
Learning Search Engine Specific Query Transformations
for Question Answering

Eugene Agichtein
�

Columbia University
New York, NY 10027
eugene@cs.columbia.edu

Steve Lawrence
NEC Research Institute

Princeton, NJ 08540
lawrence@research.nj.nec.com

Luis Gravano
Columbia University
New York, NY 10027
gravano@cs.columbia.edu

ABSTRACT
We introduce a method for learning query transformations that im-
proves the ability to retrieve answers to questions from an informa-
tion retrieval system. During the training stage the method involves
automatically learning phrase features for classifying questions into
different types, automatically generating candidate query transfor-
mations from a training set of question/answer pairs, and automat-
ically evaluating the candidate transforms on target information re-
trieval systems such as real-world general purpose search engines.
At run time, questions are transformed into a set of queries, and
re-ranking is performed on the documents retrieved. We present
a prototype search engine,Tritus, that applies the method to web
search engines. Blind evaluation on a set of real queries from a
web search engine log shows that the method significantly outper-
forms the underlying web search engines as well as a commercial
search engine specializing in question answering.

Keywords
Web search, query expansion, question answering, information
retrieval

1. INTRODUCTION
A significant number of natural language questions (e.g.,“What

is a hard disk”) are submitted to search engines on the web every
day, and an increasing number of search services on the web specif-
ically target natural language questions. For example, AskJeeves
(www.ask.com) uses databasesof pre-compiled information, meta-
searching, and other proprietary methods, while services such as
AskMe (www.askme.com) facilitate interaction with human ex-
perts.

Web search engines such as AltaVista (www.altavista.com) and
Google (www.google.com) typically treat a natural language ques-
tion as a list of terms and retrieve documents similar to the original
query. However, documents with the best answers may contain
few of the terms from the original query and be ranked low by the
search engine. These queries could be answered more precisely if
a search engine recognized them as questions.

Consider the question“What is a hard disk?”. The best doc-
uments for this query are probably not company websites of disk
storage manufacturers, which may be returned by a general-purpose
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search engine, but rather hardware tutorials or glossary pages with
definitions or descriptions of hard disks. A good response might
contain an answer such as:“Hard Disk: One or more rigid mag-
netic disks rotating about a central axle with associated read/write
heads and electronics, used to store data...”. This definition can be
retrieved by transforming the original question into a queryf“hard
disk” NEAR “used to”g . Intuitively, by requiring the phrase“used
to” , we can bias most search engines towards retrieving this answer
as one of the top-ranked documents.

We present a new system,Tritus, that automatically learns to
transform natural language questions into queries containing terms
and phrases expected to appear in documents containing answers to
the questions (Section 3). We evaluateTritus on a set of questions
chosen randomly from the Excite query logs, and compare the qual-
ity of the documents retrieved byTritus with documents retrieved
by other state-of-the-art systems (Section 4) in a blind evaluation
(Section 5).

2. RELATED WORK
There is a large body of research on Question-Answering, most

recently represented in the Text Retrieval Evaluation Conference
(TREC) Question-Answering track [22], which involves retrieving
a short (50 or 250 byte long) answer to a set of test questions. In
our work we consider a more general class of questions, where the
answers may not be short, precise facts, and the user might be in-
terested in multiple answers (e.g., consider the question “What are
ways people can be motivated?”).

The first part of the task, relevant to our work here, is to retrieve
promising documents from a collection. The systems in the latest
TREC evaluation submitted the original questions to various infor-
mation retrieval systems for this task [22].

A number of systems aim to extract answers from documents.
For example, Abney et al. [1] describe a system in which doc-
uments returned by the SMART information retrieval system are
processed to extract answers. Questions are classified into one of a
set of known “question types” that identify the type of entity cor-
responding to the answer. Documents are tagged to recognize en-
tities, and passages surrounding entities of the correct type for a
given question are ranked using a set of heuristics. Moldovan et al.,
and Aliod et al. [13, 2] present systems that re-rank and postprocess
the results of regular information retrieval systems with the goal of
returning the best passages. Cardie et al. [7] describe a system
that combines statistical and linguistic knowledge for question an-
swering and employs sophisticated linguistic filters to postprocess
the retrieved documents and extract the most promising passages to
answer a question.

The systems above use the general approach of retrieving doc-
uments or passages that are similar to the original question with



variations of standard TF-IDF term weighting schemes [18]. The
most promising passages are chosen from the documents returned
using heuristics and/or hand-crafted regular expressions. This ap-
proach is not optimal, because documents that are similar to the
questionare initially retrieved. However, the user is actually look-
ing for documents containing ananswerand these documents may
contain few of the terms used to ask the original question. This is
particularly important when retrieving documents is expensive or
limited to a certain number of documents, as is the case with web
search engines.

Other systems attempt to modify queries in order to improve the
chance of retrieving answers. Lawrence and Giles [11] introduced
Specific Expressive Forms, where questions are transformed into
specific phrases that may be contained in answers. For example,
the question “what is x” may be transformed into phrases such as
“x is” or “x refers to”. The main difference from our current work
is that in [11] the transforms are hand crafted (hard coded) and the
same set of queries is submitted to all search engines used, except
for the differences in query syntax between search engines. Joho
and Sanderson [10] use a set of hand-crafted query transformations
in order to retrieve documents containing descriptive phrases of
proper nouns. Harabagiu et al. [8] describe a system that trans-
forms questions using a hierarchy of question types. The hierar-
chy is built semi-automatically using a bootstrapping technique.
Schiffman and McKeown [19] describe experiments in automati-
cally building a lexicon of phrases from a collection of documents
with the goal of building an index of the collection that is better
suited for question answering.

Also related is a large body of research (e.g., [12]) that describes
methods for automatically expanding queries based on the rele-
vance of terms in the top-ranked documents. An interesting ap-
proach presented in [23] describes how to automatically expand a
query based on the co-occurrence of terms in the query with the
terms in the top-ranked documents for the original query. In gen-
eral, automatic query expansion systems expand queries at run time
on a query-by-query basis using an initial set of top-ranked docu-
ments returned by the information system in response to the origi-
nal query.

In contrast to the previous research, we present a system thatau-
tomatically learnsmultiple query transformations,optimized specif-
ically for each search engine, with the goal of maximizing the prob-
ability of an information retrieval system returning documents that
contain answers to a given question. We exploit the inherent regu-
larity and power of natural language by transformingnatural lan-
guage questionsinto sets ofeffective search engine queries.

3. THE TRITUS SYSTEM
Often, it is not sufficient to submit a natural language question

(e.g.,“How do I tie shoelaces?”) to a search engine in its original
form. Most search engines will treat such a query as a bag of terms
and retrieve documents similar to the original query. Unfortunately,
the documents with the best answers may contain only one or two
terms from the original query. Such useful documents may then
be ranked low by the search engine, and will never be examined
by typical users who do not look beyond the first page of results.
To answer a natural language question, a promising approach is to
automatically reformulate the question into a query that contains
terms and phrases that are expected to appear in documents con-
taining answers to the original question. In this section we define a
strategy for transforming natural language questions into effective
search engine queries. Section 3.1 describes how ourTritussystem
learns to reformulate questions. Then, Section 3.2 shows howTri-
tusevaluates a query at run time by applying these transformations.

(1) Generate Question Phrases from Questions
in Training Data (Section 3.1.1)

(2) Generate Candidate Transforms from Answers
in Training Data (Section 3.1.2)

(3) Evaluate Candidate Transforms for each
Search Engine (Section 3.1.3)

(4) Output Best Transforms for each Search Engine

Figure 1: Outline of the process used to train theTritus system.

Question Type Question Phrase(s)

Who “who was”
How “how do i”
Where “where is”, “where can i”
What “what are”, “what is”, “what is a”

Table 1: Question type phrases used for evaluation (Section 4).

3.1 Learning to Transform Questions into
Effective Queries

We attempt to find transformations from natural language ques-
tions into effective queries that contain terms or phrases expected
to appear in documents that contain answers to the question. Our
learning process is shown in Figure 1.

3.1.1 Selecting Question Phrases
In the first stage of the learning process (Step (1) in Figure 1)

we generate a set of phrases that identify different categories of
questions where the questions in each category have a similar goal.
For example, the question“What is a hard disk?” implies that the
user is looking for definitions or descriptions of a hard disk. The
goal of the question can be inferred from thequestion phrase “what
is a” .

The input to this stage is a set of questions. These questions and
their corresponding answers constitute the training data. We gener-
ate potential question phrases by computing the frequency of alln-
grams (phrases) of lengthminQtokensto maxQtokenswords, with
all n-grams anchored at the beginning of the questions. We use all
resultingn-grams that occur at leastminQphraseCounttimes.

The output of this stage is a set of question phrases that can be
used to quickly classify questions into respective question types.
Sample question phrases, automatically generated from questions
in the training collection described later, are shown in Table 1.

This method of selecting question phrases can produce many
phrases, which may include a significant number of phrases that are
too specific to be widely applicable. Because the following stages
of the training process are relatively expensive and we have limited
resources for training, we chose to limit the training for the results
reported here to phrases that match the regular expressions shown
in Figure 2. The regular expressions match common questions, and
allow us to concentrate our resources on the most useful phrases.
Feature selection techniques, part-of-speech tagging, and other nat-
ural language processing techniques may be used to fine-tune the
filtering of generated question phrases.

Although alternative approaches can be used to identify cate-
gories of questions, ourn-gram approach has a number of advan-
tages. This approach is relatively inexpensive computationally, al-
lowing the processing of large training sets. The approach is also
domain independent, and will work for many languages with only
minor modifications. Additionally, when evaluating a question at
run time (Section 3.2), categorizing a question using phrase match-
ing can be incorporated with negligible overhead in the overall pro-
cessing time of queries.



ˆwhat (is|are|were|does|do|did|should|can)\s
ˆwho (is|are|was|were|did|do|does)\s
ˆhow (to|is|do|did|does|can|would|could|should)\s
ˆwhy (is|do|are|did|were|does)\s
ˆwhere (is|was|can|are|were|do|does)\s
ˆwhen (is|was|are|were|do|did|does)\s
ˆwhich\s

Figure 2: The regular expressions used to filter the automati-
cally generated question phrases that are candidates for trans-
formation.

3.1.2 Generating and Filtering Candidate Transforms
In the second stage of the learning algorithm (Step (2) in Fig-

ure 1) we generate candidate terms and phrases that may be use-
ful for reformulating questions. We apply a filtering procedure
to reduce the computational requirements for the following stage
(evaluating thecandidate transformsfor search engine effective-
ness, Step (3) in Figure 1).Candidate transformsare generated
for each of thequestion phrasesfrom the previous learning stage.
The procedure for generating candidate transforms for each ques-
tion phraseQP consists of a number of steps, namely generating
initial candidate transformphrases, filtering these phrases by min-
imum co-occurrence count, and weighting and further filtering the
remaining phrases. Each step is described below in detail.

For this stage of the learning process we use a collection of
<Question, Answer> pairs. A sample of the original collection is
given in Figure 5. As we will describe next, this stage of the learn-
ing process operates over a collection that has beentaggedwith
a part-of-speech tagger, which assigns a syntactic part of speech
(e.g.,noun, verb) to each word in the text. We use Brill’s part-of-
speech tagger [4], which is widely used in the natural language pro-
cessing community and is available athttp://www.cs.jhu.edu/˜brill/.

For each<Question, Answer> pair in the training collection
where a prefix ofQuestionmatchesQP, we generate all possible
potential answer phrases from all of the words in the prefix ofAn-
swer. For this we usen-grams of lengthminAtokensto maxAtokens
words, starting at every word boundary in the firstmaxLenbytes of
the Answertext. A sample of answer phrases generated after this
step is shown in Table 2. These phrases are heavily biased towards
electronics or the computer domain. These phrases were generated
because a large portion of the documents in the training collec-
tion were on technology related topics. If we used these phrases in
transforms, we may change the intended topic of a query. Recall
that the transformations we are trying to learn should improve ac-
curacy of the retrieved set of documents, yet preserve the topic of
the original query. Therefore we would need to filter out phrases
such as“telephone”, which intuitively would not be good transfor-
mations for general questions (e.g.,“What is a rainbow?”).

We address this problem by filtering out candidate transform
phrases containing nouns. We observe that in most of the queries
the nouns arecontentwords, or words expressing the topic of the
query. For example, in the query“what is a rainbow”, the term
“rainbow” is a noun and a content word. Likewise, the word“tele-
phone” is a noun. Thus, we filter candidate transform phrases by
checking if a generated answer phrase contains a noun, and if it
does, the phrase is discarded. We use the part of speech informa-
tion, which is computed once for the whole collection as described
in the beginning of this subsection.

Of the resultingn-grams, we keep thetopKphraseswith the
highest frequency counts. We then apply IR techniques forterm
weightingto rank these candidate transforms.

The initial term weightsare assigned to each candidate trans-
form phrase,ti, by applying the term weighting scheme described
in [16]. These term weights were used in the Okapi BM25 doc-

Question Phrase Candidate Transforms
“the term”
“component”
“ans”

“what is a” “a computer”
“telephone”
“collection of”
“stands for”
“unit”

Table 2: A sample of candidate transforms generated without
disregarding phrases containing a noun.

ument ranking formula (used by the state-of-the-art Okapi infor-
mation retrieval system participating in TREC conferences since
TREC-3). Many information retrieval systems use thevector space
model [18] to compute similarity between documents, where sim-
ilarity is computed as a dot product between vectors representing
each document. The elements of each vector are calculated as a
combination of theterm weightand term frequencyof each term
in the document. The BM25 metric [17] uses a similar idea. In
the original definition of BM25,each termti in the document is
assigned the Robertson-Spark Jones term weightw

(1)
i [15] with re-

spect to a specificquery topicand is calculated as:

w
(1)
i = log

(r + 0:5)=(R� r + 0:5)

(n� r0:5)=(N � n� R+ r + 0:5)
(1)

wherer is the number of relevant documents containingti, N is
the number of documents in the collection,R is the number of rel-
evant documents, andn is the number of documents containingti.
Intuitively, this weight is designed to be high for terms that tend
to occur in many relevant documents and few non-relevant doc-
uments, and is smoothed and normalized to account for potential
sparseness of relevance information in the training data.

In the original definition of BM25, term weightw(1)
i is specific

to each query topic. We apply this metric to our task of weight-
ing candidate transforms by incorporating two modifications. First,
we interpretquery topicas question type. In this interpretation,
a relevant document is one of the answers in the training collec-
tion that corresponds to the question phrase (question type). There-
forew(1)

i is an estimate of the selectivity of a candidate transform
ti with respect to the specific question type. Second, we extend
the term weighting scheme tophrases. We apply the same, con-
sistent weighting scheme to phrases, and treat them in the same
way as single word terms. We compute this weight for each candi-
date transformtri by computing the count of<Question, Answer>
pairs wheretri appears in theAnswerto a question matchingQP
as the number of relevant documents, and consider the number of
the remaining<Question, Answer> pairs wheretri appears in the
Answeras non-relevant, and apply the formula in Equation 1.

We then compute theterm selection weights,wtri, for each can-
didate transformtri, as described in [14] in the context of selecting
terms for automatic query expansion as:

wtri = qtfi �w
(1)
i (2)

whereqtfi is the co-occurrence count oftri with QP, andw(1)
i is

the relevance-basedterm weightof tri computed with respect to
QP. This term ranking strategy exploits both co-occurrence statis-
tics and relevance weights with the aim of filtering out noise. While
w
(1)
i assigns higher weight to terms and phrases with high discrim-

inatory power,qtf is a measure of how often a phrase occurs in
answers to relevant question types. For example, while in Table 3
the phrase “named after” is a better discriminator for the question



Question Phrase Candidate Transform qtfi w
(1)
i wtri

“refers to” 30 2.71 81.3
“refers” 30 2.67 80.1
“meets” 12 3.21 38.52

“what is a” “driven” 14 2.72 38.08
“named after” 10 3.63 36.3
“often used” 12 3.00 36
“to describe” 13 2.70 35.1

Table 3: Sample candidate transforms along with their fre-
quency countqtfi, BM25 term weight w(1)

i , and the resulting
term selection weightwtri.

Transform Length Candidate Transformtri wtri

“is used to” 32.89
3 “according to the” 23.49

“to use a” 21.43
“is a” 298.89

2 “of a” 94.34
“refers to” 81.3
“usually” 128.23

1 “used” 110.39
“refers” 80.1

Table 4: A sample of candidate transforms grouped into buck-
ets according to the transform length. These transforms were
generated for the question phrase“what is a” .

phrase“what is a” , it does not occur as often as those ultimately
ranked higher. This tradeoff between discrimination and frequency
of occurrence, or expected precision and recall, may be explored in
future work. Sample output of this stage is shown in Table 3.

Finally, the candidate transforms are sorted into buckets accord-
ing to the number of words in the transform phrase, and up to
maxBuckettransforms with the highest values ofwtri are kept from
each bucket. In general, we expect that longer phrases may be pro-
cessed differently by the search engines, and this step was done
in order to include such longer, potentially higher precision trans-
forms in the set of candidate transforms, whereas primarily shorter
transforms with higher frequency counts may be chosen otherwise.
In Table 4, we show a sample of phrases with the highest selection
weights from each candidate transform bucket.

3.1.3 Weighting and Re-ranking Transforms using
Search Engines

In the third and final stage of training, we evaluate the perfor-
mance of each candidate transform,tri, on web search engines.
Figure 3 shows the algorithm for ranking a set of candidate trans-
forms for a single question phrase and search engine. The pro-
cedure is repeated for all question phrases and search engines of
interest.

In Step (1) of the algorithm we retrieve a set of<Question,
Answer> pairs to be used as training examples. This is done by
sorting all of the<Question, Answer> pairs in the collection in
order of increasing answer length, and using up tonumExamples
of the first<Question, Answer> pairs that contain questions be-
ginning withQP. The sorting step is done because we believe the
evaluation may be more accurate for questions that have shorter
answers; however, this is a topic for future research.

For each of the example<Question, Answer> pairs, and the set
of candidate transformsgenerated in the previous stage of the pro-
cess, we apply each transformftrig to theQuestionone at a time
(Step (2)). Consider a questionQuestion =fQP Cg, whereQP
is the question phrase, andC are the remaining terms in the ques-

tion. Using transformtri we remove the question phraseQP and
rewrite QuestionasQuery = fC AND trig. For example, con-
sider the candidate transform “refers to” for the question phrase
“what is a” , and the<Question, Answer> pair<“what is a lisp
machine(lispm)” , “A Lisp Machine (lispm) is a computer opti-
mized for running Lisp programs, ...”>. Applying the transform to
theQuestionwe obtain a rewritten queryQuery= “ f(lisp machine
lispm) AND (“refers to” )g.”

We use the appropriate query syntax for each search engine. We
also encode the transforms so that they are treated asphrasesby
each search engine.

The syntax of the querying interface varies for each search en-
gine. For AltaVista we use theNEAR operator instead ofAND be-
cause we found theNEAR operator to produce significantly better
results in preliminary experiments. In the example above, the ac-
tual query submitted to AltaVista would be “f(lisp machine lispm)
NEAR (“refers to” )g.” Google treats all the terms submitted in
a query with implicitAND semantics in the absence of an explicit
OR operator. Note that Google incorporates the proximity of query
terms in the document ranking [5] and may discard some words that
appear in its stopword list.

There are other possibilities for rewritingQuestion, for example,
requiring or not requiring parts of the query in matching pages, and
combining multiple transformations into a single query.

In Step (3) of Figure 3 the rewritten queryQuery is submitted
to the search engineSE. At most 10 of the top results returned by
SEare retrieved. Each of the returned documentsD is analyzed
in Steps (4a), (4b), and (4c). In Step (4a),subdocumentsof D are
generated. In Step (4b), the subdocuments inD most similar to
Answerare found. In Step (4c), the scores and counts fortri are
updated based on the similarity ofD with respect toAnswer. More
details on these steps follow.

In Step (4a) we generatesubdocumentsfrom a document to cal-
culate a more accurate similarity measure. Consider original an-
swerA and a documentD, one of the documents retrieved using
the transformed query. We make an assumption that answers are
localized, i.e., that the key information/set of phrases will appear
in close proximity of each other – within subdocuments of length
subDocLen. The subdocuments overlap bysubDocLen/2 words, to
minimize the possibility that an answer will not be entirely within
one of the subdocuments. In other words, given queryQ, document
D, andsubDocLen= N , we breakD into overlapping subdocu-
mentsD1;D2;D3;D4; :::, each starting at successive positions 0,
N /2,N , 3 �N=2; : : :

In Step (4b) we calculate the score of documentD with re-
spect toAnswer. We definedocScore(Answer, D)as the maximum
of the similarities ofeach of the subdocumentsDi in D. More
formally, docScore(Answer, D) = Max(BM25phrase(Answer,Di))
whereBM25phraseis an extension of theBM25metric [16] modi-
fied to incorporate phrase weights, calculated as in Equation 1.

The originalBM25metric uses relevance weightsw(1)
i and topic

frequencies as described previously, and is defined as:

BM25 =

jQjX

i=0

w
(1)
i

(k1 + 1)tfi(k3 + 1)qtfi
(K + tfi)(k3 + qtfi)

(3)

wherek1 = 1.2,k3 = 1000,K = k1((1�b)+b�dl=avdl), b = 0:5,
dl is the document length in tokens,avdl is the average document
length in tokens, andw(1)

i andqtfi are the relevance weight and
query topic frequency as described previously.1

1We use the simplified version of the metric that was used in the
TREC evaluation, wherek2=0.



(1) Examples = RetrieveExamples( QP, numExamples)

for each <Question, Answer > in Examples
for each candidate transform tri

(2) Query = ApplyTransform(Question, tri)
(3) Results = SubmitQuery(Query, SE)

for each Document in Results
docScore = -1

(4a) Subdocuments = getSubDocuments(Document, subDocLen)
for each SubDocument in SubDocuments

(4b) tmpScore = DocumentSimilarity(Answer, SubDocument)
if (tmpScore > docScore) docScore = tmpScore

(4c) updateTransformScores( tri, docScore)
updateTransformCounts( tri)

(5) AssignTransformWeights(TransformScores, TransformCounts)

Figure 3: Automatically evaluating the effectiveness of candidate transforms.

In theBM25phrase metric, the “terms” in the summation (Equa-
tion 3) include phrases, with weights learned over the training data
as in the previous subsection. The weight for a term or phraset is
calculated as follows:

w =

8<
:

w
(1)
t if w(1)

t is defined fort
log IDF (t) if IDF (t) is defined fort
NumTerms(t) �

P
ti2t

log IDF (ti) otherwise

This multi-step assignment procedure is used because terms en-
countered may not be present in the training collection. We use
IDF (Inverse Document Frequency, which is high for rare terms,
and low for common terms) weights derived from a much larger
sample (one million web pages, obtained from the collection of
pages used in the TREC Web Track [9]). The last, fall-back case
is necessary in order to handle phrases not present in the training
data. Intuitively, it assigns the weight of phraset inversely pro-
portional to the probability that all the terms int appear together,
scaled to weight occurrences of multi-word phrases higher. This
heuristic worked well in our preliminary experiments, but clearly
may be improved on with further work. While document ranking
is important during run time operation of the system described in
Section 3.2, re-ranking of the result set of documents was not the
focus of this work.

The overall goal of ranking candidate transforms is to weight
highly the transforms that tend to return many relevant documents
(similar to the originalAnswers) and few non-relevant documents.
In Step (5) we calculate weightWTi of a transformtri as the av-
erage similarity between the original training answers and the doc-
uments returned in response to the transformed query:

WTi =

P
<Q;A>

docScore(A;Dtri)

Count(Dtri)
(4)

where the sum is calculated over all of the<Question, Answer>
pairs in the set of examples.

The result of this final stage of training is a set of transforms, au-
tomatically ranked with respect to their effectiveness in retrieving
answers for questions matchingQP from search engineSE. Two
samples of highly ranked transforms forQP = “what is a” , the
first optimized for the AltaVista search engine and the second for
the Google search engine, are shown in Table 5.

3.2 Run Time Query Reformulation
Once the set of the best transformations is automatically trained

for each question phrase, they are stored as transformation rules.
Tritus then evaluates a given question using the procedure in Fig-
ure 4.

Search Transform WTi Search Transform WTi
Engine Engine

“is usually” 377.03 “is usually” 280.68
“refers to” 373.22 “usually” 275.68

AltaVista “usually” 371.55 Google “called” 256.64
“refers” 370.14 “sometimes” 253.53
“is used” 360.07 “is one” 253.24

Table 5: Some of the top ranked transforms for the question
phrase “what is a” automatically optimized for AltaVista and
Google.

In Step (1a), the system determines if it can reformulate the
question by matching known question phrases, with preference for
longer (more specific) phrases. For example, “what is the” would
be preferred over “what is”. In Step (1b), the corresponding set
of transforms is retrieved. Only the topnumTransformstransforms
are used. In Step (2) each transform is used to rewrite the original
question, one transform at a time, resulting in a new query. In Step
(3) the transformed queries are submitted to the search engine and
the first page of results is retrieved.

In Steps (4a), (4b), and (4c) the returned documents are analyzed
and scored based on the similarity of the documents with respect to
the transformedquery. The process of scoring the document is the
same as described in Section3.1.3. The important difference is
in Step (4c). If a document is retrieved through the application of
multiple transforms, then the final score for the document is the
maximum of each of the individual document scores.

In Step (5) the returned documents are ranked with respect to
their final document scores, and in Step (6) the top rankedtopKdocs
documents are returned as the final result produced by theTritus
system.

4. EXPERIMENTAL SETTING
In this section we present the experimental setting that we use to

evaluate the performance ofTritus. Section 4.1 details the training
of Tritus for the evaluation. Section 4.2 lists the retrieval systems
that we use in our comparison. Section 4.3 introduces the evalua-
tion metrics for the performance of the retrieval systems, and de-
tails of the queries evaluated and relevance judgments are reported
in Section 4.4.

4.1 Training Tritus
We used a collection of approximately 30,000 question-answer

pairs for training, obtained from more than 270 Frequently Asked



(1a) QP = matchQuestionPhrase(Question)
(1b) ftrg = retrieveTransforms( QP, numTransforms)

for each tri in ftrg
(2) Query = ApplyTransform(Question, tri)
(3) Results = SubmitQuery(Query, SE)

for each Document in Results
maxScore = Maximum Score for this Document so far

(4a) Subdocuments = getSubDocuments(Document, subDocLen)
for each SubDocument in SubDocuments

(4b) Score = DocumentSimilarity(Query, SubDocument)
(4c) if (Score > maxScore) Update Maximum Score of Document to Score

(5) RankedDocuments = Sort Documents in decreasing order of document Score
(6) Return topKdocuments with highest Score

Figure 4: Evaluating questions at run time.

Question Answer

A Lisp machine (or LISPM) is a computer which
What is a Lisp has been optimized to run lisp efficiently and
Machine (LISPM)? provide a good environment for programming in it.

...
A near field monitor is one that is designed to
be listened to in the near field. Simple, eh?
The “near field” of a loudspeaker is area where

What is a near-field the direct, unreflected sound from the speaker
monitor? dominates significantly over the indirect and

reflected sound, sound bouncing off walls, floors,
ceilings, the console. ...

Figure 5: Sample question-answer pairs from the training col-
lection.

Type Phrase(s) Question-Answer Pairs in Collection

Where “where can i” 1408
“where is” 198
“what is” 3486

What “what are” 1604
“what is a” 486

How “how do i” 2654
Who “who was” 37

Table 6: The number of training questions for each question
type.

Question (FAQ) files on various subjects. Figure 5 shows a sam-
ple of the question-answer pairs. We obtained the FAQ files from
the FAQFinder project [6]. We evaluated four question types. The
number of question-answer training pairs in the collection for each
of the question types is shown in Table 6.

Tritus uses a number of parameters in the training process. We
performed some experimentation with the different values of these
parameters resulting in the parameters shown in Table 7. We did not
test parameters exhaustively and further fine-tuning may improve
the performance of the system.

4.2 Retrieval Systems Compared
Tritus learns query transformations that are specifically tailored

for a given search engine. Our experimental evaluation focuses
on two popular “general purpose” search engines, Google and Al-
taVista. We compare the results produced by each of these systems
against those ofTritus when Tritus uses the corresponding search
engine-specific transformations. We also evaluated AskJeeves for
comparison. The five systems evaluated are:

� Google(GO): The Google search engine as is.

Parameter Value Description

minQcount 30 Min. frequency for generating
question phrases

minAcount 3 Min. frequency for generating
candidate transforms

maxQtokens 4 Max. length of question phrases (in words)
maxAtokens 5 Max. length of answer phrases (in words)
minQtokens 2 Min. length of question phrases (in words)
minAtokens 1 Min. length of answer phrases (in words)
maxLen 4096 Max. length of the prefix of answers from

which candidate transforms are generated
Length (in words) of the subdocuments for

subDocLen 10,000 document similarity calculation. Set high to
include complete example answers in the
similarity calculation.
Max. number of highest ranked candidate

maxBucket 25 transforms of each length for the final
search-engine weighting stage.
Number of example<Question, Answer>

numExamples 100 pairs used to evaluate candidate transforms
for each question phrase

Timeout(sec) 30 Individual page timeout

Table 7: Tritus training parameters.

� Tritus optimized for Google(TR-GO): The retrieval sys-
tem that results from transforming user questions into mul-
tiple queries using transformations specifically learned for
Google, and combining the query results from Google as in
Section 3.2.

� AltaVista (AV) : The AltaVista search engine as is.

� Tritus optimized for AltaVista(TR-AV) : The retrieval sys-
tem that results from transforming user questions into multi-
ple queries using transformations specifically learned for Al-
taVista, and combining the query results from AltaVista as in
Section 3.2.

� AskJeeves (AJ): The results of the AskJeeves [3] search en-
gine, which specializes in answering natural language ques-
tions.

4.3 Evaluation Metrics
Information retrieval systems are usually compared based on the

“quality” of the retrieved document sets. This “quality” is tradition-
ally quantified using two metrics,recall andprecision[18]. Each
document in the collection at hand is judged to be eitherrelevant
or non-relevantfor a query.Precisionis calculated as the fraction
of relevant documents among the documents retrieved, andrecall



measures the coverage of the system as the fraction ofall relevant
documents in the collection that the system retrieved.

To measure recall over a collection we need to mark every doc-
ument in the collection as either relevant or non-relevant for each
evaluation query. This, of course, is a daunting task for any large
document collection, and is essentially impossible for the web,
which contains billions of documents. Researchers have addressed
this problem by developing standard document collections with
queries and associated relevance judgments, and by limiting the
domain of documents that are judged [21].

Recently, TREC has incorporated aWeb Track[9] that employs
a collection of web documents (small relative to the size of the
web). This collection of documents is a valuable resource to eval-
uate information retrieval algorithms over web data. However, the
collection is not well suited to evaluate a system likeTritus, where
we aim to transform user queries to obtain improved results from
existing search engineslike Google and AltaVista, which operate
over the web at large. Consequently, to evaluateTritus rigorously
we needed to define an alternative experimental setting.

To evaluateTritus we inspect the topK pages returned by the
various systems that we compare (Section 4.2) for each query that
we consider (Section 4.4). We describe how we computed rele-
vance judgments for these documents in Section 4.4. Using these
relevance judgments, we evaluate the answers that the systems pro-
duce using the following metrics.

DEFINITION 1. TheprecisionatK of a retrieval systemS for
a queryq is the percentage of documents relevant toq among the
topK documents returned byS for q.

EXAMPLE 1. Consider a queryq and the top 10 documents re-
turned by Google for this query. If we judge that 8 of these 10
documents are relevant toq then the precision at 10 of Google for
q is 8

10 � 100% = 80%.

We also compute the percentage of questions where a given sys-
tem provides the best performance of all systems tested:

DEFINITION 2. Consider systemsS1; : : : ; Sn and queryq. A
systemSi at document cutoffK for a queryq is considered(one of)
the best performing systems ifSi has the highest number of relevant
documents among the topK documents that it produced,compared
to all other systems.

Note that multiple systems may have identical performance on a
given question, in which case they may all be considered the best.

EXAMPLE 2. Consider a queryq, the top 10 documents re-
turned by Google forq, and the top 10 documents returned by Al-
taVista for the same query. If there are 7 documents relevant toq
among the top 10 Google documents and only 5 among the top 10
AltaVista documents, then Google is considered to have the best
performance at document cutoff 10 forq. Intuitively, Google gets a
“vote” for q because it was the best of the two retrieval systems for
that query.

4.4 Evaluation Queries and their Relevance
Judgments

Once we have trainedTritus as discussed above, we evaluate its
performance against the retrieval systems in Section 4.2 using the
metrics described in Section 4.3. We used real user questions from
a log of queries received by the Excite search engine on the 20th of
December, 1999. The portion of the log that we have access to con-
sists of 2.5 million queries, out of which we estimate that around

Type Phrase(s) Total Presented Evaluated
to judges

Total queries 2,477,283
“where” 184,634

Where “where can i” 162,929 46 10
“where is” 7,130 47 11
“what” 69,166

What “what is” 35,290 45 11
“what are” 10,129 43 12
“what is a” 5,170 48 15

How “how” 20,777
“how do i” 13,790 44 15

Who “who” 16,302
“who was” 1,862 40 15

Total questions 290,000 (approx.) 313 89

Table 8: The number of questions of each question type in the
Excite query log.

Parameter Value Description

numTransforms 15 Max. number of transforms to apply
subDocLen 50 Size of the sub-document used for re-ranking
maxPhraseLen 4 Max. length of query phrases for re-ranking
Timeout 30 Individual page timeout

Table 9: Parameters used for evaluation.

290,000 are reasonably well-formed English questions. We focus
our evaluation on four basic question types:Where, What, How,
andWho (Table 8). These are the most common types of ques-
tions found in the Excite log, and have been estimated to account
for more than 90% of natural language questions submitted to the
search engine [20].

The set of test questions was generated by scanning for the ques-
tion phrases in the query log. A random sample of 50 questions was
chosen for each question type. The sample was manually filtered
to remove queries that might be offensive or are likely to return of-
fensive documents. We also checked that the questions were not
present verbatim in our training collection. None of the test ques-
tions were used for tuning the parameters ofTritus.

The test questions of each type (Table 8) are submitted to all
of the five systems (Section 4.2) without any modifications to the
original question. From each system, we retrieve up to 10 top-
ranked URLs. The rank for each of the result URLs is stored. The
top 10 documents (or all documents if fewer than 10) are retrieved
as follows:

� AV : The top 10 documents returned by AltaVista.

� GO: The top 10 documents returned by Google.

� TR-AV : The top 10 documents returned byTritususing trans-
forms optimized for AltaVista and the parameters in Table 9.

� TR-GO: The top 10 documents returned byTritususing trans-
forms optimized for Google and the parameters in Table 9.

� AJ: The top 10 documents returned byAskJeeves. We had to
take special steps to process theAskJeevesresults. In the
AskJeevesinterface, the first page of results returned may
contain one or more of the following:

1. One or more links to best page(s) for the given ques-
tion (or a similar question), selected by a professional
editor.



2. One or more drop-down lists with a pre-selected value
of a term (or terms) in the question and an associated
“submit” button, which, if selected, will take the user
to an answer.

3. Pages that other users found useful for the given ques-
tion (or a similar question).

We retrieved all of the results in (1) and (2) and the top results
from (3) (in that order) to bring the total number of retrieved
pages to at most 10.

To assign relevance judgments fairly, the resulting URLs from all
of the systems are mixed together and presented in random order
to a number of volunteers. The volunteers are blind to the system
that returned the URLs. We set up an evaluation script to present
volunteers with the result pages for a query one page at a time,
and allow the volunteers to judge each page as “good”, “bad” or
“ignore” for the query.

The volunteers were told to use the following criteria to judge
documents. A good page is one that contains an answer to the test
questionon the page. If a page is not relevant, or only contains
links to the useful information, even if links are to other documents
on the same site, the page is judged “bad.” If a page could not be
viewed for any reason (e.g., server error, broken link), the result is
“ignore.”

5. EVALUATION RESULTS
In this section we report the results of the experimental evalua-

tion using the methodology described in the previous section.
Figure 6 shows the averageprecisionat K for varyingK of

AskJeeves(AJ), AltaVista(AV) , Google(GO), Tritus-Google(TR-
GO), and Tritus-AltaVista(TR-AV) over the 89 test questions. As
we can see,Tritus optimized for Google has the highest precision
at all values of document cutoffK. Also note that bothTR-GO
andTR-AV perform better than the underlying search engine used.
Tritus-AVshows a large improvement over AltaVista.

Figure 7 shows the percentage of questions where each system
performed the best in terms of the number of relevant documents
returned at document cutoffK, over all 89 test questions. As we
can see,TR-GO performs the best on more questions than any
other system. Even thoughTR-AV performs relatively poorly on
this metric, its performance is comparable to the original AltaVista
search engine. Because the lower performing systems perform best
for only a small number of questions, comparison of the lower per-
forming systems on this metric is not very meaningful.

We considered the possibility that the documents returned byTri-
tus could also be retrieved simply by examining more documents
returned by the search engines for the original query. We report
the percentage ofTritus documents contained in response to the
original query as more documents are examined in Figure 8. In
Figure 8(a) we report the percentage of allTritusdocuments (with-
out re-ranking) that are contained in the topN (10-150) search-
engine responses for the original query. In Figure 8(b) we plot the
percentage of top 10Tritus documents (after reranking) contained
in the original search engine results, and in Figure 8(c) we show
percentage of relevantTritus documents contained in the original
search engine results. Only the top 10Tritus documents had rele-
vance judgements assigned. The figures show that forTR-AV there
is very little overlap between result sets retrieved in response to the
transformed queries, and the documents retrieved for the original
query. ForTR-GO, the overlap is low for all ofTR-GO documents
(without re-ranking), but slowly increases and levels off at around
45% for the top 10 and relevantTritus documents as more of the

Figure 6: Averageprecision atK of AskJeeves (AJ), AltaVista
(AV), Google (GO) and Tritus (TR-AV, TR-GO) over 89 test
queries, for varying number of top documents examinedK.
Tritus consistently outperforms the underlying search engine
that it is based on, and Tritus-Google is the best performing
system.

original Google documents are examined. These experiments indi-
cate that a significant fraction of the relevant documents retrieved
by Trituswould not be found using an underlying search engine.

Figure 7: The percentage of questions for which each system
returns the most relevant documents for varying number of
top documents examinedK. The search engines are AskJeeves
(AJ), AltaVista (AV), Google (GO) and Tritus (TR-AV, TR-GO)
over 89 test queries. When the highest number of relevant doc-
uments for a given question is returned by multiple search en-
gines, all of these engines are considered to have returned the
most relevant documents. Because the lower performing sys-
tems perform best for only a small number of questions, com-
parison of the lower performing systems on this metric is not
very meaningful.

In Table 10 we report the average precision (%) atK of the doc-
ument sets retrieved byAJ, AV , GO, TR-GO, andTR-AV . The re-
sults are separated by question phrase. As we examine documents
with lower ranks, precision in general decreases. In the case of
AskJeeves, the reason may be that the top-ranked documents could
be selected by human editors as answers to the questions. Note
that at least one of theTritus systems has higher precision than
AskJeeves even for the top ranked document alone in 6 out of 7
question phrases.



(a) (b) (c)

Figure 8: Average percentage of all (a), top 10 (b) and relevant in top 10 (c) Tritus (TR-GO and TR-AV) documents contained in top
N documents returned for each original query by the underlying search engine.

(a) (b) (c) (d)

Figure 9: Averageprecision atK of AskJeeves (AJ), AltaVista (AV), Google (GO) and Tritus (TR-AV, TR-GO) by question type:
What (a), How (b), Where(c), andWho (d) .

In Figure 9 we report the average precision (%) atK of the doc-
ument sets retrieved by AskJeeves(AJ), AltaVista (AV) , Google
(GO), Tritus-Google(TR-GO), and Tritus-AltaVista(TR-AV) sep-
arated by question type. Note that at least one of theTritussystems
has the highest precision atK for 3 out of 4 question types (What,
Where, and Whoin Figures 9(a), (c) and (d)) forK � 5, while
Google has the highest precision forHow 2.

Google’s impressive performance on theHow questions may be
due to a common practice on the web of linking to the pages that
people find useful for solving specific problems, which by their na-
ture contain good answers toHowtypes of questions. Since Google
exploitsanchor textfor document retrieval, it achieves high results
for this type of question.

It is interesting to note that the systems do not perform uniformly
well across different question types, or even across different sub-
types of the basic question type. We can explain this phenomenon
by observing that questions such as “What are” and “What is a”,
even though both questions fall into theWhatquestions type, are
typically used to express different purposes. “What is a” usually
indicates a request for a definition or explanation of a term or con-
cept, while “What are” often indicates a request for a list of char-
acteristics or features of a concept.

2The volunteer judges complained that theHowquestions were the
hardest to evaluate. For example, an answer to a test question“How
do I create a webpage?”can take many different forms, from a di-
rection“Click here to create your free webpage”, to HTML refer-
ences, web hosting promotions, and web design software manuals.
Often it was not clear whether to judge a page relevant or not for
this type of question.

Also note thatTR-GO performs better thanTR-AV onWhatand
Howtypes of questions, whileTR-AV is clearly better atWhereand
Whoquestions. This suggests an approach of routing the questions
to particular search engine(s) that perform well for a given question
type and transforming the question in a manner optimal for that
search engine. Note that the relatively small number of questions
in each category limits the accuracy of the results for individual
question types.

6. FUTURE WORK AND SUMMARY
There are many avenues for future research and improvement of

our system. For example, existing methods for extracting the best
passages from documents could be implemented. Domain knowl-
edge, heuristics, and natural language parsing techniques could be
used to improve the identification of question types. Multiple trans-
formations could be combined into a single query. Questions could
be routed to search engines that perform best for the given question
type. Multiple search engines could be used simultaneously. We
plan to investigate creating phrase transforms that contain content
words from the questions. We also plan to make the transformation
process dynamic. For example, transformations where we expect
high precision may be submitted first. Based on the responses re-
ceived, the system may try lower precision transforms or fall back
to the original query.

In summary, we have introduced a method for learning query
transformations that improves the ability to retrieve answers to ques-
tions from an information retrieval system. The method involves
classifying questions into different question types, generating can-
didate query transformations from a training set of question/answer



Question Question System Precision (%)
Type Phrase K AJ AV GO TR-AV TR-GO

1 64 9 40 25 57
2 56 14 38 17 54

“what is a” 3 53 15 41 21 48
5 48 18 44 23 46
10 41 25 37 27 41
1 22 50 40 25 67
2 32 30 25 25 48

What “what are” 3 25 21 27 33 45
5 20 26 23 45 45
10 24 26 33 49 40
1 45 11 44 43 64
2 29 26 50 29 68

‘ ‘what is” 3 30 25 53 25 55
5 27 26 52 30 49
10 26 24 40 27 43
1 33 36 69 40 50
2 33 20 54 30 52

How “how do i” 3 27 17 48 20 52
5 28 19 51 24 48
10 36 18 44 26 40
1 57 25 63 100 60
2 53 31 65 67 65

“where can i” 3 41 31 65 71 63
5 49 36 65 67 66

Where 10 59 34 64 53 65
1 44 25 22 57 18
2 30 21 32 50 32

“where is” 3 34 13 31 50 27
5 32 14 33 45 25
10 39 7 28 39 23
1 56 25 27 71 57

Who 2 35 18 22 75 55
‘ ‘who was” 3 32 17 22 56 50

5 27 18 25 63 47
10 29 15 29 50 40

Table 10: Averageprecisionat K for AskJeeves (AJ), AltaVista
(AV), Google (GO) and Tritus (TR-AV, TR-GO) separated by
question type and question phrase, forK = 1, 2, 3, 5 and 10
documents.

pairs, and evaluating the candidate transforms on the target infor-
mation retrieval systems. This technique for processing natural lan-
guage questions could be applicable to a wide range of information
retrieval systems. We have implemented and evaluated the method
as applied to web search engines. Blind evaluation on a set of real
queries from a web search engine shows that the method signifi-
cantly outperforms the underlying web search engines for common
question types.
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