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Abstract

In many applications, users specify target val-
ues for certain attributes, without requiring
exact matches to these values in return. In-
stead, the result to such queries is typically
a rank of the “top k” tuples that best match
the given attribute values. In this paper, we
study the advantages and limitations of pro-
cessing a top-k query by translating it into a
single range query that traditional relational
DBMSs can process efficiently. In particular,
we study how to determine a range query to
evaluate a top-k query by exploiting the statis-
tics available to a relational DBMS, and the
impact of the quality of these statistics on the
retrieval efficiency of the resulting scheme.

1 Introduction

Internet Search engines rank the objects in the results
of selection queries according to how well these ob-
jects match the original selection condition. For such
engines, query results are not flat sets of objects that
match a given condition. Instead, query results are
ranked starting from the top object for the query at
hand. Given a query consisting of a set of words, a
search engine returns the matching documents sorted
according to how well they match the query. For
decades, the information retrieval field has studied how
to rank text documents for a query both efficiently
and effectively [13]. In contrast, much less attention
has been devoted to supporting such top-k queries over
relational databases.

As the following example illustrates, top-k queries
arise naturally in many applications where the data
is exact, as in a traditional relational database, but
where users are flexible and willing to accept non-exact
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matches that are close to their specification. The an-
swer to such a query is a ranked set of the k tuples
in the database that “best” match the selection con-
dition.

Example 1 : Consider a real-estate database that
maintains information like the Price and Number of
Bedrooms of each house that is available for sale. Sup-
pose that a potential customer is interested in houses
with four bedrooms, and with a price tag of around
$300, 000. The database system should then rank the
available houses according to how well they match the
given user preference, and return the top houses for the
user to inspect. If no houses match the query specifi-
cation exactly, the system might return a house with,
say, five bedrooms and a price tag close to $300, 000
as the top house for the query.

Unfortunately, despite the conceptual simplicity
of top-k queries and the expected performance pay-
off, they are not yet supported by today’s relational
database systems. This support would free applica-
tions and end-users from having to add this function-
ality in their client code. To provide such support effi-
ciently, we need processing techniques that do not in-
volve full sequential scans of the underlying relations.
The challenge in providing this functionality is that
the database system needs to handle efficiently top-k
queries for a wide variety of scoring functions . In ef-
fect, these scoring functions might change by user, and
they might also vary by application, or by database.
It is also important that we are able to process such
top-k queries with as few extensions to existing query
engines as possible, since today’s relational systems
are significantly complex and performance sensitive.

As in the case of processing traditional selection
queries, one must consider the problem of execution
as well as optimization of top-k queries. We assume
that the execution engine is a traditional relational
engine that supports single as well as possibly multi-
dimensional indexes. Therefore, the key challenge is to
augment the optimization phase such that top-k selec-
tion queries may be compiled into an execution plan
that can leverage the existing data structures (i.e., in-
dexes) and statistics (e.g., histograms) that a database
system maintains. Simply put, we need to develop new
techniques that make it possible to map a top-k query
into a traditional selection query. It is also important



that any such technique preserves the following two
properties: (1) it handles a variety of scoring functions
for computing the top-k tuples for a query, and (2) it
guarantees that there are no false dismissals (i.e., we
never miss any of the top-k tuples for the given query).

In this paper, we undertake a comprehensive study
of the problem of mapping top-k queries into execu-
tion plans that use traditional selection queries. In
particular, we use the database histograms to map a
top-k query to a suitable range that encapsulates k
best matches for the query. In particular, we study
the sensitivity of the mapping algorithms to the fol-
lowing parameters: types of histograms available and
their memory budgets, scoring functions, data distri-
bution, and number of query attributes.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the problem of querying for top-
k matches. Section 3 discusses related work. Section 4
is the core of the paper, and outlines the techniques
that form the basis of our approach. Finally, Section 6
presents an experimental evaluation of our approach,
using the experimental setting of Section 5.

2 Query Model

In a traditional relational system, the answer to a se-
lection query is a set of tuples. In contrast, the answer
to a top-k query is an ordered set of tuples, where the
ordering reflects how closely each tuple matches the
given query. This section defines our query model pre-
cisely.

Consider a relation R with attributes A1, . . . , An.
A top-k query over R simply specifies target values for
the attributes in R. Thus, a query is an assignment of
values v1, . . . , vn to the attributes A1, . . . , An of R. In
this paper, we will focus on top-k queries on contin-
uous attributes (e.g., age, salary). Without loss of
generality, we will also assume that the values of these
attributes are normalized to be real numbers between
0 and 1.

Example 2 : Consider a relation S with two at-
tributes, A1 and A2. These attributes have real values
that range between 0 and 1. An example of top-10
query over this relation is q = (0.4, 0.3). Such a query
asks for the 10 tuples in S that are the closest to the
(0.4, 0.3) point, for some definition of proximity, as we
discuss below.

Given a top-k query q, the database system with
relation R uses some scoring function Score to deter-
mine how closely each tuple in R matches the target
values v1, . . . , vn specified in query q. Given a tuple
t and a query q, we assume that Score(q, t) is a real
number that ranges between 0 and 1. In this paper,
we focus on three important scoring functions, namely
Min , Euclidean , and Sum.

Definition 1: Consider a relation R = (A1, . . . , An).
A1, . . . , An are real-valued attributes ranging between 0
and 1. Then, given a query q = (q1, . . . , qn) and a tuple
t = (t1, . . . , tn) from R, we define the score of t for q
using any of the following three scoring functions:

Min(q, t) =
n

min
i=1
{1− |qi − ti|}

Euclidean(q, t) = 1−

√√√√ n∑
i=1

(qi − ti)2

n

Sum(q, t) = 1−
n∑
i=1

|qi − ti|
n

Example 3 : Consider a tuple t = (0.3, 0.8) in
our sample database S from Example 2, and query
q = (0.4, 0.3). Then, t will then have a score of
Min(q, t) = min{1−|0.3−0.4|, 1−|0.8−0.3|}= 0.5 for
the Min scoring function, a score of Euclidean(q, t) =

1 −
√
|0.3−0.4|2

2 + |0.8−0.3|2
2 = 0.64 for the Euclidean

scoring function, and a score of Sum(q, t) = 1 −
( |0.3−0.4|

2 + |0.8−0.3|
2 ) = 0.7 for the Sum scoring func-

tion.

Figure 1(c) shows the distribution of scores for the
Min scoring function and query q = (0.4, 0.3). The
horizontal plane in the figure consists of the tuples
with z = 0.8, so what “emerges” above this plane are
those tuples with score 0.8 or higher. Note that the
tuples with score 0.8 or higher for q are enclosed in
a box around q. In contrast, the tuples with score
0.8 or higher for the Euclidean scoring function (Fig-
ure 1(b)) are enclosed in a circle around q. Finally,
the top tuples according to the Sum scoring function
lie within a rotated box around q (Figure 1(a)). This
difference in the shape of the region enclosing the top
tuples for the query will have crucial implications on
query processing, as we will discuss in Section 4.

A simple variation of the definition of the scoring
functions above results from letting the different at-
tributes have different weights. In general, the Min ,
Euclidean , and Sum functions that we use in this paper
are just a few of many possible scoring functions. Our
strategy for processing top-k queries can be adapted
to handle a wide variety of such functions, as we will
discuss. The key property that we ask from scoring
functions is as follows:

Property 1: Monotonicity of Scoring Functions:
Consider a relation R and a scoring function Score
defined over it. Let q = (v1, . . . , vn) be a top-k query
over R, and let t = (t1, . . . , tn) and t′ = (t′1, . . . , t

′
n) be

two tuples in R such that |t′i − qi| ≤ |ti − qi| for i =
1, . . . , n. (In other words, t′ is at least as close to q as
t for all attributes.) Then, Score(q, t′) ≥ Score(q, t).

Intuitively, this property of scoring functions im-
plies that if a tuple t′ is closer, along each attribute,
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Figure 1: The scores (z axis) for query q = (0.4, 0.3) for the different (x, y) pairs and scoring functions Sum (a),
Euclidean (b), and Min (c).

to the query values than some other tuple t is, then,
the score that t′ gets for the query cannot be worse
than that of t. Fortunately, all interesting scoring func-
tions that we could think of satisfy our monotonicity
assumptions. In particular, the Euclidean , Min , and
Sum scoring functions that we defined above satisfy
this property.

A possible SQL-like notation for expressing top-k
queries is as follows [3]:

SELECT * FROM R
WHERE A1=v1 AND ... AND An=vn
ORDER k BY Score

The distinguishing feature of the query model is in
the ORDER BY clause. This clause indicates that we are
interested in only the k answers that best match the
given WHERE clause, according to the Score function.
Section 4 discusses how we will evaluate top-k queries
for different definitions of the Score function.

3 Related Work

Motro [9] emphasized the need to support approximate
and ranked matches in a database query language. He
extended the language Quel to distinguish between ex-
act and vague predicates. He also suggested a com-
posite scoring function to rank each answer. Motro’s
work led to further development of the idea of query
relaxation that weakens a given user query to provide
approximate matches using additional metadata (e.g.,
concept hierarchies). The querying model for top-k
queries that we use in this paper is consistent with
Motro’s definitions. Our key focus is on exploring op-
portunities and limitations of efficiently mapping top-k
queries into traditional relational queries.

Recently, Carey and Kossman [1, 2] presented tech-
niques to optimize queries that require only top-k
matches. Their technique leverages the fact that when
k is relatively small compared to the size of the rela-
tion, specialized sorting (or indexing) techniques that
can produce the first few values efficiently should be

used. However, in order to apply their techniques
when the scoring function is not based on column val-
ues themselves (e.g., as is the case for Min , Euclidean ,
and Sum as defined in Section 2), we need to first
evaluate the scoring function for each database ob-
ject. Thus, when a query requests the top-k values
according to a scoring function like Min , their tech-
nique would need to first evaluate the Min score for
every data object. Only after evaluating the score for
each object are we able to use the techniques in [1, 2].
Hence, these strategies require a preprocessing step to
compute the scoring function itself involving one se-
quential scan of all the data. In contrast, in this paper
we explore techniques that avoid accessing the entire
data set.

In [4, 5], Fagin addresses the problem of finding top-
k matches for a user query q involving several multime-
dia attributes. Each of these attributes (e.g., an image
attribute) is assumed to have a native sub-system that
answers top-k queries involving only the corresponding
attribute. In the first phase of Fagin’s A0 algorithm,
the query processing system obtains a stream Li of
top matches for condition ci on attribute Ai from the
corresponding sub-system. When there are at least k
objects in the intersection of all the single-attribute
streams Li, the system is guaranteed to have already
accessed k top objects for query q. (These top objects
are not necessarily in the intersection of the streams.)
The second phase of algorithm A0 computes the score
of each of the retrieved objects, and returns the best
k objects. In Section 4.3, we present an adaptation
of Fagin’s strategy to the case when the top-k query
is issued against a relational database system. In [3],
we presented an algorithm for processing queries over
a multimedia database. Our query model built on Fa-
gin’s to also include Boolean conditions to the top-k
component of the multimedia queries.

There is a large body of work on finding the nearest-
neighbors of a multidimensional data point. Given an
n-dimensional point p, these techniques retrieve the k
objects that are “nearest” to p according to a given



distance metric. The state-of-the-art algorithms (e.g.,
[7]) follow a multi-step approach. Their key step is
identifying a set of points A such that p’s k nearest
neighbors are no further from p than a is, where a
is the point in A that is furthest from p. (A more
recent paper [14] further refines this idea.) This ap-
proach is conceptually similar to the approach that we
follow in this paper (and also in [3]), where we first
find a suitable score S, and then we use it to build a
relational query that will return the top-k matches for
the original query. Our focus in this paper is to study
the practicality and limitations of using the informa-
tion in the histograms kept by a relational system for
query processing. In contrast, the nearest-neighbor al-
gorithms mentioned above use the data values them-
selves to identify a cut-off “score.”

Finally, references [6, 8] study how to merge and
reconcile top-k query results obtained from distributed
databases when the databases use arbitrary, undis-
closed scoring algorithms.

4 Mapping a Top-k Query into a Tra-
ditional Selection Query

This section shows how to map a top-k query q into
a relational selection query Cq that any traditional
RDBMS can execute. Our goal is to obtain k tuples
from relation R that are the best tuples for q accord-
ing to a scoring function Score. Our query processing
strategy consists of the following steps:

1. Use statistics on relation R to find a search score
Sq (Section 4.1).

2. Build a selection query Cq to retrieve all tuples in
R with score Sq or higher for q (Section 4.2).

3. Evaluate Cq over R.

4. Compute Score(q, t) for every tuple t in the an-
swer for Cq.

5. If there are at least k tuples t in the result for
Cq with Score(q, t) ≥ Sq, then output k tuples
with the highest scores. Otherwise, choose a lower
value for Sq and restart the process.

Section 4.3 introduces a related mapping strategy that
does not follow the five steps above, and is an adapta-
tion of Fagin’s A0 algorithm (Section 3).

4.1 Choice of Search Score Sq

The key step for evaluating a top-k query q is deter-
mining score Sq: our algorithm retrieves all tuples t
such that Score(q, t) ≥ Sq. If there are at least k
such tuples, then our algorithm above succeeds in find-
ing the top k matches for q. Otherwise, our choice
of Sq is too high, and hence the query needs to be
restarted with a lower value for Sq. Consequently, we

should choose a value of Sq that is not too low, so that
we do not retrieve too many candidate tuples from
the database, but that is not too high either, so that
we can obtain the top-k tuples without restarting the
query.

Our choice of Sq will be guided by the statistics that
the query processor keeps about relation R. In partic-
ular, we will assume that we have an n-dimensional
histogram H that describes the distribution of values
of R. We discuss this issue further in Section 5.2. Un-
til then, we assume that H consists of a series of non-
overlapping buckets. Each bucket has associated with
it an n-rectangle [a1, b1]× . . .× [an, bn], and stores the
number of tuples in R that lie within the n-rectangle,
together with other information.

For efficiency, our choice of Sq will be based on his-
togram H, and not on the underlying relation R itself.
More specifically, we choose Sq as follows:

a. Create (conceptually) a small, “synthetic” relation
R′, consistent with histogram H. R′ has one dis-
tinct tuple for each bucket in H, with as many
instances as the frequency of the corresponding
bucket.

b. Compute Score(q, t) for every tuple t in R′.

c. Let T be the set of the top-k tuples in R′ for q.
Output Sq = mint∈T Score(q, t).

We can conceptually build synthetic relation R′ in
many different ways. We will study two “extreme”
query processing strategies that result from two possi-
ble definitions of R′.

The first query processing strategy, NoRestarts, re-
sults in a search score Sq that is low enough to guar-
antee that no restarts are ever needed as long as his-
tograms are kept up to date. In other words, Step (5)
above always finishes successfully, without ever hav-
ing to reduce Sq and restart the process. For this, the
NoRestarts strategy defines R′ in a “pessimistic” way:
given a histogram bucket b, the corresponding tuple tb
that represents b in R′ will be as bad for query q as
possible. More formally, tb is a tuple in b’s n-rectangle
with the following property:

Score(q, tb) = min
t∈Tb

Score(q, t)

where Tb is the set of all potential tuples in the n-
rectangle associated with bucket b.

Example 4: Consider our example relation S, with
two attributes A1 and A2, query q = (0.4, 0.3), and
the 2-dimensional histogram H shown in Figure 2(a).
Histogram H has three buckets, b1, b2, and b3. Rela-
tion S has 40 tuples in bucket b1, 5 tuples in bucket
b2, and 55 tuples in bucket b3. As explained above,
the NoRestarts strategy will “build” relation S′ based
on H by assuming that the tuple distribution in S is
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Figure 2: A 3-bucket histogram H and the choice
of tuples representing each bucket that strategies
NoRestarts (a) and Restarts (b) make for query q.

as “bad” as possible for query q. So, relation S′ will
consist of three tuples (one for each bucket in H) t1,
t2, and t3, which are as far from q as their correspond-
ing bucket boundaries permit. Tuple t1 will have a
frequency of 40, t2 will have a frequency of 5, and t3
will have a frequency of 55. Assume that the user who
issued query q wants to use the Min scoring function
to find the top 10 tuples for q. Since Min(q, t1) = 0.3,
Min(q, t2) = 0.6, and Min(q, t3) = 0.4, to get 10 tuple
instances we need the top tuple, t2 (frequency 5), and
t3 (frequency 55). Consequently, the search score Sq
will be Min(q, t3) = 0.4. From the way we built S′,
it follows that the original relation S is guaranteed to
contain at least 10 tuples with score Sq = 0.4 or higher
for query q. Then, if we retrieve all of the tuples with
that score or higher, we will obtain a superset of the
set of top-k tuples for q.

Lemma 1: Let q be a top-k query over a relation
R. Let Sq be the search score computed by strategy
NoRestarts for q. Then, there are at least k tuples t
in R such that Score(q, t) ≥ Sq.

The second query processing strategy, Restarts, re-
sults in a search score Sq that is highest among those
search scores that might result in no restarts. This
strategy defines R′ in an “optimistic” way: given a
histogram bucket b, the corresponding tuple tb that
represents tb in R′ will be as good for query q as possi-
ble. More formally, tb is a tuple in b’s n-rectangle with
the following property:

Score(tb, q) = max
t∈Tb

Score(q, t)

where Tb is the set of all potential tuples in the n-
rectangle associated with bucket b.

Example 4: (cont.) The Restarts strategy will now
build relation S′ based on H by assuming that the
tuple distribution in S is as “good” as possible for
query q (Figure 2(b)). So, relation S′ will consist of
three tuples (one per bucket in H) t1, t2, and t3, which

10 NoRestarts Restarts

Inter1 Inter2

Figure 3: The four strategies for computing the search
score Sq.
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Figure 4: The circle around query q = (0.4, 0.3) con-
tains all of the tuples with Euclidean score of 0.8 or
higher for q.

are as close to q as their corresponding bucket bound-
aries permit. In particular, tuple t2 will be defined
as q proper, with frequency 5, since its corresponding
bucket (i.e., b2) has 5 tuples in it. After defining the
bucket representatives t1, t2, and t3, we proceed as
in the NoRestarts strategy to sort the tuples on their
score for q. For Min , we pick tuples t2 and t3, and
define Sq as Min(q, t3). This time it is indeed possible
for fewer than k tuples in the original table S to have
a score of Sq or higher for q, so restarts are possible.

The Sq score that Restarts computes is the highest
score that might result in no restarts in Step (5) of the
algorithm above. In other words, using a value for Sq
that is higher than that of the Restarts strategy will
always result in restarts. In practice, as we will see in
Section 6, the Restarts strategy results in restarts in
virtually all cases, hence its name.

Lemma 2: Let q be a top-k query over a relation
R. Let Sq be the search score computed by strategy
Restarts for q. Then, there are fewer than k tuples t
in R such that Score(q, t) > Sq.

In addition to the two extreme score-selection
strategies NoRestarts and Restarts, we will study two
other intermediate strategies, Inter1 and Inter2 (Fig-
ure 3). Given a query q, let Sq be the search score
selected by NoRestarts for q, and let S′q be the corre-
sponding score selected by Restarts. Then, the Inter1
strategy will choose score 2×Sq+S′q

3 , while the Inter2

strategy will choose a higher score of
Sq+2×S′q

3 . As our
experiments will show, Inter1 and Inter2 are often the
best strategies that we can follow in terms of the effi-
ciency of the resulting techniques.



4.2 Choice of Selection Query Cq

Once we have determined the search score Sq (Sec-
tion 4.1), the algorithm in Section 4 uses a query Cq
to retrieve all tuples t such that Score(q, t) ≥ Sq, where
q is the original top-k query, and Score is the scoring
function being used. In this section we describe how
to define query Cq.

Ideally, we would like to ask our database system
to return exactly those tuples t such that Score(q, t) ≥
Sq. Unfortunately, indexing structures in relational
DBMSs do not natively support this kind of predicates,
as discussed in Section 3. Our approach is to build Cq
as a simple selection condition defining an n-rectangle.
In other words, we define Cq as a query of the form:

SELECT * FROM R
WHERE (a1<=A1<=b1) AND ... AND (an<=An<=bn)

The n-rectangle [a1, b1] × . . . × [an, bn] in Cq should
tightly enclose all tuples t in R with Score(q, t) ≥ Sq.

Example 5 : Consider our example query q =
(0.4, 0.3) over relation S, with Euclidean as the scor-
ing function. Suppose that our search score Sq is 0.8,
as computed by any of the strategies in Section 4.1.
Each tuple t with Euclidean(q, t) ≥ 0.8 lies in the
circle around q that is shown in Figure 4. Then,
the tightest n-rectangle that encloses that circle is
[0.12, 0.68]× [0.02, 0.58]. Hence, the final SQL query
Cq is:

SELECT * FROM S
WHERE (0.12<=A1<=0.68) AND (0.02<=A2<=0.58)

Given a search score Sq, the n-rectangle [a1, b1]× . . .×
[an, bn] that determines Cq follows directly from the
scoring function used, the search score Sq, and the
query q.

Example 5: (cont.) Let us assume that the search
score for our query q = (0.4, 0.3) is Sq = 0.8, as
above. We calculate the 2-rectangle that encloses all
tuples with 0.8 score or higher by focusing on one at-
tribute at a time. First, consider a tuple r = (t1, 0.3)
that has the same attribute values as query q in all
attributes except for maybe attribute A1. We will
compute the range of values that t1 can have while
Euclidean(q, r) ≥ 0.8. In effect, Euclidean(q, r) =

Euclidean((0.4, 0.3), (t1, 0.3)) = 1 −
√

(t1−0.4)2

2 . Con-
sequently, Euclidean(q, r) ≥ 0.8 if and only if 0.12 ≤
t1 ≤ 0.68. Hence, the range of values that attribute A1

can take is [a1, b1] = [0.12, 0.68]. Analogously for at-
tribute A2, [a2, b2] = [0.02, 0.58]. Putting both pieces
together, the final 2-rectangle that encloses all tuples
with score 0.8 or higher for q is [0.12, 0.68]×[0.02, 0.58]
(Figure 4).

Score a′i b′i
Min qi − (1.0− Sq) qi + (1.0− Sq)
Sum qi − (1.0− Sq) · n qi + (1.0− Sq) · n

Euclidean qi − (1.0− Sq) ·
√
n qi + (1.0− Sq) ·

√
n

Table 1: The n-rectangle [a1, b1]× . . .× [an, bn] for Cq’s
selection condition and search score Sq, for different
scoring functions, where ai = max{0, a′i} and bi =
min{1, b′i}.

Table 1 summarizes how to compute the n-rectangle
[a1, b1] × . . . × [an, bn] for the three scoring functions
from Section 2. The Min scoring function presents
an interesting property: the region to be enclosed by
the n-rectangle is already an n-rectangle. (See Fig-
ure 1(c).) Consequently, the query Cq that is gen-
erated for Min for query q and its associated search
score Sq will retrieve only tuples with a score of Sq or
higher. This property will result in efficient executions
of top-k queries for Min , as we will see. Unfortunately,
this property does not hold for the Sum and Euclidean
scoring functions (Figures 1(a) and (b)).

4.3 An Alternative Mapping Strategy

This section adapts Fagin’s A0 algorithm (Section 3)
to produce a new technique for mapping a top-k query
into a traditional relational query. Unlike the Sec-
tion 4.2 strategies, the selection query resulting from
this new mapping is a disjunction, not a conjunction.

Our goal is, again, to build a “one-shot” relational
query that avoids restarts whenever possible. We pro-
ceed as in strategy NoRestarts (Section 4.1) to build
a “database” with one tuple representing each bucket
in the available n-dimensional histogram. We find the
top “tuples” as in the NoRestarts strategy. We then
compute an n-rectangle F = [a1, b1]× . . . [an, bn] that
encloses these top tuples tightly, and that has been
extended so that it is “symmetric” with respect to the
given query q. (In other words, ai ≤ qi ≤ bi and
bi−qi = qi−ai, for i = 1, . . . , n.) The tuples matching
range [ai, bi] are the top tuples for q along attribute Ai.
The selection query consists of the disjunction of the
ai ≤ Ai ≤ bi conditions. By retrieving all tuples that
match at least one of these conditions, we retrieve the
top tuples for each of the individual attributes. Fur-
thermore, from the way we constructed F , there will
be at least k tuples matching all n conditions. As with
the original A0 algorithm, we compute the score for all
the one-dimensional matches. The k retrieved tuples
having the highest score for q are the final answer to
the original top-k query. The correctness of this algo-
rithm follows from that of algorithm A0 [4]. Due to
space constraints, we do not discuss this algorithm any
further in this paper.



5 Experimental Setting

We now describe the data sets, histograms, and met-
rics for the experiments of Section 6.

5.1 Data Sets

Our experiments use a real-world data set as well as
synthetic data. The real-world data set is a fragment
of US Census Bureau data, and was obtained from
the University of California, Irvine archive of machine-
learning databases (ftp://ftp.ics.uci.edu/pub/-
machine-learning-databases). The data set has
45,000 rows. Each row is a record for an individ-
ual, with 14 attributes. We picked four continuous
attributes that were especially well suited for our top-
k query model: age, wage, education level, and
hours of work per week. We also scaled down the
attribute values so that the resulting values ranged
between 0 and 1, to simplify our experimental setting.
We refer to this database as the Census database.

In addition to the Census database, we generated a
number of synthetic databases with different data dis-
tributions. For this, we wrote a seed program that is
capable of generating one-dimensional Zipfian distri-
bution [15] with varying “Z” factors. When this fac-
tor is zero, it generates a uniform distribution. Higher
values result in higher skew. For an n-dimensional
data set, our generation program is parameterized by
(1) a vector of n Z values (one for each attribute),
Zn =< z1, . . . , zn >; (2) the number of tuples to be
generated, N . We created the data corresponding to
a Zn specification as follows. First, we generated a
one-dimensional Zipfian distribution of N tuples for
attribute A1 using Z factor z1. Let us say that for
attribute A1 the value v1 occurred in N1 out of the
N tuples. We now fill in the value for attribute A2

for each of these N1 tuples by generating N1 values
w1, . . . , wN1 using a Zipfian distribution with Z fac-
tor z2. At the end of this step, the first two at-
tributes of the original N1 tuples are filled in with
values (v1, w1), . . . , (v1, wN1). Let us say that this re-
sults in N2 tuples that have v1 and w1 as the values
for attributes A1 and A2, respectively. We then fill
in the remaining attribute values A3, . . . , An for these
N2 tuples in an analogous way as above, using the Z
values z3 through zn.

For our experiments, we generated databases of
100,000 records with n = 2, 3, and 4 attributes. The
domain of each attribute is the real numbers between
0 and 1, with a spacing of 0.00001 between attribute
values. We varied the Zipfian vectors in the genera-
tion of the databases so we obtained databases with a
spectrum of skews. More specifically, Section 6 reports
experiments for three families of databases, Z10, Z21,
and Z32. Z10, Z21, and Z32 represent the skew of
databases built using Zipfian vectors < 1, 0, . . . , 0 >,
< 2, 1, . . . , 1 >, and < 3, 2, . . . , 2 >, respectively. Ta-
ble 2 summarizes the synthetic databases for which we

report experiments in the next section.

n
Data Skew 2 3 4

Z10 100,000 100,000 100,000
Z21 27,022 52,554 66,426
Z32 739 2878 7034

Table 2: The number of distinct tuple values for dif-
ferent data skews and number of attributes n.

5.2 Histograms

As outlined above, we map a top-k query over a ta-
ble R into a relational selection query. To do this
mapping, we exploit the statistics (e.g., histograms)
kept by the relational DBMS where relation R resides.
One of our goals in this paper is to study the effect
on our mapping of the different n-dimensional his-
togram structures proposed in the literature. These
structures rely on an underlying strategy for building
one-dimensional histograms. In this paper we focus
on the AVI , PHASED , and MHIST -p n-dimensional
techniques, with MAXDIFF as the underlying one-
dimensional strategy [11, 12]. Below we briefly de-
scribe these structures. We refer the reader to [11, 12]
for a detailed discussion.

Constructing a MAXDIFF histogram on an at-
tribute of a relation is logically a two-step process.
First, the data values are sorted and, for each dis-
tinct value, its frequency of occurrence is calculated.
Let the sorted values be v1, . . . , vn with corresponding
frequencies f1, . . . , fn. We can then define frequency-
gap(i) = |fi+1 − fi|. This function records the differ-
ence in frequency of attribute values vi and vi+1. The
bucket boundaries are placed at those attribute values
that correspond to the highest values of the frequency-
gap function. The MAXDIFF histogram structure has
been shown to have a good trade-off between accuracy
and building cost [12]. For the experiments that we
report in the next section, we have implemented n-
dimensional variants of MAXDIFF histograms using
the AVI , PHASED , and MHIST -p techniques, as de-
scribed in [11].

The AVI technique for constructing an n-
dimensional histogram is to simply assume statistical
independence of the one-dimensional attributes. Thus,
to determine the fraction of data in an n-dimensional
bucket, we multiply the fraction of the data in each
one-dimensional projection of the bucket.

The PHASED technique for constructing an n-
dimensional histogram consists of n steps. In the first
step, one of the dimensions is used to partition the
dataset into k1 buckets. In the jth step, each of the
buckets obtained at the end of the previous step is
divided into kj buckets along one of the unused di-
mensions. The order in which dimensions are chosen
is determined prior to doing any of the partitioning.



For each dimension (attribute), we compute the vari-
ance in the frequency of values on that dimension. We
then choose the attributes for partitioning the buck-
ets in descending order of their variance. This order
reflects the criticality for separating the values in buck-
ets. This technique for constructing n-dimensional his-
togram was first used in [10] in the context of equi-
depth histogram structures.

The MHIST -p technique for constructing an n-
dimensional histogram is an adaptation of the
PHASED approach. More specifically, during the jth
step (see the description of PHASED above), we de-
termine the bucket in most need of partitioning, and
we partition it along the attribute that exhibits the
highest variance in frequency within the bucket. The
factor p designates the number of buckets into which
each bucket is split at every step.

The performance of our mapping techniques (Sec-
tion 4) depends on the accuracy of the available his-
tograms. The accuracy of a histogram depends in turn
on the technique with which it was generated, and on
the amount of memory that has been allocated for it.
In our experiments, in addition to trying several his-
togram structures, we also study the effect of varying
memory on the accuracy of histograms. We assume
throughout that histograms are kept up to date with
the data. If histograms are not up to date, then the
performance of our techniques might decrease. How-
ever, the correctness of the answers produced will re-
main unaffected, at the expense of a potentially higher
number of restarts (Section 4).

5.3 Measuring the Efficiency of the Query Ex-
ecution Strategies

A top-k query q will typically involve several at-
tributes. We might have indexes available for a num-
ber of combinations of the query attributes, and the
efficiency of processing the query will be greatly af-
fected by the particular index configuration available.
We focus on two configurations: (a) a single-column in-
dex exists for every attribute mentioned in the query;
or (b) a single n-column index exists, covering all at-
tributes mentioned in the query.

Whenever an n-dimensional index is present, we re-
trieve exactly as many index “entries” as there are tu-
ples in the n-rectangle defining query Cq, as described
in Section 4.2, followed by the actual retrieval of the
k top tuples for q. (The index entries provide all the
information that we need to decide which k tuples are
the ones with the highest score for q.) Alternatively,
when only one-dimensional indexes are available, we
can intersect one or more indexes to determine the
data tuples to be retrieved. When all necessary single-
column indexes are present, this strategy results in no
redundant retrieval of data tuples, as in the case when
an n-dimensional index is available. However, unlike
the case with n-dimensional indexes, we must now pay

the overhead of the index intersection. The cost of the
index intersection can be traded off against the cost of
retrieving redundant data tuples (i.e., data tuples that
do not belong to the n-rectangle of Section 4.2).

For each top-k query q, we measure the number of
objects that match the associated n-dimensional selec-
tion query Cq (Section 4.2). In Section 6, we report
the average over all queries of the number of tuples
retrieved as the fraction of the number of (not nec-
essarily distinct) tuples in the database (% of tuples
retrieved). This metric reveals the tightness of our
mapping of a top-k query into a traditional selection
query. A complementary metric is % of restarts, the
percentage of queries in our workload for which the
associated selection query failed to contain the k best
tuples, hence leading to restarts. (See Step (5) of the
algorithm of Section 4.)

It is important to distinguish between the tightness
of the mapping of a top-k query to a traditional se-
lection query, and the efficiency of execution of the
latter. The tightness of the mapping depends on the
mapping algorithms (Section 4) and on their interac-
tion with the quality of the available histograms. The
efficiency of execution of the selection query produced
by our mapping algorithm depends in turn on the in-
dexes available on the database and on the optimizer’s
choice of an execution plan. The cost estimator in an
optimizer determines the best access path among the
available choices. (These choices include performing
a sequential scan of the data.) In this paper, we will
not discuss further details of efficient execution of se-
lection queries on databases but rather focus on the
problem of mapping top-k queries to selection queries
efficiently using histogram structures.

6 Experimental Results

This section presents experimental results for our tech-
niques of Section 4 for evaluating top-k queries. In par-
ticular, we study the role of several factors on the effi-
ciency of our strategies, including the size and type of
n-dimensional histograms available, the scoring func-
tion used in the queries, and the dimensionality and
skew of the data sets. Our experiments then involve
a large number of parameters, and we tried many dif-
ferent value assignments. For conciseness, we report
results on a default setting where appropriate. This de-
fault setting uses databases built with the Z21 (mod-
erate) skew (Section 5.1), the PHASED technique for
building n-dimensional histograms (Section 5.2), and
allocates 5KB per histogram. For each experiment, we
generated 100 different queries. Each query was cre-
ated by picking each attribute value randomly from
the [0, 1] range. In the default setting, these queries
ask for top 10 tuples (i.e., k = 10). We report results
for other settings of the parameters as well.



Validity of our General Approach

Our general approach for processing a top-k query q
(Section 4.2) is to find an n-rectangle that contains
all the top k tuples for q, and use this rectangle to
build a traditional selection query. Our first experi-
ment studies the intrinsic limitations of our approach,
i.e., whether it is possible to build a “good” n-rectangle
around query q that contains all top k tuples and lit-
tle else. To answer this first question, independent
of any available histograms or search-score selection
strategies (Section 4), we first scanned the database
to find the actual top k tuples for a given query q,
and determined a tight n-rectangle T that encloses all
of these tuples. We then computed what fraction of
the database tuples lies within rectangle T . Table 3
reports these figures. As we can see from the table,
the fraction of tuples that lie in this “ideal” rectan-
gle is extremely low, which validates our approach:
if the database statistics (i.e., histograms) are accu-
rate enough, then we should be able to find a tight
n-rectangle that encloses all the best tuples for a given
query, with few extra tuples.

n
Data Distribution Scoring 2 3 4

Min 0.01 0.01 0.01
Z10 Sum 0.01 0.01 0.01

Euclidean 0.01 0.01 0.01
Min 0.03 0.03 0.02

Z21 Sum 0.04 0.02 0.02
Euclidean 0.04 0.02 0.01

Min 0.38 0.76 0.16
Z32 Sum 0.15 0.05 0.09

Euclidean 0.10 0.04 0.06

Table 3: The percentage of tuples in the database in-
cluded in an n-rectangle enclosing the actual top-k tu-
ples for a query (k = 10; N = 100, 000 tuples).

Effect of Multidimensional Histograms

For this experiment, we considered the AVI ,
PHASED , and MHIST -2 histogram structures (Sec-
tion 5.2). AVI proved to be significantly worse than
MHIST and PHASED since it tended to require
restarts in most cases, while retrieving only an ex-
tremely low fraction of the database tuples. In ef-
fect, the NoRestarts strategy of Section 4.1 guaran-
tees no restarts only in the presence of an accurate
n-dimensional histogram. AVI can only estimate the
holdings of each n-dimensional bucket by assuming
that attributes follow independent distributions. The
results for AVI were so poor that we omit this his-
togram structure from the rest of the discussion.

For PHASED and MHIST , we varied the amount of
storage that we allocated for the histograms. Figure 5
shows the effect of this variation for the Euclidean
scoring function. (The results for Min and Sum are
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Figure 5: The percentage of tuples retrieved, as a
function of the number of bytes dedicated to the n-
dimensional histogram (Euclidean scoring function;
n = 3; Z21 data distribution).

analogous.) In this figure, we report the results for
the NoRestarts and the Inter1 policies of Section 4.1.
When we increase the histogram size from 1KB to
5KB, there is a sharp improvement in the efficiency
of our technique, as evidenced by the drop in the
percentage of tuples retrieved. PHASED performs
(marginally) better than MHIST and therefore for
the rest of this section we report results mainly using
PHASED . Although higher memory allocation clearly
increases accuracy, as shown by the figures, we decided
to settle on a 5KB budget for each histogram in the
rest of this paper.

Effect of Different Scoring Functions

The goal of this experiment is to measure the differ-
ences among scoring functions as the data skew and
the number of dimensions are varied (Section 5.1).
Figure 6 shows that, as the data skew increases, the
percentage of tuples retrieved decreases sharply and
consistently across all scoring functions. On the other
hand, as the number of attributes n is increased (Fig-
ure 7), the performance of our techniques drops. Inter-
estingly, the Min scoring function copes significantly
better with the increase in n than the other scoring
functions. As mentioned in Section 4.2, the shape
of the region containing the top tuples for a query
matches an n-rectangle perfectly, unlike the case for
Sum and Euclidean . The performance of Euclidean ,
though, is better than that of Sum. As can be ob-
served from Table 1 and Figures 1(a) and (b), the size
of the n-rectangle enclosing the top tuples for Sum is
much larger than that for Euclidean (Sections 4.1 and
4.2).

Effect of the Number of Tuples Requested k

Figure 8 studies the effect of increasing k, the number
of tuples requested in a top-k query. As k is increased
from 10 to 100, the performance drops. As in the pre-
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Figure 6: The percentage of tuples retrieved (a), and the percentage of queries that needed restarts (b), for
increasing data skew (PHASED histogram of 5KB; n = 3).
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Figure 9: The percentage of tuples retrieved (a), and the percentage of queries that needed restarts (b), for
increasing data skew (Euclidean scoring function; PHASED histogram of 5KB; n = 3).

vious experiment, the percentage of tuples retrieved
for Min grows the slowest, followed by Euclidean .
The combination of scoring function Sum and the
NoRestarts strategy performs the worst.

Comparing Query Processing Strategies

Figure 9 compares the relative merits of the query pro-
cessing strategies of Section 4.1. At low data skews,
the NoRestarts strategy results in a relatively larger
number of matching tuples. However, as skew in-
creases, the performance of NoRestarts improves sig-
nificantly and dominates that of the other strategies,
since, by definition, it incurs no query restarts with
up-to-date histograms. Strategy Inter1 proves to be a
robust technique, since it maintains good performance
for all data skews.

Effect of Using n-Rectangle Queries

As explained in Section 4.2, we process a top-k query
q by first finding a score Sq and then finding an n-
rectangle that encloses all tuples with a Score of Sq or
higher. Our goal is for the n-rectangle to have as few
“bad” tuples as possible, i.e., as few tuples with Score
lower than Sq as possible. Figure 10 examines this is-
sue by computing the actual number of tuples t with
Score(q, t) ≥ Sq. In other words, we take the score Sq
computed by using a histogram and a query process-
ing strategy (Section 4.1), and we count the tuples in
the database with that score or higher. We can then
compare these numbers against those in Figure 9(a)
to conclude that using n-rectangles for retrieving the
database tuples does not result in a major source of in-
efficiency, since the percentage of tuples in both cases
is quite comparable.

Results for the Census Database

Figure 11 shows how our query processing strategies
perform on the Census data set (Section 5.1). While
none of the strategies resulted in a significant number
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Figure 10: The average number of tuples (as a percent-
age of N) with score Sq or higher (Step (1) of the Sec-
tion 4 algorithm) for increasing data skew (Euclidean
scoring function; PHASED histogram of 5KB; n = 3).

of restarts (hence we do not show the corresponding
plot here), the robustness of strategy Inter1 for in-
creasing histogram size can be seen clearly. The perfor-
mance for the different scoring functions is consistent
with the results obtained for the synthetic databases
described above.

7 Conclusions and Future Work

In this paper, we studied the problem of mapping a
top-k query on a relational database to a traditional
selection query such that the mapping is “tight,” i.e.,
we retrieve as few tuples as possible. Our mapping al-
gorithms exploit the histogram structures and are able
to cope with a wide variety of scoring functions. Our
experiments highlighted the effect of different scoring
functions, data distributions, as well as histogram-
building strategies on the performance of this map-
ping.

Our focus in this paper has been primarily on
queries over continuous attributes. In the future, we
will extend our techniques to handle top-k queries over
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discrete attributes. Another direction for future work
is to explore approaches to support top-k queries with
scoring functions (e.g., Max ) that cannot be mapped
tightly to the family of traditional selection queries
that we used in this paper (Figure 12).
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