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1. INTRODUCTION

Approximate matches of queries are commonplace in the text world. Notably,
web search engines rank the objects in the results of selection queries accord-
ing to how well these objects match the original selection condition. For such
engines, the query result is not just a set of objects that match a given condi-
tion, but a ranked list of objects. Given a query consisting of a set of words, a
search engine returns the matching documents sorted according to how well
they match the query. For decades, the information retrieval field has studied
how to efficiently rank text documents for a query [Salton and McGill 1983]. In
contrast, much less attention has been devoted to supporting such top-k queries
over relational databases. As the following example illustrates, top-k queries
arise naturally in many applications where the data is exact, as in a traditional
relational database, but where users are flexible and willing to accept non-
exact matches that are close to their specification. The answer to such a query
is a ranked set of the k tuples in the database that “best” match the selection
condition.

Example 1.1. Consider a real-estate database that maintains information
like the Price and Number of Bedrooms of each house that is available for sale.
Suppose that a potential customer is interested in houses with four bedrooms,
and with a price tag of around $300,000. The database system should then
rank the available houses according to how well they match the given user
preference, and return the top houses for the user to inspect. If no houses match
the query specification exactly, the system might return a house with, say, six
bedrooms and a price tag close to $300,000 as the top house for the query.

A query for this kind of applications can be as simple as a specification of the
target values for each of the relevant attributes of the relation. Given such a
query, a database supporting approximate matches ranks the tuples according
to how well they match the stated values for the attributes. Users who issue this
kind of queries are typically interested in a small number of tuples k that best
match the given condition, as in the example above. We refer to such queries
as top-k selection queries, or top-k queries, for short. Unlike the case with a
traditional selection query, there may be many ways to define how to match a
query and a database tuple.

Example 1.1 (cont.). In our example scenario above, the database system
picked a house without a perfect number of bedrooms (i.e., six) but with a price
tag close to the target price (i.e., $300,000) as the best house. For a wealthy
customer, the system might choose to match the query against the tuples dif-
ferently. In particular, the system might then prefer number of bedrooms over
price, and return a house with four bedrooms with an exorbitant price tag as
the best match for the given query.

A large body of work has addressed how to find the nearest neighbors of a mul-
tidimensional data point [Korn et al. 1996; Seidi and Kriegel 1998]. Many tech-
niques use specialized data structures and indexes [Guttman 1984; Nievergelt
et al. 1984; Lomet and Salzberg 1990] to answer nearest-neighbor queries.
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These index structures and access methods are not currently supported by
many traditional relational database management systems (RDBMS). There-
fore, despite the conceptual simplicity of top-k queries and the expected perfor-
mance payoff, these queries are not yet effectively supported by most RDBMSs.
Adding this necessary support would free applications and end users from hav-
ing to add this functionality in their client code. To provide such support ef-
ficiently, we need processing techniques that do not necessarily require full
sequential scans of the underlying relations. The challenge in providing this
functionality is that the database system needs to handle top-k queries effi-
ciently for a wide variety of ranking functions. In effect, these ranking functions
might change by user, by application, or by database. It is also important that
we are able to process such top-k queries with as few extensions to existing
query engines as possible.

As in the case of processing traditional selection queries, one must con-
sider the problem of execution as well as optimization of top-k queries. We
assume that the execution engine is a traditional relational engine that sup-
ports B+-tree indexes over single as well as possibly multicolumn attributes.
The key challenge is to augment the optimization phase such that top-k selection
queries may be compiled into an execution plan that can leverage the existing
data structures (i.e., indexes) and statistics (e.g., histograms) that a database
system maintains. Simply put, we need to develop new techniques that make
it possible to map a top-k query into a traditional selection query. It is also
important that any such technique preserves the following two properties: (1)
it handles a variety of ranking functions for computing the top-k tuples for a
query, and (2) it guarantees that there are no false dismissals (i.e., we never
miss any of the top-k tuples for the given query).

Note that our goal is not to develop new stand-alone algorithms or data struc-
tures for the nearest-neighbor problem over multidimensional data. Rather,
this paper addresses the problem of mapping a top-k selection query to a tradi-
tional range selection query that can be optimized and executed by any vanilla
RDBMS. We undertake a comprehensive study of the problem of mapping top-k
queries into execution plans that use traditional selection queries. In particular,
we consult the database histograms to map a top-k query to a suitable multi-
attribute range query such that k closest matches are likely to be included in
the answer to the generated range query. If the range selection query actually
returns fewer than k tuples, the query needs to be “restarted,” that is, a sup-
plemental query needs to be generated to ensure that all k closest matches are
returned to the users. Naturally, a desirable property of any mapping is that it
generates a range query that returns all k closest matches without requiring
restarts in most cases.

As another key contribution, we report the first experimental evaluation of
our multiattribute top-k query mappings over a commercial RDBMS. Specif-
ically, we evaluate the execution time of our query processing strategies over
Microsoft’s SQL Server 7.0 for a number of data distributions and other varia-
tions of relevant parameters. As we will show, our techniques are robust, and
establish the superiority of our schemes over the techniques requiring sequen-
tial scans.
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The article is organized as follows. In Section 2, we formally define the prob-
lem of querying for top-k matches. In Section 3, we outline the basis of our ap-
proach and present some static mapping techniques. In Section 4, we present
a dynamic technique that adapts to the query workload and results in better
results than the static approaches. Finally, in Section 6, we present the exper-
imental evaluation of our techniques on Microsoft’s SQL Server 7.0 using the
setting of Section 5. A preliminary version of this article appeared in Chaudhuri
and Gravano [1999].

2. QUERY MODEL

In a traditional relational system, the answer to a selection query is a set of
tuples. In contrast, the answer to a top-k selection query is an ordered set of
tuples, where the ordering criterion is how well each tuple matches the given
query. In this section we present the query model precisely.

Consider a relation R with attributes A1, . . . , An. A top-k selection query
over R specifies target values for the attributes in R and a distance function
over the tuples in the domain of R. The result of a top-k selection query q is
then an ordered set of k tuples of R that are closest to q according to the given
distance function.1

Example 2.1. Consider a relation Employee with attributes Age and Hourly
Wage. The answer to the top-10 selection query q = (30, 20) is an ordered
sequence consisting of the 10 employees in the Employee relation that are closest
to 30 years of age and to making an hourly wage of $20, according to a given
distance function, as discussed below.

A possible SQL-like notation for expressing top-k selection queries is as
follows [Chaudhuri and Gravano 1996]:

SELECT * FROM R
WHERE A1=v1 AND ... AND An=vn
ORDER k BY Dist

The distinguishing feature of the query model is in the ORDER BY clause. This
clause indicates that we are interested in only the k answers that best match
the given WHERE clause, according to the Dist function.

Given a top-k query q and a distance function Dist, the database system
with relation R uses Dist to determine how closely each tuple in R matches
the target values q1, . . . , qn specified in query q. Given a tuple t and a query q,
we assume that Dist(q, t) is a positive real number. In this article, we restrict
our attention to top-k queries over continuous-valued real attributes, and to
distance functions that are based on vector p-norms, defined as:

‖x‖p =
(∑

i

|xi|p
)1/p

(p ≥ 1).

1In Chaudhuri and Gravano [1999], we used scoring functions instead of distance functions in our
definition of top-k queries. These two definitions are conceptually equivalent. An advantage of the
current definition is that it does not require attribute values to be “normalized” to a [0, 1] range.
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Fig. 1. The distances (z axis) between all points and query q = (30, 20) for the different (x, y)
pairs and for distance functions Sum (a), Eucl (b), and Max (c).

Given a p-norm ‖·‖, we can define a distance function D‖·‖ between two
arbitrary points q and t as D‖·‖(q, t) = ‖q − t‖. This article focuses on the
following important distance functions, which are based on p-norms for p =
1, 2, and∞.

Definition 2.2. Consider a relation R = (A1, . . . , An) with real-valued at-
tributes. Then, given a query q = (q1, . . . , qn) and a tuple t = (t1, . . . , tn) from R,
we define the distance between q and t using any of the following three distance
functions :

Sum(q, t) = ‖q − t‖1 =
∑n

i=1 |qi − ti|
Eucl(q, t) = ‖q − t‖2 =

√∑n
i=1(qi − ti)2

Max(q, t) = ‖q − t‖∞ = maxn
i=1|qi − ti|

Example 2.3. Consider a tuple t = (50, 35) in our sample database Em-
ployee from Example 2.1, and a query q = (30, 20). Then, tuple t will have a
distance of Max(q, t) = Max{|30 − 50|, |20 − 35|} = 20 for the Max distance
function, a distance of Eucl(q, t) =

√
(30− 50)2 + (20− 35)2 = 25 for the Eucl

distance function, and a distance of Sum(q, t) = |30 − 50| + |20 − 35| = 35 for
the Sum distance function.

Figure 1(c) shows the distribution of distances for the Max distance function
and query q = (30, 20) for the Employee relation of Example 2.1. The horizontal
plane in the figure consists of the tuples with z = 15, so the tuples below this
plane are at distance 15 or less from q. Note that the tuples at distance 15 or
less from q are enclosed in a box around q. In contrast, the tuples at distance
15 or less for the Eucl distance function (Figure 1(b)) are enclosed in a circle
around q. Finally, the tuples at distance 15 or less for the Sum distance function
lie within a rotated box around q (Figure 1(a)). This difference in the shape of
the region enclosing the top tuples for the query will have crucial implications
on query processing, as we will discuss in Section 3.2.

In general, the Sum, Eucl, and Max functions that we use in this article are
just a few of many possible distance functions. Our strategy for processing top-k
queries can be adapted to handle a larger number of functions. For instance,
our definitions of distance give equal weight to each attribute of the relation,
but we can easily modify them to assign different weights to different attributes
if this is appropriate for a specific scenario.
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In general, the key property that we ask from distance functions is as follows:

PROPERTY 2.4. Consider a relation R and a distance function Dist defined
over R. Let q = (q1, . . . , qn) be a top-k query over R, and let t = (t1, . . . , tn) and
t ′ = (t ′1, . . . , t ′n) be two arbitrary tuples in R such that ∀i |t ′i − qi| ≤ |ti − qi|. (In
other words, t’ is at least as close to q as t for all attributes.) Then, Dist(q, t ′) ≤
Dist(q, t).

Intuitively, this property of distance functions implies that if a tuple t ′ is
closer along each attribute to the query values than some other tuple t is, then,
the distance that t ′ gets for the query cannot be worse than that of t. Fortu-
nately, most interesting distance functions seem to satisfy our monotonicity
assumptions. In particular, all distance functions based on p-norms satisfy this
property. In the next section, we discuss how we evaluate top-k queries for
different definitions of the Dist function.

3. STATIC EVALUATION STRATEGIES

This section shows how to map a top-k query q into a relational selection query
Cq that any traditional RDBMS can execute. Our goal is to obtain k tuples from
relation R that are the best tuples for q according to a distance function Dist.
Our query processing strategy consists of the following three steps:

Search Given a top-k query q over R, use a multidimensional his-
togram H to estimate a search distance dq , such that the re-
gion reg(q, dq) that contains all possible tuples at distance dq
or lower from q is expected to include k tuples (Section 3.1).

Retrieve Retrieve all tuples in reg(q, dq) using a range query that en-
closes this region as tightly as possible (Section 3.2).

Verify/Restart If there are at least k tuples in reg(q, dq), return the k tuples
with the lowest distances. Otherwise, choose a higher value
for dq and restart the procedure (Section 3.3).

In the next sections, we discuss the above steps in detail.

3.1 Choice of Search Distance dq

The first step for evaluating a top-k query q is the most challenging one. Ide-
ally, the search distance dq that we determine encloses exactly k tuples. Un-
fortunately, identifying such a precise value for dq using only relatively coarse
histograms is not possible. In practice, we try to find a value of dq such that
reg(q, dq) encloses at least k tuples, but not many more. Choosing a value of
dq that is too high would result in an execution that does not require restarts
(Verify/ Restart step), but that would retrieve too many tuples, which is un-
desirable. In contrast, choosing a value of dq that is too low would result in an
execution that requires restarts, which is also undesirable. Hence, determining
the right distance dq becomes the crucial step in our top-k query processing
strategy.

For efficiency, our choice of dq will be guided by the statistics that the query
processor keeps about relation R, and not by the underlying relation R itself.
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Fig. 2. A 50-bucket histogram for the two-dimensional data set on the left.

In particular, we assume that we have an n-dimensional histogram H that de-
scribes the distribution of values of R. Histogram H consists of a set of pairs
H = {(b1, f1), . . . , (bm, fm)}, where each bucket bi defines a hyper-rectangle in-
cluded in domain(R), and each frequency fi is the number of tuples in R that lie
inside bi. The buckets bi are pairwise disjoint, and every tuple in R is contained
in one bucket. Figure 2 shows an example of a 50-bucket histogram that sum-
marizes a synthetically generated data distribution.

Specifically, we choose dq as follows:

(a) Create (conceptually) a small, “synthetic” relation R ′, consistent with his-
togram H. R ′ has one distinct tuple for each bucket in H, with as many
instances as the frequency of the corresponding bucket.2

(b) Compute Dist(q, t) for every tuple t in R ′.
(c) Let T be the set of the top-k (i.e., closest k) tuples in R ′ for q. Output

dq = maxt∈T Dist(q, t).

We can conceptually build synthetic relation R ′ in many different ways based
on the particular choices for the buckets’ representative tuples. We will first
study two “extreme” query processing strategies resulting from two possible
definitions of R ′.

The first query processing strategy, NoRestarts, results in a search distance
dNRq that is high enough to guarantee that no restarts are ever needed as
long as histograms are kept up to date. In other words, the Verify/ Restart
step always finishes successfully, without ever having to enlarge dq and restart
the process. For this, the NoRestarts strategy defines R ′ in a “pessimistic”
way: given a histogram bucket b, the corresponding tuple tb that represents
b in R ′ will be as bad for query q as possible. More formally, tb is a tuple

2In previous work [Bruno et al. 2000], we tried alternative ways to define synthetic relations R ′
consistent with histogram H. For instance, we applied the uniformity assumption inside buckets
and conceptually distributed the tuples of each bucket b in a uniform grid inside b’s bounding box.
Those approaches are much more computationally expensive than the one we present in this article,
and they result in many restarts, mostly because of the often not-so-uniform buckets produced by
state-of-the-art multidimensional construction techniques. Therefore, we do not consider those
alternatives in this article.
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Fig. 3. A 3-bucket histogram H and the choice of tuples representing each bucket that strategies
NoRestarts (a) and Restarts (b) make for query q.

in b’s n-rectangle with the following property:

Dist(q, tb) = max
t∈Tb

Dist(q, t)

where Tb is the set of all potential tuples in the n-rectangle associated with b.

Example 3.1. Consider our sample relation Employee with attributes age
and hourly wage, query q = (20, 15), and the 2-dimensional histogram H shown
in Figure 3(a). Histogram H has three buckets, b1, b2, and b3. Relation Employee
has 40 tuples in bucket b1, 5 tuples in bucket b2, and 15 tuples in bucket b3.
As explained above, the NoRestarts strategy will “build” relation Employee ′

based on H by assuming that the tuple distribution in Employee is as “bad” as
possible for query q. So, relation Employee ′ will consist of three tuples (one for
each bucket in H) t1, t2, and t3, which are as far from q as their corresponding
bucket boundaries permit. Tuple t1 will have a frequency of 40, t2 will have a
frequency of 5, and t3 will have a frequency of 15. Assume that the user who
issued query q wants to use the Max distance function to find the top 10 tuples
for q. Since Max(q, t1) = 35, Max(q, t2) = 20, and Max(q, t3) = 30, to get 10
tuple instances we need the top tuple, t2 (frequency 5), and t3 (frequency 15).
Consequently, the search distance dNRq will be Max(q, t3) = 30. From the way
we built Employee ′, it follows that the original relation Employee is guaranteed
to contain at least 10 tuples with distance dNRq = 30 or lower to query q. Then,
if we retrieve all of the tuples at that distance or lower, we will obtain a superset
of the set of top-k tuples for q.

LEMMA 3.2. Let q be a top-k query over a relation R. Let dNRq be the search
distance computed by strategy NoRestarts for query q and distance function
Dist. Then, there are at least k tuples t in R such that Dist(q, t) ≤ dNRq.

The second query processing strategy, Restarts, results in a search dis-
tance dRq that is the lowest among those search distances that might result
in no restarts. This strategy defines R ′ in an “optimistic” way: given a his-
togram bucket b, the corresponding tuple tb that represents b in R ′ will be
as good for query q as possible. More formally, tb is a tuple in b’s n-rectangle
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with the following property:

Dist(q, tb) = min
t∈Tb

Dist(q, t),

where Tb is the set of all potential tuples in the n-rectangle associated with b.

Example 3.1 (cont.). The Restarts strategy will now “build” relation
Employee ′ based on H by assuming that the tuple distribution in S is as “good”
as possible for query q (Figure 3(b)). So, relation Employee ′ will consist of three
tuples (one per bucket in H) t1, t2, and t3, which are as close to q as their cor-
responding bucket boundaries permit. In particular, tuple t2 will be defined as
q proper, with frequency 5, since its corresponding bucket (i.e., b2) has 5 tuples
in it. After defining the bucket representatives t1, t2, and t3, we proceed as in
the NoRestarts strategy to sort the tuples on their distance from q. For Max, we
pick tuples t2 and t3, and define dRq as Max(q, t3). This time it is indeed possible
for fewer than k tuples in the original table Employee to be at a distance of dRq
or lower from q, so restarts are possible.

The search distance dRq that Restarts computes is the lowest distance that
might result in no restarts in the Verify/ Restart step of the algorithm in
Section 3. In other words, using a value for dq that is lower than that of the
Restarts strategy will always result in restarts. In practice, as we will see in
Section 6, the Restarts strategy results in restarts in virtually all cases, hence
its name.

LEMMA 3.3. Let q be a top-k query over a relation R. Let dRq be the search
distance computed by strategy Restarts for query q and distance function Dist.
Then, there are fewer than k tuples t in R such that Dist(q, t) < dRq.

The norm-based distance functions that we use are monotonic (Property 2.4).
For that reason, the coordinates for the tuples in the Restarts and NoRestarts
strategies can be easily computed. Specifically, the point in the set of all poten-
tial tuples associated with bucket b that is closest to (similarly, farthest from) a
query q can be determined dimension by dimension, as the following example
illustrates.

Example 3.4. Consider a bucket b that is defined by its corners (10, 10)
and (25, 40), and a query q= (40, 20) (Figure 4). Assume that we use the Eucl
distance function. Because of the monotonicity property of Eucl the point in b
that is closest to q, q1, is the one that is closest dimension by dimension. Hence
q1 = (25, 20) (Figure 4). Analogously, the point in b that is farthest from q,
q2, is the one that is farthest dimension by dimension. Hence, q2 = (10, 40).
Consequently, mint∈Tb Eucl(q, t) = Eucl(q, q1) =

√
(40− 25)2 + (20− 20)2 = 15

and maxt∈Tb Eucl(q, t) = Eucl(q, q2) =
√

(40− 10)2 + (20− 40)2 = 36.1.

In general, the two distance-selection strategies NoRestarts and Restarts
are not efficient in practice due to the extreme assumptions they make, as we
illustrate in the following example and confirm in Section 6.

Example 3.5. Consider the relation and histogram of Example 3.1. Figure 5
shows the Restarts and NoRestarts search distances for query q, k = 10 and
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Fig. 4. The points in bucket b that are closest to (q1) and farthest from (q2) query q.

Fig. 5. Regions searched by the Restarts and NoRestarts strategies for a top-10 query q.

the Eucl distance function. As explained above, the NoRestarts strategy for this
query determines a “safe” search distance that is guaranteed to enclose at least
10 tuples. In effect, we can see that the NoRestarts region encloses histogram
buckets b2 and b3 completely, hence including at least 15 + 5 = 20 tuples.
Unfortunately, this strategy will most likely also retrieve a significant fraction
of the 40 b1 tuples, and may thus be inefficient. In contrast, the Restarts strategy
for query q determines an “optimistic” search distance that might result in
10 tuples being retrieved. As we see in the figure, the Restarts region will only
enclose 10 tuples in the “best” case when 5 tuples in bucket b3 are as close to q
as possible and the 5 b2 tuples are at least as close to q as the 5 b3 tuples are.
Unfortunately, this optimistic scenario is improbable, and the Restarts strategy
will most likely result in restarts (Verify/ Restart step) and in an inefficient
execution overall.

For those reasons, we study two intermediate strategies, Inter1 and Inter2
(Figure 6). Given a query q, let dNRq be the search distance selected by
NoRestarts for q, and let dRq be the corresponding distance selected by Restarts.
Then, the Inter1 strategy will choose distance (2dRq + dNRq)/3, while the
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Fig. 6. The four static strategies for computing the search distance Sq .

Fig. 7. The circle around query q = (20, 30) contains all of the tuples at an Eucl distance of 15 or
lower from q.

Inter2 strategy will choose a higher distance of (dRq + 2dNRq)/3. We define
even more alternatives in Section 4.

3.2 Choice of Selection Query Cq

Once the Search step has determined the search distance dq , the Retrieve step
builds and evaluates a SQL query Cq that encloses all tuples with distance dq
or lower from q tightly. In this section, we describe how to define such query Cq .

Ideally, we would like to ask our database system to return exactly those
tuples t such that Dist(q, t) ≤ dq . Unfortunately, typical indexing structures in
relational DBMSs do not natively support such predicates (Section 7). Hence,
our approach is to build Cq as a simple selection condition that defines an n-
rectangle. In other words, we define Cq as a query of the form:

SELECT * FROM R
WHERE (a1<=A1<=b1) AND ... AND (an<=An<=bn)

The n-rectangle [a1, b1] × · · · × [an, bn] in Cq should tightly enclose all tuples t
in R with Dist(q, t) ≤ dq .

Example 3.6. Consider our example query q = (20, 30) over relation
Employee, with Sum as the distance function. Let d = 15 be the search dis-
tance determined in the Search step using any of the strategies previously
discussed. Each tuple t with Eucl(q, t) < 15 lies in the circle around q that is
shown in Figure 7. Then, the tightest n-rectangle that encloses that circle is
[5, 35]× [15, 45]. Hence, the final SQL query Cq is:

SELECT * FROM EMPLOYEE
WHERE (5<=AGE<=35)
AND (15<=HOURLY-WAGE<=45)

Given a search distance dq , the n-rectangle [a1, b1] × · · · × [an, bn] that de-
termines Cq follows directly from the distance function used, the distance dq ,
and the query q. In particular, for the three distance functions discussed in
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this article, the n-rectangle for Cq is the n-rectangle centered on q with sides
of length 2dq . The Max scoring function presents an interesting property: the
region to be enclosed by the n-rectangle is already an n-rectangle (Figure 1(c)).
Consequently, the query Cq that is generated for Max for query q and its as-
sociated search distance dq will retrieve only tuples with a distance of dq or
lower. This property will result in efficient executions of top-k queries for Max,
as we will see. Unfortunately, this property does not hold for the Sum and Eucl
distance functions (see Figures 1(a) and (b)).

3.3 Choice of Restarts Distance

Since we use coarse statistics from histograms to choose the search distance
dq , the Retrieve step might yield fewer than k tuples at distance dq or less.
If this is the case, we need to choose a higher search distance d ′q and restart
the procedure. There are several ways to select d ′q . In this article, we use a
simple approach: whenever we need to restart, we choose dNRq , the search
distance returned by the NoRestarts strategy, as the new search distance d ′q .
This choice guarantees success this second time since, by definition, at least k
tuples in the relation are at distance dNRq or less from the query.

4. A DYNAMIC WORKLOAD-BASED MAPPING STRATEGY

As we will see in Section 6, the strategies described in the previous section
perform reasonably well in practice. However, no strategy is consistently the
best across data distributions. Moreover, even over the same data sets, which
strategy works best for a query q sometimes depends on the specifics of q. In
this section, we introduce a parametric mapping strategy that can be seen as
a generalization of the four strategies of Section 3. We also derive a simple
procedure to choose the parameter that leads to the “best” strategy for a given
workload. Future queries from similar workloads, that is, queries whose proba-
bilistic spatial distribution is similar to that of the training workload, will have
efficient executions. Since the resulting mapping strategy will depend on the
particular workload (as opposed to the static techniques of Section 3) we call
this new technique Dynamic.

4.1 Adapting to the Query Workload

The four static mapping strategies that we introduced in Section 3 for answering
top-k queries can be seen as special cases of the following parametric strategy
with parameter α:

dq(α) = dRq + α · (dNRq − dRq) 0 ≤ α ≤ 1,

where dRq and dNRq are the Restarts and NoRestarts search distances for query
q. In fact, by instantiating α with 0, 1/3, 2/3 and 1, we obtain the Restarts,
Inter1, Inter2 and NoRestarts mapping strategies, respectively.

In general, for each query q that we consider, there is an optimum value αq
such that at least k tuples are at distance dq(αq) or less from q and the number
of such tuples is as close to k as possible. Unfortunately, it is not possible to
determine αq a priori without examining the actual tuples. Our approach will

ACM Transactions on Database Systems, Vol. 27, No. 2, June 2002.



Top-k Selection Queries over Relational Databases • 165

Fig. 8. Average number of tuples and percentage of restarts as a function of parameter α.

be, given a workload Q , to find a single value α∗, 0 ≤ α∗ ≤ 1, such that dq(α∗)
minimizes the average number of tuples retrieved for similar workloads.3

More formally, consider a workload Q = {q1, . . . , qm} of top-k queries.
The total number of tuples retrieved for search distance dq(α) includes:

totalTuples(Q , α)

=
∑
qi∈Q

(
tuples(qi, dqi (α))+

{
0 if tuples(qi, dqi (α)) ≥ k
tuples(qi, dNRqi ) otherwise (i.e., we restart)

)
where tuples(q, d ) is the number of tuples in the data set at distance d or lower
from q. (Additional tuples will be retrieved for Eucl and Sum because these non-
rectangular regions are mapped to range queries for processing (Section 3.2).)

A good value for α should be high enough, so that at least k tuples are re-
trieved, but not too high, so that not too many extra tuples are retrieved. Al-
though a value of α that is too low will result in few tuples being retrieved
during the Retrieve step, we might require to restart the query, hence retriev-
ing many tuples during the Verify/ Restart step. We then define the Dynamic
mapping strategy as using search distance dq(α∗), where α∗ is such that:

totalTuples(Q , α∗) = minαtotalTuples(Q , α).

The following example illustrates the tension between the number of tuples
retrieved in the Retrieve and Verify/ Restart steps, that is, between the two
components of the function totalTuples that we want to minimize.

Example 4.1. Consider a Gauss data set4 and a workload consisting of 500
top-k queries. Figure 8(a) reports the average number of tuples retrieved in the
Retrieve and Verify/ Restart steps, and Figure 8(b) reports the percentage
of queries that needed restarts. When α is close to zero, the number of tuples
retrieved in the Retrieve step is small. However, the percentage of restarts is

3In Bruno et al. [2000], we also investigated associating a value of α with each histogram bucket.
The gains in selectivity estimation accuracy do no justify the added storage requirements to record
these α’s.
4See Section 5 for more information about data sets.
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Fig. 9. Average number of tuples retrieved for different workloads.

near 100%, meaning that in almost all cases those initial queries returned fewer
than k tuples, so supplemental (expensive) queries were issued in the Restart
step. Therefore, the total number of tuples for α near zero in Figure 8(a) is high.
As α increases, the percentage of restarts and the number of tuples retrieved
in the Verify/ Restart step decreases, since the resulting search distances are
closer to those of the NoRestarts strategy. However, for the same reason, the
average number of tuples retrieved in the Retrieve step increases as well.
When α is near one, there are almost no restarts, but the original queries in
the Retrieve step are much more expensive due to the larger search distances
being used. The net result is, again, a high number of tuples retrieved for α
near one. In this example, a value of α around 0.2 results in the lowest number
of tuples retrieved.

If α∗ is calculated accurately enough, the Dynamic mapping strategy will
consistently result in better performance that any of the static strategies of
Section 3, as illustrated in the following example and verified experimentally
in Section 6.

Example 4.2. Consider the Gauss data set of the previous example. Figure 9
shows the total number of tuples retrieved (totalTuples) as a function of α for
two different workload configurations. For one workload (denoted Biased in
Figure 9) the minimal value of totalTuples occurs for α∗ around 0.2. In this case,
strategy Inter1(α= 0.33) would have been the best of the four static strategies of
Section 3. However, using α∗ = 0.2 results in an even smaller number of tuples
retrieved. On the other hand, for the Uniform workload, the optimum value
of α∗ is near 0.68. Strategy Inter2(α= 0.67) would have been the best strategy
among the static ones in this case.

4.2 Implementation Considerations

The previous section introduced the Dynamic mapping strategy based on pa-
rameter α∗. In this section, we describe how to efficiently approximate the op-
timal α∗ for a given workload.

Once the training workload is fixed, totalTuples becomes a unidimen-
sional function on α. Therefore, we can use some unidimensional optimization
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Fig. 10. Using linear interpolation to approximate tuples(q, d ) from a set of discrete pairs (i/G, Ti).

technique such as golden search [William et al. 1993]5 to find α∗. The golden
search minimization technique needs to evaluate the function totalTuples
at arbitrary points during its execution. We can precalculate the values
tuples(qi, dNRqi ) in the definition of totalTuples above for all queries qi ∈ Q so
that the “restart” term in the definition of totalTuples need not be recalculated at
each iteration. However, we still need to calculate the value of tuples(qi, dqi (α))
for arbitrary values of α at each iteration of the golden search procedure. We
could issue a sequential scan over the data to calculate tuples(qi, dqi (α)) each
time, but this strategy would be too expensive. Even if we use multiquery eval-
uation techniques, that is, we calculate tuples(qi, dqi (α)) for all queries qi ∈ Q
at once, we would still have to perform several sequential scans over the data
set (as many as the underlying golden search procedure needs).

Instead, we propose to estimate the function tuples(q, d ) in a preprocess-
ing step. The resulting estimated function, denoted tuples′(q, d ), should be
(1) accurate enough so that the optimum value α determined by using tuples’
is close to the actual optimum α∗, and (2) efficiently computed, since we want
to avoid repeated sequential scans over the data sets. We now present a simple
definition of the function tuples′ and a procedure for computing it that only
needs one sequential scan over the data set (or, as we will see, even less than a
sequential scan if we use sampling).

Suppose that we know, for each query q in the workload Q , the following
G + 1 discrete values:

T i
q = tuples

(
q, dRq + i

G
(dNRq − dRq)

)
i ∈ {0, 1, . . . , G},

where G is some predetermined constant. Then, we can use linear interpola-
tion (see Figure 10) to approximate tuples(q, dq(α)) for arbitrary values of α,
0≤α <1:

tuples′(q, dq(α)) = T Iq + α
(
T I+1

q − T Iq
)
, where I = bα · Gc.

5Note that the function totalTuples we defined is not continuous on α and might have local minima
since we have a finite workload and the restarts include a noncontinuous component. However, if
the workload is large enough, we can consider totalTuples as a continuous function with only one
minimum.
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Since we also have that T G
q = tuples(q, dNRq), we can efficiently approxi-

mate the function totalTuples. The procedure below calculates the values Ti
q

by first filling an array τ where τ k
j is the number of tuples ti in D such that

dqj ((k − 1)/G) < Dist(ti, qj ) ≤ dqj (k/G), where we define dqj ((k − 1)/G) = −1
if k = 0, and then adding up these partial results.

Procedure calculateT (D:Data Set, Q:Workload, G:integer)
Set τ k

j = 0, for j ∈ {0, 1, . . . , |Q |} and k ∈ {0, 1, . . . , G}
for each tuple ti in D // Sequential scan over D

for each query qj in Q
d = Dist(ti, qj)

if (d <= dRq j ) τ 0
j ++ // we count ti in τ 0

j
else if (d <= dNRq j )

g =

⌈
G · d−dRq j

dNRq j −dRq j

⌉
// 0 < g ≤ G

τ
g
j ++

// At this point, Tk
q j
=∑k

k′=0 τ
k′
j

Calculate and return all Tk
q j

, values

The value G specifies the granularity of the approximation. Higher values of
G result in better accuracy of tuples′. It is interesting to note that increasing the
value of G results in more accurate approximations, but it does not increase the
running time of the algorithm (memory does increase linearly with G). In our
experiments, we set G = 50. To obtain the optimum value α∗ for a given data
set D and workload Q when using histogram H, we simply need to perform the
following steps:

(a) Calculate dRq and dNRq for each q ∈ Q using histogram H.
(b) Compute T = calculateT (D, Q , G).
(c) Use golden search to return the value of α ∈ [0, 1] that minimizes:

totalTuples(α) =
∑
q∈Q

(
tuples′(α)+

{
0 if tuples′(α) ≥ k
TG

q otherwise (we restart)

)

where tuples′(α) = Tbα·Gcq + α(Tbα·Gc+1
q − Tbα·Gcq )

The efficiency of the procedure calculateT can be dramatically improved if
we use sampling instead of processing all tuples in the data set via a sequential
scan. In fact, sampling provides an efficient and accurate way to approximate
the function totalTuples. Figure 11 shows the exact and approximated values
of totalTuples for different values of p, the fraction of tuples sampled, for one
of the real data sets of Section 5 and a value of G fixed at 50. We can see that
for p = 10% the exact and approximated values for totalTuples are indistin-
guishable. Even for p = 1% the differences between the exact and approximated
totalTuples are minimal. In contrast, for p = 0.1% the approximated totalTuples
is significantly different. (Note that, for this setting, we only examine around
210 tuples out of about 210,000.)
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Fig. 11. Effect of sampling in the approximation of totalTuples.

Table I. Characteristics of the Real Data Sets

Data Set Dim. # of tuples Attribute Names
Census2D 2 210,138 Age, Income.
Census3D 3 210,138 Age, Income, Weeks worked per year.
Cover4D 4 545,424 Elevation, Aspect, Slope, Distance to roadways.

5. EXPERIMENTAL SETTING

This section defines the data sets, histograms, metrics, and other settings for
the experiments of Section 6.

5.1 Data Sets

We use both synthetic and real data sets for the experiments. The real data
sets we consider [Blake and Merz 1998] are: Census2D and Census3D (two-
and three-dimensional projections of a fragment of US Census Bureau data),
and Cover4D (four-dimensional projection of the CovType data set, used for
predicting forest cover types from cartographic variables). The dimensionality,
cardinality, and attribute names for each real data set are in Table I.

We also generated a number of synthetic data sets for our experiments [Bruno
et al. 2001], following different data distributions:

— Gauss: The Gauss synthetic distributions [William et al. 1993] consist of
a predetermined number of overlapping multidimensional gaussian bells.
The parameters for these data sets are: the number of gaussian bells p, the
variance of each peak σ , and a zipfian parameter z that regulates the total
number of tuples contained in each gaussian bell.

— Array: Each dimension has v distinct values, and the value sets of each di-
mension are generated independently. Frequencies are generated according
to a zipfian distribution and assigned to randomly chosen cells in the joint fre-
quency distribution matrix. The parameters for this data set are the number
of distinct attributes by dimension v and the zipfian value for the frequencies
z. When all the data points are equidistant, this data set can be seen as an
instance of the Gauss data set with σ = 0 and p = vd .

The default values for the synthetic data set parameters are summarized in
Table II.
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Table II. Default Parameter Values for the Synthetic Data Sets

Data Set Attribute Default Value
d : Dimensionality 3

All N : Cardinality 500,000
R: Data domain [0 . . .10,000)d

z: Skew 1
Gauss p: Number of peaks 50

σ : Standard deviation of each peak 100
Array v: Distinct attribute values 60

Fig. 12. Data sets.

Finally, Figure 12 shows three examples of (two-dimensional) data sets used
in our experiments. In the figure, each circle represents a tuple and its radius is
proportional to the tuple’s frequency. Those circles are almost indistinguishable
from points except in Figure 12(c), since the Array data set has considerable
frequency skew.

5.2 Histograms

We use Equi-Depth and MHist multidimensional histograms as our source
of statistics about the data distributions. A multidimensional version of the
Equi-Depth histogram [Piatetsky-Shapiro and Connell 1984] presented in
Muralikrishna and DeWitt [1988] recursively partitions the data domain, one
dimension at a time, into buckets enclosing the same number of tuples. Poosala
and Ioannidis [1997] introduced MHist based on MaxDiff histograms [Poosala
et al. 1996]. The main idea is to iteratively partition the data domain using a
greedy procedure. At each step, MaxDiff analyzes unidimensional projections
of the data set and identifies the bucket in most need of partitioning. Such
a bucket will have the largest “area gap” [Poosala et al. 1996] between two
consecutive values along one dimension. Using this information, MHist itera-
tively splits buckets until it reaches the desired number of buckets. We refer
the reader to Muralikrishna and DeWitt [1988], Poosala and Ioannidis [1997],
and Poosala et al. [1996] for a detailed discussion of these techniques.

5.3 Workloads

For our experiments, we used workloads consisting of 100 queries each that
follow two distinct query distributions, which are considered representative
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Fig. 13. Two different workloads for the Census2D data set.

of user behavior [Pagel et al. 1993]:

— Biased: The query centers follow the data distribution, that is, each query is
an existing point in the data set. The probability that a point p in data set
D is included in the workload is f p

|D| , where f p is the frequency of p in D.
— Uniform: The query centers are uniformly distributed in the data domain.

For each experiment, we generated two 100-query workloads. The first work-
load, the training workload, is used to find the optimal value of α for the
Dynamic strategy of Section 4. The second workload, the validation workload,
is statistically similar to the first one, that is, follows the same distribution,
and is used to test the performance of the different mapping strategies.

Figure 13 shows two sample 100-query workloads for the Census2D data set.

5.4 Indexes

It is important to distinguish between the tightness of the mapping of a top-k
query to a traditional selection query, and the efficiency of execution of the se-
lection query. The tightness of the mapping depends on the mapping algorithms
(Sections 3 and 4) and on their interaction with the quality of the available histo-
grams. The efficiency of execution of the selection query depends on the indexes
available on the database and on the optimizer’s choice of an execution plan.

To choose appropriate index configurations for our experiments, we first
tried Microsoft’s Index Tuning Wizard over SQL Server 7.0 [Chaudhuri and
Narasayya 1997], a tool that automatically determines good index configura-
tions for a specific workload. We fed the Index Tuning Wizard with different
data sets and representative query workloads for our task and it always sug-
gested an n-column concatenated-key B+-tree index covering all attributes in
the top-k queries. Therefore, we focused on multicolumn indexes in most of our
experiments. We also ran experiments for the case when only single-column
indexes are available. In summary, we used two main index configurations: (a)
n unclustered single-column B+-tree indexes, one for each attribute mentioned
in the query; and (b) one unclustered n-column B+-tree index whose search key
is the concatenation of all n attributes mentioned in the query. We do not con-
sider clustered indexes in our experiments, since in a real situation the layout
of the data could be determined by other applications.
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Fig. 14. Search keys traversed by multiattribute indexes Age-Income and Income-Age for query C
and the Census2D data set.

For the n-column index configurations, we need to define the order in which
the attributes would be concatenated to form the index search keys. We consid-
ered different choices and found that the attribute order is an important factor
in the efficiency of the overall method. In fact, sometimes a poor choice of the
multiattribute index results in even worse performance than that for when we
just use unidimensional indexes. To determine attribute order in the multiat-
tribute index we proceed as follows: We issue a small number of representative
top-k queries q in the same way as we do for training the Dynamic mapping
strategy. For each of those queries, we determine the optimal range selection
query Cq that tightly encloses k tuples, as described in Section 3.2. Then, for
each attribute Ai in the data set, we find ti, the number of tuples that lie in
the unidimensional projection of Cq (see Figure 14 for an example using the
Census2D data set). A multiattribute index built with Ai in the first position
will need to traverse the search keys of all ti tuples in the projection of Cq
(not just those corresponding to the tuples enclosed by Cq) when answering Cq .
Therefore, we sort the attributes in increasing number of ti. This configuration
results in good performance for the kind of n-attribute range queries that our
top-k processing strategy generates.

5.5 Evaluation Techniques

In our experiments, we compare our proposed mapping strategies of Sections 3
and 4 against each other, and also against other proposed approaches in the
literature. Specifically, we study the following techniques for answering top-k
queries:

— Optimum Technique. As a baseline, we consider the execution of an ideal
technique that results from enclosing the actual top k tuples for a given
query as tightly as possible. Of course, this ideal technique would only be
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possible with complete knowledge of the data distribution, and never requires
restarts. Its running time is a lower bound for that of our strategies.

— Histogram-Based Techniques. The static and dynamic mapping strategies
described in Sections 3 and 4.

— Techniques Requiring Sequential Scans. The techniques in Carey and
Kossmann [1997, 1998] for processing top-k queries require one sequential
scan of the relation, plus a subsequent sorting step of a small subset of the
relation, as we discuss in Section 7. (We ignore this sorting step in our ex-
periments, the same way we ignore it when evaluating the other techniques.
This step can always be implemented by pipelining the retrieved tuples to a
k-bounded priority queue, and its run time is negligible relative to the rest
of the processing.) Therefore, we model this technique as a simple sequential
scan of the relation, which is a lower bound on the time required by Carey
and Kossmann [1997, 1998]. To make our comparison as favorable as pos-
sible to the sequential scan case, we proceed as follows. Consider a top-k
query involving attributes A1, . . . , An of relation R. In practice, R is likely to
have additional attributes that do not participate in the query. For the cases
when we have available a multiattribute B+-tree over the concatenation of
attributes A1, . . . , An, the sequential scan will do an index scan (using the
leaf nodes of the B+-tree), rather than scanning the actual relation, which
might be larger due to additional attributes not involved in the query. For
this, we time the sequential scan over a projected version of R with just
attributes A1, . . . , An. For the cases when we do not have a multiattribute
B+-tree, we time the sequential scan over the actual relation R. We model
potential additional attributes not in the queries with an attribute An+1 that
is a string of 20 characters. In any case, the resulting sequential scan time
that we use to compare against is a “loose” lower bound on the time that the
techniques in Carey and Kossmann [1997, 1998] would require to process a
multiattribute top-k query like the ones we address in this article.

5.6 Metrics

We report experimental results for the techniques presented above using the
following metrics:

— Percentage of Restarts. This is the percentage of queries in the validation
workload for which the associated selection query failed to contain the k best
tuples, hence leading to restarts. (See the algorithm in Section 3.) This metric
makes sense only for the histogram-based mapping strategies of Sections 3
and 4, since by definition, the Optimum strategy and techniques requiring
full sequential scans do not incur in restarts.

— Execution Time, as a percentage of the sequential scan time. This is the
average run time for executing all queries in the validation workload. We
present run times of the different techniques as a percentage of that of a
sequential scan. We discriminate the total execution time as:
— SOQ (Successful Original Query) Time. As we will see, in some cases, the

majority of top-k queries will not require restarts, so it is interesting to
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report their average run time separately from that of the small fraction
of queries that require restarts.

— IOQ (Insufficient Original Query) Time. This is the average increase in
time when also considering the queries in the workload that required
restarts. For those queries the total execution time includes the running
time for the original (insufficient) query (Retrieve step), plus the time
for the subsequent “safe” query that retrieves all of the needed tuples
using distance dNR (Restart step).

— Number of Tuples Retrieved, as a percentage of the number of tuples in the
relation. This is the average number of tuples retrieved for all queries in
the validation workload, as a percentage of the total number of tuples in the
relation. Just as for execution time, we report SOQ and IOQ tuples retrieved.

6. EXPERIMENTAL RESULTS

This section presents experimental results for the top-k processing techniques.
We ran all our experiments over Microsoft’s SQL Server 7.0 on a 550-Mhz
Pentium III PC with 384 MBytes of RAM. The experiments involve a large
number of parameters, and we tried many different value assignments. For
conciseness, we report results on a default setting where appropriate. This de-
fault setting uses a 100-query Biased workload, multiattribute indexes with the
attribute ordering as described in Section 5.4, k = 100 and Max as the distance
function. We report results for other settings of the parameters as well.

Section 6.1 studies the intrinsic limitations of our mapping approach.
Section 6.2 compares the static techniques of Section 3 and the dynamic tech-
nique of Section 4. Section 6.3 studies the performance of different multidimen-
sional histogram structures. Sections 6.4, 6.5, and 6.6 discuss the robustness of
our Dynamic approach for various data distributions, distance functions, and
values of k in the top-k queries, respectively. Section 6.7 analyzes the case when
only unidimensional indexes are present. Section 6.8 compares our Dynamic
strategy against a recently proposed technique that uses sampling instead of
histograms to define the range query boundaries. Finally, Section 6.9 summa-
rizes the evaluation results.

6.1 Validity of the General Approach

Our general approach for processing a top-k query q (Section 3) is to find an
n-rectangle that contains all the top k tuples for q, and use this rectangle to
build a traditional selection query. Our first experiment studies the intrinsic
limitations of our approach, that is, whether it is possible to build a “good” n-
rectangle around query q that contains all top k tuples and little else. To answer
this first question, independent of any available histograms or search distance
selection strategies (Section 3), we first scanned each data set to find the actual
top 100 tuples for a given query q, and determined a tight n-rectangle T that
encloses all of these tuples. We then computed the number of tuples in the data
set that lie within rectangle T . Figure 15 reports the results. As we can see
from the figure, the number of tuples that lie in this “ideal” rectangle is close to
the optimal 100, and even in the worst case, for the Cover4D data set and the
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Fig. 15. The number of tuples in the data set included in an n-rectangle enclosing the actual
top-100 tuples.

Fig. 16. Execution time and tuples retrieved for Biased workloads.

Sum distance function, the number of tuples corresponds to less than 0.4% of
the 500,000-tuple data set. These results validate our approach: if the database
statistics (i.e., histograms) are accurate enough, then we should be able to find
a tight n-rectangle that encloses all the best tuples for a given query, with few
extra tuples.6

6.2 Analysis and Comparison of the Techniques

This experiment compares the relative performance of the four static tech-
niques of Section 3 and the Dynamic technique of Section 4. As we will see,
the Dynamic technique always results in lower execution times than any of the
static techniques of Section 3, which in turn are more efficient than a sequential
scan over the relations.

Figures 16(a) and 17(a) show the execution time for different data sets for
the Biased and Uniform workloads, respectively, over Microsoft SQL Server
7.0, as explained above. Each group of six bars corresponds to a different data
set, reporting the percentage of time of a sequential scan taken by each of the

6This property does not hold in general for high numbers of dimensions [Beyer et al. 1999]. However,
in this article, we focus only on low-to-moderate number of dimensions, mostly because of limited
accuracy of state-of-the-art histograms for higher dimensions.
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Fig. 17. Execution time and tuples retrieved for Uniform workloads.

six techniques, that is, Optimum, Dynamic, Restarts, NoRestarts, Inter1, and
Inter2. Each bar shows the SOQ and IOQ times as discussed in Section 5.6. Each
technique has the associated percentage of restarts reported next to its name.
For instance, in Figure 16(a) and for the Gauss data set, Dynamic results in 5%
of restarts. Among the cases that did not restart (95%), the Dynamic technique
uses only 6% of the time of a sequential scan. If we consider all cases, whether
they needed restart or not, the Dynamic technique uses 7% of the time of a
sequential scan. Analogously, the percentage of time of a sequential scan that
the Restarts, NoRestarts, Inter1 and Inter2 strategies take for the same data
set is 31%, 30%, 12%, and 21%, respectively. Figures 16(b) and 17(b) report the
percentage of tuples retrieved for each scenario.

In all cases, the static techniques result in better performance than a se-
quential scan. However, no one static strategy consistently outperforms the
other static strategies. More precisely, if we do not consider the Optimum and
Dynamic strategies in Figures 16(a) and 17(a), we see that Inter1 results in
the best performance for the Biased workloads, but in general Inter2 is the
best strategy for Uniform workloads. This can be explained in the following
way. Usually, data sets form dense clusters and consequently they also contain
several regions with very low tuple density. It is more likely for the Uniform
workload to have queries that lie in such void areas. In contrast, queries from
Biased workloads usually lie near the centers of the clusters, which are denser
regions. Therefore, for Biased workloads, the optimal search distances are closer
to Restarts than to NoRestarts, and strategy Inter1 performs the best overall.
In contrast, for Uniform workloads the situation is the opposite. The optimal
search distances are closer to NoRestarts than to Restarts, and in general Inter2
is the most efficient technique among the static ones.

The Dynamic technique, due to its workload-adaptive nature, results in bet-
ter performance than that of the static techniques across data sets and work-
loads. Dynamic needs less than 35% of the time of a sequential scan in all
cases (for Biased workloads, it needs less than 10% of the time of a sequential
scan). Figures 16(b) and 17(b) show that the percentage of tuples retrieved by
Dynamic is always below 2%.
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Fig. 18. Execution time and tuples retrieved for different multidimensional histograms.

Generally, execution times for the Biased workloads are lower than those
for the Uniform workloads. By an argument similar to that presented above,
the average search distances produced by the techniques are larger for the
Uniform than for the Biased workload mostly because we use (multiattribute)
B+-tree indexes: Although the number of tuples included in these larger selec-
tion queries is small, the query processor still has to traverse several search
keys with associated tuples that might lie far away in the multidimensional
space (see Figure 14). In contrast, queries in Biased workloads tend to have
lower associated search distances, which results in fewer search keys traversed
and lower execution times.

Since our Dynamic technique never results in higher execution times than
any of the static techniques of Section 3, we focus on the Dynamic mapping
strategy for the rest of the article.

6.3 Effect of Multidimensional Histograms

Figure 18(a–d) shows execution times and the percentage of tuples retrieved
for different data sets and for different multidimensional histograms. With the
only exception of the Gauss data set and Biased workloads in Figures 18(a)
and 18(b), the results are significantly better when we use Equi-Depth his-
tograms than when we use MHist histograms to guide our mapping strategy.
Also, the number of tuples retrieved is sometimes as much as 10 times larger
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Fig. 19. Execution time and tuples retrieved for varying data skew.

for MHist histograms than for Equi-Depth histograms (Cover4D data set in
Figure 18(d)). As noted in Bruno et al. [2001], MHist histograms generally
devote too many buckets to the densest tuple clusters in the data sets, and al-
most none to the rest of the data domain, which tends to degrade the overall
histogram accuracy. MHist histograms have buckets with very heterogeneous
tuple density, which degrades the performance of our technique. For that rea-
son, we focus on Equi-Depth histograms for the rest of the discussion. It is
important to note that our techniques are flexible enough so that other recent
multidimensional histogram structures (e.g., Bruno et al. [2001] and Gunopulos
et al. [2000]) can be exploited without changes in the proposed framework.

6.4 Robustness Across Data Sets

To analyze the robustness of our Dynamic strategy, we started with the default
synthetic data sets, and varied their skew and dimensionality.

Figure 19 shows that as the data skew z increases, the total time taken
to answer top-k queries also increases slowly relative to the time required by
a sequential scan. For the Array data set, the optimum execution time and
percentage of retrieved tuples increases sharply with z. For z = 2, the most
frequent tuple is repeated 17% of the time, and the Biased workload picks this
tuple with high probability. In those cases, there is no choice but to return all
the repeated tuples as the top-k ones, thus increasing the processing time of
any strategy.

Figure 20 shows that the execution time of our technique increases moder-
ately as the dimensionality of the data set increases. The unexpected peak in the
tuples retrieved for the Array data set for d = 2 can be explained as follows. In
two dimensions, the Array data set behaves similarly as the three-dimensional
Array data set with z = 2 (see above). In fact, the combined frequency of the
five most popular tuples accounts for more than 15% of the whole data set. The
Biased workload frequently picks those tuples as queries, which results in all
tuples with the same values being retrieved as well. Since the available storage
for the histograms is fixed in our experiments, histograms for high-dimensional
data sets become coarser and less accurate, which impacts negatively on the
efficiency of our technique. However, it is important to note that even for four
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Fig. 20. Execution time and tuples retrieved for varying data dimensionality.

dimensions, the time taken by our Dynamic technique is below 20% of the time
of a sequential scan in all our experiments. Also, the percentage of tuples re-
trieved is below 5% and the percentage of queries that need restarts remains
low at at most 7% in all cases.

6.5 Effect of the Distance Function

In this experiment, we measure the performance for different distance func-
tions and for different data sets. Not surprisingly, we see in Figure 21 that the
Max distance function performs the best overall, followed by Eucl and Sum. As
we discussed in Section 3.2, the region of all tuples at Max distance d or lower
from a query q is already an n-rectangle, so the range selection query Cq does
not retrieve any (useless) tuple at distance higher than d . In contrast, the re-
gions defined by the Eucl and Sum distance functions are not rectangular, so in
general we have no choice but to retrieve some extra tuples at distance higher
than d (Figure 1). Unfortunately, this negative effect gets worse as the data
set dimensionality increases since the ratio between the volume of the region
of all possible tuples at distance d or lower from q and the volume of the tight
n-rectangle that encloses such region decreases as the number of dimensions
increases. Figure 21(b) shows that for the two-dimensional data set Census2D
the difference in performance among distance functions is minimal. In contrast,
for Cover4D (four dimensions) we have a significant increase in the percentage
of tuples retrieved, which in turn affects the execution time. However, the per-
centage of tuples retrieved is below 5% in all our experiments.

6.6 Effect of the Number of Tuple Requested k

Figure 22 reports execution times and the percentage of tuples retrieved as a
function of k, the number of tuples requested. Our technique is robust for a wide
range of k values. Even when queries ask for the top-1000 tuples, the execution
time is less than 25% of the time of a sequential scan. We can also see that the
percentage of restarts increases with k. This can be explained as follows. For
“expensive” restarts, our Dynamic strategy will choose a high value of α, which
in turn will make restarts rare, thus minimizing execution times. Conversely,
if restarts are inexpensive, our Dynamic strategy will choose a lower value of
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Fig. 21. Execution time and tuples retrieved for different distance functions.

Fig. 22. Execution time and tuples retrieved for varying number of tuples requested k.

α: Although restarts will then be more likely, they will contribute less to the
total execution cost. In our specific case, when k increases from 50 to 1,000, the
dNR distance produced by the NoRestarts strategy in the Verify/ Restart step
in Section 3 remains almost unchanged, since there are not many new buckets
needed to guarantee the higher values of k (this effect is related to the granu-
larity of the histogram’s buckets). On the other hand, the execution time and
number of tuples retrieved for the cases that do not need restarts do increase,
therefore restarts become relatively less expensive. Our Dynamic strategy ulti-
mately chooses lower values of α, which results in higher percentages of restarts
but in generally lower execution times.

6.7 Effect of Index Configurations

Figure 23 shows how our technique performs in the absence of multiattribute
indexes. In this experiment we constructed a one-column unclustered B+-tree
index for each attribute mentioned in the query (Section 5.4). The resulting
performance is 1.5 to 8 times worse than that for multiattribute indexes (the
percentage of retrieved tuples remains the same). However, even when only
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Fig. 23. Execution time for unidimensional and multiattribute indexes.

unidimensional indexes are available, the total execution time was found to
be below 60% of that of a single sequential scan over the relation in all our
experiments.

6.8 Comparison with Sampling-Based Techniques

Recently, Chen and Ling [2002] modified our strategies in Chaudhuri and
Gravano [1999] to use sampling rather than multidimensional histograms to
evaluate top-k queries over relational databases. For each incoming query, a
range selection query that is expected to cover most of the top-k tuples is
constructed and evaluated. However, instead of using multidimensional his-
tograms to define the range selection query, Chen and Ling [2002] use sam-
pling. In particular, a uniform sample of the data set is kept in memory, and is
used to define the boundaries of the corresponding range selection query. The
query model that is used is slightly different from ours, with no restarts. In
effect, when using sampling it is not possible to guarantee that at least k tuples
will be retrieved. Therefore, the result of the selection query in Chen and Ling
[2002] serves as an approximate answer to the original top-k query, and the ex-
perimental evaluation focuses on the precision and recall of the query mapping
strategies.

In this section, we compare our Dynamic technique against Para, an adaptive
sampling-based technique proposed in Chen and Ling [2002]. In particular,
for each experiment we generate a uniform sample of the data set and tune
Para as described in Chen and Ling [2002] so that it results in 100% recall
(corresponding to the exact answer). As explained before, the Para technique
can return fewer than k tuples in some situations, even when tuned for 100%
recall. In those rare cases, we perform a sequential scan over the data to retrieve
the remaining tuples, since this is the only way to guarantee correct results in
our query model.

Figure 24 shows the execution times of the Dynamic and the Para tech-
niques for different data sets and both Uniform and Biased workloads. For
a fair comparison, the sample for Para uses the same amount of memory as
the histograms for Dynamic do, which results in twice as many sample tuples
in Para compared to the number of buckets in the histograms. We can see in
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Fig. 24. Execution time for histogram- and sampling-based techniques.

Figure 24 that the resulting execution times are comparable for both tech-
niques. In fact, there is at most a 5% difference in execution times between
Dynamic and Para. This is not surprising, since both techniques are based
on the same underlying approach, differing only in the specific model used to
approximate the data distribution (i.e., sampling and multidimensional his-
tograms). These results should not be taken as definitive since both techniques
can be improved. On one hand, our Dynamic techniques can take advantage
of more accurate multidimensional histograms (e.g., Bruno et al. [2001] and
Gunopulos et al. [2000]). On the other hand, more accurate sampling tech-
niques (e.g., stratified or weighted sampling) can be used to enhance the accu-
racy of Para. It is our belief that techniques based on novel multidimensional
histograms would be more accurate than sampling-based techniques when the
number of dimensions in the data sets is fairly moderate (as it is the case for
traditional selectivity estimation of range queries). On the other hand, we be-
lieve that sampling-based techniques should scale better than histogram-based
techniques for high data dimensionality, as reported experimentally in Chen
and Ling [2002].

6.9 Evaluation Conclusions

In previous sections we evaluated our Dynamic strategy for different data distri-
butions, workloads, histogram and index configurations, and query parameters.
We compared Dynamic with the static mapping strategies of Section 3 and also
with techniques that require a sequential scan over the relation. In summary,
our Dynamic technique was found to be more efficient than the other histogram-
based alternatives and it always resulted in lower execution times than a single
sequential scan over the relation. In particular, when we used Equi-Depth his-
tograms and multiattribute indexes, the Dynamic technique took around 4%
to 22% of the time of a sequential scan for Biased workloads, and around 10%
to 40% of the time of a sequential scan for Uniform workloads. Although per-
formance degrades when only single attribute indexes are available, execution
times are still below two thirds of that of a sequential scan in those cases. Fi-
nally, the number of tuples retrieved by our Dynamic strategy was found to be
in all cases less than 6% of the relation size.
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In the experiments of Section 6.7, we used the existing index structures in
SQL-Server 7.0, that is, single- and multicolumn B+-trees. It is important to
note that, whenever new access methods (e.g., R-trees) are incorporated to a
RDBMS and fully integrated to its query optimizer, our techniques will take
advantage of these new index structures without any changes in the proposed
framework. For a given range query, the optimizer is responsible for choosing
the query plan and index configuration that would result in the most efficient
execution. Therefore, the support of new index structures in a RDBMS can only
improve the execution time of our techniques. Of course, if the added access
method natively supports nearest-neighbor searches, then our technique is no
longer necessary.

7. RELATED WORK

Motro [1988] emphasized the need to support approximate and ranked matches
in a database query language. He extended the language Quel to distinguish
between exact and vague predicates. He also suggested a composite scoring
function to rank each answer. Motro’s work led to further development of the
idea of query relaxation that weakens a given user query to provide approxi-
mate matches using additional metadata (e.g., concept hierarchies). The query-
ing model for top-k queries that we use in this article is consistent with Motro’s
definitions. Our key focus is on exploring opportunities and limitations of effi-
ciently mapping top-k queries into traditional relational queries.

Carey and Kossmann [1997, 1998] present techniques to optimize queries
that require only top-k matches when the scoring is done through a tradi-
tional SQL “Order By” clause. Their technique leverages the fact that when k
is relatively small compared to the size of the relation, specialized sorting (or
indexing) techniques that can produce the first few values efficiently should be
used. However, in order to apply their techniques when the distance function
is not based on column values themselves (e.g., as is the case for Max, Eucl,
and Sum), we need to first evaluate the distance function for each database
object. Only after evaluating the distance for each object are we able to use
the techniques in Carey and Kossmann [1997, 1998]. Hence, these strategies
require a preprocessing step to compute the distance function itself involving
one sequential scan of all the data.

Donjerkovic and Ramakrishnan [1999] propose a probabilistic approach to
query optimization for returning the top-k tuples for a given query. Their ap-
proach is complementary to ours in that they focus on relations that might
be the result of complex queries including joins, for example. In contrast, we
focus on single-table queries. Also, the ranking condition in Donjerkovic and
Ramakrishanan [1999] involves a single attribute, while the core of our con-
tribution is dealing with multiattribute conditions without assuming indepen-
dence among the attributes, for which we exploit multidimensional histograms.

Recently, Chen and Ling [2002] modified our strategies in Chaudhuri and
Gravano [1999] for evaluating top-k queries over relational databases. Instead
of using multidimensional histograms to define the range selection query that is
expected to cover most of the top-k tuples, the authors use sampling. The query
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model that is used is slightly different from ours, with no restarts. Instead, the
result of the selection query serves as an approximate answer to the original
top-k query. Therefore, the experimental evaluation focuses on the precision
and recall of the proposed query mapping strategies. (See Section 6.8.) Also re-
cently, Hristidis et al. [2001] presented PREFER, a prototype that uses multiple
materialized views to efficiently answer preference queries, which return the k
tuples that maximize a given linear function over the relation’s attributes.

Multidimensional density estimation is an active research field. The main
techniques comprise sampling [Olken and Rotem 1990], wavelets [Matias
et al. 1998], fractal dimension concepts [Faloutsos and Kamel 1997; Belussi
and Faloutsos 1995], and multidimensional histograms. Multidimensional his-
togram construction shares some intriguing features with multidimensional
access method construction. Multidimensional access methods [Gaede and
Günther 1998] support efficient search operations in spatial databases. They
partition the data domain into buckets, and assign to each bucket some infor-
mation about the tuples it covers (usually the set of rids). There is a connection
between access methods and histogram techniques regarding the different ways
in which they partition the data domain. For instance, the partitioning strategy
used in STGrid histograms [Aboulnaga and Chaudhuri 1999] is similar to that
of the Grid File technique [Nievergelt et al. 1984]. MHist histograms [Poosala
and Ioannidis 1997] share the hierarchical or recursive partitioning of K-D-B
trees [Robinson 1981]. STHoles histograms [Bruno et al. 2001] use a simi-
lar partitioning scheme to hB-tree’s holey bricks [Lomet and Salzberg 1990].
Finally, GenHist histograms use overlapping buckets, just as R-trees [Guttman
1984] do. A natural question arises then. Why not use existing access methods
directly to model density distributions of data sets? This idea is explored, for
example, in the CONTROL project [Avnur et al. 1998], which uses the shell
of R-trees to provide online visualization of large data sets, by traversing the
R-tree breadth-first and approximating the underlying data distribution with
the aggregated information at each level. In spite of these connections between
histograms and access methods, we believe that there are fundamental differ-
ences between the two. The main goal of multidimensional access methods is
to allow efficient access to each “bucket” using only a few disk accesses, so the
main objective is to distribute tuples evenly among buckets and maintain a
high fraction of bucket utilization to prevent long searches. On the other hand,
histogram techniques need to form buckets enclosing areas of uniform tuple
density whenever possible, so that the techniques that assume uniformity in-
side buckets work as expected.

There is a large body of work on finding the nearest-neighbors of a mul-
tidimensional data point. Given an n-dimensional point p, these techniques
retrieve the k objects that are “nearest” to p according to a given distance met-
ric. The state-of-the-art algorithms (e.g., Korn et al. [1996]) follow a multi-step
approach. Their key step is identifying a set of points A such that p’s k near-
est neighbors are no further from p than a is, where a is the point in A that
is furthest from p. (A more recent paper [Seidl and Kriegel 1998] further re-
fines this idea.) This approach is conceptually similar to that in this paper (and
also in Chaudhuri and Gravano [1996]), where we first find a suitable distance
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D, and then we use it to build a relational query that will return the top-k
matches for the original query. Our focus in this article is to study the prac-
ticality and limitations of using the information in the histograms kept by a
relational system for query processing. In contrast, the nearest-neighbor algo-
rithms mentioned above use the data values themselves to identify a cut-off
“score.” Algorithms and data structures specifically designed to answer top-k
queries are expected to result in more efficient executions than our techniques.
Integrating these algorithms into today’s complex and performance-sensitive
RDBMSs is challenging even with the support for extensibility available in
modern database servers. In contrast, our strategies can be easily implemented
as a thin layer on top of an existing RDBMS, and can benefit from the inclu-
sion into the RDBMS of new and more accurate histograms (since they can be
plugged in without changes to our framework), and additional access methods,
as explained in Section 6.9.

8. CONCLUSIONS

In this article, we studied the problem of mapping a multiattribute top-k selec-
tion query on a relational database to a traditional selection query such that the
mapping is “tight,” that is, we retrieve as few tuples as possible. Our algorithms
exploit histograms and are able to cope with a variety of scoring functions. We
have reported the first evaluation of the performance of top-k mapping tech-
niques over a commercial RDBMS, namely Microsoft’s SQL Server 7.0. Our
experiments clearly demonstrate that mapping top-k queries to multiattribute
range queries that are “tuned” to a given workload reduces the probability
of restarts while ensuring that the required top-k matches are returned. Our
techniques are robust, and perform significantly better than existing strategies
requiring at least one sequential scan of the data sets.

A key property of our techniques is that they can be easily implemented on
top of existing RDBMSs with minimal changes to the existing interfaces. There-
fore, our techniques can automatically benefit from advanced multidimensional
access methods as they become integrated into RDBMSs, since the underlying
query optimizers will exploit such access methods for the execution of the se-
lection queries that we produce. Furthermore, as discussed in Section 6.9, our
techniques could be adapted to benefit from multidimensional access methods
as a complement to (or even replacement of) the statistical information provided
by multidimensional histograms. A deeper analysis of these ideas is subject of
intriguing future work.
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