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ABSTRACT query. The web contains millions of pages whose text hides
Text documents often contain valuable structured data thatdata that would be best exploited in structured form. In this
is hidden in regular English sentences. This data is best ex-paper we develop thBnowballsystem for extracting struc-
ploited if available as a relational table that we could use for tured data from plain-text documents withinimal human
answering precise queries or for running data mining tasks. participation Our techniques build on the idea of DIPRE
We explore a technique for extracting such tables from doc- introduced by Brin [3].

ument collections that requires only a handful of training ex- _ )

amples from users. These examples are used to generatl/PRE: Dual lterative Pattern Expansion DIPRE was pro-
extraction patterns, that in turn result in new tuples being POS€d @s an approach for extracting a structuettion (or
extracted from the document collection. We build on this @P!€) from a collection of HTML documents. The method
idea and present oBnowballsystem.Snowballintroduces works bestin an environment |Ik? the World-Wlde'Web,' where
novel strategies for generating patterns and extracting tuplesthe tabletuplesto be e_xtracted will t_end to appear |n_un|fprm
from plain-text documents. At each iteration of the extrac- CONtexts repeatedly in the collection documents (i.e., in the
tion processSnowballevaluates the quality of these patterns available HTML pages). DIPRE exploits this redundancy
and tuples without human intervention, and keeps only the and ]nhergnt s.trgcture in Fhe collection to extract the target
most reliable ones for the next iteration. In this paper we rélation with minimal training from a user.

also develop a scalable evaluation method_ology and metricsAs in the rest of the paper, we focus the presentation on the
for our task, and present a thorough experimental evaluation 54 anization-location scenario defined above. In this context
of Snowballand comparable techniques over a collection of prE’s goal is to extract a table with all the organization-

more than 300,000 newspaper documents. location tuples that appear in a given document collection.
Initially, we provide DIPRE with a handful of instances of
valid organization-location pairs. For example, we may indi-
cate thakMicrosoft, Redmonsd is a valid pair, meaning that
Microsoft is an organization whose headquarters are located
in Redmond. Similarly, we provide DIPRE with a few other
examples, as Table 1 shows. In addition, the user provides a
general regular expression that the entities must match. This
is all the training that DIPRE requires from the user.

1 INTRODUCTION

Text documents often hide valuabdtructured data For
example, a collection of newspaper articles might contain
information on thelocation of the headquarters of a num-
ber of organizations If we need to find the location of the
headquarters of, say, Microsoft, we could try and use tradi-
tional information-retrieval techniques for finding documents
that contain the answer to our query [13]. Alternatively, we
could answer such a query more precisely if we somehow
had available gblelisting all the organization-location pairs
that are mentioned in our document collectiontuple <o,/>

Organization | Location of Headquarters
MICROSOFT | REDMOND

in such table would indicate that the headquarters of orga- E}XI\;I(ON !ARIQ/I\I/INOGNK
nization o are in location?, and that this information was
present in a document in our collection. Tuptlicrosoft BOEING SEATTLE

' INTEL SANTA CLARA

Redmong- in our table would then provide the answer to our
Table 1: User-provided example tuples for DIPRE.

After this initial training phase, DIPRE looks for instances
of the example organizations and locations in the text doc-
uments. Then, DIPRE examines the text that surrounds the
initial tuples. For example, DIPRE inspects the context sur-
rounding Microsoft and Redmond ircOmputer servers at
Microsoft's headquarters irRedmond to construct a pat-



tern “<STRINGZX's headquarters inc STRING2-." Other edge base from the web, consisting of classes of entities and
possible patterns are listed in Figure 1. relations, by exploiting the content of the documents, as well

. i i as the link structure of the web. This method requires train-
A DIPRE pattern consists of a five tupteorder, urlprefix, ing over a large set of web pages, with relevant document

left, middle, right- and is generated by grouping together oc-  segments manually labeled, as well as a large training set of
currences of seed tuples that have equal strings separating thgage-to-page relations.

entities (middle and then setting thieft andright strings to

the longest common substrings of the context on the left and Finally, a number of systems use unlabeled examples for
on the right of the entities, respectively. Thederreflects  training. This direction of research is closest to our work.
the order in which the entities appear, amtprefixis setto  gpecifically, the approach we are following falls into the broad
the longest common substring of the source URL's where the category of bootstrapping techniques. Bootstrapping has been
seed tuples were discovered. After generating a number ofapy attractive alternative in automatic text processing. [15]
patterns from the initial seed tuples, DIPRE scans the avail- qemonstrates a bootstrapping technique for disambiguating
able documents in search of segments of text that match thegenses of ambiguous nouns. [5] uses bootstrapping to clas-
patterns. As a result of this process, DIPRE generates newsjfy named entities in text exploiting two orthogonal fea-
tuples and uses them as the new “seed.” DIPRE starts theyres, i.e., the spelling of the entity itself (e.g., having a suf-
process all over again by searching for these new tuples infix “Corp.”), and the context in which the entity occurs. [12]

the documents to identify new promising patterns. also presents a bootstrapping technique to extract patterns to
recognize and classify named entities in text. [16] describes
<STRING1>'s headquarters in <STRING2> an extension of DIPRE to mining the Web for acronyms and
<STRING2>-based <STRING1> their expansions. [2] presents a methodology and theoretical
<STRING1>, <STRING2> framework for combining unlabeled examples with labeled
Figure 1: Initial DIPRE patterns.  <STRING1>and examples to boost performance of a learning algorithm for
<STRING2> are regular expressions that would classifying web pages. While the underlying principle of us-
match an organization and a location, respectively. ing the systems’ output to generate the training input for the
nextiteration is the same for all of these approaches, the tasks
Related Work  Brin’s DIPRE method and ou8nowbalkys- are different enough to require specialized methodologies.

tem that we introduce in this paper both address issues that

have long been the subject of information extraction research.our Contributions As we have discussed, [3] describes a
Our task, though, is different in that we do not attempt to ex- method for extracting relations from the web using bootstrap-
tractall the relevant information from each document, which ping. OurSnowballsystem, which we present in this paper,
has been the goal of traditional information extraction sys- builds on this work. Our main contributions include:

tems [10]. One of the major challenges in information ex- ] ] .

traction is the necessary amount of manual labor involved in ® Techniques for generating patterns and extracting tu-
training the system for each new task. This challenge hasP!es: We develop a new strategy for defining and represent-
been addressed in different ways. One approach is to building patterns that is at the same.tlme fI.eX|bIe, so.that we cap-
a powerful and intuitive graphical user interface for training Ure mostofthe tuples that are hidden in the textin our collec-
the system, so that domain experts can quickly adopt the Sys_tlon, gnd selective, so that we do not generate invalid tuples
tem for each new task [14]. Nevertheless, these systems still(Sections 2.1 and 2.2). _

require substantial expert manual labor to port the system to® Strategies for evaluating patterns and tuples:Since the
each new domain. In contraSnowballand DIPRE require amount of training thaSnowballrequires is minimal, it is

only a handful of example tuples for each new scenario. crucial that the patterns and tuples that are generated during
the extraction process be evaluated. This v@&gwbalwill
Another approach is to train the system over a largm- be able to eliminate unreliable tuples and patterns from fur-

ually taggedcorpus, where the system can apply machine ther consideration. We develop strategies for estimating the
learning techniques to generate extraction patterns [8]. Thereliability of the extracted patterns and tuples (Section 2.3).
difficulty with this approach is the need for a large tagged e Evaluation methodology and metrics: Evaluating sys-
corpus, which again involves a significant amount of man- tems like Snowballand DIPRE is challenging: these sys-
ual labor to create. To combat this problem, some methodstems are designed to work over large document collections,
have been proposed to use an untagged corpus for trainingso manually inspecting all documents to build the “perfect”
[11] describes generating extraction patterns automatically table that should be extracted is just not feasible. We intro-
by using a training corpus of documents that were manually duce a scalable evaluation methodology and associated met-
marked as either relevant or irrelevant for the topic. This rics (Section 3), which we use in Sections 4 and 5 for large-
approach requires less manual labor than to tag the docuscale experiments over collections of training and test doc-
ments, but nevertheless the effort involved is substantial. [6] uments. These collections have a total of over 300,000 real
describes machine learning techniques for creating a knowl-documents.



2 THE SNOWBALLSYSTEM A key step in generating and later matching patterns like the
In this section we present tienowballsystem (Figure 2),  one above is finding whereORGANIZATION- and <LO-
which develops key components of the basic DIPRE method. CATION> entities occur in the text. For thiSnowballuses
More specifically, Snowballpresents a novel technique to a state-of-the-art named-entity tagger, The MITRE Corpora-
generate patterns and extract tuples from text documents (Setion’s Alembic Workbench [7]. In addition tORGANIZA-
tions 2.1 and 2.2). AlsdSnowballintroduces a strategy for ~ TION and LOCATIONentities, Alembic can identiffPER-
evaluating the quality of the patterns and the tuples that are SONentities, and can be trained to recognize other kinds of
generated in each iteration of the extraction process (Sec-entities. (See Section 6 for further discussion.) Once the en-
tion 2.3). Only those tuples and patterns that are regardediities in the text documents are tagg&mhowballcan ignore

as being “sufficiently reliable” will be kept bgnowballfor unwanted entities (e.g2ERSOI), focus on occurrences of
the following iterations of the system (Section 2.3). These LOCATIONand ORGANIZATIONentities, and analyze the
new strategies for generation and filtering of patterns and tu- context that surrounds each pair of such entities to check if
ples improve the quality of the extracted tables significantly, they are connected by the right words and hence match our
as the experimental evaluation in Section 5 will show. patterns.

Snowbalrepresents the context around @BGANIZATION
((sec Tuples] e [Find Occurrences f Seed Tuples | andLOCATIONentities in the patterns in a flexible way that
\ produces patterns that are selective, yet have high coverage.
As a result, minor variations such as an extra comma or a
([ Generate New Secd Tupies| determiner will not stop us from matching contexts that are
otherwise close to our patterns. More specificéigpwball
\ ’/ represents the left, middle, and right “contexts” associated
<——  ( Generate Extraction Patterns with a pattern just like the vector-space model of informa-
tion retrieval represents documents and queries [13]. Thus,
Figure 2: The main components of ~ Snowball theleft, middlg andright contexts are three vectors associat-
ing weights (i.e., numbers between 0 and 1) with terms (i.e.,
arbitrary strings of non-space characters). These weights in-

2.1 Generating Patterns dicate the importance of each term in the corresponding con-
A crucial step in the table extraction process is the generationtext.

of patterns to find new tuples in the documents. Ideally, we
would like patterns both to bgelective so that they do not
generate incorrect tuples, and to have higherage so that
they identify many new tuples. In this section, we introduce
a novel way of generating such patterns from a set of seed
tuples and a document collection.

Definition 1 A Snowball patteris a 5-tuple<left, tag1, mid-
dle, tag2, right-, wheretaglandtag2are named-entity tags,
and left, middle, andright are vectors associating weights
with terms.

Snowballis initially given a handful of example tuples. For  An example of &nowbalbpatternis a 5-tuple:{<the, 0.2>},
every such organization-location tupte o, ¢ >, Snowball LOCATION,{<-, 0.5>, <based, 0.5}, ORGANIZATION,
finds segments of text in the document collection where  {}>. This pattern will match strings likethe Irving- based
and¢ occur close to each other, just as DIPRE does, and ana-Exxon Corporatiori,where the word the’ (left context) pre-
lyzes the text that “connects’and/ to generate patterns. A cedes a location (Irving), which is in turn followed by the
key improvement o6nowbalfrom the basic DIPRE method  strings “-” and ‘based (middle context) and an organiza-
is thatSnowbalk patterns include named-entity tags. An ex- tion. Slight variations of the given string will also match the
ample of such a pattern isSLOCATION>-based<ORGA- pattern to a smaller extent. (We introduce a notion of “degree
NIZATION>. This pattern will not match any pair of strings  of match” later in this section.)

connected by “-based.” InsteadlLOCATION> will only

match a string identified by a tagger as an entity of tyPe To match text portions with our 5-tuple representation of pat-
CATION Similarly, <ORGANIZATION- will only match a terns, Snowballalso associates an equivalent 5-tuple with
string identified by a tagger as an entity of tyP&GANI- each document portion that contains two named entities with
ZATION Figure 3 shows additional patterns tigowball  the correcttag (i.eLOCATIONandORGANIZATIONN our
might generate, with named-entity tags. scenario). After identifying two such entities in a strifg

Snowballcreates three weight vectals, rg, andmg from

S by analyzing the left, right, and middle contexts around
the named entities, respectively. Each vector has a non-zero
weight for each term that appears in the respective context
where the s andrg are each limited to the-term window
Figure 3: Patterns that exploit named-entity tags. to the left and to the right of the entity pair. The weight of

<ORGANIZATION>'s headquarters in <LOCATION>
<LOCATION>-based <ORGANIZATION>
<ORGANIZATION>, <LOCATION>




a term in each vector is a function of the frequency of the sub GenerateTuples(Patterns)

term in the corresponding context. These vectors are scaled foréach text  _segment in corpus

so their norm is one. Finally, they are multiplied by a scal- (1) {< 06>, <ls,t1,ms, bo, 75 >} = .
ing factor to indicate each vector’s relative importance. From T -:Cr<eeC1)te£O>c.currence(text -segment);
our experiments with English-language documents, we have Sme ) Z 0 '

found the middle context to be the most indicative of the re- n ’

. . g foreach p in Patterns
lationship between the elements of the tuple. Hence we will () sim = Match(< Lo, t1, ms, t2,7s >, p):

typically assign the terms in the middle vector higher weights it ( sim > Taim)

than the left and right vectors. After extracting the 5-tuple (3) UpdatePatternSelectivity( p, To);
representation of strin§, Snowbalimatches it against the 5- if(  sim > Simpest)

tuple pattern by taking the inner product of the corresponding Simpest = sim;

left, middle, and right vectors. Ppest = p;

If( SimBest Z Tsim)
CandidateTuples  [I¢].Patterns  [Pgest] =
= SimBest;
return CandidateTuples;

Definition 2 The degree of matctMatch(tp,ts) between
two 5-tuplestp =< Ip, t1, mp, to, rp > (With tagst; and
to) andts =< lg, t, ms, th, rs > (with tagst] andt}) is
defined as: Figure 4: Algorithm for extracting new tuples using

a set of patterns.
Match(tp,ts) =

{ lp-ls+mp-ms+rp-rs ifthetagsmatch
0 otherwise CATION,{}> from text occurrences like “Intel, Santa Clara,
announced...” This pattern will be matched by any string that
In order to generate a patte®nowballgroups occurrences includes an organization followed by a comma, followed by
of known tuples in documents, if the contexts surrounding a location. Estimating theonfidencef the patterns, so that
the tuples are “similar enough.” More precise§nowball we do not trust patterns that tend to generate wrong tuples, is
generates a 5-tuple for each string where a seed tuple oc-one of the problems that we address in this section. We can
curs, and then clusters these 5-tuples using a simple singleweigh theSnowballpatterns based on their selectivity, and

pass clustering algorithm [9], using thiéatch function de- trust the tuples that they generate accordingly. Thus, a pat-
fined above to compute the similarity between the vectors tern that is not selective will have a low weight. The tuples
and some minimum similarity threshotd;,,. Theleft vec- generated by such a pattern will be discarded, unless they are

tors in the 5-tuples of clusters are represented bgraroid supported by selective patterns.
ls. Similarly, we collapse theniddleandright vectors into _
s andr,, respectively. These three centroids, together with The case for tuples is analogous. “Bad” seed tuples may

the original tags (which are the same for all the 5-tuples in generate extraneous patterns that in turn might result in even

the cluster), form nowballpattern< i,, 1, mis, t2, 7 >. more wrong tuples in the nesnowbaliteration. To prevent
this, we only keep tuples with higbonfidence The con-
2.2 Generating Tuples fidence of the tuple is a function of the selectivity and the

After generating patterns (Section 2.8powballscans the number of the patterns that generated it. Intuitively, the con-
collection to discover new tuples. The basic algorithm is out- fidence of a tuple will be high if it is generated by several
lined in Figure 4. highly selective patterns.

Snowballfirst identifies sentences that include an organiza- Tpe pattern and tuple evaluation is the key part of our sys-
tion and a location, as determined by the named-entity tag-tem, and is responsible for most of the improvement over the
ger. For a given text segment, with an associated organiza-p|pRE scheme. As an initial filter, we eliminate all patterns

tion o and locatiorv, Snovyballgenerates the.5—tupve:< supportecby fewer thanr.,,, seed tuples. We then update
le, ty,me, b2, e >. A candidate tuple< o, £ > is generated  the confidenceof each pattern in Step (3) of the algorithm
if there is a pattert, such tha atch(t,t,) > 7sim, Where i Figure 4, which checks each candidate tupte <o, £>

Tsim 1S the clustering similarity threshold of Section 2.1. generated by the pattern in question. If there is a high confi-

ol ) . anen e
Each candidate tuple will then have a number of patterns thatdence tuplé’ = <o, £"> generated qurlhg an.earllﬁr |terr$t|on
helped generate it, each with an associated degree of matchQf the system for thle same orggn/lzatuvﬁs Int, : en this
Snowballuses this information, together with information Unction compares locatiorsand £”. If the two locations

about the selectivity of the patterns, to decide what candidate2® Lhe same, theﬂ the t“mﬁ conS|dh(:.red @osnwe_matlch
tuples to actually add to the table that it is constructing. for the pattern. Otherwise, the matcmigative Intuitively,
the candidate tuple that a pattern generates for the “known

2.3 Evaluating Patterns and Tuples organizations should match the locations of these organiza-
Generating good patterns is challenging. For example, wetions. Otherwise, the confidence in this pattern will be low.
may generate a patteka{}, ORGANIZATION<", 1 >, LO- Note that this confidence computation assumes that organi-



zation is a key for the relation that we are extracting (i.e., Our confidence metri€onf (P;) was designed to be a rough
two different tuples in a valid instance of the relation cannot estimate ofProb(F;), the probability of patterr®; generat-
agree on the organization attribute). Estimating the confi- ing a valid tuple. We also account for the cases wHelas
dence of theSnowballpatterns for relations without such a occurred in contexts that did not match our patterns perfectly.

single-attribute key is part of our future work (Section 6). Intuitively, the lower the degree of match between a pattern
and a context, the higher is the chance of producing an in-
Definition 3 Theconfidenceof a patternP is: valid tuple. For this, we scale eadlvnf(P;) term by the

P.positive degree of match of the corresponding pattern and context:
Conf(P) =

(P.positive + P.negative)

whereP.positive is the number of positive matchesiaand Definition 5 Theconfidencef a candidate tupld” is:

P.negative is the number of negative matches. 1P|

Conf(T)=1- H (1= (Conf(P;) - Match(C;, P;)))
As an example, consider the pattePn= <{}, ORGANIZA- =0
TION, <*!", 1 >, LOCATION {}> referred to above. Assume
that this pattern only matches the three lines of text below: whereP = {P;} is the set of patterns that generat&dand
C; is the context associated with an occurrencelothat

Exxon, Irving , said matchedP; with degree of matctMatch(C;, P;).

“Intel, Santa Clara, cut prices”

“invest in Microsoft, New York-based analyst Jane Smith said”
Note that when we described the calculation of the pattern
confidence, we ignored any confidence values from previous
iterations ofSnowball To control the learning rate of the
system, we set the new confidence of the pattern as:

The first two lines generate candidate tuptgs<xon, Irving>
and<Intel, Santa Clara>, which we already knew from pre-
vious iterations of the system. The third line generates tuple
<Microsoft, New Yor. The location in this tuple conflicts
with the location in tuple<Microsoft, Redmond, hence this
last line is considered a negative example. Then, paftern

i —_2 _ .
has confidenc€on f(P) = 537 = 0.67. If parameteriV,,4; < 0.5 then the system in effect trusts

Our definition of confidence of a pattern above is only one New examples less on each iteration, which will lead to more
among many possibilities. An alternative is to account for a conservative patterns and have a damping effect. For our ex-
pattern’s coverage in addition to its selectivity. For this, we Perimentswe sét/,,s; = 0.5. We also adjust the confidence
adopt a metric originally proposed by Riloff [11] to evaluate ©f already-seen tuples in an analogous way.

extraction patterns generated by the Autoslog-TS informa-
tion extraction system, and defii@nf . (P) of pattern

P as follows.

COTLf(P) = Confnew (P)'Wupdt+confold (P)'(]'_Wupdt)

After determining the confidence of the candidate tuples us-
ing the definition aboveSnowballdiscards all tuples with
low confidence. These tuples could add noise into the pat-
tern generation process, which would in turn introduce more
invalid tuples, degrading the performance of the system. The
Conf piogr (P) = Conf (P) - log,(P.positive) §et qf tuples to use as the seed in the r@xowbgllitera-

tion is thenSeed = {T'|Conf(T) > 7}, wherer; is some

Definition 4 TheRlogFconfidence of patter® is:

Pattern confidences are defined to have values between 0 anBréspecified threshold.
1. Therefore, we normalize th€onf p,,,» values by divid-

: , For illustration purposes, Table 2 lists three representative
ing them by the largest confidence value of any pattern.

patterns thaSnowballextracted from the document collec-

Having scored the patterns, we are now able to evaluate thelion that we describe in Section 4.1.
new candidate tuples. Recall that for each tuple we store the

set of patterns that produced it, together with the measure of Cinf middle right
L . . <based, 0.53 > <, , 001 >

similarity between the context in which the tuple occurred, <in, 053 >

and the matching pattern. Consider a candidate tiipded =042 S <s, 042 S

the set of pattern® = {P;} that were used to generdfe 0.69 | < headquarters, 0.42 >

Let us assume for the moment that we know the probability <in, 0.12 >

Prob(P;) with which each patter®; generates valid tuples. 0.61 <(, 0.93 > <), 0.12 >

If these probabilities are independent of each other, then the

probability thatl" is valid, Prob(T'), can be calculated as: Table 2: Actual patterns discovered by ~ Snowball

P (For each pattern the left vector is empty, tagl=

ORGANIZATIONand tag2= LOCATION
Prob(T) = 1-[[(1- Prob(R)) and tag )

=0



3 EVALUATION METHODOLOGY AND METRICS cision) and what fraction of the tuples Ideal are in Ex-
The goal ofSnowballis to extract as many valid tuples as tracted (recall). Unfortunately, a large collection will con-
possible from the text collection and to combine them into tain many more tuples that are contained in any single manu-
one table. As we have discussed, we do not attempt to cap-ally compiled directory. (In our estimate, our training collec-
ture everyinstanceof such tuples. Instead, we exploit the tion contains more then 80,000 valid organization-location
fact that these tuples will tend to appear multiple times in the tuples.) If we just calculated precision as above, all the valid
types of collections that we consider. As long as we capture tuples extracted bgnowball which are not contained in our
one instance of such a tuple, we will consider our system to Ideal set, will unfairly lower the reported value of precision
be successful for that tuple. This is different from the goal for the system.
of traditional information extraction [1]. Traditional infor- ) .
mation extraction systems aim at extracting all the relevant 10 @ddress this problem we create a new talbta, as the
information fromeach documeras completely as possible, 10N of tablesidealandExtractedon a unique key (i.e., orga-
while our system extracts tuples from all of the documents in MiZation). For each t“E’I@ :</0’/€ > in theldealtable, we
the collection and combines them into one table. To evalu- find & matching tupl@/ =< 0',{' > in the Extractedtable
ate this task, we adapt the recall and precision metrics from (if ), such thab =~ o. (We describe how to deal with vari-
information retrieval to quantify how accurate and compre- ations in the organization names in Seclt|on 3.3.) Using Fhese
hensive oucombined table of tuplés. Our metric for eval-  V2lUes, we now create a new tupteo, ¢, £ > and include it
uating the performance of an extraction system over a collec- N theJointable.
tion of documentd is based on determininigleal, the set
of all the tuples that appear in the collectibn(Section 3.1).
After identifyingldeal, we compare it against the tuples pro-
duced by the systenkxtracted using the adapted precision
and recall metrics (Section 3.2). z‘i‘g’”' [6; =]
Recall = &2 !
3.1 Methodology for Creating the  Ideal Set |[Ideal]|

For small text collections, we could inspect all documents
manually and compile thédeal table by hand. Unfortu-

nately, this evaluation roach n le, an m .
ately, this evaluation approach does not scale, and beco enumeratonsthenumberot)rrecttuplesoftheldealsetthat

infeasible for the kind of large collections over whighow- . L :
ball is designed to operate. To address this problem, we start"® extracted, which we divide by the size of tieal table

by considering a large, publicly available directory of 13,000 to obtain our recall. Similarly, we defirférecisionas:
organizations provided on the “Hoover’s Online” web ite

Given the tablddeal and theJoin table that we have just
created, we can define recall and precision more formally.
We defineRecallas:

-100% (1)

where f; = /] is equal to 1 if the test valué; matches
%he extracted valug, and 0 otherwise. Thus, the sum in the

From this well structured directory, we generate a table of Precision = =i=0_1* — 7l 1009 2)
organization-location pairs. Unfortunately, we cannot use | Join|

this table as is, since some of the organizations in it might

not occur at all in our collection. An alternative to using ouldeal metric to estimate preci-

To determine the target set of tuplésal from the Hoover's- sion could be to sample the extracted table, and check each
value in the sample tuples by hand. (Similarly, we could es-

compiled table above, we need to keep only the tuples that’ h llof th b lina d i th
have the organization mentioned together with their location t|mate.t erecall of t gsystem y sampiing ocuments_lnt ©
collection, and checking how many of the tuples mentioned

in a document. To find all such instances, we identify all the | h q h di B ling th
variations of each organization name in the Hoover's table as'N those documents the system iscovers.) By sampling the

they may appear in the collection, and then check if the head_extracted table we can detect invalid tuples whose organiza-

quarters of the test organization are mentioned nearby. welion is not mentioned in the Hoover’s directory that we used

used Whirl [4], a research tool developed at AT&T Research f[o dlgéermlrddﬁal, for e;x?mple. 3'”(;"3”% we can detect
Laboratories for integrating similar textual information, to invalid tuples that result from named-entity tagging errors.

match each organization name, as it occurs in the coIIection,genge' vg/e also report precision estimates using sampling in
to the organization in the Hoover's table. ection 5.

3.2 The Ideal Metric 3.3 Matching Location and Organization Names

A problem with calculating thédeal metric above is intro-
duced by the proliferation of variants of organization names.
We combine all variations into one, by usingedf-joinof the
Extractedtable with itself. We use Whirl to match the orga-
nization names to each other, to create the t&eacted:

We pick an arbitrary variation of the organization name,
Lhttp://www.hoovers.com as the “standard,” and pick a locatiah, ., from the set of

Now that we have created thdeal table, we can use it to
evaluate the quality of th&nowballoutput, theExtractedta-

ble. If the initial directory of organizations from Hoover’s
contained all possible organizations, then we could just mea-
sure what fraction of the tuples Extractedare inldeal (pre-




matching organization-location tuples, with the highest con-
fidence value. We then insert the tuplev,, £,,,4, > into the
Extracted’table.

Similarly, we need to decide when the location extracted for
an organization is correct. For example, our system might
conclude that California is the location of the headquarters of
Intel. This answer is correct, although not as specific as could
be. Our scoring system will in fact consider a tuplntel,
California> as correct. Specifically, we consider tuple

< o,¢ > to be valid if (a) organization is based in the U.S.
and/ is the city or state where’s headquarters are based;
or (b) organizatiow is based outside of the U.S. afd the

city or country where's headquarters are based.

4 EXPERIMENTAL SETTING

We describe the training and text collections that we used
for experiments in Section 4.1. We also enumerate the dif-
ferent extraction methods that we compare experimentally
(Section 4.2).

4.1 Training and Test Collections

Our experiments use large collections of real newspapers fro
the North American News Text Corpus, available from LBC
This corpus includes articles from the Los Angeles Times,
The Wall Street Journal, and The New York Times for 1994
to 1997. We split the corpus into two collections: training
and test. Theraining collection consists of 178,000 doc-
uments, all from 1996. Theestcollection is composed of
142,000 documents, from 1995 and 1997.

Both Snowballand DIPRE rely on tuples appearing multiple
times in the document collection at hand. To analyze how
“redundant” the training and test collections are, we report
in Table 3 the number of tuples in thdeal set for each fre-
guency level. For example, 5455 organizations inlthesal

set are mentioned in the training collection, and 3787 of them
are mentioned in the same line of text with their location at
least once. So, if we wanted to evaluate how our system
performs on extracting tuples that occur at least once in the
training collection, thddeal set that we will create for this
evaluation will contain 3787 tuples.

Organization-Location Pairs
Occurrences | Training Collection| Test Collection
0 5455 4642
1 3787 3411
2 2774 2184
5 1321 909
10 593 389

Table 3: Occurrence statistics of the test tuples in
the experiment collections.

The first row of Table 3, corresponding to zero occurrences,
deserves further explanation. If we wanted to evaluate the

2http:/iwww.ldc.upenn.edu

performance of our system @il the organizations that were
mentioned in the corpus, even if the appropriate location never
occurred near its organization name anywhere in the collec-
tion, we would include all these organizations in ¢deal

set. So, if the system attempts to “guess” the value of the
location for such an organization, any value that the system
extracts will automatically be considered wrong in our eval-
uation.

4.2 Evaluating Alternative Techniques

We compare&nowballwith two other techniques, tHgase-

line method and our implementation of the DIPRE method.
These two methods require minimal or no training input from
the user, and hence are comparable \Bittowballin this re-
spect. In contrast, state-of-the-art information extraction sys-
tems require substantial manual labor to train the system, or
to create a hand-tagged training corpus.

The first methodBaselingis based purely on the frequency
of co-occurrence of the organization and the location. Specif-
ically, Baselineeports the location that co-occurs in the same
line with each organization most often as the headquarters for

rrt]his organization.

The second method is DIPRE. We did not have access to
its original implementation, so we had to re-implement it
and adapt it to our collections. The original DIPRE imple-
mentation usesrlprefixto restrict pattern generation and ap-
plication. Since all of our documents came from just three
sources, DIPRE was not able to exploit this feature. The sec-
ond, more important modification had to do with the fact that
DIPRE was designed to extract tuples from HTML-marked
data. Without HTML tags, DIPRE could not find occur-
rences of the seed tuples in plain text that were surrounded
by exactly the same non-empty contexts. To solve this prob-
lem, we used the named-entity tagger to pre-tag the input to
DIPRE. This way, all the organizations and locations were
consistently surrounded by named-entity tags. DIPRE could
then generate patterns that take advantage of these tags. The
results we report aneotfor the original DIPRE implementa-
tion, but rather for our adaptation for tagged documents.

4.3 Snowball

We explored the best parameter valuesSaowballby run-

ning the system on the training corpus. Parameters we exper-
imented with include:

e Use of Punctuation We experimented with discarding
punctuation and other non-alphanumeric characters from the
contexts surrounding the entities. Our hypothesis was that
punctuation may just add noise and carry little content to help
extract tuples. We report results f8nowballandSnowball-
Plain, whereSnowballuses punctuation, arghowball-Plain
discards it.

e Choice of Pattern Scoring StrategiesWe tried variations

on the basic framework for weighing patterns, as described
in Section 2, with or without using thelogFmetric of [11].



Parameter| Value | Description iterations forSnowball-Plainbecause it converged after the

Tsim 0.6 minimum degree of match (Section 2.1) | second iteration (i.e., it did not produce any new seed tuples).
Tt 0.8 minimum tuple confidence (Section 2.3) As di d in Section 3.2 [ luati f
i ) minimum pattern support (Section 2.1) s discussed in Section 3.2, we complete our evaluation o

the precision of the extraction systems by manually examin-

Inas 3 number of iterations oSnowball . . X

W, 0.6 weight for themiddlecontext (Section 2.1) N9 @ sample of their output. For this, we randomly selected

Wie rs 0.2 weight for theleft context (Section 2.1) 100 tuples from each of the extracted tables, and checked

W‘ff} . 0'2 weight for theright context (Section '2 1) whether each of these tuples was a valid organization-location
righ . .

pair or not. We separate the errors into three categories: er-
Table 4: Parameter values used for evaluating rors due to mistagging a location and assigning it to a valid
Snowbalbon the test collection. organization (“Location” error), errors due to including a non-
existing organization (“Organization” error), and errors due

e Choice of Pattern Similarity Threshold (7,;,,,): This pa- to deducing an incorrect relationship between a valid orga-
rameter controls how flexible the patterns are, both during the Nization and location (“Relationship” error). These differ-
pattern generation stage (i.e., how similar the occurrences ofént types of errors are significant because they highlight dif-
the example tuples have to be in order to be grouped into oneferent “culprits™ the “Location” and “Organization” errors
cluster), as well as during the tuple extraction stage, where could be prevented if we had a perfect named-entity tagger,
Teim cONtrols the minimum similarity between the context whereas the “Relationship” errors are wholly the extraction
surrounding the potential tuple and a pattern, determining System’s fault (Table 5).

whether a tuple will be generated.

e Choice of Tuple Confidence Threshold+{;): This thresh-

old determines the minimum confidence a tuple must have to
be included in the seed set to start the next iteration.

The last column in Table 5H;4..;) is precision, calculated

by ignoring the “Organization” errors and computing the frac-
tion of valid organizations for which a correct location was
found. These values correspond to the values of precision we
5 EXPERIMENTAL RESULTS would have calculated if oudealtable included all the valid

In this section, we experimentally compare the performance ©rganizations in the random samples. These figures, how-
of Snowballand the alternative techniques that we discussed Ve, do not capture invalid tuples generated due to improper

in Section 4.2. Our experiments use the training and test col-1299ing of a string as an organization. From our manual in-
lections of Section 4.1. We ran experiments on the training SPection of a random sample of 100,tuples from each ex-
collection to determine the optimal pattern scoring strategy, (racted table, we observed that DIPRE’s sample contained 74

correct tuples and 26 incorrect on&nowbalk sample con-
tained 52 correct tuples and 48 incorrect tuples, whadse-

line has a majority of incorrect tuples (25 vs. 75). As we can
see from the breakup of the errors in the table, virtually all
As we discussed, the only input to tBaowballsystem dur- of Snowbalk errors are tagging related (i.e., “Location” or
ing the evaluation on the test collection were the five seed “Organization” errors). If we prune tignowbalk final out-
tuples of Table 1. All the extraction patterns were learned put to only include those tuplgswith Conf (t) > 0.8 = 7,
from scratch by running thBnowballsystem using the op-  then most of these spurious tuples disappear. In effect, from
erational parameters listed in Table 4, which worked best on a random sample of 100 tuples from this pruned table, 93 tu-
the training collection. The normalize®logF metric was ples are valid and only 7 are invalid. Furthermore, none of
used to score patterns for generating the set of seed tuples fothe invalid tuples are due to “Relationship” errors (third row
the next iteration. The results are reported in Figure 5. The of Table 5).

plot shows the performance of the systems as we attempt to

extract test tuples that are mentioned more times in the cor-S0 far, the resuits that we have reported Smowballare
pus. As we can se&Snowballperforms increasingly well based on a table that contains all the “candidate” tuples gen-

as the number of times that the test tuples are required to€rated duringnowbalk last iteration. As we saw in Table 5,
be mentioned in the collection is increased. While DIPRE the precision oSnowbalk answer varies dramatically if we
has better precision th&Bnowballat the 0-occurrence level ~ Prune this table using the tuple confidence threshrldOf
(72% vs. 67% foSnowbal), Snowbalhas at all occurrence ~ COUrSe, thlsilast-step pruning is likely to result in Iowerre'cgll
levels significantly higher recall than DIPRE aBaseline values. In Flgu_re7we explore the_tradeoff betweep precision
do. We also observe that punctuation matters. The recall 0fand recall for different values of this last-step pruning thresh-

Snowball-Plairis significantly lower than that nowball old. A user who is interested in high-precision tables might
want to use high values for this threshold, while a user who is

Figure 6 shows thanowbalk results are stable over subse- interested in high-recall tables might want to use lower val-
guent iterations of the algorithm. In contrast, DIPRE quickly ues of the threshold. For example, by setting= 0.4 and
diverges, since it has no way to prevent unreliable tuples from filtering the Extractedtable accordingly, we estimate the ab-
being seed for its next iteration. We report data for only two solute precision oSnowbalk output to be 76% and recall

optimal values fofrg;,, 7¢, Tsup, @and the optimal weight dis-
tribution Wies, Winidadie, andWiiq, for the left, middle, and
right context vectors of each pattern.
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Baseline DIPRE, Snowballand Snowball-Plairas a function of the number

Type of Error
Correct | Incorrect | Location | Organization| Relationship| Prgea:
DIPRE 74 26 3 18 5 90%
Snowball(all tuples) 52 48 6 41 1 88%
Snowball(; = 0.8) 93 7 3 4 0 96%
Baseline 25 75 8 62 5 66%

Table 5: Manually computed precision estimate, derived from a random sample of 100 tuples from each extracted

table.
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to be 45%, both of which are higher than the corresponding
metrics of DIPRE’s output.

In summary, bottsnowballand DIPRE show significantly
higher precision thaBaseline In effect, Baselinetends to
generate many tuples, which results in high recall at the ex-
pense of low precisionSnowbalk recall is at least as high
as that oBaselindor most of the tests, with higher precision
values. Snowbalk recall is generally higher than DIPRE's,
while the precision of both techniques is comparable.

6 CONCLUSIONS AND FUTURE WORK

This paper presentSnowball a system for extracting rela-
tions from large collections of plain-text documents that re-
quires minimal training for each new scenario. We intro-
duced novel strategies for generating extraction patterns for
Snowbal] as well as techniques for evaluating the quality of
the patterns and tuples generated at each step of the extrac-
tion process. Our large-scale experimental evaluation of our
system shows that the new techniques produce high-quality
tables, according to the scalable evaluation methodology that
we introduce in this paper. Our experiments involved over
300,000 newspaper articles.

We only evaluated our techniques on plain text documents,
and it would require future work to adopt our methodology
to HTML data. While HTML tags can be naturally incor-
porated intdSnowbalk pattern representation, it is problem-
atic to extract named-entity tags from arbitrary HTML doc-
uments. State-of-the-art taggers rely on clues from the text
surrounding each entity, which may be absent in HTML doc-
uments that often rely on visual formatting to convey infor-
mation. On a related note, we have assumed throughout that
the attributes of the relation we extract (i.e., organization and
location) correspond to named entities that our tagger can
identify accurately. As we mentioned, named-entity taggers
like Alembic can be extended to recognize entities that are
distinct in a context-independent way (e.g., numbers, dates,
proper names). For some other attributes, we will need to
extendSnowballso that its pattern generation and matching
could be anchored around, say, a noun phrase as opposed tg
a named entity as in this paper. In the future, we will also
generalizesnowballto relations of more than two attributes.
Finally, a crucial open problem is how to generalize our tuple
and pattern evaluation strategy of Section 2.3 so that it does
not rely on an attribute being a key for the relation.
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