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Abstract

String data is ubiquitous, and its management has taken on particular importance in the past few years.
Approximate queries are very important on string data. This is due, for example, to the prevalence
of typographical errors in data, and multiple conventions for recording attributes such as name and
address. Commercial databases do not support approximate string queries directly, and it is a challenge
to implement this functionality efficiently with user-defined functions (UDFs). In this paper, we develop
a technique for building approximate string processing capabilitieson topof commercial databases by
exploiting facilities already available in them. At the core, our technique relies on generating short
substrings of lengthq, called q-grams, and processing them using standard methods available in the
DBMS. The proposed technique enables various approximate string processing methods in a DBMS, for
example approximate (sub)string selections and joins, and can even be used with a variety of possible
edit distance functions. The approximate string match predicate, with a suitable edit distance threshold,
can be mapped into a vanilla relational expression and optimized by conventional relational optimizers.

1 Introduction

String data is ubiquitous. To name only a few commonplace applications, consider product catalogs (for books,
music, software, etc.), electronic white and yellow page directories, specialized information sources such as
patent databases, and customer relationship management data.

As a consequence, management of string data in databases has taken on particular importance in the past
few years. However, the quality of the string information residing in various databases can be degraded due
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to a variety of reasons, including human typing errors and flexibility in specifying string attributes. Hence, the
results of operations based on exact matching of string attributes are often of lower quality than expected.

For example, consider a corporation maintaining various customer databases. Requests for correlating data
sources are very common in this context. A specific customer might be present in more than one database
because the customer subscribes to multiple services that the corporation offers, and each service may have de-
veloped its database independently. In one database, a customer’s name may be recorded asJohn A. Smith ,
while in another database the name may be recorded asSmith, John . In a different database, due to a typing
error, this name may be recorded asJonh Smith . A request to correlate these databases and create a unified
view of customers will fail to produce the desired output if exact string matching is used in the join.

Unfortunately, commercial databases do not directly support approximate string processing functionality.
Specialized tools, such as those available from Trillium Software1, are useful for matching specific types of
values such as addresses, but these tools are not integrated with databases. To use such tools for information
stored in databases, one would either have to process data outside the database, or be able to use them as user-
defined functions (UDFs) in an object-relational database. The former approach is undesirable in general. The
latter approach is quite inefficient, especially for joins, because relational engines evaluate joins involving UDFs
whose arguments include attributes belonging to multiple tables by essentially computing the cross-products of
the tables and applying the UDFs in a post-processing fashion.

Although there is a fair amount of work on the problem of approximate string matching (see, for exam-
ple, [3]), these results are not used in the context of a relational DBMS. In this paper, we present a technique for
incorporating approximate string processing capabilities to a database. At the core, our technique relies on using
short substrings of lengthq of the database strings (also known asq-grams). We show how a relational schema
can be augmented to directly representq-grams of database strings in auxiliary tables within the database in
a way that will enable use of traditional relational techniques and access methods for performing approximate
string matching operations. Instead of trying to invent completely new join algorithms from scratch (which
would be unlikely to be incorporated into existing commercial DBMSs), we opted for a design that would re-
quire minimal changes to existing database systems. We show how the approximate string match predicate,
with a suitable edit distance threshold, can be mapped into a vanilla SQL expression and optimized by conven-
tional optimizers. The immediate practical benefit of our technique is that approximate string processing can be
widely and effectively deployed in commercial relational databases without extensive changes to the underlying
database system. Furthermore, by not requiring any changes to the DBMS internals, we can re-use existing
facilities, like the query optimizer, join ordering algorithms and selectivity estimation.

The rest of the paper, which reports and expands on work originally presented in [2], is organized as follows.
In Section 2, we present notation and definitions. In Section 3, we develop a principled mechanism for augment-
ing a database withq-gram tables. We describe the conceptual techniques for approximate string processing
usingq-grams in Section 4. Finally, in Section 5, we show how these conceptual techniques can be realized
using SQL queries.

2 Preliminaries

2.1 Notation

We useR, possibly with subscripts, to denote tables,A, possibly with subscripts, to denote attributes, andt,
possibly with subscripts, to denote records in tables. We use the notationR:Ai to refer to attributeAi of table
R, andR:Ai(tj) to refer to the value in attributeR:Ai of recordtj . Let� be a finite alphabet of sizej�j. We use
lower-case Greek symbols, such as�, possibly with subscripts, to denote strings in��. Let � 2 �� be a string
of lengthn. We use�[i : : : j], 1 � i � j � n, to denote a substring of� of lengthj� i+1 starting at positioni.

1www.trillium.com
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To match stringsapproximatelyin a database, we need to specify the approximation metric. Several propos-
als exist for strings to capture the notion of “approximate equality.” Among them, the notion ofedit distance
between two strings is very popular.

Definition 1: Theedit distancebetween two strings is the minimum number of edit operations (i.e.,insertions,
deletions, andsubstitutionsof single characters) needed to transform one string into the other.

Although we will mainly focus on theedit distancemetric in this paper, we note that our proposed techniques
can be used for a variety of other distance metrics as well.

2.2 Q-grams: A Foundation for Approximate String Processing

Below, we briefly review the notion of positionalq-grams from the literature, and we give the intuition behind
their use for approximate string matching [7, 6, 4]. Given a string�, its positional q-gramsare obtained by
“sliding” a window of lengthq over the characters of�. Sinceq-grams at the beginning and the end of the string
can have fewer thanq characters from�, we introduce new characters “#” and “%” not in �, and conceptually
extend the string� by prefixing it withq � 1 occurrences of “#” and suffixing it withq � 1 occurrences of “%”.
Thus, eachq-gram contains exactlyq characters, though some of these may not be from the alphabet�.

Definition 2: A positionalq-gram of a string� is a pair(i; �[i : : : i + q � 1]), where�[i : : : i + q � 1] is the
q-gram of� that starts at positioni, counting on the extended string. The setG� of all positionalq-grams of a
string� is the set of all thej�j+ q � 1 pairs constructed from allq-grams of�.

The intuition behind the use ofq-grams as a foundation for approximate string processing is that when two
strings�1 and�2 are within a small edit distance of each other, they share a large number ofq-grams in com-
mon [6, 4]. Consider the following example. The positionalq-grams of lengthq=3 for string john smith
aref(1,##j) , (2,#jo) , (3,joh) , (4,ohn) , (5,hn ) , (6,n s) , (7, sm) , (8,smi) , (9,mit) ,
(10,ith) , (11,th%) , (12,h%%) g. Similarly, the positionalq-grams of lengthq=3 for john a smith ,
which is at an edit distance of two fromjohn smith , aref(1,##j) , (2,#jo) , (3,joh) , (4,ohn) ,
(5,hn ) , (6,n a) , (7, a ) , (8,a s) , (9, sm) , (10,smi) , (11,mit) , (12,ith) , (13,th%) ,
(14,h%%) g. If we ignore the position information, the twoq-gram sets have 11q-grams in common. In-
terestingly, only the first five positionalq-grams of the first string are also positionalq-grams of the second
string. However, an additional six positionalq-grams in the two strings differ in their position by just two posi-
tions each. This illustrates that, in general, the use of positionalq-grams for approximate string processing will
involve comparing positions of “matching”q-grams within a certain “band.”

3 Augmenting a Database with Positionalq-Grams

To enable approximate string processing in a database system based on the use ofq-grams, we need a principled
mechanism for augmenting the database with positionalq-grams corresponding to the original database strings.

LetR be a table with schema(A0; A1; : : : ; Am), such thatA0 is the key, and some attributesAi, i > 0, are
string-valued. For each string attributeAi that we wish to consider for approximate string processing, we create
an auxiliary tableRAiQ(A0; P os;Qgram) with three attributes. For a string� in attributeAi of a record of
R, its j�j + q � 1 positionalq-grams are represented asj�j + q � 1 separate records in the tableRAiQ, where
RAiQ:Pos identifies the position of theq-gramRAiQ:Qgram. Thesej�j + q � 1 records all share the same
value for the attributeRAiQ:A0, which serves as the foreign key attribute to tableR.

Interestingly, these tables can be created in current database systems, using simple SQL statements. To do
so, we use a tableN that contains a single attributeI with the numbers from 1 toM (whereM is the maximum
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INSERT INTO RAiQ

SELECT R:A0, N:I,
SUBSTR(SUBSTR(’#: : :#’,1, q � 1) || UPPER( R:Ai) || SUBSTR(’% : : :%’,1, q � 1), N:I, q)

FROMR, N

WHEREN:I � LENGTH(R:Ai) +q � 1;

Figure 1: Creating the auxiliaryq-gram tableRAiQ

length of a string) [1]. Then, we join this table with the columnR:Ai, and we take all theq-grams of each string
in R:Ai that start at positionx, wherex is the value stored in fieldI of a tuple ofN . The result of this join is
then used to create the auxiliary tableRAiQ. The exact SQL query is presented in Figure 1.

The space overhead for the auxiliaryq-gram table for a string attributeAi of a relationR with n records is:

S(RAiQ) = n(q � 1)(q + C) + (q + C)
nX

j=1

jR:Ai(tj)j

whereC is the size of the additional attributes in the auxiliaryq-gram table (i.e.,A0 andPos). Sincen(q�1) �Pn
j=1 jR:Ai(tj)j, for any reasonable value ofq, it follows thatS(RAiQ) � 2(q + C)

Pn
j=1 jR:Ai(tj)j. Thus,

the size of the auxiliary table is bounded by some linear function ofq times the size of the corresponding column
in the original table.

Depending on the frequency of the approximate string operations, the database administrator can choose
whether or not to have the tables permanently materialized. If the space overhead is not an issue, then the cost of
keeping the auxiliary tables updated is relatively small. After creating an augmented database with the auxiliary
tables for each of the string attributes of interest, we can efficiently perform approximate string processing using
simple SQL queries. We describe the methods next.

4 Filtering Results Usingq-gram Properties

In this section, we present our basic techniques for approximate string processing based on theedit distance
metric. Later we will describe appropriate modifications to these filters to accommodate alternative distance
metrics. The key objective here is to efficiently identify candidate answers to our problems by taking advantage
of theq-grams in the auxiliary database tables and using features already available in database systems such as
traditional access and join methods. For reasons of correctness and efficiency, we requireno false dismissals
andfew false positivesrespectively.

Count Filtering: The basic idea of COUNT FILTERING is to take advantage of the information conveyed
by the setsG�1 andG�2 of q-grams of the strings�1 and�2, ignoring positional information, in determining
whether�1 and�2 are within edit distancek.

The intuition here is that strings that are within a small edit distance of each other share a large number of
q-grams in common. This intuition has appeared in the literature earlier [5], and can be formalized as follows.

Proposition 3: Consider strings�1 and �2, of lengthsj�1j and j�2j, respectively. If�1 and�2 are within
an edit distance ofk, then the cardinality ofG�1 \ G�2 , ignoring positional information, must be at least
(max(j�1j; j�2j) + q � 1) � k � q.

Intuitively, this holds because one edit distance operation can modifyat mostq q-grams, sok edit distance
operations can modify at mostkq q-grams.
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Position Filtering: While COUNT FILTERING is effective in improving the efficiency of approximate string
processing, it does not take advantage ofq-gram position information. In general, the interaction betweenq-
gram match positions and the edit distance threshold is quite complex. Any givenq-gram in one string may not
occur at all in the other string, and positions of successiveq-grams may be off due to insertions and deletions.
Furthermore, as always, we must keep in mind the possibility of aq-gram in one string occurring at multiple
positions in the other string.

Intuitively, a positionalq-gram(i; �1) in one string�1 is said tocorrespondto a positionalq-gram(j; �2) in
another string�2 if �1 = �2 and(i; �1), after the sequence of edit operations that convert�1 to �2 and affectonly
the positionof theq-gram�1, “becomes”q-gram(j; �2) in the edited string. Notwithstanding the complexity of
matching positionalq-grams in the presence of edit errors in strings, a useful filter can be devised based on the
following observation [4].

Proposition 4: If strings �1 and�2 are within an edit distance ofk, then a positionalq-gram in onecannot
correspondto a positionalq-gram in the other that differs from it by more thank positions.

Length Filtering: We finally observe that string length provides useful information to quickly prune strings
that are not within the desired edit distance.

Proposition 5: If strings�1 and�2 are within edit distancek, their lengths cannot differ by more thank.

5 Approximate String Processing in a Database

Below we describe how we can use the previously described properties ofq-grams to perform approximate
string processing tasks inside a database system. Additional details, including an experimental evaluation, are
presented in [2].

5.1 Approximate String Selections

This problem can be formalized as follows: Given a tableR with a string attributeR:Ai and a string query�,
retrieve all recordst 2 R such that editdistance(�;R:Ai(t)) � k.

To perform this operation it is first necessary to create theq-gram set for the query string�. This can be
done easily in SQL, in a manner similar to the SQL statement of Figure 1. Theseq-grams are stored in a small
auxiliary tableTQ. After this step, it is possible to find all the strings inR:Ai that are possible candidate
answers. This can be achieved on the augmented database using the SQL statement of Figure 2 that implements
the filters described in Section 4. Consequently, if a relational engine receives a request for an approximate
string operation, it can directly map it to a conventional SQL expression and optimize it as usual. (Of course,k
andq are constants that need to be instantiated before the query is evaluated.) However, even after the filtering
steps, the candidate set may still have false positives. Hence, a UDF invocationedit distance( R:Ai; �; k)
still needs to be performed, but hopefully on just a small fraction of the strings.

5.2 Approximate String Joins

In a similar manner, we can efficiently implement approximate string joins: given two tablesR1 andR2 with
string attributesR1:Ai andR2:Aj respectively, report all pairs of strings that are within edit distancek.

In this case, we directly join the auxiliaryq-gram tables, and we report pairs of strings with enough cor-
respondingq-grams in common. Essentially, the SQL query expression in Figure 3 joins the auxiliary tables
corresponding to the string-valued attributesR1:Ai andR2:Aj on theirQgram andPos attributes, along with
the foreign-key/primary-key joins with the original database tablesR1 andR2 to retrieve the string pairs that
need to be returned to the user.
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SELECT R:A0, R:Ai

FROM R, TQ, RAiQ

WHERE R:A0 = RAiQ:A0 AND RAiQ:Qgram = TQ:Qgram AND
RAiQ:Pos � TQ:Pos+ k AND RAiQ:Pos � TQ:Pos� k AND
LENGTH(R:Ai) � LENGTH(�) + k AND LENGTH(R:Ai) � LENGTH(�)� k

GROUP BYR:A0; R:Ai

HAVING COUNT(*)� LENGTH(R:Ai)� 1� (k � 1) � q AND COUNT(*)� LENGTH(�)� 1� (k � 1) � q

Figure 2: Performing approximate string selections in an augmented DBMS using SQL

SELECT R1:A0, R2:A0, R1:Ai, R2:Aj

FROM R1, R1AiQ, R2, R2AjQ

WHERE R1:A0 = R1AiQ:A0 AND R2:A0 = R2AjQ:A0 AND
R1AiQ:Qgram = R2AjQ:Qgram AND
R1AiQ:Pos � R2AjQ:Pos+ k AND R1AiQ:Pos � R2AjQ:Pos� k AND
LENGTH(R1:Ai) � LENGTH(R2:Aj) + k AND LENGTH(R1:Ai) � LENGTH(R2:Aj)� k

GROUP BYR1:A0; R2:A0; R1:Ai; R2:Aj

HAVING COUNT(*)� LENGTH(R1:Ai)� 1� (k � 1) � q AND COUNT(*)� LENGTH(R2:Aj)� 1� (k � 1) � q

Figure 3: Performing approximate string joins in an augmented DBMS using SQL

5.3 Approximate Substring Processing

A different type of approximate string match of interest is based on one string being a substring of another,
possibly allowing for some errors. We can formalize the approximate substring selection problem as follows.
Given a tableR with a string attributeR:Ai and a query string�, retrieve all recordst from R, such that for
some substring�R of R:Ai(t), edit distance(�R; �) � k. For this edit distance metric, we have to revise the
filters described in Section 4. Specifically, LENGTH FILTERING and POSITION FILTERING are not applicable,
since theq-gram at positioni in � may match at any arbitrary position inR:Ai(t) and not just ini � k. Also
R:Ai(t) might be of arbitrary length and still have a substring match with�. Finally, COUNT FILTERING has a
different threshold, reflecting the fact that theq-grams at the beginning and at the end of� (with the “extended”
characters ‘#’ and ‘%’) might not match the respectiveq-grams ofR:Ai(t).

Proposition 6: Consider strings�1 and�2. If �2 has a substring�S such that�1 and�S are within an edit
distance ofk, then the cardinality ofG�1 \ G�S , ignoring positional information, must be at leastj�1j � (k +
1)q + 1.

Using this result, it is possible to write the respective SQL queries to perform selections and joins based on
approximate substring matches. The SQL expressions are very similar to the ones described in Figures 2 and 3,
but with a different threshold for COUNT FILTERING and without the conditions that perform the POSITION and
LENGTH FILTERING.

5.4 Allowing for Block Moves

Traditional string edit distance computations are for single character insertions, deletions and substitutions. If a
whole block of characters is modified or moved, the cost charged is proportional to the length of the block. In
many applications, we would like to keep a fixed charge for block move operations, independent of block length.
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It turns out that theq-gram method is suited to this enhanced metric, and in this section we consider the issues
involved in so doing. For this purpose, we begin by extending the definition of edit distance.

Definition 7: Theextended edit distancebetween two strings is the minimum cost of edit operations needed to
transform one string into the other. The operations allowed are single character insertion, deletion and substitu-
tion, at unit cost; and the movement of a block of contiguous characters, at a cost of� units.

Theorem 8: Let G�1 ; G�2 be the set ofq-grams for strings�1 and�2 in the database. If the extended edit
distance between�1 and�2 is less thank, then the cardinality ofG�1 \G�2 , ignoring positional information, is
at leastmax(j�1j; j�2j)� 1� 3(k � 1)q=�0, where�0 = min(3; �).

Intuitively, the bound arises from the fact that the block move operation can transform a string of the form
��Æ� to �Æ��, which can result in up to3q � 3 mismatchingq-grams.

Based on the above observations, it is easy to see that one can apply COUNT FILTERING (with a suitably
modified threshold) and LENGTH FILTERING for approximate string processing with block moves. However, in-
corporating POSITION FILTERING is not possible as described earlier because block moves may end up moving
q-grams arbitrarily.

Again, it is possible to write the appropriate SQL queries to perform selections and joins based on the
extended edit distance. The statements will apply only the correct filters and will return a set of candidate
answers than can be later verified for correctness using a suitable UDF.

6 Conclusions

The ubiquity of string data in a variety of databases, and the diverse population of users of these databases, has
brought the problem of string-based querying and searching to the forefront of the database community. Given
the preponderance of errors in databases, and the possibility of mistakes by the querying agent, returning query
results based on approximate string matching is crucial. In this paper, we have demonstrated that approximate
string processing can be widely and effectively deployed in commercial relational databases without extensive
changes to the underlying database system.
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