 2

The proof of this theorem follows from an argument similar to that
in [2] and from the observation that the mean of the process that

generatesCi is
∑|D|
j=1 vtq (j)vti (j)

TV (tq)
= σi

TV (tq)
.

Theorem 1 establishes that, given a tupletq ∈ R1, we can obtain
a sample of sizeS of tuplesti such that the frequencyCi of tuple
ti can be used to approximateσi. We can then report〈tq, ti〉 as
part of the answer ofR11̃φR2 for each tupleti ∈ R2 such that its
estimated similarity withtq (i.e., its estimatedσi) is φ′ or larger,
whereφ′ = (1− ε)φ is a threshold slightly lower1 thanφ.

GivenR1, R2, and a thresholdφ, our discussion suggests the
following strategy for the evaluation of theR11̃φR2 text join, in
which we process one tupletq ∈ R1 at a time:

• Obtain an individual sample of sizeS fromR2 for tq, using
vectorvtq to sample tuples ofR2 for each token with non-
zero weight invtq .

• If Ci is the number of times that tupleti appears in the sam-
ple for tq, then useCi

S
TV (tq) as an estimate ofσi.

• Include tuple pair〈tq, ti〉 in the result only ifCi
S
TV (tq) ≥

φ
′

(or equivalentlyCi ≥ S
TV (tq)

φ
′
), and filter out the re-

mainingR2 tuples.
1For all practical purposes,ε is treated as a positive constant less than 1.

This strategy guarantees that we can identify all pairs of tuples with
similarity of at leastφ, with a desired probability, as long as we
choose an appropriate sample sizeS. So far, the discussion has
focused on obtaining anR2 sample of sizeS individually for each
tuple tq ∈ R1. A naive implementation of this sampling strat-
egy would then require a scan of relationR2 for each tuple inR1,
which is clearly unacceptable in terms of performance. In the next
section we describe how the sampling can be performed with only
one sequential scan of relationR2.

4.2 Practical Realization of Sampling
As discussed so far, the sampling strategy requires extracting a

separate sample fromR2 for each tuple inR1. This extraction of
a potentially large set of independent samples fromR2 (i.e., one
perR1 tuple) is of course inefficient, since it would require a large
number of scans of theR2 table. In this section, we describe how
to adapt the original sampling strategy so that it requires onesingle
sample ofR2, following the “presampling” implementation in [2].
We then show how to use this sample to create an approximate
answer for the text joinR11̃φR2.

As we have seen in the previous section, for each tupletq ∈ R1

we should sample a tupleti fromR2 in a way that depends on the
vtq (j)·vti(j) values. Since these values are different for each tuple
of R1, a straightforward implementation of this sampling strategy
requires multiple samples of relationR2. Here we describe an alter-
native sampling strategy that requires just one sample ofR2: First,
we sampleR2 usingonly thevti(j) weights from the tuplesti of
R2, to generate asinglesample ofR2. Then, we use the single
sample differently for each tupletq ofR1. Intuitively, we “weight”
the tuples in the sample according to the weightsvtq (j) of the tq
tuples ofR1. In particular, for a desired sample sizeS and a target
similarity φ, we realize the sampling-based text joinR11̃φR2 in
three steps:

1. Sampling: We sample the tuple idsi and the correspond-
ing tokens from the vectorsvti for each tupleti ∈ R2.
We sample each tokenj from a vectorvti with probabil-

ity
vti (j)

Sum(j)
. (We defineSum(j) as the total weight of the

j-th token in relationR2, Sum(j) =
∑|R2|
i=1 vti(j). These

weights are kept in relationR2Sum.) We performS trials,
yielding approximatelyS samples for each tokenj. We in-
sert intoR2Sample tuples of the form〈i, j〉 as many times
as there were successful trials for the pair. Alternatively, we
can create tuples of the form〈i, j, c〉, wherec is the number
of successful trials. This results in a compact representation
of R2Sample, which is preferable in practice.

2. Weighting: TheSamplingstep uses only the token weights
fromR2 for the sampling, ignoring the weights of the tokens

SELECT rw.tid, rw.token, rw.weight/rs.total AS P
FROM RiWeights rw, RiSum rs
WHERE rw.token = rs.token

Figure 3: Creating an auxiliary relation that we sample to cre-
ateRiSample(tid,token).

in the other relation,R1. The cosine similarity, however, uses
the products of the weights fromboth relations. During the
Weightingstep we use the token weights in the non-sampled
relation to get estimates of the cosine similarity, as follows.
For eachR2Sample tuple 〈i, j〉, with c occurrences in the
table, we compute the valuevtq (j) · Sum(j) · c, which is
an approximation ofvtq (j) · vti(j) · S. We add this value to
a running counter that keeps the estimated similarity of the
two tuplestq andti. TheWeightingstep thus departs from
the strategy in [2], for efficiency reasons, in that we do not
use sampling during the join processing.

3. Thresholding: After theWeightingstep, we include the tu-
ple pair〈tq, ti〉 in the final result only if its estimated similar-
ity is no lower than the user-specified threshold (Section 4.1).

Such a sampling scheme identifies tuples with similarity of at
leastφ fromR2 for each tuple inR1. By samplingR2 only once,
the sample will be correlated. As we verify experimentally in Sec-
tion 6, this sample correlation has a negligible effect on the quality
of the join approximation.

As presented, the join-approximation strategy isasymmetricin
the sense that it uses tuples from one relation (R1) to weight sam-
ples obtained from the other (R2). The text join problem, as de-
fined, is symmetric and does not distinguish or impose an ordering
on the operands (relations). Hence, the execution of the text join
R11̃φR2 naturally faces the problem of choosing which relation
to sample. For a specific instance of the problem, we can break
this asymmetry by executing the approximate join twice. Thus, we
first sample from vectors ofR2 and useR1 to weight the samples.
Then, we sample from vectors ofR1 and useR2 to weight the sam-
ples. Then, we take the union of these as our final result. We refer
to this as asymmetrictext join. We will evaluate this technique
experimentally in Section 6.

In this section we have described how to approximate the text
join R11̃φR2 by using weighted sampling. In the next section, we
show how this approximate join can be completely implemented in
a standard, unmodified RDBMS.

5. SAMPLING AND JOINING TUPLE VEC-
TORS IN SQL

We now describe our SQL implementation of the sampling-based
join algorithm of Section 4.2. Section 5.1 addresses theSampling
step, while Section 5.2 focuses on theWeightingandThresholding
steps for the asymmetric versions of the join. Finally, Section 5.3
discusses the implementation of a symmetric version of the approx-
imate join.

5.1 Implementing the Sampling Step in SQL
Given theRiWeights relations, we now show how to implement

the Samplingstep of the text join approximation strategy (Sec-
tion 4.2) in SQL. For a desired sample sizeS and similarity thresh-
old φ, we create the auxiliary relation shown in Figure 3. As the
SQL statement in the figure shows, we join the relationsRiWeights
andRiSum on thetokenattribute. TheP attribute for a tuple in
the result is the probabilityRiWeights.weight

RiSum.total
with which we should

pick this tuple (Section 4.2). Conceptually, for each tuple in the
output of the query of Figure 3 we need to performS trials, pick-
ing each time the tuple with probabilityP . For each successful

INSERT INTO RiSample(tid,token,c)
SELECT rw.tid, rw.token,

ROUND(S * rw.weight/rs.total, 0) AS c
FROM RiWeights rw, RiSum rs
WHERE rw.token = rs.token AND

ROUND(S * rw.weight/rs.total, 0)>0

Figure 4: A deterministic version of the Samplingstep, which
results in a compact representation ofRiSample.

SELECT r1w.tid AS tid1, r2s.tid AS tid2
FROM R1Weights r1w, R2Sample r2s,

R2Sum r2sum, R1V r1v
WHERE r1w.token = r2s.token AND

r1w.token = r2sum.token AND
r1w.tid = r1v.tid

GROUP BY r1w.tid, r2s.tid, r1v.Tv
HAVING SUM(r1w.weight*r2sum.total/r1v.Tv) ≥S ∗ φ′/r1v.Tv

Figure 5: Implementing the Weightingand Thresholdingsteps
in SQL. This query corresponds to the asymmetric execution of
the sampling-based text join, where we sampleR2 and weight
the sample usingR1.

trial, we insert the corresponding tuple〈tid, token〉 in a relation
RiSample(tid , token), preserving duplicates. TheS trials can be
implemented in various ways. One (expensive) way to do this is as
follows: We add “AND P≥ RAND()” in the WHERE clause of the
Figure 3 query, so that the execution of this query corresponds to
one “trial.” Then, executing this queryS times and taking the union
of the all results provides the desired answer. A more efficient al-
ternative, which is what we implemented, is to open a cursor on the
result of the query in Figure 3, read one tuple at a time, perform
S trials on each tuple, and then write back the result. Finally, a
pure-SQL “simulation” of theSamplingstep deterministically de-
fines that each tuple will result inRound(S · RiWeights.weight

RiSum.total
) “suc-

cesses” afterS trials, on average. This deterministic version of the
query is shown in Figure 42. We have implemented and run exper-
iments using the deterministic version, and obtained virtually the
same performance as with the cursor-based implementation of sam-
pling over the Figure 3 query. In the rest of the paper –to keep the
discussion close to the probabilistic framework– we use the cursor-
based approach for theSamplingstep.

5.2 Implementing the Weighting and Thresh-
olding Steps in SQL

Section 4.2 described theWeightingandThresholdingsteps as
two separate steps. In practice, we can combine them into one SQL
statement, shown in Figure 5. TheWeightingstep is implemented
by the SUM aggregate in the HAVING clause. We weight each
tuple from the sample according toR1Weights.weight·R2Sum.total

R1V.TV
,

which corresponds to
vtq (j)·Sum(j)

TV (tq)
(see Section 4.2). Then, we

can count the number of times that each particular tuple pair ap-
pears in the results (see GROUP BY clause). For each group, the
result of the SUM is the number of timesCi that a specific tuple
pair appears in the candidate set. To implement theThresholding
step, we apply the count filter as a simple comparison in the HAV-
ING clause: we check whether the frequency of a tuple pair at least
matches the count threshold (i.e.,Ci ≥ S

TV (tq)
φ
′
). The final out-

put of this SQL operation is a set of tuple id pairs with expected
similarity of at leastφ. The SQL statement in Figure 5 can be fur-
ther simplified by completely eliminating the join with theR1V

2Note that this version ofRiSample uses the compact representation in which each
tid-token pair has just one associated row.

SELECT tid1, tid2
FROM
(

SELECT r1w.tid AS tid1, r2s.tid AS tid2,
SUM(r1w.weight * r2sum.total) AS Ci

FROM R1Weights r1w, R2Sample r2s, R2Sum r2sum
WHERE r1w.token = r2s.token AND

r1w.token = r2sum.token
GROUP BY r1w.tid, r2s.tid

UNION ALL
SELECT r1s.tid AS tid1, r2w.tid AS tid2,

SUM(r2w.weight * r1sum.total) AS Ci
FROM R2Weights r2w, R1Sample r1s, R1Sum r1sum
WHERE r2w.token = r1s.token AND

r2w.token = r1sum.token
GROUP BY r2w.tid, r1s.tid

) SYM
GROUP BY tid1, tid2
HAVING AVG(Ci) ≥ S ∗ φ′

Figure 6: A symmetric sampling-based text joinR11̃φR2.

SELECT r1s.tid AS tid1, r2s.tid AS tid2
FROM R1Sample r1s, R2Sample r2s,

R1Sum r1sum, R2Sum r2sum
WHERE r1s.token = r1sum.token AND

r2s.token = r2sum.token AND
r1s.token = r2s.token

GROUP BY r1s.tid, r2s.tid
HAVING SUM(r1sum.total * r2sum.total) ≥ S ∗ S ∗ φ′

Figure 7: A symmetric sampling-based text joinR11̃φR2 in-
volving only the relation samples.

relation. TheR1V.TV values are used only in the HAVING clause,
to divide both parts of the inequality. The result of the inequality is
not affected by this division, hence theR1V relation can be elim-
inated when combining theWeightingand theThresholdingstep
into one SQL statement.

5.3 Implementing a Symmetric Text Join Ap-
proximation in SQL

Up to now we have described only anasymmetrictext join ap-
proximation approach, in which we sample relationR2 and weight
the samples according to the tuples inR1 (or vice versa). However,
as we described in Section 4.2, the text joinR11̃φR2 treatsR1 and
R2 symmetrically. To break the asymmetry of our sampling-based
strategy, we execute the two different asymmetric approximations
and report the union of their results, as shown in Figure 6. Note that
a tuple pair〈tid1, tid2〉 that appears in the result of the two inter-
vening asymmetric approximations needs high combined “support”
to qualify in the final answer (see HAVING clause in Figure 63).

An additional strategy naturally suggests itself: Instead of exe-
cuting the symmetric join algorithm by joining the samples with
the original relations, we can just join thesamples, ignoring the
original relations. We sample each relation independently, join the
samples, and then weight and threshold the output. We implement
the Weightingstep by weighting each tuple withR1Sum.total

R1V.TV
·

R2Sum.total
R2V.TV

. The count threshold in this case becomesCi ≥
S·S

TV (tq)·TV (ti)
φ
′

(again theTV values can be eliminated from the
SQL implementation if we combine theWeightingand theThresh-
olding steps). Figure 7 shows the SQL implementation of this ver-
sion of the sampling-based text join.

6. EXPERIMENTAL EVALUATION
3Alternatively, we can use a different “combination” function instead of AVG, such
as MAX or MIN.

We implemented the proposed SQL-based techniques and per-
formed a thorough experimental evaluation in terms of both accu-
racy and performance in a commercial RDBMS. In Section 6.1, we
describe the techniques that we compare and the data sets and met-
rics that we use for our experiments. Then, we report experimental
results in Section 6.2.

6.1 Experimental Settings
We implemented the schema and the relations described in Sec-

tion 3 in a commercial RDMBS, Microsoft SQL Server 2000, run-
ning on a multiprocessor machine with 2x2Ghz Xeon CPUs and
with 2Gb of RAM. SQL Server was configured to potentially uti-
lize the entire RAM as a buffer pool. We also compared our SQL
solution against WHIRL, an alternative stand-alone technique, not
available under Windows, using a PC with 2Gb of RAM, 2x1.8Ghz
AMD Athlon CPUs and running Linux.

Data Sets: For our experiments, we usedreal data from an
AT&T customer relationship database. We extracted from this da-
tabase a random sample of 40,000distinct attribute values of type
string. We then split this sample into two data sets,R1 andR2.
Data setR1 contains about 14,000 strings, while data setR2 con-
tains about 26,000 strings. The average string length forR1 is 19
characters and, on average, each string consists of 2.5 words. The
average string length forR2 is 21 characters and, on average, each
string consists of 2.5 words. The length of the strings follows a
close-to-Gaussian distribution for both data sets and is reported
in Figure 8(a), while the size ofR11̃φR2 for different similar-
ity thresholdsφ and token choices is reported in Figure 8(b). We
briefly discuss experiments over other data sets later in this section.

Metrics: To evaluate the accuracy and completeness of our tech-
niques we use the standardprecisionandrecall metrics:

DEFINITION 3. Consider two relationsR1 andR2 and a user-
specified similarity thresholdφ. Let Answerφ be an approximate
answer for text joinR11̃φR2. Then, theprecisionand recall of
Answerφ with respect toR11̃φR2 are defined as:

precision =
|Answerφ ∩ (R11̃φR2)|

|Answerφ|
recall =

|Answerφ ∩ (R11̃φR2)|
|R1 1̃φR2 |

Precision and recall can take values in the 0-to-1 range. Preci-
sion measures the accuracy of the answer and indicates the fraction
of tuples in the approximation ofR11̃φR2 that are correct. In con-
trast, recall measures the completeness of the answer and indicates
the fraction of theR11̃φR2 tuples that are captured in the approx-
imation. We believe that recall is more important than precision.
The returned answer can always be checked for false positives in
a post-join step, while we cannot locate false negatives without re-
running the text join algorithm.

Finally, to measure the efficiency of the algorithms, we measure
the actualexecution timeof the text join for different techniques.

Choice of Tokens:We present experiments for different choices
of tokens for the similarity computation. (Section 7 discusses the
effect of the token choice on the resulting similarity function.) The
token types that we consider in our experiments are:

• Words: All space-delimited words in a tuple are used as to-
kens (e.g., “AT&T” and “Labs” for string “AT&T Labs”).

• Q-grams: All substrings ofq consecutive characters in a tu-
ple are used as tokens (e.g., “$A,” “AT,” “T&,” “&T,” “T ,” “
L,” “La,” “ab,” “bs,” “s#,” for string “AT&T Labs” and q = 2,
after we add dummy characters “$” and “#” at the beginning
and end of the tuple [11]). We considerq = 2 andq = 3.

0

200

400

600

800

1000

1200

1400

1600

0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

string length

n
u

m
b

e
r

o
f

s
tr

in
g

s

R1

R2

(a) String lengths in data setsR1 andR2.

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

similarity

n
u

m
b

e
r

o
f

tu
p

le
 p

a
ir

s

Q-grams, q=2

Q-grams, q=3

Words

(b) The size ofR11̃φR2 for different similarity
thresholds and token choices.

Figure 8: Characteristics of the two data setsR1 andR2.

TheR1Weightstable has 30,933 rows forWords, 268,458 rows for
Q-gramswith q = 3, and 245,739 rows forQ-gramswith q = 2.
For theR2Weightstable, the corresponding numbers of rows are
61,715, 536,982, and 491,515. In Figure 8(b) we show the number
of tuple pairs in the exact result of the text joinR11̃φR2, for the
different token choices and for different similarity thresholdsφ.

Techniques Compared:We compare the following algorithms
for computing (an approximation of)R11̃φR2. All of these algo-
rithms can be deployed completely within an RDBMS:

• Baseline: This expensive algorithm (Figure 2) computes the
exact answer forR11̃φR2 by considering all pairs of tuples
from both relations.

• R1sR2: This asymmetric approximation ofR11̃φR2 sam-
ples relationR2 and weights the sample usingR1 (Figure 5).

• sR1R2: This asymmetric approximation ofR11̃φR2 sam-
ples relationR1 and weights the sample usingR2.

• R1R2: This symmetric approximation ofR11̃φR2 is shown
in Figure 6.

• sR1sR2: This symmetric approximation ofR11̃φR2 joins
the two samplesR1SampleandR2Sample(Figure 7).

In addition, we also compare the SQL-based techniques against
the stand-alone WHIRL system [4]. Given a similarity threshold
φ and two relationsR1 andR2, WHIRL computes the text join
R11̃φR2. The fundamental difference with our techniques is that
WHIRL is a separate application, not connected to any RDBMS.
Initially, we attempted to run WHIRL over our data sets using
its default settings. Unfortunately, during the computation of the

R11̃φR2 join WHIRL ran out of memory. We then followed ad-
vice from WHIRL’s author [5] and limited the maximum heap size4

to produce anapproximateanswer forR11̃φR2. We measure the
precision and recall of the WHIRL answers, in addition to the run-
ning time to produce them.

WHIRL natively supports only word tokenization, but notq-
grams. To test WHIRL withq-grams, we adopted the following
strategy: We generated all theq-grams of the strings inR1 and
R2, and stored them as separate “words.” For example, the string
“ABC” was transformed into “$A AB BC C#” forq = 2. Then
WHIRL used the transformed data set as if eachq-gram were a
separate word.

Besides the specific choice of tokens, three other main param-
eters affect the performance and accuracy of our techniques: the
sample sizeS, the choice of the user-defined similarity threshold
φ, and the choice of the error marginε. We now experimentally
study how these parameters affect the accuracy and efficiency of
sampling-based text joins.

6.2 Experimental Results
Comparing Different Techniques: Our first experiment eval-

uates the precision and recall achieved by the different versions
of the sampling-based text joins and for WHIRL (Figure 9). For
sampling-based joins, a sample size ofS = 128 is used (we present
experiments for varying sample sizeS below). Figure 9(a) presents
the results forWordsand Figures 9(b)(c) present the results for
Q-grams, for q = 2 and q = 3. WHIRL has perfect precision
(WHIRL computes the actual similarity of the tuple pairs), but it
demonstrates very low recall forQ-grams. The low recall is, to
some extent, a result of the small heap size that we had to use to
allow WHIRL to handle our data sets. The sampling-based joins,
on the other hand, perform better. ForWords, they achieve recall
higher than 0.8 for thresholdsφ > 0.1, with precision above 0.7
for most cases whenφ > 0.2 (with the exception of thesR1sR2
technique). WHIRL has comparable performance forφ > 0.5. For
Q-gramswith q = 3, sR1R2 has recall around 0.4 across different
similarity thresholds, with precision consistently above 0.7, outper-
forming WHIRL in terms of recall across all similarity thresholds,
except forφ = 0.9. Whenq = 2, none of the algorithms performs
well. For the sampling-based text joins this is due to the small
number of different tokens forq = 2. By comparing the differ-
ent versions of the sampling-based joins we can see thatsR1sR2
performs worse than the other techniques in terms of precision and
recall. Also,R1sR2 is always worse thansR1R2: SinceR2 is
larger thanR1 and the sample size is constant, the sample ofR1

represents theR1 contents better than the corresponding sample of
R2 does forR2.

Effect of Sample SizeS: The second set of experiments evalu-
ates the effect of the sample size (Figure 10). As we increase the
number of samplesS for each distinct token of the relation, more
tuples are sampled and included in the final sample. This results
in more matches in the final join, and, hence in higher recall. It is
also interesting to observe the effect of the sample size for differ-
ent token choices. The recall forQ-gramswith q = 2 is smaller
than that forQ-gramswith q = 3 for a given sample size, which in
turn is smaller than the recall forWords. Since we independently
obtain a constant number of samples per distinct token, the higher
the number of distinct tokens the more accurate the sampling is ex-
pected to be. This effect is visible in the recall plots of Figure 10.
The sample size also affects precision. When we increase the sam-
ple size, precision generally increases. However, in specific cases
we can observe that smaller sizes can in fact achieve higher preci-
sion. This happens because for a smaller sample size we may get
4For Wordsthe exact command was “set maxheap 10000 ”. For Q-gramsthe
command was “set maxheap 8000 ”. This was the maximum heap size that al-
lowed ourQ-gramsexperiments to finish using WHIRL.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c

a
ll

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c
a
ll

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c
a
ll

R1R2

sR1R2

R1sR2

sR1sR2

WHIRL

(a) Words (b) Q-gramswith q = 2 (c)Q-gramswith q = 3

Figure 9: Average precision and recall of different algorithms for (a)Words, (b)Q-gramswith q = 2, and (c)Q-gramswith q = 3, as
a function of the similarity threshold φ (sample sizeS = 128, ε = 0).

anunderestimateof the similarity value (e.g., estimated similarity
0.5 for real similarity 0.7). Underestimates donot have a nega-
tive effect on precision. However, an increase in the sample size
might result in anoverestimateof the similarity, even if the abso-
lute estimation error is smaller (e.g., estimated similarity 0.8 for
real similarity 0.7). Overestimates, though, affect precision nega-
tively when the similarity thresholdφ happens to be between the
real and the (over)estimated similarity.

Effect of Error Margin ε: As mentioned in Section 4.1, the
threshold for count filter is S

TV (tq)
(1 − ε)φ. Different values of

ε affect the precision and recall of the answer. Figure 11 shows
how different choices ofε affect precision and recall. When we
increaseε, we lower the threshold for count filter and more tuple
pairs are included in the answer. This, of course, increases recall, at
the expense of precision: the tuple pairs included in the result have
estimatedsimilarity lower than the desired thresholdφ. The choice
of ε is an “editorial” decision, and should be set to either favor re-
call or precision. As discussed above, we believe that higher recall
is more important: the returned answer can always be checked for
false positives in a post-join step, while we cannot locate false neg-
atives without re-running the text join algorithm.

Execution Time: To analyze efficiency, we measure the ex-
ecution time of the different techniques. Our measurements do
not include the preprocessing step to build the auxiliary tables in
Figure 1: This preprocessing step is common to the baseline and
all sampling-based text join approaches. This preprocessing step
took less than one minute to process both relationsR1 andR2 for
Words, and about two minutes forQ-grams. Also, the time needed
to create theRiSamplerelations is less than three seconds. For
WHIRL we similarly do not include the time needed to export the
relations from the RDBMS to a text file formatted as expected by
WHIRL, the time needed to load the text files from disk, or the time
needed to construct the inverted indexes5. The preprocessing time
for WHIRL is about five seconds forWordsand thirty seconds for
Q-grams, which is smaller than for the sampling-based techniques:

5We used the command “index 〈relation〉” to force WHIRL to create the inverted
lists before the join computation [5].

WHIRL keeps the data in main memory, while we keep the weights
in materialized relations inside the RDBMS.

TheBaselinetechnique (Figure 2) could only be run forWords.
ForQ-grams, SQL Server executed theBaselinequery for approx-
imately 24 hours, using more than 60Gb of temporary disk space,
without producing any results. At that point we decided to stop the
execution. Hence, we only report results forWordsfor theBaseline
technique.

Figure 12(a) reports the execution time of sampling-based text
join variations forWords, for different sample sizes. The execu-
tion time of the join did not change considerably for different sim-
ilarity thresholds6, and is consistently lower than that forBase-
line. For example, forS = 64, a sample size that results in high
precision and recall (Figure 10(a)),R1R2 is more than 10 times
faster thanBaseline. The speedup is even higher forsR1R2 and
R1sR2. Figures 12(b) and 12(c) report the execution time forQ-
gramswith q = 2 andq = 3. Surprisingly,sR1sR2, which joins
only the two samples, is not faster than the other variations. For all
choices of tokens, the symmetric versionR1R2 has an associated
execution time that is longer than the sum of the execution times
of sR1R2 andR1sR2. This is expected, sinceR1R2 requires
executingsR1R2 andR1sR2 to compute its answer. Finally, Fig-
ure 12(d) reports the execution time for WHIRL, for different sim-
ilarity thresholds. (Note that WHIRL was run on a slightly slower
machine; see Section 6.1.) ForQ-gramswith q = 3, the exe-
cution time for WHIRL is roughly comparable to that ofsR1R2
whenS = 128. For this settingsR1R2 has recall generally at or
above 0.4, while WHIRL has recall above 0.4 only for similarity
thresholdφ ≥ 0.8. For Words, WHIRL is more efficient than the
sampling-based techniques for high values ofS, while WHIRL has
significantly lower recall for low to moderate similarity thresholds
(Figure 9(a)). For example, forS = 128 sampling-based text joins
have recall above 0.8 whenφ > 0.1 and WHIRL has recall above
0.8 only whenφ > 0.5.

Alternative Data Sets: We also ran experiments for five addi-

6The results in Figure 12 were computed for similarity thresholdφ = 0.5; the execu-
tion times for other values ofφ are not significantly different from those forφ = 0.5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c

a
ll

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c

a
ll

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c

a
ll

S=1
 S=2

S=4
 S=8

S=16
 S=32

S=64
 S=128

S=256

(a) Words (b) Q-gramswith q = 2 (c)Q-gramswith q = 3

Figure 10: Average precision and recall of the symmetric versionR1R2 of the algorithm, for different sample sizesS and as a
function of the similarity threshold φ, for: (a) Words, (b)Q-gramswith q = 2, and (c)Q-gramswith q = 3 (ε = 0).

tional data set pairs,T1 throughT5, using againreal data from
different AT&T customer databases.T1 consists of two relations
with approximately 26,000 and 260,000 strings respectively. The
respective numbers for the remaining pairs are:T2: 500 and 1,500
strings; T3: 26,000 and 1,500 strings;T4: 26,000 and 26,000
strings; andT5: 30,000 and 30,000 strings.

Most of the results (reported in Figures 13 and 14) are analogous
to those for the data setsR1 andR2. The most striking difference
is the extremely low recall for the data setT5 and similarity thresh-
oldsφ = 0.7 andφ = 0.8, for Q-gramswith q = 3 (Figure 13).
This behavior is due to peculiarities of theT5 data set:T5 includes
7 variations of the string “CompanyA. . .”7 (4 variations in each re-
lation) that appear in a total of 2,160 and 204 tuples in each relation,
respectively. Any pair of such strings has real cosine similarity of
at least 0.8. Hence the text join contains manyidentical tuple pairs
with similarity of at least 0.8. Unfortunately, our algorithm gives an
estimated similarity of around 0.6 for 5 of these pairs. This results
in low recall for only 5 distincttuple pairs that, however, account
for approximately 300,000 tuples in the join, considerably hurting
recall. Exactly the same problem appears with 50 distinct entries of
the form “CompanyB. . .” (25 in each relation) that appear in 3,750
tuples in each relation. These tuples, when joined, result in only 50
distinct tuple pairs in the text join with similarity above 0.8 that
again account for 300,000 tuples in the join. Our algorithm under-
estimates their similarity, which results in low recall for similarity
thresholdsφ = 0.7 andφ = 0.8.

In general, the sampling-based text joins, which are executed in
an unmodifiedRDBMS, have efficiency comparable to WHIRL,
when WHIRL has sufficient main memory available: WHIRL is
a stand-alone application that implements a main-memory version
of theA∗ algorithm. This algorithm requires keeping large search
structures during processing; when main memory is not sufficiently
large for a data set, WHIRL’s recall suffers considerably. TheA∗

strategy of WHIRL could be parallelized [5], but a detailed dis-
cussion of this is outside the scope of this paper. In contrast, our
techniques are fully executed within RDBMSs, which are designed

7For privacy reasons, we do not report the real name of the company.

to handle large data volumes in an efficient and scalable way.

7. DIFFERENT SIMILARITY FUNCTIONS
Section 6 studied the accuracy and efficiency of text join execu-

tions, for different token choices and for a distance metric based
on tf.idf token weights (Section 2). We now compare this distance
metric against string edit distance, especially in terms of the effec-
tiveness of the metrics in helping data integration applications.

Theedit distance[16] between two strings is the minimum num-
ber of edit operations (i.e.,insertions, deletions, andsubstitutions)
of single characters needed to transform the first string into the sec-
ond. The edit distance metric works very well for capturing typo-
graphical errors. For example, the strings “Computer Science” and
“Computer Scince” have edit distance one. Also edit distance can
capture insertions of short words (e.g., “Microsoft” and “Microsoft
Co” have edit distance three). Unfortunately, a small increase of the
distance threshold can capture many false matches, especially for
short strings. For example, the string “IBM” is within edit distance
three of both “ACM” and “IBM Co.”

The simple edit distance metric does not work well when the
compared strings involve block moves (e.g., “Computer Science
Department” and “Department of Computer Science”). In this case,
we can useblock edit distance, a more general edit distance metric
that allows for block moves as a basic edit operation. By allowing
for block moves, the block edit distance can also capture word re-
arrangements. Finding the exact block edit distance of two strings
is an NP-hard problem [17]. Block edit distance cannot capture all
mismatches. Differences between records also occur due to inser-
tions and deletions of common words. For example, “KAR Corpo-
ration International” and “KAR Corporation” have block edit dis-
tance 14. If we allow large edit distance thresholds to capture such
mismatches, the answer will contain a large number of false posi-
tive matches.

The insertion and deletion of common words can be handled ef-
fectively with the cosine similarity metric that we have described
in this paper if we use words as tokens. Common words, like “In-
ternational,” have lowidf weight. Hence, two strings are deemed

0.1

1

10

100

1000

10000

S=1
 S=2
 S=4
 S=8
 S=16
 S=32
 S=64
 S=128
 S=256

sample size

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
s
)

R1R2
 R1sR2

sR1R2
 sR1sR2

Baseline

0.1

1

10

100

1000

10000

S=1
 S=2
 S=4
 S=8
 S=16
 S=32
 S=64
 S=128
 S=256

sample size

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
s
)

R1R2
 R1sR2

sR1R2
 sR1sR2

(a)Words(φ = 0.5) (b)Q-gramswith q = 2 (φ = 0.5)

0.1

1

10

100

1000

10000

S=1
 S=2
 S=4
 S=8
 S=16
 S=32
 S=64
 S=128
 S=256

sample size

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
s
)

R1R2
 R1sR2

sR1R2
 sR1sR2

0.1

1

10

100

1000

10000

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

e
x
e
c
u

ti
o

n
 t

im
e
 (

s
e
c
s
)

Q-grams, q=2

Q-grams, q=3

Words

(c)Q-gramswith q = 3 (φ = 0.5) (d) WHIRL

Figure 12: The execution time of the algorithms for different sample sizes and token choices.

Similarity Function Mismatches Captured Mismatches not Captured

Edit distance Spelling errors, insertions and deletions of short words Variations of word order, insertions and
deletions of long words

Block edit distance Spelling errors, insertions and deletions of short words,
variations of word order

Insertions and deletions of long words

Cosine similarity with
words as tokens

Insertions and deletions of common words, variations of
word order

Spelling errors

Cosine similarity with q-
grams as tokens

Spelling errors, insertions and deletions of short or common
words, variations of word order

-

Table 1: Different similarity functions for data integration, and the types of string mismatches that they can capture.

similar when they share manyidenticalwords (i.e., with no spelling
mistakes) that do not appear frequently in the relation. This met-
ric also handles block moves naturally. The use of words as to-
kens in conjunction with the cosine similarity as distance metric
was proposed by WHIRL [4]. Unfortunately, this similarity metric
does not capture word spelling errors, especially if they are perva-
sive and affect many of the words in the strings. For example, the
strings “Compter Science Department” and “Deprtment of Com-
puter Scence” will have zero similarity under this metric.

Hence, we can see that (block) edit distance and cosine similarity
with words serve complementary purposes. Edit distance handles
spelling errors well (and possibly block moves as well), while the
cosine similarity with words nicely handles block moves and inser-
tions of words.

A similarity function that naturally combines the good proper-
ties of the two distance metrics is the cosine similarity withq-
grams as tokens. A block move minimally affects the set of com-
mon q-grams of two strings, so the two strings “Gateway Com-
munications” and “Communications Gateway” have high similar-
ity under this metric. A related argument holds when there are
spelling mistakes in these words. Hence, “Gteway Communica-
tions” and “Comunications Gateway” will also have high similarity
under this metric despite the block move and the spelling errors in

both words. Finally, this metric handles the insertion and deletion
of words nicely. The string “Gateway Communications” matches
with high similarity the string “Communications Gateway Interna-
tional” since theq-grams of the word “International” appear often
in the relation and have low weight. Table 1 summarizes the quali-
tative properties of the distance functions described above.

The choice of similarity function impacts the execution time of
the associated text joins. The use of the cosine similarity with
words leads to fast query executions as we have seen in Section 6.
When we useq-grams, the execution time of the join increases con-
siderably, resulting nevertheless in higher quality of results with
matches that neither edit distance nor cosine similarity with words
could have captured. Given the improved recall and precision of the
sampling-based text join whenq = 3 (compared to the case where
q = 2), we believe that the cosine similarity metric with 3-grams
can serve well for data integration applications. A more thorough
study of the relative merits of the similarity metrics for different
applications is a subject of interesting future work.

8. RELATED WORK
Integrating data from various sources is a problem that has at-

tracted significant attention in different research communities. Var-
ious measures have been adopted to assess similarity or closeness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

epsilon=0.00

epsilon=0.05

epsilon=0.10

epsilon=0.15

epsilon=0.20

epsilon=0.25

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c

a
ll

epsilon=0.00

epsilon=0.05

epsilon=0.10

epsilon=0.15

epsilon=0.20

epsilon=0.25

Figure 11: Average precision and recall of theR1R2 algorithm,
for different similarity thresholds and different values of ε (S =
128,Q-gramswith q = 3).

between collections of entities to identify approximate matches.
In the statistical literature, the problem is referred to as therecord

linkageproblem [8, 25]. In this body of work similarity is quanti-
fied via a probabilistic framework that is aimed at minimizing the
probability of “misclassification,” i.e., declaring two entities as dif-
ferent when they are actually the same. Learning the probabilities
involves a training and a validation phase that can be quite com-
plex to realize in practice. The bulk of work in this direction has
concentrated on the modeling aspect, however, as opposed to on
performance related issues. The typical assumption is that records
fit in memory and/or that evaluation of the cross product of two
files (and sometimes its materialization) is viable. This is not true
with very large data collections.

Approximate matching of strings is a problem of central interest
for data integration and cleansing applications [9, 11]. The problem
of approximate string matching has attracted interest in the algo-
rithms and combinatorial pattern matching communities [19] and
commonly the stringedit distance(with its numerous variants) is
adopted for approximate string match quantification. Gravano et
al. [11] presented a method to integrate approximate string match
via edit distance into a database and realize it as SQL statements.
They exploited a series of filters to speed join operations between
string attributes using the edit distance as a join predicate. More
specifically, this operation reports, for any string in an attribute of a
relationR1, all strings in an attribute of a relationR2 that are within
a given edit distance. Hernández and Stolfo [14] studied how to
identify approximate duplicate records in large databases. Their
approach relies on the ability to form a “pseudo-key” for each tuple
by concatenating elements from its attributes. Then, sorting and
band joins [6] on the pseudo keys can be used to identify approxi-
mate duplicates. Pseudo-key formation is an application-dependent
operation that requires domain knowledge. Sarawagi and Bhamidi-
paty [21] describe an active learning algorithm for combining dif-
ferent similarity functions. The system is based on users to man-
ually mark a small set of “potential duplicates” as real duplicates
or not, and then uses these examples to optimize the combination

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

p
re

c
is

io
n

T1
 T2
 T3

T4
 T5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

similarity

re
c
a
ll

T1
 T2
 T3

T4
 T5

Figure 13: Average precision and recall of theR1R2 algorithm
for the data setsT1 through T5, for different similarity thresh-
olds (ε = 0.1, S = 128,Q-gramswith q = 3).

function. Cohen and Richman [3] use clustering in conjunction
with the cosine similarity metric to create clusters of potential du-
plicate entries.

The information retrieval field has produced approaches to speed
up query execution that involve computation of the cosine similar-
ity metric using inverted indexes [26]. A key idea is to exploit
inverted indexes for fast computation of term weights. These tech-
niques are of limited applicability for our approach: since we cal-
culate and store the token weights during the preprocessing step of
Section 3, we avoid the overhead of weight calculation during the
join operation. However, we can apply some of these techniques
to speed up thepreprocessingstep. Other optimizations described
in [26] describe how to efficiently compute the document “lengths”
to calculate the cosine similarity between documents. Since we
use normalized weights, we do not have to calculate the document
lengths on the fly. Additional optimizations, such as “quantization
of weights,” [26] can be easily implemented inside a database sys-
tem both for the baseline and for the sampling approach. Finally,
some techniques also make special use of the available main mem-
ory to improve query-processing performance. These techniques
are not compatible with our key objective of running the text joins
in anunmodifiedRDBMS. Techniques that are based on the prun-
ing of the inverted index [22, 24] are close in spirit to our work,
especially if we implement the sampling step using the ROUND
function (Figure 4), which effectively prunes all the tokens with
small weights.

Sampling has been utilized in a variety of tasks of database inter-
est including data mining, estimation and optimization of queries,
and query answering. A range of database vendors provide declar-
ative interfaces that support a variety of sampling techniques inside
the database engine [15]. Iceberg queries [7] utilize sampling for
efficient answering of group-by queries. In particular, the tech-
niques proposed by Fang et al. [7] utilize approximate counting
techniques based on variants of hashing to efficiently estimate ag-
gregate functions on groups of tuples.

Grossman et al. [13] present techniques for representing text doc-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5
 0.6
 0.7
 0.8
 0.9

similarity

p
re

c
is

io
n

T1
 T2
 T3

T4
 T5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5
 0.6
 0.7
 0.8
 0.9

similarity

re
c
a
ll

T1
 T2
 T3

T4
 T5

Figure 14: Average precision and recall of theR1R2 algorithm
for the data setsT1 through T5, for different similarity thresh-
olds (ε = 0.1, S = 128, Words).

uments and their associated term frequencies in relational tables,
as well as for mapping boolean and vector-space queries into stan-
dard SQL queries. They also use a query-pruning technique, based
on word frequencies, to speed up query execution. In this paper,
we follow the same general approach of translating complex func-
tionality not natively supported by a RDBMS into operations and
queries that a RDBMS can optimize and execute efficiently. Gross-
man et al.’s technique can be adapted for our text join problem; we
evaluate a version of this approach experimentally in Section 6.

Finally, the approximate matrix multiplication algorithm in [2]
and Cohen’s WHIRL system [4] are closest to our work, and have
been discussed in Sections 4 and 6, respectively. In particular, Sec-
tion 4 summarizes the strategy in [2] as applied to our problem.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of matching textual at-

tributes that refer to the same entity. For this, we adopted the well
established measure of cosine similarity over the vector-space re-
trieval model and proposed a SQL implementation of a sampling-
based strategy to compute text joins in an unmodified RDBMS.
Our algorithms are approximate, and we experimentally evaluated
the accuracy/performance tradeoffs.

The work presented herein raises various issues for further study.
As a notable example, conducting a thorough qualitative study of
the properties of the different similarity functions for data integra-
tion applications is an interesting piece of future work.

10. REFERENCES
[1] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in

data warehouses. InProceedings of the 28th International Conference on Very
Large Databases (VLDB 2002), 2002.

[2] E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern
recognition tasks. InProceedings of the Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 1997), pages 682–691, 1997.

[3] W. Cohen and J. Richman. Learning to match and cluster large
high-dimensional data sets for data integration. InThe Eighth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD-2002), 2002.

[4] W. W. Cohen. Integration of heterogeneous databases without common
domains using queries based on textual similarity. InProceedings of the 1998
ACM SIGMOD International Conference on Management of Data
(SIGMOD’98), pages 201–212, 1998.

[5] W. W. Cohen. Personal communication, 2002.
[6] D. J. DeWitt, J. F. Naughton, and D. A. Schneider. An evaluation of

non-equijoin algorithms. InProceedings of the 17th International Conference
on Very Large Databases (VLDB’91), pages 443–452, 1991.

[7] M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, and J. D. Ullman.
Computing iceberg queries efficiently. InProceedings of the 24th International
Conference on Very Large Databases (VLDB’98), pages 299–310, 1998.

[8] I. P. Fellegi and A. B. Sunter. A theory for record linkage.Journal of the
American Statistical Association, 64(328):1183–1210, Dec. 1969.

[9] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita. Declarative
data cleaning: Language, model, and algorithms. InProceedings of the 27th
International Conference on Very Large Databases (VLDB 2001), pages
371–380, 2001.

[10] L. Gravano, P. G. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan,
L. Pietarinen, and D. Srivastava. Usingq-grams in a DBMS for approximate
string processing.IEEE Data Engineering Bulletin, 24(4):28–34, Dec. 2001.

[11] L. Gravano, P. G. Ipeirotis, H. Jagadish, N. Koudas, S. Muthukrishnan, and
D. Srivastava. Approximate string joins in a database (almost) for free. In
Proceedings of the 27th International Conference on Very Large Databases
(VLDB 2001), pages 491–500, 2001.

[12] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava. Text joins for data
cleansing and integration in an RDBMS (poster paper). InProceedings of the
19th IEEE International Conference on Data Engineering (ICDE 2003), 2003.

[13] D. A. Grossman, O. Frieder, D. O. Holmes, and D. C. Roberts. Integrating
structured data and text: A relational approach.Journal of the American Society
for Information Science, 48(2):122–132, 1997.

[14] M. A. Hernández and S. J. Stolfo. The merge/purge problem for large
databases. InProceedings of the 1995 ACM SIGMOD International Conference
on Management of Data (SIGMOD’95), pages 127–138, 1995.

[15] K. Kulkarni, A. Mozes, A. Witwoski, M. Zaharioudakis, and F. Zemke. SQL
extensions for sampling. Technical Report IEC JTC1/SC32, ISO International
Organization for Standardization, Data Management and Interchange WG3
Database Languages Working Group, Oct. 2001.

[16] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals.Doklady Akademii Nauk SSSR, 163(4):845–848, 1965. Original in
Russian – translation in Soviet Physics Doklady 10(8):707-710, 1966.

[17] D. Lopresti and A. Tomkins. Block edit models for approximate string
matching.Theoretical Computer Science, 181(1):159–179, 1997.

[18] C. Lundquist, O. Frieder, D. O. Holmes, and D. A. Grossman. A parallel
relational database management system approach to relevance feedback in
information retrieval.Journal of the American Society for Information Science,
50(5):413–426, 1999.

[19] G. Navarro. A guided tour to approximate string matching.ACM Computing
Surveys, 33(1):31–88, 2001.

[20] G. Salton and M. J. McGill.Introduction to modern information retrieval.
McGraw-Hill, 1983.

[21] S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active
learning. InThe Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-2002), 2002.

[22] A. Soffer, D. Carmel, D. Cohen, R. Fagin, E. Farchi, M. Herscovici, and Y. S.
Maarek. Static index pruning for information retrieval systems. InProceedings
of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2001, pages 43–50, 2001.

[23] S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string
transformation weights for high accuracy object identification. InThe Eighth
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-2002), 2002.

[24] A. N. Vo, O. de Kretser, and A. Moffat. Vector-space ranking with effective
early termination. InProceedings of the 24th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SIGIR
2001, pages 35–42, 2001.

[25] W. E. Winkler. Matching and record linkage. InBusiness Survey Methods,
pages 355–384. Wiley, 1995.

[26] I. H. Witten, A. Moffat, and T. C. Bell.Managing Gigabytes: Compressing and
Indexing Documents and Images, second edition. Morgan Kaufmann
Publishing, May 1999.

