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ABSTRACT

We introduce a method for learning query transformations that im-
proves the ability to retrieve answers to questions from an informa-
tion retrieval system. During the training stage the method involves
automatically learning phrase features for classifying questions into
different types, automatically generating candidate query transfor-
mations from a training set of question/answer pairs, and automat-
ically evaluating the candidate transforms on target information re-
trieval systems such as real-world general purpose search engine
At run time, questions are transformed into a set of queries, and
re-ranking is performed on the documents retrieved. We present
a prototype search engin€&itus, that applies the method to web
search engines. Blind evaluation on a set of real queries from a
web search engine log shows that the method significantly outper-
forms the underlying web search engines as well as a commercial
search engine specializing in question answering.
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1. INTRODUCTION

A significant number of natural language questions (Evijhat
is a hard disk’) are submitted to search engines on the web every
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search engine, but rather hardware tutorials or glossary pages with
definitions or descriptions of hard disks. A good response might
contain an answer such g%iard Disk: One or more rigid mag-
netic disks rotating about a central axle with associated read/write
heads and electronics, used to store dataThis definition can be
retrieved by transforming the original question into a qug¢hard

disk” NEAR “used to’} . Intuitively, by requiring the phraseised

to”, we can bias most search engines towards retrieving this answer

Asone of the top-ranked documents.

" We present a new systerfifitus, that automatically learns to
transform natural language questions into queries containing terms
and phrases expected to appear in documents containing answers to
the questions (Section 3). We evaludtéus on a set of questions
chosenrandomly from the Excite query logs, and compare the qual-
ity of the documents retrieved biyitus with documents retrieved

by other state-of-the-art systems (Section 4) in a blind evaluation
(Section 5).

2. RELATED WORK

There is a large body of research on Question-Answering, most
recently represented in the Text Retrieval Evaluation Conference
(TREC) Question-Answering track [22], which involves retrieving
a short (50 or 250 byte long) answer to a set of test questions. In
our work we consider a more general class of questions, where the
answers may not be short, precise facts, and the user might be in-

day, and an increasing number of search services on the web speciflerested in multiple answers (€.g., consider the question “What are

ically target natural language questions. For example, AskJeeve
(www.ask.com) uses databases of pre-compiled information, meta-

)

ways people can be motivated?”).
The first part of the task, relevant to our work here, is to retrieve

searching, and other proprietary methods, while services such agPromising documents from a collection. The systems in the latest

AskMe (www.askme.com) facilitate interaction with human ex-
perts.

Web search engines such as AltaVistav{v.altavista.com) and
Google (www.google.com) typically treat a natural language ques-
tion as a list of terms and retrieve documents similar to the original
query. However, documents with the best answers may contain
few of the terms from the original query and be ranked low by the
search engine. These queries could be answered more precisely i
a search engine recognized them as questions.

Consider the questiofWhat is a hard disk?” The best doc-

TREC evaluation submitted the original questions to various infor-
mation retrieval systems for this task [22].

A number of systems aim to extract answers from documents.
For example, Abney et al. [1] describe a system in which doc-
uments returned by the SMART information retrieval system are
processed to extract answers. Questions are classified into one of a
set of known “question types” that identify the type of entity cor-
gesponding to the answer. Documents are tagged to recognize en-
tities, and passages sounding efiities of the correct type for a
given question are ranked using a set of heuristics. Moldovan et al.,

uments for this query are probably not company websites of disk and Aliod etal. [13, 2] present systems that re-rank and postprocess

storage manufacturers, which may be returned by a general-purpos

*Work partially done while the author was an intern at NEC Re-
search Institute during Summ2000.
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{the results of regular information retrieval systems with the goal of

returning the best passages. Cardie et al. [7] describe a system
that combines statistical and linguistic knowledge for question an-
swering and employs sophisticated linguistic filters to postprocess
the retrieved documents and extract the most promising passagesto
answer a question.

The systems above use the general approach of retrieving doc-
uments or passages that are similar to the original question with



Generate Question Phrases from Questions
in Training Data (Section 3.1.%3
Generate Candidate Transforms from Answers
in Training Data (Section 3.1.3

Evaluate Candidate Transforms for each

variations of standard TF-IDF term weighting schemes [18]. The @
most promising passages are chosen from the documents returne
using heuristics and/or hand-crafted regular expressions. This ap- )
proach is not optimal, because documents that are similar to the(3)
questiorare initially retrieved. However, the user is actuatipk- Search Engine (Section 3.1.3

ing for documents containing amswerand these documents may (4)  Output Best Transforms for each Search Engine
contain few of the terms used to ask the original question. This is Figyre 1: Outline of the process used to train theTritus system.
particularly important when retrieving documents is expensive or
limited to a certain number of documents, as is the case with web
search engines.

[ Question Typg Question Phrase(s) |

Other systems attempt to modify queries in order to improve the Who “who was”
chance of retrieving answers. Lawrence and Giles [11] introduced How “how do i
Specific Expressive Formahere questions are transformed into Where “where is”, "where cani”
specific phrases that may be contained in answers. For example, What “whatare”, "whatis”, "what is a”

the question “what is x” may be transformed into phrases such as
“x is” or “x refers to”. The main difference from our current work

is that in [11] the transforms are hand crafted (hard coded) and the
same set of queries is submitted to all search engines used, excep
for the differences in query syntax between search engines. Joho Effective Queries
and Sanderson [10] use a set of hand-crafted query transformations ] )

in order to retrieve documents containing descriptive phrases of ~We attempt to find transformations from natural language ques-
proper nouns. Harabagiu et al. [8] describe a system that trans-tions into gffectlve queries that con_taln terms or phrases e_xpected
forms questions using a hierarchy of question types. The hierar- 10 appear in docgments th_at contain answers to the question. Our
chy is built semi-automatically using a bootstrapping technique. l€arning process is shown in Figure 1.

Schiffman and McKeown [19] describe experiments in automati-

cally building a lexicon of phrases from a collection of documents 31,1 Selecting Question Phrases

with the goal of building an index of the collection that is better
suited for question answering.

Also related is a large body of research (e.g., [12]) that describes
methods for automatically expanding queries based on the rele-
vance of terms in the top-ranked documents. An interesting ap-
proach presented in [23] describes how to automatically expand a
query based on the co-occurrence of terms in the query with the
terms in the top-ranked documents for the original query. In gen-
eral, automatic query expansion systems expand queries atrun timqh
on a query-by-query basis using an initial set of top-ranked docu-
ments returned by the information system in response to the origi-
nal query.

In contrast to the previous research, we present a systemuhat
tomatically learnsnultiple query transformationsptimized specif-
ically for each search engine, with the goal of maximizing the prob-
ability of an information retrieval system returning documents that
contain answers to a given question. We exploit the inherent regu-
larity and power of natural language by transformiragural lan-
guage questionisito sets ofeffective search engine queries

Table 1: Question type phrases used for evaluation (Section 4).

.1 Learning to Transform Questions into

In the first stage of the learning process (Step (1) in Figure 1)
we generate a set of phrases that identify different categories of
questions where the questions in each category have a similar goal.
For example, the questidiVhat is a hard disk?”implies that the
user is looking for defitions or descriptions of a hard disk. The
goal of the question can be inferred from theestion phrase “what
isa’.

The input to this stage is a set of questions. These questions and
eir corresponding answers ctihge the training data. We gener-
ate potential question phrases by computing the frequency of all
grams (phrases) of lengthinQtokendo maxQtokensvords, with

all n-grams anchored at the beginning of the questions. We use all
resultingr-grams that occur at leastinQphraseCourtimes.

The output of this stage is a set of question phrases that can be
used to quickly classify questions into respective question types.
Sample question phrases, automatically generated from questions
in the training collection described later, are shown in Table 1.

This method of selecting question phrases can produce many
phrases, which may include a significantnumber of phrases that are
too specific to be widely applicable. Because the following stages
3. THETRITUS SYSTEM of the training process are relatively expensive and we have limited

Often, it is not sufficient to submit a natural language question resources for training, we chose to limit the training for the results
(e.g.,"How do I tie shoelaces?)'to a search engine in its original  reported here to phrases that match the regular expressions shown
form. Most search engines will treat such a query as a bag of termsin Figure 2. The regular expressions match common questions, and
and retrieve documents similar to the original query. Unfortunately, allow us to concentrate our resources on the most useful phrases.
the documents with the best answers may contain only one or two Feature selection techniques, part-of-speech tagging, and other nat-
terms from the original query. Such useful documents may then ural language processing techniques may be used to fine-tune the
be ranked low by the search engine, and will never be examinedfiltering of generated question phrases.
by typical users who do not look beyond the first page of results.  Although alternative approaches can be used to identify cate-
To answer a natural language question, a promising approach is togories of questions, our-gram approach has a number of advan-
automatically reformulate the question into a query that contains tages. This approach is relatively inexpensive computationally, al-
terms and phrases that are expected to appear in documents corewing the processing of large training sets. The approach is also
taining answers to the original question. In this section we define a domain independent, and will work for many languages with only
strategy for transforming natural language questions into effective minor modifications. Additionally, when evaluating a question at

search engine queries. Section 3.1 describes howWritus system
learns to reformulate questions. Then, Section 3.2 showsThiew
tusevaluates a query at run time by applying these transformations.

run time (Section 3.2), categorizing a question using phrase match-
ing can be incorporated with negligible overhead in the overall pro-
cessing time of queries.



“what (is|are|were|does|do|did|should|can)\s Question Phrasg Candidate Transformsg

“who (is|are|was|were|did|do|does)\s “the term”

“how (tolis|do|did|does|can|would|could|should)\s “component”

“why (is|do|are|did|were|does)\s “ans”

“where (is|was|can|are|were|do|does)\s “what is a” “a computer”

“when (is|was|are|were|do|did|does)\s “telephone”

“which\s “collection of”

Figure 2: The regular expressions used to filter the automati- “Etna}?’dsfor

cally generated question phrases that are candidates for trans-

formation. Table 2: A sample of candidate transforms generated without

3.1.2 Generating and Filtering Candidate Transforms disregarding phrases containing a noun.

In the second stage of the leaming algorithm (Step (2) in Fig- yment ranking formula (used by the state-of-the-art Okapi infor-
ure 1) we generate candidate terms and phrases that may be usgnation retrieval system participating in TREC conferences since
ful for reformulating questions. We apply a filtering procedure TREC-3). Many information retrieval systems useieetor space
to reduce the computational requirements for the following stage model [18] to compute similarity between documents, where sim-
(evaluating thecandidate transforméor search engine effective- jlarity is computed as a dot product between vectors representing
ness, Step (3) in Figure 1)Candidate transformare generated  each document. The elements of each vector are calculated as a
for each of thequestion phrasefsom the previous learning stage.  ompination of thaerm weightand term frequencyf each term
The procedure for generating candidate transforms for each quesip the document. The BM25 metric [17] uses a similar idea. In
tion phraseQP consists of a number of steps, namely generating the original definition of BM25gach terny; in the document is
initial candidate transfornphrases, filtering these phrases by min- assigned the Robertson-Spark Jones term wezizé;]ﬂt[15] with re-
imum co-occurrence count, and weighting and further filtering the spect to a specifiquery topicand is calculated as:
remaining phrases. Each step is described below in detalil.

For this stage of the learning process we use a collection of
<Question, Answer pairs. A sample of the original collection is (n—r0.5)/(N—n—R+r+0.5)
given in Figure 5. As we will describe next, this stage of the learn- ) o ]
ing process operates over a collection that has beggedwith wherer is the number of relevant documents containing\’ is
a part-of-speech tagger, which assigns a syntactic part of speecﬁhe number of documgnts in the collectiddjs the number _of_rel-
(e.g.,noun, verb to each word in the text. We useils part-of- evant documents,_am‘il_s the r_1umber of doquments containihg
speech tagger [4]1 Wh|Ch is W|de|y used in the na’[ura| |anguage pro_ |ntu|t|Ve|y., th|s We|ght IS dESIgned to be h|gh for terms that tend
cessing community and is availablehap://www.cs jhu.edu/brill/. to occur in many relevant documents and few non-relevant doc-

For each<Question, Answer pair in the training collection uments, and is smoothed and normalized to account for potential

where a prefix oQuestionmatchesQP, we generate all possible ~ SParseness of relevance information in the training data.

(r+0.5)/(R—r +0.5) W

wl(l) = log

potential answer phrases from all of the words in the prefikmf In the original definition of BM25, term_weighbl(l) is specific
swer. For this we use-grams of lengtiminAtokenso maxAtokens ~ to each query topic. We apply this metric to our task of weight-
words, starting at every word boundary in the firetxLerbytes of ing candidate transforms by incorporating two modifications. First,

the Answertext. A sample of answer phrases generated after this we interpretquery topicas question type. In this interpretation,
step is shown in Table 2. These phrases are heavily biased toward# relevant document is one of the answers in the training collec-
electronics or the computer domain. These phrases were generatetion that corresponds to the question phrase (question type). There-
because a large portion of the documents in the training collec- fore wf»l) is an estimate of the selectivity of a candidate transform
tion were on technology related topics. If we used these phrases in¢; with respect to the specific question type. Second, we extend
transforms, we may change the intended topic of a query. Recallthe term weighting scheme fhrases We apply the same, con-
that the transformations we are trying to learn should improve ac- sistent weighting scheme to phrases, and treat them in the same
curacy of the retrieved set of documents, yet preserve the topic of way as single word terms. We compute this weight for each candi-
the original query. Therefore we would need to filter out phrases date transfornar; by computing the count af Question, Answer
such astelephone”, which intuitively would not be good transfor-  pairs where'r; appears in thénswerto a question matchin@P
mations for general questions (e.tYVhat is a rainbow?"). as the number of relevant documents, and consider the number of
We address this problem by filtering out candidate transform the remaining<Question, Answesr pairs wherér; appears in the
phrases containing nouns. We observe that in most of the queriesAnsweras non-relevant, and apply the formula in Equation 1.
the nouns areontentwords, or words expressing the topic of the We then compute thierm selection weightsvtr;, for each can-

query. For example, in the quetwhat is a rainbow”, the term didate transfornar;, as described in [14] in the context of selecting
“rainbow” is a noun and a contentword. Likewise, the witale- terms for automatic query expansion as:

phone”is a noun. Thus, we filter candidate transform phrases by

checking if a generated answer phrase contains a noun, and if it wiry = gt f; - w,(»l) (2

does, the phrase is discarded. We use the part of speech informa- ) ) W
tion, which is computed once for the whole collection as described Wheregtf; is the co-occurrence count of; with QP, andw; ™’ is

in the beginning of this subsection. the relevance-baseadrm weightof ¢r; computed with respect to
Of the resultingn-grams, we keep théopKphraseswith the QP. This term ranking strategy exploits both co-occurrence statis-

highest frequency counts. We then apply IR techniqueseion tics and relevance weights with the aim of filtering out noise. While

weightingto rank these candidate transforms. w!") assigns higher weight to terms and phrases with high discrim-

The initial term weightsare assigned to each candidate trans- inatory powergtf is a measure of how often a phrase occurs in
form phraset;, by applying the term weighting scheme described answers to relevant question types. For example, while in Table 3
in [16]. These term weights were used in the Okapi BM25 doc- the phrase “named after” is a better discriminator for the question



Table 3: Sample candidate transforms along with their fre-

quency countgt f;, BM25 term weight wl(l), and the resulting
term selection weightwtr;.

Question Phrasq Candidate Transforn] gt f; | w(") | wtr; tion. Using transformir; we remove the question phra§e” and
“refers to” 30 | 2717 813 rewrite QuestionasQuery ={C AND ¢r;}. For example, con-
“;ﬁfeeef; \ ig ggz 3880512 sider the candidate transform “refers to” for the question phrase
wwhat is a” “driven” 14 | 272 | 3808 “what is a”, and the<Question, Answer pair <“what is a lisp
“named after” 10 | 363 | 363 machine(lispm)”, “A Lisp Machine (lispm) is a computer opti-
“often used” 12 | 3.00| 36 mized for running Lisp programs, .>¥. Applying the transform to
“to describe” 13 | 270 | 35.1 the Questiorwe obtain a rewritten querlQuery="“ {(lisp machine

lispm) AND (“refersto”)}.”

We use the appropriate query syntax for each search engine. We
also encode the transforms so that they are treatqrh@sesy
each search engine.

The syntax of the querying interface varies for each search en-
gine. For AltaVista we use theEAR operator instead oAND be-

[ Transform Length] Candidate Transformr; | wtr; | tead

s used to” 32.89 cause we found theEAR operator to produce significantly better

3 “according to the” 23.49 results in preliminary experiments. In the example above, the ac-
“to use a” 21.43 tual query submitted to AltaVista would be{{lisp machine lispr
isa’ 298.89 NEAR (“refers to”)}."” Google treats all the terms sulitted in

2 “offa . %41-334 a query with implicitAND semantics in the absence of an explicit
eters to : OR operator. Note that Google incorporates the proximity of query
usually’ 128.23 . . .

1 “used” 110.39 terms |n_th_e document r_anklng [5] and may discard some words that
“refers” 80.1 appear in its stopword list.

Table 4: A sample of candidate transforms grouped into buck-
ets according to the transform length. These transforms were
generated for the question phraséwhat is a”.

phrase‘'what is @”, it does not occur as often as those ultimately

There are other possibilities for rewritiriguestion for example,
requiring or not requiring parts of the query in matching pages, and
combining multiple transformations into a single query.

In Step (3) of Figure 3 the rewritten que@ueryis submitted
to the search engin@E At most 10 of the top results returned by
SEare retrieved. Each of the returned documentss analyzed
in Steps (4a), (4b), and (4c). In Step (4s0bdocumentsf D are

ranked higher. This tradeoff between discrimination and frequency 9enerated. In Step (4b), the subdocument®imost similar to
of occurrence, or expected precision and recall, may be explored inAnswerare found. In Step (4c), the scores and countsforare

future work. Sample output of this stage is shown in Table 3.

updated based on the similarity Bfwith respect ttAnswer More

Finally, the candidate transforms are sorted into buckets accord-details on these steps follow.
ing to the number of words in the transform phrase, and up to  In Step (4a) we generageibdocumentsom a document o cal-
maxBucketransforms with the highest valueswfr; are keptfrom  culate a more accurate similarity measure. Consider original an-
each bucket. In general, we expect that longer phrases may be proSWer A and a documen®, one of the documents retrieved using
cessed differently by the search engines, and this step was dondhe transformed query. We make an assumption that answers are
in order to include such longer, potentially higher precision trans- localized i.e., that the key information/set of phrases will appear
forms in the set of candidate transforms, whereas primarily shorter in close proximity of each other — within subdocuments of length
transforms with higher frequency counts may be chosen otherwise. SUbDocLenThe subdocuments overlap sybDocLer2 words, to
In Table 4, we show a sample of phrases with the highest selectionMinimize the possibility that an answer will not be entirely within
weights from each candidate transform bucket. one of the subdocuments. In other words, given qégrgocument
D, andsubDocLen= N, we breakD into overlapping subdocu-
mentsDy, D2, Ds, Dy, ..., each starting at successive {tiosis 0,
NI2,N,3-N/2,...

In Step (4b) we calculate the score of documéntwith re-
spect toAnswer We definedocScore(Answer, D3s the maximum
of the similarities ofeach of the subdocument%; in D. More

3.1.3 Weighting and Re-ranking Transforms using
Search Engines

In the third and final stage of training, we evaluate the perfor-
mance of each candidate transforin;, on web search engines.
Figure 3 shows the algorithm for ranking a set of candidate trans- _ }
forms for a single question phrase and search engine. The pro_formally, docScore(Answer, D) = Max(BM%ﬁraséAnswer,D,))

cedure is repeated for all question phrases and search engines of/"€reBM28ypa5dS an extension of thBM25metric [16] modi-

interest. fied to incorporate phrase weights, calculated as in Equation 1.
In Step (1) of the algorithm we retrieve a set qRQuestion, The originalB M 25 metric uses relevanceweighn‘zél) and topic

Answer> pairs to be used as training examples. This is done by frequencies as described previously, and is defined as:

sorting all of the<Question, Answer pairs in the collection in

order of increasing answer length, and using updonExamples

of the first<Question, Answer pairs that contain questions be-

ginning with QP. The sorting step is done because we believe the

evaluation may be more accurate for questions that have shortefyherek;, = 1.2,k = 1000,K = ki ((1—b)+b-dl/avdl), b = 0.5,

answers; however, this is a topic for future research. dl is the document length in tokens;d! is the average document
For each of the exampleQuestion, Answe pairs, and the set o¢h in tokens, ana(") andqtf: are the relevance weight and

of candidate transformgenerated in the previous stage of th_e Pro- query topic frequency as described previodsly.

cess, we apply each transforir;} to theQuestionone at a time

(Step (2)). Consider a questi@uestion ={QP C}, where@P

is the question phrase, aitlare the remaining terms in the ques-

<] ' |
BM25 =3 wV (ki 4+ 1)t fi(ks + 1)qtf;

(K +tfi)(ks + qtfi)

@)

=0

!We use the simplified version of the metric that was used in the
TREC evaluation, wherk,=0.



1) Examples = RetrieveExamples( Q@R numExamples)

for each  <Question, Answer
for each candidate transform

> in Examples
tr;

) Query = ApplyTransform(Question, tr;)
3) Results = SubmitQuery(Query, SE)
for each Document in Results

docScore = -1

(4a) Subdocuments = getSubDocuments(Document, subDocLen)
for each SubDocument in SubDocuments

(4b) tmpScore = DocumentSimilarity(Answer, SubDocument)

if (tmpScore > docScore) docScore = tmpScore

(4c) updateTransformScores( tr;, docScore)
updateTransformCounts( tr;)

5) AssignTransformWeights(TransformScores, TransformCounts)

Figure 3: Automatically evaluating the effectiveness of candidate transforms.

In theBM25;,1.,.:. metric, the “terms” in the summation (Equa-
tion 3) include phrases, with weights learned over the training data
as in the previous subsection. The weight for a term or phrése
calculated as follows:

(1)
w:{

w

log IDF(t)

NumTermét) - 3=, o, log IDF(t;)
This multi-step assignment procedure is usedduse terms en-
countered may not be present in the training collection. We use
IDF (Inverse Document Frequency, which is high for rare terms,
and low for common terms) weights derived from a much larger
sample (one million web pages, obtained from the collection of
pages used in the TREC Web Track [9]). The last, fall-back case
is necessary in order to handle phrases not present in the trainin
data. Intuitively, it assigns the weight of phraseversely pro-
portional to the probability that all the terms drappear together,
scaled to weight occurrences of multi-word phrases higher. This
heuristic worked well in our preliminary experiments, but clearly
may be improved on with further work. While document ranking
is important during run time operation of the system described in
Section 3.2, re-ranking of the result set of documents was not the
focus of this work.

The overall goal of ranking candidate transforms is to weight
highly the transforms that tend to return many relevant documents
(similar to the originalAnswes) and few non-relevant documents.
In Step (5) we calculate weight'T; of a transformir; as the av-
erage similarity between the original training answers and the doc-
uments returned in response to the transformed query:

Z<Q7A> docScore(A, Dyy,) 4
- Count(Dyr,) “)

where the sum is calculated over all of th&Question, Answer
pairs in the set of examples.

The result of this final stage of training is a set of transforms, au-
tomatically ranked with respect to their effectiveness in retrieving
answers for questions matchi@pP from search engin€E Two
samples of highly ranked transforms fQP = “what is a”, the
first optimized for the AltaVista search engine and the second for
the Google search engine, are shown in Table 5.

3.2 Run Time Query Reformulation
Once the set of the best transformations is automatically trained

if w(!) is defined fort
if IDF (t) is defined fort
otherwise

WT;

for each question phrase, they are stored as transformation rules.4

Tritus then evaluates a given question using the procedure in Fig-
ure 4.

Search Transform W'T; Search | Transform W'T;
Engine Engine
“is usually” | 377.03 “is usually” | 280.68
“refersto” | 373.22 “usually” 275.68
AltaVista | “usually” 371.55|| Google | “called” 256.64
“refers” 370.14 “sometimes”| 253.53
“is used” 360.07 “is one” 253.24

Table 5: Some of the top ranked transforms for the question
phrase“what is a” automatically optimized for AltaVista and
Google.

In Step (1a), the system determines if it can reformulate the

uestion by matching known question phrases, with preference for
onger (more specific) phrases. For example, “what is the” would
be preferred over “what is”. In Step (1b), the corresponding set
of transforms is retrieved. Only the tepumTransformgansforms
are used. In Step (2) each transform is used to rewrite the original
question, one transform at a time, resulting in a new query. In Step
(3) the transformed queries are submitted to the search engine and
the first page of results is retrieved.

In Steps (4a), (4b), and (4c¢) the returned documents are analyzed
and scored based on the similarity of the documents with respectto
thetransformedjuery. The process of scoring the document is the
same as described in Secti@nl.3 The important difference is
in Step (4c¢). If a document is retrieved through the application of
multiple transforms, then the final score for the document is the
maximum of each of the individual document scores.

In Step (5) the returned documents are ranked with respect to
their final document scores, and in Step (6) the top ratdqgiddocs
documents are returned as the final result produced b¥rihes
system.

4. EXPERIMENTAL SETTING

In this section we present the experimental setting that we use to
evaluate the performance ofitus. Section 4.1 details the training
of Tritus for the evaluation. Section 4.2 lists the retrieval systems
that we use in our comparison. Section 4.3 introduces the evalua-
tion metrics for the performance of the retrieval systems, and de-
tails of the queries evaluated and relevance judgments are reported
in Section 4.4.

.1 Training Tritus

We used a collection of approximately 30,000 question-answer
pairs for training, obtained from more than 270 Frequently Asked



(1a) QP = matchQuestionPhrase(Question)

(1b) {tr} = retrieveTransforms( QPR numTransforms)
for each tr; in {tr}

) Query = ApplyTransform(Question, tr;)

3) Results = SubmitQuery(Query, SE)

for each Document in Results
maxScore = Maximum Score for this Document so far

(4a) Subdocuments = getSubDocuments(Document, subDocLen)
for each SubDocument in SubDocuments
(4b) Score = DocumentSimilarity(Query, SubDocument)
(4c) if (Score > maxScore) Update Maximum Score of Document to Score
5) RankedDocuments = Sort Documents in decreasing order of document Score
(6) Return topKdocuments with highest Score

Figure 4: Evaluating questions at run time.

[ Question | Answer | [_Parameter [ Value | Description
A Lisp machine (or LISPM) is a computer which minQcount 30 Min. frequency for generating
What is a Lisp has been optimized to run lisp efficiently and qu_estlon phrases _
Machine (LISPM)? | provide a good environment for programming in jit. minAcount 3 Min. frequency for generating
candidate transforms
A near field monitor is one that is designed to maxQtokens 4 Max. length of question phrases (in words)
be listened to in the near field. Simple, eh? maxAtokens 5 Max. length of answer phrases (in words)
The “near field” of a loudspeakeris area where minQtokens 2 Min. length of question phrases (in words
What is a near-field the direct, unreflected sound from the speaker minAtokens 1 Min. length of answer phrases (in words)
monitor? dominates significantly over the indirect and maxLen 4096 | Max. length of the prefix of answers from
ref_l&_acted sound, sound bouncing off walls, floors, which candidate transforms are generated
ceilings, the console. ... Length (in words) of the subdocuments fof
subDocLen 10,000 | document similarity calculation. Set high to
Figure 5: Sample question-answer pairs from the training col- include complete example answers in the
lection. similarity calculation.
Max. number of highest ranked candidate
[Type | Phrase(s) [ Question-Answer Pairs in Collectioh maxBucket 25 transforms Qf each Ier_ngth for the final
Where | “where cani” 1408 search-engine weighting stage.
“where is” 198 Number of examplelQuestion, Answer
= = numExampleg 100 | pairs used to evaluate candidate transforms
‘what is’ 3486 f
“ " for each question phrase
What | “what are 1604 = -
“what is a” 486 Timeou(sec) 30 Individual page timeout
How | “howdo /" 2654 . .
Who | “whowas” 37 Table 7: Tritus training parameters.

: ini i f h i . - .
&a;)be!e 6: The number of training questions for each question e Tritus optimized for GooglTR-GO): The retrieval sys-

tem that results from transforming user questions into mul-
tiple queries using transformations specifically learned for
Question (FAQ) files on various subjects. Figure 5 shows a sam- Google, and combining the query results from Google as in
ple of the question-answer pairs. We obtained the FAQ files from Section 3.2.
the FAQFinder project [6]. We evaluated four question types. The

number of question-answer training pairs in the collection for each * AltaVista (AV): The AltaVista search engine as is.

of the question types is shown in Table 6. e Tritus optimized for AltaVista(TR-AV): The retrieval sys-

Tritus uses a number of parameters in the training process. We tem that results from transforming user questions into multi-
performed some experimentation with the different values of these ple queries using transformations specifically learned for Al-
parameters resulting in the parameters shown in Table 7. We did not taVista, and combining the query results from AltaVista as in
test parameters exhaustively and further fine-tuning may improve Section 3.2.

the performance of the system.
o AskJeevesAJ): The results of the AskJeeves [3] search en-
4.2 Retrieval Systems Compared gine, which specializes in answering natural language ques-
Tritus learns query transformations that are specifically tailored tions.
for a given search engine. Our experimental evaluation focuses : :
on two popular “general purpose” search engines, Google and Al- 4.3 Ev_aluatl_on Metrics
taVista. We compare the results produced by each of these systems Information retrieval systems are usually compared based on the
against those ofritus when Tritus uses the corresponding search “quality” of the retrieved document sets. This “quality” is tradition-
engine-specific transformations. We also evaluated AskJeeves forally quantified using two metricsecall andprecision[18]. Each
comparison. The five systems evaluated are: document in the collection at hand is judged to be eiteévant
or non-relevanfor a query.Precisionis calculated as the fraction
e Google(GO): The Google search engine as is. of relevant documents among the documents retrievedreoall



measures the coverage of the system as the fractiafi célevant Type | Phrase(s) Total Presented| Evaluated
documents in the collection that the system retrieved. : to judges

To measure recall over a collection we need to mark every doc- [ T8l queries | 2477283 ] | |
ument in the collection as either relevant or non-relevant for each ‘where” 184,634
evaluation query. This, of course, is a daunting task for any large | Where “wEe:e cani 1;’21'2(2)9 i? ﬂ
document collection, and is essentially impossible for the web, uxhgt,,e S eé‘l%
which contains billions of documents. Researchers have addressefl \what | “what is” 35.290 45 11
this problem by developing standard document collections with “what are” 10,129 43 12
queries and associated relevance judgments, and liynlirthe “what is a" 5,170 48 15
domain of documents that are judged [21]. How | *how” 20,777

Recently, TREC has incorporatedieb TracK9] that employs “howdo I 13,790 44 15
a collection of web documents (small relative to the size of the Who ng was” 116é%()22 40 15
web). This collection of documents is a valuable resource to eval-| Total quesions (290,000 @oprox) 313 ] 5 |

uate information retrieval algorithms over web data. However, the
collection is not well suited to evaluate a system likéus, where

we aim to transform user queries to obtain improved results from
existing search engindike Google and AltaVista, which operate
over the web at large. Consequently, to evaldaitis rigorously

Table 8: The number of questions of each question type in the
Excite query log.

we needed to define an alternative experimental setting. [Parameter [ Value | Description |

To evaluateTritus we inspect the togs pages returned by the Zl‘jgggitzfnorms ég g?:'or}‘:&b;:gf(}giﬁi%’ﬂig%g?gxe_ranking
various s_ystems th_at we compare (Se;tlonh4.2) for each quzry tlha maxPhraseLen| 4 Max. length of query phrases for re-rankin
we consider (Section 4.4). We describe how we computed rele- —maout 30 | Individual page imeout

vance judgments for these documents in Section 4.4. Using these
relevance judgments, we evaluate the answers that the systems pro-
duce using the following metrics.

Table 9: Parameters used for evaluation.

DEFINITION 1. Theprecisionat & of a retrieval systen' for 290,000 are reasonably well-formed English questions. We focus
a queryg is the percentage of documents relevarg @mong the  our evaluation on four basic question typasthere, What, How,
top K documents returned by for q. andWho (Table 8). These are the most common types of ques-

tions found in the Excite log, and have been estimated to account

ExampLE 1. Considera query and the top 10 documentsre-  for more than 90% of natural language questions stibeto the

turned by Google for this query. If we judge that 8 of these 10 gag/ch engine [20].

d(_)cusments are relevant tpthen the precision at 10 of Google for The set of test questions was generated by scanning for the ques-
qis 15 - 100% = 80%. tion phrasesin the query log. A random sample of 50 questions was
chosen for each question type. The sample was manually filtered
to remove queries that might be offensive or are likely to return of-
fensive documents. We also checked that the questions were not
present verbatim in our training collection. None of the test ques-
tions were used for tuning the parameter3itus.

The test questions of each type (Table 8) are sttbchto all
of the five systems (Section 4.2) without any modifications to the
original question. From each system, we retrieve up to 10 top-
ranked URLs. The rank for each of the result URLs is stored. The
top 10 documents (or all documents if fewer than 10) are retrieved

We also compute the percentage of questions where a given sys
tem provides the best performance of all systems tested:

DEFINITION 2. Consider systemS;, ..., S, and queryg. A
systent; at documentcutofk for a queryy is considered (one of)
the best performing systemsifhas the highest number of relevant
documents among the tép documents that it produced, compared
to all other systems.

Note that multiple systems may have identical performance on a foll -
given question, in which case they may all be considered the best, &S T0IOWS:

ExaMPLE 2. Consider a query, the top 10 documents re- e AV: The top 10 documents returned by AltaVista.
turned by Google fog, and the top 10 documents returned by Al-
taVista for the same query. If there are 7 documents relevagqt to
among the top 10 Google documents and only 5 among the top 10
AltaVista documents, then Google is considered to have the best
performance at document cutoff 10 fprintuitively, Google gets a
“vote” for ¢ because it was the best of the two retrieval systems for

GO: The top 10 documents returned by Google.

e TR-AV:Thetop 10 documents returned Bijtus using trans-
forms optimized for AltaVista and the parameters in Table 9.

e TR-GO: The top 10 documents returned Bjtususing trans-

that query. forms optimized for Google and the parameters in Table 9.
4.4 E\aaluatlon Que“es and their Relevance e AJ: The top 10 documents returned AgkJeevedNe had to
Ju gments take special steps to process thekJeevegesults. In the

Once we have trainetritus as discussed above, we evaluate its AskJeevesterface, the first page of results returned may
performance against the retrieval systems in Section 4.2 using the contain one or more of the following:
metrics described in Section 4.3. We used real user questions from
a log of queries received by the Excite search engine on the 20th of 1. One or more links to best page(s) for the given ques-
December, 1999. The portion of the log that we have accessto con- tion (or a similar question), selected by a professional

sists of 2.5 million queries, out of which we estimate thatuend editor.



2. One or more drop-down lists with a pre-selected value

55

of a term (or terms) in the question and an associated
“submit” button, which, if selected, will take the user 50 |
to an answer. 45 | Y
3. Pages that other users found useful for the given ques- 40 | AV
. o ; c S
tion (or a similar question). 2 5] o
(2]
We retrieved all of the results in (1) and (2) and the top results & 04 —o—TRAY
from (3) (in that order) to bring the total number of retrieved 5 | —a—TRGO
pagesto at most 10. .
To assign relevance judgments fairly, the fésg URLSs from all 15 —
of the systems are mixed together and presented in random order 12 3 4 5 6 7 8 9 10
to a number of volunteers. The volunteers are blind to the system K

that returned the URLs. We set up an evaluation script to present
volunteers with the result pages for a query one page at a time, o )
and allow the volunteers to judge each page as “good”, “bad” or Figure 6: AveragepreC|S|or_1 at/ of AskJeeves (AJ), AltaVista
“ignore” for the query. (AV),_ Google (GQ) and Tritus (TR-AV, TR-GO) over 2_39 test
The volunteers were told to use the following criteria to judge dueries, for varying number of top documents examined.

documents. A good page is one that contains an answer to the test Mtus gon5|stent|y outperfqrms the und_erlylng search engine
questionon the page If a page is not relevant, or only contains that it is based on, and Tritus-Google is the best performing
linksto the useful information, even if links are to other documents SYStem.

on the same site, the page is judged “bad.” If a page could not be
viewed for any reason (e.g., server error, broken link), the result is
“ignore.”

original Google documents are examined. These experiments indi-
cate that a significant fraction of the relevant documents retrieved
by Trituswould not be found using an underlying search engine.

5. EVALUATION RESULTS
In this section we report the results of the experimental evalua-
tion using the methodology described in the previous section.
Figure 6 shows the averageecisionat K for varying /' of

AskJeevefAl), AltaVista(AV), Googleg(GO), Tritus-GooglgTR- ——A
GO), and Tritus-AltaVista TR-AV) over the 89 test questions. As - — AV
we can se€Tritus optimized for Google has the highest precision & —4— GO
at all values of document cutoff. Also note that botftTR-GO ® —o—TRAV
andTR-AV perform better than the underlying search engine used. s TRGO

Tritus-AVshows a large improvement over AltaVista.

Figure 7 shows the percentage of questions where each system
performed the best in terms of the number of relevant documents
returned at document cutoff, over all 89 test questions. As we
can seeTR-GO performs the best on more questions than any K
other system. Even thoudfR-AV performs relatively poorly on
this metric, its performance is comparable to the original AltaVista
search engine. Because the lower performing systems perform besEigure 7: The percentage of questions for which each system
for only a small number of questions, comparison of the lower per- returns the most relevant documents for varying number of
forming systems on this metric is not very meaningful. top documents examineds . The search engines are AskJeeves

We considered the possibility that the documentsreturnddiby ~ (AJ), AltaVista (AV), Google (GO) and Tritus (TR-AV, TR-GO)
tus could also be retrieved simply by examining more documents over 89 test queries. When the highest number of relevant doc-
returned by the search engines for the original query. We report uments for a given question is returned by multiple search en-
the percentage Gfritus documents contained in response to the gines, all of these engines are considered to have returned the
original query as more documents are examined in Figure 8. In most relevant documents. Because the lower performing sys-
Figure 8(a) we report the percentage offaltusdocuments (with- ~ tems perform best for only a small number of questions, com-
out re-ranking) that are contained in the tp(10-150) search-  parison of the lower performing systems on this metric is not
engine responses for the original query. In Figure 8(b) we plot the very meaningful.
percentage of top 1Tritus documents (after reranking) contained
in the original search engine results, and in Figure 8(c) we show In Table 10 we report the average precision (% adf the doc-
percentage of relevafritus documents contained in the original ument sets retrieved byJ, AV, GO, TR-GO, andTR-AV . The re-
search engine results. Only the top Ttus documents had rele-  sults are separated by question phrase. As we examine documents
vance judgements assigned. The figures show thaReAV there with lower ranks, precision in general decreases. In the case of
is very little overlap between result sets retrieved ipoFsse to the AskJeeveshe reason may be that the top-ranked documents could
transformed queries, and the documents retrieved for the original be selected by human editors as answers to the questions. Note
query. FOITR-GO, the overlap is low for all oTR-GO documents that at least one of th@&ritus systems has higher precision than
(without re-ranking), but slowly increases and levels off at around AskJeeves even for the top ranked document alone in 6 out of 7
45% for the top 10 and relevamtitus documents as more of the  question phrases.
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Figure 8: Average percentage of all (a), top 10 (b) and relevantin top 10 (c) Tritus (TR-GO and TR-AV) documents contained in top
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Figure 9: Averageprecision at/l of AskJeeves (AJ), AltaVista (AV), Google (GO) and Tritus (TR-AV, TR-GO) by question type:
What (a), How (b), Where(c), andWho (d) .

In Figure 9 we report the average precision (%jsadf the doc-
ument sets retrieved by AskJee\@d), AltaVista (AV), Google
(GO), Tritus-GooglgTR-GO), and Tritus-AltaVistd TR-AV) sep-
arated by question type. Note that at least one oTtitas systems
has the highest precision At for 3 out of 4 question types\(hat,
Where, and Whin Figures 9(a), (c) and (d)) foK™ < 5, while
Google has the highest precision féow 2.

Google’s impressive performance on tHew questions may be
due to a common practice on the web of linking to the pages that
people find useful for solving specific problems, which by their na-
ture contain good answersktowtypes of questions. Since Google 6.

exploitsanchor texfor document retrieval, it achieves high results There are many avenues for future research and improvement of
for thl§ type of question. ] our system. For example, existing methods for extracting the best

Itis mterest_lng to note that the systems do not perform uniformly passages from documents could be implemented. Domain knowl-
well across different question types, or even across different sub-eqge, heuristics, and natural language parsing techniques could be
types of the basic question type. We can explain this phenomenon,seq to improve the identification of question types. Multiple trans-
by observing that questions such as “What are” and “What is @", formations could be combined into a single query. Questions could
even though both questions fall into tld%atquestlons_type, are  pe routed to search engines that perform best for the given question
typically used to express different purposes. “Whatis a” usually type. Multiple search engines could be used simultaneously. We
mdlcates_ arequest for a deflr_utlc_)n or explanation of a term or con- plan to investigate creating phrase transforms that contain content
cept, while “What are” often indicates a request for a list of char- \yords from the questions. We also plan to make the transformation
acteristics or features of a concept. process dynamic. For example, transformations where we expect
high precision may be submitted first. Based on thpaeses re-
ceived, the system may try lower precision transforms or fall back
to the original query.

Also note thafTR-GO performs better thahR-AV onWhatand
Howtypes of questions, whilER-AV is clearly better atVhereand
Whoquestions. This suggests an approach of routing the questions
to particular search engine(s) that perform well for a given question
type and transforming the question in a manner optimal for that
search engine. Note that the relatively small number of questions
in each category limits the accuracy of the results for individual
question types.

FUTURE WORK AND SUMMARY

*The volunteer judges complained that thew questions were the
ggrldgrsetatl?ee;wgg:oeégg’%%ﬁag&efn%msrgj?f%?{atn%?otrerﬁtsq?rgﬁ'%n i In summary, we have introduced a method for learning query
rection“Click here to create your free webpageto HTML refer- t_ransformatlon_s that |m_proves_the ability to retrieve answers to ques-
ences, web hosting promotions, and web design software manualstions _frqm an mfgrma_tlon rgtrleval syste_m. The method |r_lvolves
Often it was not clear whether to judge a page relevant or not for classifying questions into different question types, generating can-
this type of question. didate query transformations from a training set of question/answer



Question| Question System Precision (%)
Type Phrase K [AJTAV] GO TR-AV] TR-GO
1 [{64] 9| 40 25 57
2 | 56| 14| 38 17 54
“what is a” 3 |53|15]| 41 21 48
5 | 48| 18| 44 23 46
10 | 41| 25| 37 27 41
1 |22] 50| 40 25 67
2 13|30 25 25 48
What “what are” 3 (25| 21| 27 33 45
5120 26| 23 45 45
10| 24| 26 | 33 49 40
1 [45] 11| 44 43 64
2 | 29| 26| 50 29 68
“what is” 3|30 25| 53 25 55
5 |27| 26| 52 30 49
10 | 26 | 24 | 40 27 43
1 [33]36] 69 40 50
2 | 33| 20| 54 30 52
How “how do i” 3 | 27| 17| 48 20 52
5128| 19| 51 24 48
10| 36| 18 | 44 26 40
1 [57]25] 63 100 60
2 | 53| 31| 65 67 65
“‘wherecani” | 3 [ 41| 31| 65 71 63
5|49 | 36 | 65 67 66
Where 10| 59| 34| 64 53 65
1 [44] 25 22 57 18
2 |30 21| 32 50 32
“where is” 3 |134| 13| 31 50 27
5|32 14| 33 45 25
10| 39| 7 | 28 39 23
1 |56| 25| 27 71 57
Who 2 | 3| 18| 22 75 55
“‘who was” 3|32 17| 22 56 50
511 27| 18| 25 63 47
10| 29| 15| 29 50 40

Table 10: Averageprecisionat i for AskJeeves (AJ), AltaVista
(AV), Google (GO) and Tritus (TR-AV, TR-GO) separated by
question type and question phrase, fork’ =1, 2, 3, 5 and 10
documents.

pairs, and evaluating the candidate transforms on the target infor-
mation retrieval systems. This technique for processing natural lan-

Sharon Kroo, Amelie Marian, Eugene Mesgar, Yoko Nitta, Gedalia
Pasternak, Dmitry Rubanovich, Carl Sable, Roman Shimanovich,
Alexey Smirnov, Viktoria Sokolova, Michael Veynberg, Brian Whit-
man, Kazi Zaman, and an anonymous benefactor.
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