IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

1233

Adaptive Deadlock- and Livelock-Free Routing
With all Minimal Paths in Torus Networks

Luis Gravano, Gustavo D. Pifarré, Pablo E. Berman, and Jorge L. C. Sanz, Feliow, IEEE

Abstract—This paper consists of two parts. In the first part, two
new algorithms for deadlock- and livelock-free wormhole routing
in the torus network are presented.

The first algorithm, called *-Channels, is for the n-dimensional
torus network. This technique is fully-adaptive minimal, that is, all
paths with a minimal number of hops from source to destination
are available for routing, and needs only five virtual channels
per bidirectional link, the lowest channel requirement known
in the literature for fully-adaptive minimal worm-hole routing.
In addition, this result also yields the lowest buffer require-
ment known in the literature for packet-switched fully-adaptive
minimal routing. The second algorithm, called 4-Classes, is for
the bidimensional torus network. This technique is fully-adaptive
minimal and requires only eight virtual channels per bidirectional
link. Also, it allows for a highly parallel implementation of its
associated routing node.

In the second part of this paper, four worm-hole routing
techniques for the two-dimensional torus are experimentally
evaluated using a dynamic message injection model and different
traffic patterns and message lengths.

Index Terms— Adaptivity, deadlock-freedom, torus network,
livelock-freedom, parallel communication, parallel computer,
performance simulation, worm-hole routing.

I. INTRODUCTION.

ESSAGE routing in large interconnection networks

has attracted a great deal of interest in recent years.
Different underlying machine models have been used and
proposed [11], [43], [42], [46], [34], [47], [28], [38], [22],
(51, (11, [33], [27] .

In terms of message length, several issues have been studied
concerning the ways to handle long messages (of potentially
unknown size) and very short messages (typically of 150-300
bits). In packet-switching routing, the messages are of constant
(and small) size, and they are stored completely in every
node they visit. In [16], a survey of some packet routing
algorithms has been presented. In [14], simulation results have

Manuscript received November 9, 1992; revised March 16, 1994.

L. Gravano is with the Computer Science Department, Stanford University,
Stanford, CA 94305-2140 USA; e-mail: gravano@cs.stanford.edu.

G. D. Pifarré is with the Departamento de Computacién, Fac. de Cien-
cias Exactas y Naturales, Universidad de Buenos Aires, Argentina; e-mail:
pifarre@buevm?2.vnet.ibm.com. He is also with the Advances Solutions and
Innovative Technologies Department, IBM Argentina, Ing. E. Butty 275, 1300
Buenos Aires, Argentina.

P. E. Berman is with ESLAI, Escuela Superior Latino Americana de
Informdtica, CC 3193, (1000) Buenos Aires, Argentina.

J. L. C. Sanz is with the Coordinated Science Laboratory and the Depart-
ment of Electrical and Computer Engineering, University of Illinois at Urbana-
Champaign, Urbana, IL 61801 USA; e-mail: sanz@where.csl.uiuc.edu. He is
also with the Advances Solutions and Innovative Technologies Department,
IBM Argentina, Ing. E. Butty 275, 1300 Buenos Aires, Argentina.

IEEE Log Number 9405075.

been shown comparing a number of different oblivious packet
routing schemes on the hypercube. In worm-hole routing [11],
messages of unknown size are routed in the network. These
messages are never stored completely in a node. Only pieces
of the messages, called flits, are buffered when routing. For
a review of recent worm-hole methods, see [37]. In between
packet-routing and worm-hole lie some hybrid approaches. In
these methods [25], a message is routed by using a worm-hole
technique until it gets blocked in a node by traffic. In this case,
the message is buffered completely in the node, if buffers are
large enough with respect to message length.

Two subjects of long-standing interest in routing are dead-
lock and livelock freedom. Techniques that perform without
deadlocks or livelocks have been shown on different models.
Some algorithms succeed in accomplishing deadlock-free or
livelock-free routing only in a probabilistic sense [28], [41].
In other algorithms, deadlock freedom is guaranteed in a
deterministic sense [35], [18]. Several techniques achieve this
by defining an ordering on the critical resources, and allowing
each message to progress throughout the network by occupy-
ing resources in a strictly monotonic fashion [111, [43], [42],
[26], [3], and [21], [36], among others. This idea results in the
generation of a directed acyclic graph (DAG) of the resources.

A desirable feature of routing algorithms is adaptivity, i.c.,
the ability of messages to use alternative paths toward their
destinations according to traffic congestion in the nodes of
the network. Recent simulations results for packet switching
on the two-dimensional mesh [15] have shown that adaptivity
improves the performance of dynamic injection routing when
compared to oblivious methods. Also, the same conclusion
was obtained by [8] for k-ary n-cubes. However, finding
deterministic and probabilistic bounds for static models of
message injection in adaptive routing is still an open problem
for all cube-type networks.

A fully-adaptive minimal routing scheme is one in which
all possible minimal paths between a source and a destination
are of potential use at the time messages are injected into
the network. Paths followed by the messages depend on the
traffic congestion found in the nodes of the network. Full-
adaptivity is a feature from which one can hope to obtain
the best possible performance if no source of randomization
is used. Full-adaptivity has been used by Upfal in [46] to
produce a deterministic optimal algorithm for routing in the
multibutterfly. Multibutterflies are extremely rich in terms of
the number of minimal paths between any pair of nodes.

New algorithms for deadlock-free worm-hole routing have
been reported in [32], [8], [9], [19], [20], and [13]. Recently,

1045-9219/94$04.00 © 1994 IEEE

1234

some mathematical analyses have been reported on the perfor-
mance of worm-hole oblivious algorithms [44]. The algorithms
in [32] are for k-ary n-dimensional cubes and n-dimensional
mesh-connected networks. These techniques need a number
of virtual channels per link that increases exponentially with
n: in a k-ary n-cube 2"~! virtual networks are needed, each
with n + 1 copies of the network. In [8], a method for
deadlock-free adaptive routing in k-ary n-dimensional cubes
is presented, which can be used for worm-hole routing. The
new technique is based on a dynamic view of the conditions
under which deadlock may arise. Routing of messages is
accomplished by enforcing certain priorities on the use of
virtual channels potentially intervening in deadlock conditions.
In [9], a technique based on the use of multiple independent
lanes associated with each physical link in a routing node is
shown. Given a fixed amount of storage space allocated to
each physical channel, it is shown that breaking the storage
into several buffers is a convenient methodology for improving
network performance. Simulations for worm-hole routing on
a multistage interconnection network are shown. In [20],
fully-adaptive worm-hole algorithms were introduced for a
variety of networks, including the hypercube, together with a
methodology for the design of deadlock-free wormhole routing
techniques. The same fully-adaptive worm-hole algorithm for
the hypercube and a very similar design methodology were
independently presented in [13].

In Section III, a new algorithm for routing on toroidal
networks is presented [20], [2]. The new technique, called *-
Channels, is fully-adaptive, deadlock- and livelock-free, and
requires a very moderate amount of resources in the routing
nodes. The new method is presented for n-dimensional tori. *-
Channels works for messages of unknown size, thus rendering
new routing techniques for both packet-switched and worm-
hole models. It requires 5 virtual channels per bidirectional
link of an n-dimensional torus. This algorithm is the first
one with these characteristics, i.e., fully-adaptive minimal and
deterministically livelock- and deadlock-free, that requires a
number of virtual channels per link that does not depend
on n or the size of the network. Actually, the number of
virtual channels can be made equal to 3 for one of the
dimensions. Thus, the total number of virtual channels per
node is 10(n — 1) + 6 for an n-dimensional torus. This count
compares very favorably with that of the techniques presented
in [32], as explained above. An instance of *-Channels yields
a fully-adaptive minimal deadlock-free worm-hole routing
algorithm for the bidimensional torus using 3 virtual channels
per bidirectional link associated with the X dimension, and 5
virtual channels per bidirectional link associated with the ¥
dimension.

In addition, *-Channels also yields the smallest number
of buffers known in the literature for packet-switched fully-
adaptive minimal routing. For example, a total of 16 buffers
are needed in the node of a two-dimensional torus, and
26 buffers in a three-dimensional torus. Thus, *-Channels
offers an appealing approach to practical implementations of
packet-switched low-dimensional toroidal networks because
of its reduced storage requirement, ensuring freedom from
deadlock and livelock deterministically without any source of

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

randomization, and yet allowing all minimal paths for routing.
Another remarkable characteristic of *-Channels for the packet
model is that no central queue is necessary (o guarantee any
of its properties. These properties make *-Channels a practical
alternative to chaotic routing [4], [29] for two-dimensional and
three-dimensional adaptive torus networks.

In Section IV, a new algorithm for worm-hole routing
on bidimensional torus networks, dubbed 4-Classes [15], is
presented. This new technique is fully-adaptive minimal, and
free of deadlock and livelock in a deterministic sense, and
requires only eight virtual channels per bidirectional link for
its implementation.

Section V presents a comparison of worm-hole algorithms
for the two-dimensional torus. Four algorithms are analyzed
and compared: *-Channels, 4-Classes, Linder-Harden's, and
Oblivious. Although 4-Classes uses more virtual channels than
*_Channels, it allows a node model design with potentially
more parallel logic than that in *-Channels. Linder-Harden’s
algorithm [32], is fully-adaptive minimal, but uses more vir-
tual channels than *-Channels and 4-Classes. The Oblivious
algorithm [11] is oblivious and nonminimal, that is, the path
followed by a message is completely determined by its source
and destination, and the number of hops of this path may be
greater than that of a minimal path. A node model for each
of the algorithms is presented. For a fair comparison of the
four algorithms, the number of virtual channels used by the
different techniques is equalized.

II. DEFINITIONS

Definition 2.1: An n-dimensional k-torus (sometimes re-
ferred to as k-ary n-cube) is a network with &™ nodes. The
n dimensions of the n-dimensional torus will be referred to
as Xn_1, -+, Xo. Each node of the torus will be denoted
by a tuple (zp—1,++-,%o), With 0 < z; < k for all 0 <

i < n, and will be connected to nodes (Zp—_1, -, Tit1, (T +
1) mod k,x;—y1,- -, %), and (Zp—1,- -, Tit1, (z; — 1) mod
k,x;_y,---,x0), forall 0 <7 < n.

The link connecting nodes (%p—1,---,k — 1,--+,2) and
(Zp_1,-++,0,---,30) along dimension X; will be called a
wrap-around link along dimension X;.

The directed link ((Zn—1, " ,Ti, - > To)o(Tno1, - (Ti +
1) mod k,---, o)) corresponds to dimension X;, and will be
referred to as having orientation X"

Analogously, ink ((zn—1, ", %s, * *, Z0)s (a1, -, (Ti—
1) mod k, - - -, zg)), corresponding to dimension X;, will be

referred to as having orientation X .
Dimensions X; and X, of a two-dimensional torus will
often be referred to as X and Y, respectively.

III. ALGORITHM*-Channels

In this section, a fully-adaptive, minimal, deadlock-free,
worm-hole routing algorithm for the n-dimensional k-torus
will be presented. This routing algorithm requires five virtual
channels per bidirectional link for its implementation!, a
number that does not depend on the size or dimension of the

!In fact, only three virtual channels are needed for each bidirectional link
associated with the most significant of the dimensions of the torus network.

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

torus, and allows each message to choose adaptively, step by
step, among all the minimal paths that take it to its destination.
No minimal path is discarded in order to obtain freedom from
deadlock. This algorithm will be referred to as *-Channels.

The central idea in *-Channels is simple. There are basically
two types of virtual channels, as will be explained below:
star channels, and nonstar channels. Messages will move
through the star channels as when doing dimension-order
oblivious routing [11]. The nonstar channels will be used
when taking any of the transitions that would not be allowed
by the dimension-order routing algorithm, thus obtaining full
adaptivity while preserving freedom from deadlock.

Related routing functions presented in the literature have
acyclic channel dependency graphs (CDG). Although this
property is sufficient to guarantee deadlock freedom, it is
not necessary, and can be substantially relaxed: the channel
dependency graph has to be dynamically acyclic {36]. Intu-
itively, the *-Channels algorithm involves two subnetworks,
one composed of star channels and one of nonstar channels.
The star channels implement a complete oblivious subnetwork
that acts as a “release valve” or “drain” for the subnetwork
built from the nonstar channels. The nonstar subnetwork can
deadlock at any time but the star-channel subnetwork acts as
an “escape” from deadlock.

The key idea behind the new algorithm is adding adaptivity
to a routing algorithm based on an acyclic CDG. Starting with
the acyclic CDG, some transitions are added under several
constraints. The restrictions ensure that a message has always
a valid transition in the original CDG as a valid step toward its
destination. This means that if a message can be routed along
a new transition, it will still have the possibility of taking
a transition in the original CDG. Therefore, at any moment,
every message has a path to its destination in the original CDG.
In other words, every message will be able to progress towards
its target node through the underlying DAG. This technique
was used elsewhere for building routing functions over several
networks, but for packet routing only. In [40], fully-adaptive
algorithms for the hypercube and mesh have been presented
for packet-switching routing. These algorithms are deadlock-
free, and can be implemented using only two queues per node.
Recently, the principles shown in [40] have been used for the
same routing model in n-dimensional torus networks by using
three queues per node [6], and this result is optimal for the
given model and network [7]. Unfortunately, the methodology
of [40] and [6] does not apply to worm-hole routing.

Next, the new algorithm will be described. Consider the
directed link:

((Tp_1,, Tiy+++, 20)y (Tne1,++, (®i+1) mod k, - -+, 20)).
This link will have three virtual channels associated with it:

*

ci,+,0,($n—1r-~,(zt'+1)modk,---,zo)’
*

S G L (@nn 1y (4] modk,,zo)r 20D

® Cit(zn_1,(Ti+1)modk, -, z0)"

Analogously, link:

((Tn=1,""*,Fi,++, 20), (Tn—1,- -+, (£ — 1) mod k, - - -, Tg))

1235

will have three virtual channels associated:

° *
i,—,0,(Zn -1, (i —1)modk, -, z0)’
bt

® G 1 (2n1, o (xi—1)modk,,x0)° and
® Ci— (zn_1,(x:i—1)modk, -,z0)"
Channels:

.
Cir+,0,(2n—1, - (zi+1)modk, -, z0)"
kK

* Cirt L (@nm1, (@it) modk, ,20)”

® G 0,(znmt,(zi~1)modk, - z0)’ and
A

® G 1(no1,(@i—1)modk,-,a0)

will be referred to as star channels.

In both cases, the star channels will be used as when doing
dimension-order routing [11]: messages will move through
star channels with prefix i,+,0 while correcting dimension
X; following orientation X~ before taking a wrap-around
link along dimension X;. After taking a wrap-around along
dimension X; following orientation X;", messages will move
through star channels with prefix ,+,1 when correcting
dimension X;.

Now, the routing function R: VirtualChannels x Nodes
— P (VirtualChannels) will be described, where P (Virtu-
alChannels) is the powerset of the set of VirtualChannels. It is
supposed that each node p has an injection channel i, where
p injects the new messages into the network?. Whenever a
message arrives at a channel incident with its destination node,
it is delivered and taken out of the network.

The routing function.>

(c*
44,0, (Tn— 1,0, ®ig 1,%iF1,Ti 1,0 5%0)

ifr;=y;Vy=n—-1,---,i+1and

xigéyiandxi;ék—land

the message has not taken

a wrap-around along

dimension X; yet and

dimension X; should be corrected

following X;"
c;(,+,1,(xn,1,'~,xl+1,0,:v,-_,,---,wa) .

ifz;=y;Vj=n—-1,---,i+1and

z; #y; and z; =k —1 and

dimension X; should be corrected

R(cz,y) = 3 following Xi+

*
Ciy+,1,,(xn—1,"',Ig‘l,zi+1,wi_1,'".$o)
ifz;=y;Vj=n—1,---,2+1and

x; # y; and the message has already
taken a wrap-around
along dimension X; and
dimension X; should be corrected
‘following X

Clots(Tn -1, 5&541,(zj+1)modk,z;_1,,0)
if .’E]' 75 y]'
and dimension X; should be corrected
following X5 j € {n—1,---,0}

2This model, called one-port architecture [23], is not required for the
correctness of the algorithm. Several injection buffers can be used, still
preserving deadlock and livelock-freedom. However, in the torus network
a single injection buffer is enough to define the theoretically achievable
throughput.

3In fact, R(cz,y) is the set of all the virtual channels above whose
corresponding condition on the right hand size is true.

1236 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994
(0,0) (1,0) (2,0) (3,0) (4,0) (5,0) (6,0)
®
(0,1) (4,1) (5,1) (6,1)
(0.2) (4,2) _(5,2) o(6,2)
o [J
(1,3) (2,3) (3,3)
o o
1,4) (2,4) (3,4)
(° ° 1
(3,5) o(4,5) d
o [J
(3,6) (4,6) g
[J ®
* Star channels with prefix i,+,1
—_— Star channels with prefix i,+,0
LIERLLLLIS g Non-star channels
Fig. 1. The paths available in the two-dimensional 7-torus between node (1, 0) and (4, 2) and between node (5, 3) and node (1, 6) with the

*-Channels algorithm.

where ¢, is a virtnal channel incident to node z =
(Tn-1,"",20) and ¥ = (Yn—1,---,¥0) is the destination
of the message. In the definition above, only the equations
for correcting each dimension following the “+” orientation
have been described.

A message will be allowed to correct any of the dimensions
that need correction through nonstar channels. A message will
be allowed to enter a star channel corresponding to dimension
X; only if X; is the most significant dimension the message
needs to correct, and only if the star channel corresponds to the
message’s having taken a wrap-around along that dimension
or not, as explained above.

Consequently, the resulting worm-hole routing algorithm
is fully-adaptive minimal. Moreover, assuming that virtual
channels are assigned fairly, and that messages are of finite
but arbitrary length, this routing algorithm is free of deadlock.
Star channels play the most important role in proving this.

Fig. 1 shows two examples for a two-dimensional 7-torus.
None of the minimal paths between nodes (1,0) and (4,2)
contains a wrap-around link. So, all the star channels po-
tentially used by a message going from node (1,0) to node
(4,2) have prefix ¢,4+,1, with ¢ = 1 or ¢ = 0. Note that
any nonstar channel in a minimal path between the source
node and the destination node can be taken at any moment.
However, the star channels along the Y dimension can only
be used after the X dimension has been totally corrected. For

example, if the message is at node (2, 1), it can take any
of the nonstar channels to nodes (3, 1) and (2, 2), namely
€1,4,(3,1) OF Co 4 (2,2)> respectively. However, cx; 4 1,3,1) 18
the only star channel the message can take, since it has not
finished correcting dimension X yet. The same restrictions
apply to the minimal paths between nodes (5, 3) and (1, 6).
All of these paths contain a wrap-around link along the X
dimension. Consequently, after the message reaches the “edge”
of the torus (nodes (6, 3), (6, 4), (6, 5), and (6, 6)), it can only
proceed through star channels with prefix 1,+,0.

The following definition will be used in the remaining
of this section. The star-channel dependency graph CDG*
= (C*,D*) is defined as follows:

e C* consists of all the star channels.

* (cf,c;) € D* if and only if there exists a message m such
that R builds a path from m’s source node’s injection
channel towards its destination that passes through ¢} and
afterwards through c;.

The main difference between this dependency graph and the
well-known CDG (see [11] and Definition 4.1) is as follows.

1) The nodes of the CDG* graph are a subset of the
channels of the network.

2) Although the nonstar channels are not nodes of the
CDG* graph, they participate in paths that create channel
dependencies: two star channels that are not connected
in the CDG for the dimension-order algorithm may now

GRAVANO ef al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

be connected in the CDG* because of paths containing
nonstar channels. For example, consider star channels
C¥1,4.1,(1,0) and cx1 11,(2,1) in Fig. 1, which originate
in nodes (0, 0) and (1, 1), respectively. These chan-
nels, which correspond to the X dimension and “+”
orientation, are not linked in the CDG for the dimension-
order algorithm. However, the nonstar channel ¢ 4 (1,1)
from node (1, 0) to node (1, 1) establishes a dependency
between them according to the definition above.

The set of all the virtual channels, star and nonstar, will
often be referred to as C.

Lemma 3.1: The star-channel dependency graph CDG" as-
sociated with R is acyclic.

Proof: The proof can be found in Appendix A .

Lemma 3.2: The routing algorithm that results from routing
function R is free of deadlock.

Proof: The proof can be found in Appendix A.

From Lemma 3.1, Lemma 3.2, and R, we have Theorem
3.3.

Theorem 3.3: The *-Channels algorithm yields a worm-
hole routing technique for any n-dimensional torus. The tech-
nique is fully-adaptive, minimal, free of deadlock and livelock
in a deterministic sense, and can be implemented using 5
virtual channels per bidirectional physical link in all but one
of the dimensions where only 3 channels suffice. Thus, the
total number of virtual channels per node is 10(n — 1) -+ 6.

In fact, the above presentation yields an algorithm with
six virtual channels per physical link. However, only five
virtual channels per bidirectional link are necessary. This
is so because the star channels C:s+117(1n—17"'=Iia"'y130) with
x; > |k/2] are never used, because paths are minimal, and
so, each message travels at most |k/2| steps along each
dimension. Channels ¢} . 1 . |20 with z; > |k/2]
would be used by messages that had taken a wrap-around
along dimension X; and orientation X l+ , and moved at least
[k/2] — 1 steps along X;" after the wrap-around. So, entering
such a channel would involve traveling more than |k/2] steps
along dimension X;.

Analogously, channels ¢}
|k/2] are never used.

So, only five virtual channel per bidirectional link
are needed, because channels c;',JﬁO,(zn‘l,_,,,0,..,@0) and
CZ,—,O,(zn_l,w,k—1,~-~,zo) are never used. Furthermore, dimen-
sion X, _1, the most significant one, does not need nonstar
channels: each bidirectional link corresponding to dimension
X,._1 needs only three virtual channels.

As a result of this, the algorithm above instantiated to a
two-dimensional torus needs three virtual channels for each
bidirectional link associated with dimension X and five virtual
channels for each bidirectional link associated with dimension
Y. A simplified routing node model is depicted in Fig. 4 for
the two-dimensional torus.

The above theorem was presented in the context of a worm-
hole model. In this model, messages serviced by the network
are of unknown size. Therefore, the design of the routing
node cannot be based on the assumption that messages will
be completely stored in a node. If a packet implementation is

with z; <

= 1L,(#n—1,0%i, 0 T0)

1237

desired, *-Channels also yields the following important and
immediate result:

Theorem 3.4: The *-Channels algorithm yields a packet
routing technique for any n-dimensional torus. The technique
is fully-adaptive, minimal, free of deadlock and livelock in a
deterministic sense, and can be implemented using 5 buffers,
in each node, per bidirectional physical link in all but one of
the dimensions where only 3 buffers per link suffice. Thus, the
total number of buffers per node is 10(n — 1)+ 6. Furthermore,
the packet routing technique does not require any central queue
mechanism for ensuring the above properties.

As no central queue is mandatory, *.Channels can be
used for combined routing, i.e., both short fixed-size packets,
and long messages of unknown size are handled by the
same network and routing resources. While this type of
combined routing can be naturally handled in multistage
adaptive networks such as the multi-butterflies [30], fully-
adaptive combined routing remained as a difficult goal for
n-dimensional toroidal networks before *-Channels was dis-
covered. Combined routing is accomplished in *-Channels by
a “partial” virtual cut-through implementation, i.e. the storage
of long messages would span more than one routing node
while short messages may be buffered completely in one
node. Practical studies are being carried out to experimen-
tally determine the performance of this combined routing,
and the potential improvements offered by a central queuing
mechanism for enhanced routing of the fixed-size packets.

IV. ALGORITHM 4-Classes

This algorithm divides all (source, destination) pairs into
four classes and creates a virtual network for each class using
all minimal paths in the network. [32] and [24] used similar
ideas with a different choice for the classification of (source,
destination) pairs. The partition chosen in 4-Classes renders
an algorithm that requires fewer resources and that has more
potential parallelism in the node design than the techniques in
[32] and [24]).

Algorithm 4-Classes {15] requires 8 virtual channels per
bidirectional physical link, while allowing all the minimal
paths between any pair of nodes s, d to be of potential use
by those messages moving from s to d. Although 4-Classes
requires more virtual channels than *-Channels, it has some
important features: its routing node can be designed with a
highly parallel implementation, as switching in a node can
be decoupled into a set of eight independent 3 x 3 adaptive
crossbars. This node model will be presented in Section V-B.
A more detailed description of the algorithm follows.

If for a given node (z,y) dimension Y is fixed to y, then a
cycle of length k is defined by moving along the X dimension.
Cycles along dimension Y are defined in an analogous manner.
Given a message with source node (z,y) and destination node
(z','), a minimal path from (z,y) to (z',y’) is built in such
a way that the message will have to travel through at most
|k/2] links along dimension X and through at most Lk,2]
along dimension Y. To find such minimal paths, the correct
orientation along each dimension should be chosen. If k is
odd, there is only one possible orientation of each dimension

1238

following which all the minimal paths are built. If k is even,
and a message m is k/2 steps away from its destination
along dimension X, for example, then either orientation along
the X dimension can be taken in order to follow minimal
paths towards m’s destination. This choice is independent for
each dimension. Consider dimension X and the set of cycles
associated with this dimension. Moving along dimension Y
does not change the relative position within the different cycles
associated with dimension X that will be visited. Similar
considerations can be made for dimension Y. Therefore, the
set of minimal paths between any pair of nodes is determined
by a correct choice of the direction in which to change each
of the dimensions.

Consequently, when a message is injected in the network,
it will be classified into one, two, or four out of four classes
according to the orientation in which each dimension should
be corrected in order to follow a minimal path towards the
destination. These four classes will be referred to as XY T,
XY+, XtY~, and X~Y~. This concept of classifying
messages according to classes is well known [24] . If k is
odd, then every message belongs to exactly one of these four
classes. However, if k is even, then a message may belong to
more than one class. For example, a message that is k/2 steps
away from its destination along the X dimension will belong
to both classes X TY and XY, where Y is the orientation(s)
following which dimension Y should be corrected.

In the following, the case of a two-dimensional k-torus with
k odd will be analyzed.

Given a source node, a destination node, and an orientation
for each dimension, a “submesh” is determined. All minimal
paths between a source and a destination node are included in
the submesh determined by the source, the destination and the
orientation of each dimension chosen as explained above.

Now, the virtual network associated with each of
the four classes into which messages are classified, viz
X*tY+t X-Y+, XtY~, XY, will be presented. Each
of these virtual networks will have a particular set of virtual
channels assigned. The definition of each of these four virtual
networks is almost identical. So, only the case X Y+ will
be described here (see Fig. 2).

A message will belong to class XY+ if the minimal paths
from its source towards its destination are built by choosing
X+ and Yt as the orientation for correcting dimensions X
and Y, respectively. Only this kind of messages will be routed
through the virtual network XY +.4

Each physical link will have two virtual channels associated
in the virtual network corresponding to class X Y *+. These
two virtual channels will both use the underlying bidirectional
physical link in the same direction. Every virtual channel is
identified by a 3-uple: the first component of the 3-tuple is
either a 0 or a 1°. The second component is the dimension
associated with the underlying link, X or Y. Finally, the
last component is the node in which a message arrives by
taking this virtual channel. For example, there are two virtual

4In the case k even, messages that belong to more than one class may start
visiting channels belonging to class X+Y T, as will be explained below.

5This first component will often be referred to as the prefix of the virtual
channel in what follows.

JEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

+

Level 0

+

Level 1

+

Level 0

Fig. 2. Virtual Network XY+ for Algorithm 4-Classes.

channels from node (3, 2) to node (4, 2): c(’; },(4’2) and
++
€1,X,(4,2)°

Next, the routing function for routing on the two-
dimensional k-torus used for those messages belonging to
class XTY*t will be described. The routing function will
be defined in terms of the virtual channels just mentioned.
Let m be a message with source node (z,y) and destination
node (z',3’). A distinction has to be made between those
messages that will need to use the wrap-around links and
those that will not. If m does not have to go through any
wrap-around, then m will visit only channels with prefix 1
until it arrives at its target node. At each step, m will move
along any of the dimensions that need correction. If z > z’
then m will use a wrap-around corresponding to dimension
X and orientation X+, If y > 3’ then m will use a wrap-
around corresponding to dimension Y and orientation Y¥.
Again, the use of wrap-arounds or not along dimension X
(resp. Y) depends exclusively on the values of = and z’ (resp.
y and y'). If either z > z’ or y > ¥/, then m will start
moving through virtual channels with prefix 0, moving along
any of the dimensions that need to be corrected, until it has
to go through a wrap-around. It is important to notice that
those virtual channels c;;(z,w) withd = X ord =Y, and
0 < z,w < |k/2] are not used during this first phase. This
is so because if z > 2’ and = < |k/2] then the path from z
to z’ following X+ has length greater than |k/2] and so, the
X~ orientation would have been chosen to correct dimension
X. An identical argument follows for dimension Y.

After using a wrap-around, m will start moving through
virtual channels with prefix 1. m will go on moving through
channels with prefix 1 either until it arrives at its destination
node, or until it needs to use another wrap-around, correspond-
ing to the dimension that has not gone through a wrap-around
yet. At this moment, m will start visiting channels with prefix
0 again until it arrives at its target node. It is important to
note that the channels with prefix 0 that m will use in its last
phase towards its destination are exactly those channels that
have not been used yet, as pointed out above.

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS 1239

The routing algorithm that has just been described allows
each message to choose adaptively among all the minimal
paths from its source node to its destination node in a two-
dimensional k-torus with k odd. Furthermore, the routing
algorithm is deadlock-free.

Next, the routing function for the messages in class X Y+
will be described more formally. In the definition of the routing
function it is supposed that every node (x,y) has an injection
channel i, , into which node (z,y) injects its messages.

A. Routing Function

Given a message at a virtual channel, and its destination,
the following routing function defines the virtual channels the
message can use as its next step to its destination. As soon as a
message arrives in a channel that is incident with its destination
node, the message is delivered and taken out of the network.
The routing function below is for a two-dimensional k-torus
with k odd. This routing function is modified later to cover
the case k even by substituting extra statements for the (x)
placeholders:

R(i(z,yb(zlﬁ y’))
VCO+,}’(,((1:+1),y) if (z/ <zVy <y
r#cAz#k—1 (1)
ifetas’Anz=k-1 (2
if (' <z Vy <yA
y#Zy Ay#k-1 Q)
fy£y Ay=k-1 @4
ifz' >zAy >y (5)
ife' >zAy >y (6)

++
€1,x,(0,9)
0, ,(z,(y+1))

++

1,v,(2,0)

€1, ,((z+1).)

1Y (z,(y+1))
*

RS aeary @)

(k@i HEFETATFE-L 0
X0 ifrtz’'Az=k-1 (8)
= cgzi,(x,(y+1)) ify£y Ay#k-1 (9
1 ¥,(,0) ify#y Ay=k—-1 (10)
\ ()
R(cti(m,y)’ (@".y))
(T @iy HE#TAz#k-1 (D
CE)*—,},(O,y) ifzr£asnz=k—-1 (12)
=4 LY (@, (v+1) fy#y Ay#k—-1 (13)
03},@,0) fy£y Ay=k-1 (14
)
ford=X,Y.

Next, the case k even will be considered. Suppose that a
message m has been injected in node (z,y) and has node
(z/,y) as destination. Suppose that |z — z'| = k/2. Then,
there are minimal paths from (z,y) to node (z’,y') following
both orentations X+ and X~ for correcting dimension X.
As soon as m moves a step following one of these two
possible orientations, then only one of the two orientations
will include all the minimal paths from the new current node
to the destination of the message. Then, m should be allowed
to switch to orientation Xt or X~ while m is moving along

dimension Y without moving along dimension X. As soon
as m moves along dimension X, the orientation in which to
correct dimension X becomes fixed.

To avoid deadlock, the following policy will be followed
regarding messages belonging to more than one class. Notice
that 2 message m can belong to 1, 2 or 4 classes according
to its final destination.

Suppose that m belongs to 4 classes. Then, m is k/2 steps
away from its destination node along both dimensions X and
Y. So, while m is in its injection channel, it will be able to
move along any of the two dimensions following any of the
two orientations of these dimensions.

« If m moves along dimension X as its first step, then
m will enter the set of virtual channels corresponding to
class XTY T if the first step taken follows orientation
X+, or to class XY if it follows orientation X-.

« If m moves along dimension Y as its first step, then m
will enter the set of virtual channels corresponding to
class XY™ if the first step taken follows orientation
Y+, or to class X TY ™ if it follows orientation ¥ —.

So, after this first step, all the minimal paths from the new node
in which m resides towards m’s final destination belong to
two classes, as the orientation following which the dimension
corresponding to m’s first step was corrected becomes fixed
after this first step.

Now, after this first movement, m is at a virtual channel
incident with a node that is k/2 steps away from m’s des-
tination along the dimension that has not been touched yet.
If this dimension is dimension X, then m is in class XtYye
where 0 = + or 0 = — and Y?° is the orientation that was
taken in the first step (which was a step along dimension
Y). Before the first step along dimension X, m will move
through virtual channels belonging to class X1Y°. If the first
step along dimension X is taken by following orientation X T,
then m will move through virtual channels belonging to class
X+Y?° until it gets delivered. Otherwise, m will switch to
class X~ Y° and will remain there. The case in which the first
step m takes is along dimension X is analogous.

Now, if m belongs to 2 classes, X +Y? and X~Y° where
o = + or o = —, then m is k/2 steps away from its
destination along dimension X, and less than k/2 steps away
from its destination along dimension Y following orientation
Y. Initially, m will start visiting virtual channels belonging
to class X+Y©. If the first step m takes along dimension X is
a step following orientation X +, then m will belong to class
X+Y?° until it gets delivered. On the other hand, if the first
step m takes along dimension X is a step following orientation
X, then m will pass to class X ~Y°, and will remain in that
class. Dimension Y is treated analogously.

Therefore, a message in a virtual channel of class X Y+
can switch to class X1TY ™, or to class X ~Y*+ A message
in class XY~ can move to class XY ~, and a message in
class X~Y* can move to class XY ~. In every case, the
policy just outlined must be followed to switch from a class
to another.

Now, the routing function defined above will be modified
to cope with messages switching class.

1240

A message moving from class X tY™* to class X~Y'*, for
example, will be treated as being injected as a message in class
XY™ in the node where the passage between the classes
takes place.

Therefore, the following is added to the definition of the
routing function above, for a message initially in virtual
network XtY+:
if (@ >zVy <y)A
e —z'|=k/2Az#0
ifle—a'|=k/2A2=0
ifr' <z Ay >yA
|z —2'|=k/2Az#0

(-~ T
0,X ,(z—1,y)

—+
€1.X,(k—1,9)
ct
1L,X,((z—-1),y)

ca;,(r,y—]) if (¢ <zVvy >y)A
o ly—y'|=k/2Ay#0
yry HW=yI=k/2Ay=0

Ty (o y—1)) ifz' >xzny <yn
\ ly—y'|=k/2ny#0

The other cases are handled completely analogously.

B. Correctness of the Routing Algorithm

In this section, it will be proved that the routing algorithm
described in Section IV is correct and deadlock-free. When
proving the deadlock freedom of the algorithm, the following
definition will be used, which is very similar to the one
presented in [11].

Definition 4.1: The channel dependency graph (CDG) cor-
responding to a set of virtual channels C and a routing function
R is a directed graph such that its set of vertices is C' and
there exists an edge from ¢; to ¢; (c;,c; € C) iff there exist
an injection channel s € C and a node d of the underlying
network such that R builds a route from s to d passing through
both ¢; and ¢;, and ¢; € R{c;,d).

Theorem 4.1: The 4-Classes algorithm presented in this
section is correct, deadlock-free, and yields a worm-hole fully-
adaptive minimal routing technique for the two-dimensional
torus using eight virtual channels per bidirectional link.

Proof: The proof can be found in Appendix B.

V. NODE MODELS AND SIMULATIONS

In this section, an experimental comparison of four different
routing algorithms for the two-dimensional torus network will
be presented. The four algorithms studied in this section
are *-Channels (see Section III), 4-Classes (see Section IV),
Linder-Harden’s [32], and Oblivious [11]. The first three
algorithms are fully-adaptive minimal, whereas the last one
is oblivious and nonminimal. These algorithms require 16,
32, 36, and 8 virtual channels per node, respectively, for
their deadlock-free implementation. The comparison is carried
out by equalizing the number of virtual channels used by
the different routing techniques. This task is accomplished
by adding lanes to the algorithms originally requiring fewer
virtual channels per physical link. In the scope of this paper,
a lane in a physical link is simply a virtual channel that
plays an identical role to one of the original virtual channels
associated with the same link [9]. Lanes are known to play a
central role in enhancing the throughput of oblivious routing

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

worm-hole algorithms [9]. Thus, more than one message
can be simultaneously using the same virtual channel by
occupying different lanes associated with the virtual channel.
For example, in order to compare Oblivious with 4-Classes,
6 lanes will be added per physical link, thus matching the 32
virtual channels of 4-Classes. Furthermore, lanes are added in
a way that crossbars grow with the total number of inputs.

The analysis of algorithms is carried out in two directions.
First, routing node models are proposed for each technique.
Second, simulations on their performance are shown for a net-
work of 31 x 31 nodes. This machine size is feasible according
to current VLSI and packaging technology. Moreover, it has a
sufficient number of processors to be considered a massively
parallel computer while still keeping the time required by
the simulations manageable. The number of nodes in each
dimension is odd with the purpose of having a slightly simpler
routing function.

A. Oblivious and Linder-Harden’s Algorithms

The oblivious, non minimal routing technique presented
in {11] for routing in n-dimensional tori will be briefly
described for n = 2. This algorithm has been designed with
a unidirectional torus in mind, and will be referred to as
Oblivious.

Messages are routed to their destination in two phases. In
the first phase, they correct dimension X, and in the second
phase they correct dimension Y. Number the nodes along each
dimension from 0 to k£ — 1. In order to avoid deadlock, the
physical channels are split in two virtual channels, a high and
a low one. Restricting to each dimension, messages at a node
numbered less than their destination node in that particular
dimension are routed through the high channels, and messages
at a node numbered higher than their destination node are
routed through the low channels. If a message is injected at
a node numbered less than its destination, it starts using high
channels until it reaches node O in that dimension, and then it
starts using low channels.

This oblivious algorithm requires two virtual channels per
physical link to guarantee freedom from deadlock. Each link
is only used in one of the directions.

In what follows, the fully-adaptive minimal routing algo-
rithm for the n-dimensional torus presented in [32] will be
briefly described for n = 2. This algorithm will be referred to
as Linder—Harden’s algorithm.

For this algorithm, the torus network is split into two virtual
networks, dubbed Y * and Y ~. Each virtual network will have
virtual channels in only one of the two possible directions in
dimension Y, and in both directions in dimension X. For each
of the two virtual networks, three “copies” of the network are
required, because a message can use at most two wrap-around
edges, and it needs to enter a new “copy” of the virtual network
whenever it takes one wrap-around edge. Every message will
be injected in one of the two virtual networks depending on
its destination.

This technique requires 12 virtual channels per bidirectional
link in dimension X and 6 virtual channels per bidirectional
link in dimension Y for its deadlock-free implementation

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

Level O

v

Fig. 3. Virtual network Y+ for Linder—Harden’s algorithm.

[32]. Fig. 3 shows a generic virtual interconnection network
corresponding to Y.

B. Node Models

This section gives high-level descriptions of the routing
nodes for each technique, using buffers and crossbars as
building blocks. The exact time-delay introduced in each node
is not calculated. For related work, see [10], [12], [45], [29],
and [4].

Each virtual channel is implemented through an input and
an output buffer. In addition, each node has an injection and
a delivery buffer. The size of all of these buffers depends on
whether the algorithms are intended to work for worm-hole
or for packets of fixed and small size. In the experiments,
worm-hole routing was tried. Therefore, the buffer size was
1 Aflit.

For some of the algorithms being compared, a partition of
all of the buffers can be found such that the connections that
the routing function performs are only between buffers that
belong to the same set. Then, each set requires a crossbar that
is independent of the others (see, for example, the node model
of 4-Classes and that of Linder-Harden’s algorithm, in Figs. 5
and 6, respectively). It is assumed that each crossbar can set
one new connection from its inputs to its outputs per cycle
[29], and this is executed independently for each of the other
crossbars in the same node. Therefore, the more independent
crossbars each node has, the more parallelism within each
switch is achieved. Oblivious is allowed to make all possible
connections (depending on availability of output buffer space)
in its crossbar in each routing cycle, because this crossbar is
oblivious, and therefore simpler than all of the others, which
are adaptive. These adaptive crossbars are a mechanism to
connect input frames to output frames adaptively which is
functionally similar to a crossbar for oblivious routing, except
that more than one useful output buffer, if available, may
be used for potential progressing of a message toward its
destination. An analogous input-to-output frame connectivity
is used in other routers such as the Chaos [4]. The inputs
to the crossbars and physical channel arbitration are handled
with fairness to avoid starvation.

1241

Algorithm *-Channels: In Fig. 4, a node model for *-
Channels is presented. Only 8 input and 8 output buffers per
node are needed. These buffers, together with the injection
and delivery ones, make a total of 9 the number of inputs and
outputs of the adaptive crossbar, because adaptive connectivity
between all of the inputs and all of the outputs of a node is
required. Lanes are added to the virtual channels, as explained
above. Therefore, each node will have an adaptive 17 x 17
crossbar.

Algorithm 4-Classes: This algorithm requires four virtual
networks, each of which is split into two levels. Therefore,
there are eight levels. Virtual channels corresponding to one
level are independent of those of other levels. Thus, 8 adaptive
3 x 3-crossbars are required. Fig. 5 shows the node model for
this algorithm. 2 input buffers, 2 output buffers and a 3 x 3-
crossbar for each level, add up to 16 input buffers, 16 output
buffers and 8 crossbars per node. Multiplexers connect the
injection buffer to the 8 crossbars and the 8 crossbars to the
delivery buffer.

Linder—Harden’s Algorithm: Fig. 6 shows the node model
for this algorithm. Each node has 36 buffers and 6 adaptive
4% 4 crossbars, assigned as follows: 1 crossbar, 3 input buffers
and 3 output buffers per independent level. Two multiplexers
connect the injection buffer to the crossbars and the crossbars
to the delivery buffer.

Algorithm Oblivious: For this routing algorithm, the set of
buffers cannot be split into independent classes. Therefore,
the node model has a single crossbar (see Fig. 7). Then, eight
buffers and one 5 x 5-crossbar [10] are needed. 12 input and
12 output buffers are added as lanes to the virtual channels,
as mentioned above. Adding buffers to implement lanes gives
this algorithm some degree of adaptivity, since messages can
take different lanes depending on traffic congestion.

C. Network Activity

This section describes the activity of the network assumed
in the experiments that were performed. As latency will be
measured in terms of routing cycles, a definition of the amount
of work involved in one such cycle is needed. The routing
cycle consists of two cycles: the node cycle and the link cycle,
which take place simultaneously.

To keep the node cycle as short as the link cycle, only one
new connection per independent crossbar will be set during
a single node cycle [29].° Allowing more connections in one
cycle would require some mechanism to handle arbitration,
as two or more worm heads might want to enter the same
output buffer. The overhead resulting from this arbitration
would probably make a node cycle much longer than a link
cycle. Moreover, if long worms are present in the network,
making more than one connection per cycle might not be
used frequently enough to offset the cost introduced by this
function.

* Node cycle: During a single node cycle, each node per-

forms the following sequence of tasks:
Connect;

6 Algorithm Oblivious is an exception to this, as explained above.

1242

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 19%4

Injection Delivery
INPUT OUTPUT
BUFFERS BUFFERS
ADAPTIVE .
xo4 SWITCH > Xo+
X1 ; X1 _;
X0 - X0 -
YO0 + Yo .
Y1 Y1
Y+ Y+
Yo - Yo 2~
Y-~ Y --

Fig. 4. Node model for algorithm *-Channels.

FreeBuffers;
Inject;

— Connect: Each crossbar scans its inputs in a round-
robin fashion and looks for a worm header. If a worm
header is in some input and there is one idle output
buffer which is a feasible connection for the worm
header, the connection is performed. During a cycle,
at most one head from the input buffers is allowed to
set a connection to an output buffer, for each crossbar.
A fair policy to prevent starvation is used. The injection
buffer has the same priority as the rest of the buffers.
The header of a message that has arrived at an input
buffer of its destination node tries to set a connection
with the delivery buffer of that node and then, it is
eventually consumed.

FreeBuffers: For all the connections already set in
each crossbar, one flit is transmitted through the crossbar
if possible, i.e., if the receiving output buffer is free.
If the flit transmitted is the last flit of a worm, the
connection is released in that routing cycle. Thus, once
a buffer accepts the first flit of a message, it must accept
the remainder of the message before accepting any flit
of any other message.

— Inject: Each node injects a new flit if it needs to do

so and its injection buffer is empty.

All the algorithms considered in this paper, except for *-
Channels, have acyclic channel dependency graphs associated
with them. For these algorithms, to preserve freedom from
deadlock, it suffices that the header of each worm check
that the tail of a worm is occupying an output buffer for
that header to set a connection with that output buffer. On
the other hand, as the channel dependency graph associated
with the algorithm presented in Section III is not acyclic, it
is required that the header of a worm check that both the
output buffer and its associated input buffer are free for the
header to set the connection with the output buffer in the
corresponding crossbar. Note that this extra condition to be
tested requires that there be two empty buffers separating every
pair of “consecutive” worms.

* Link cycle: During the link cycle, the flits of the messages
move from the output buffers to the corresponding input
buffers. For those algorithms with more than one output
buffer per directed link, only one flit is transferred per
cycle. These buffers are served in a round-robin fashion.
The first output buffer, according to this round-robin
policy, that can effectively transmit a flit is chosen to

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

1243

Delivery
Buffer

n3x

3 Jlaxs llaxs [ax

Laxa Taxa llaxall

Injection
Buffer

Fig. 5. Node model for Algorithm 4-Classes.

do so. A fair policy is used so as to prevent starvation.
Oblivious uses each physical link in only one direction.
To compare this algorithm to the others, the set of output
buffers associated with each link was split into two
equally sized subsets. It was assumed that each of these
subsets had a “dedicated” link. Therefore, up to two flits
can be transmitted from one node to its neighboring node
along one of the dimensions, as long as the two flits come
from output buffers belonging to different subsets.

From these definitions, some implications can be deduced.
First, it takes at least two cycles for a flit, under no congestion,
to pass from an input buffer to another input buffer: in one
cycle the flit reaches an output buffer, and only in the next
routing cycle is it transferred to the neighboring node. Second,
under optimal conditions, a worm of length b needs 2b routing
cycles to complete its injection process (i.e., the number of
cycles from the cycle when the header gets to the injection
buffer and the cycle when the tail leaves the injection buffer).
Finally, as a buffer accepts a new flit only if it is empty,
it takes at least 2b — 1 cycles to route a message through a
link.

In the simulations reported in this paper, both the node
and link cycles are synchronized throughout the network, in

the sense that all of the cycles take place at the same time.
However, the model presented can be made asynchronous.

Injection Model: There are two injection models: the static
injection model, in which every node has a fixed number of
messages to inject, and the continuous or dynamic injection
model, in which each node attempts to inject new messages
at arbitrary moments following some probability distribution.
In the first case, the routing begins when each node injects its
first message, and ends when the last message arrives at its
destination. In the latter the simulations are an infinite process
that has to be stopped at some point.

In this paper, simulation results for continuous injection are
reported. It is widespread knowledge that this type of injec-
tion models more accurately the network activity of MIMD
machines. A node decides to inject a new message into the net-
work at some rate A. If a node decides to inject a message, and
the corresponding injection buffer is empty, the new message
is effectively injected. Otherwise, the message is discarded,
and it is considered as a failure. If A is too large, the network
can become saturated, i.e., the latency of the messages grows
without bound or the network rejects a lot of messages.

The number of messages injected per cycle in each node,
7, is bounded by the characteristics of traffic patterns, the

1244

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

> xevs0 }—>

—>{x.veo }

Delivery
Buffer

Y40 = Y+0
X-Y+0 M g PR
~lover] v}
g @ SALS X+¥+1
- :
Va1 e]
x }
L X-Y+1 [[:""'“

VY Y

~ x-vs2 =

—{x-va2 |-

{X+v-0 |

F——>{xev-0 |

4x4

-
- P
oava b— F—lxeva2} >
v-2 M L Y-2 | >
- 1 o
X-vY-2 X-y-2

3333

Injection
Buffer

Fig. 6. Node model for Linder—Harden’s Algorithm.

network, and the routing algorithm. Some bounds are know
for 7 [15], [29]. If N is the number of nodes in the network,
B the bisection of the network [31] [39], ¢ the proportion of
messages that cross the bisection and 73 the minimum time
required for a message to traverse a link, then:

ey

For the two-dimensional k-torus, B = 2k and N = k2. In
this simulations, T = 2b — 1, where b is the number of flits

in each message. Thus,

TS Re(2bo1) e

4 @

Traffic Characteristics: The performance of the routing al-
gorithms was measured for different communication patterns.

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

1245

Y-0

Y-0

Y-0

Y-1

Y-1

Y-1

Y-1

Injection

L=A
L=A
L=A

Aionjag

L=A

0-A
0-A
0-A
0-A
=X
=X
=X
0-X
0-X
0-X
0-X

Fig. 7. Node model for Algorithm Oblivious.

¢ Random Routing: The destinations of the messages had a
uniform distribution over the set of nodes. This models
the unstructured communication pattern that is present in
many applications. In this case, ¢ = 3.

Fixed Permutations: In this case, a permutation ¢ of the
processors’ indices was fixed in advance. Node p injected
all of its messages with destination o (p). In particular, the
following permutation was simulated:

Bit Reversal: Node ((zp---o),{yp - ¥0))
sends all of its nmessages to node

((yo---yp), (zo -+~ p)), where p = [log,(k)]
[8]. In this case, ¢ = 1/2.

D. Simulation Results

Each routing algorithm was simulated according to the
high-level node models sketched above. Several continuous
injection simulations were tried. These experiments involved
two different message sizes, namely worms of 15 and 31
flits, and two different traffic patterns: random traffic and
bit-reversal traffic, on a two-dimensional torus with 961 nodes.

Figs. 8-10 show the mean latency as a function of the
achieved throughput, for the four routing algorithms and
the different traffic patterns and worm lengths. The results
corresponding to bit-reversal traffic for 31-flit worms are
similar to those for 15-flit worms.

From the experimental performance study, several conclu-
sions can be drawn. First, *-Channels showed better perfor-
mance than Oblivious for all of the communication patterns
and at all of the applied loads tried. This comparison is fair
because Oblivious was allowed to make all possible connec-
tions in its oblivious crossbar in each routing cycle, while in
the adaptive crossbar of *-Channels only one connection per
cycle was allowed. Furthermore, the number of inputs and
outputs to their crossbars was equalized.

It is important to remark that *-Channels outperformed
Oblivious even for random traffic, and did so with a large
performance gap. This gap is not commonly encountered when
comparing adaptive and oblivious packet-switching routers [4],
[17], [29]. This observation holds true in spite of increasing
the number of extra lanes in the oblivious router to yield a
total of 32 buffers per node.

1246 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994
Average
Latency | Random Routing Worm length=15 l
2001
“****** Oblivious
180T == Linder—Harden's
"""" *—Channels
160T — 4~Classes
1401
1207
1007
ot S T
50 60
Throughput
Fig. 8. Results for Random Routing with worms of length 15.
Average
Latency | Random Routing Worm Length=31 J
3009
"""" * Oblivious
= Linder-Harden’s
2secr | *-Channels
— 4-Classes
2001
150T
1004 T
+ 1 + + -
10 20 30 40 50
Throughput
Fig. 9. Results for Random Routing with worms of length 31.

It should be noted that the oblivious routing used in the
above comparison is nonminimal. The nonminimal algorithm
was chosen because the simulations were conducted with the
purpose of comparing the new algorithms presented in this
paper with those known in the literature for worm-hole routing
in the torus. Also, there is a large number of experimental
results in the literature documenting the better performance
of adaptive routing when compared with oblivious minimal
routing. Therefore, it is strongly believed that no minimal
oblivious routing will outperform the *-Channels algorithm.

While the experimental results show that *-Channels -also
outperformed the other two routers, this comparison would be
unfair. The reason is that even though all routers have been
equalized with respect to the number of virtual channels, the

resulting adaptive crossbars have different sizes. Thus, Linder-
Harden’s algorithm is based on a 4 x 4 adaptive crossbar,
and 4-Classes on a 3 x 3 crossbar, while *-Channels uses an
adaptive crossbar connecting all inputs to all outputs.

On the other hand, 4-Classes outperforms Linder-Harden's,
and the comparison is fair because the size of the adaptive
crossbar in the former is smaller than that in the latter. The
result of this comparison is consistent for all message sizes
tried, all patterns of communication, and all applied loads.
To explain this, notice that 4-Classes has more independent
crossbars than Linder—Harden’s, and so, it can perform more
new connections per cycle. Also, this independent switching
capability promotes a different flow control in the use of
available buffers.

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

Average

1247

Latency

Bit Reversal

Worm Length=15

500

400T

3007

2007

100T

........ Oblivious
Linder-Harden's

” *~Channels

— 4—Classes

+ + -

Fig. 10. Results for Bit-Reversal Routing with worms of length 15.

VI. CONCLUSION

Two new algorithms for deadlock- and livelock-free worm-
hole routing in the torus network were presented.

The first algorithm, *-Channels, is for the n-dimensional
torus network, and requires the smallest number of channels
known in the literature for fully-adaptive minimal worm-
hole routing. In addition, these results also yield the smallest
number of buffers known in the literature for packet-switched
fully-adaptive minimal routing.

The second algorithm, 4-Classes, is for the bidimensional
torus network. This technique is fully-adaptive minimal and
requires only eight virtual channels per bidirectional link for
its implementation. Due to the characteristics of this algorithm,
its routing node can be designed with a highly parallel imple-
mentation, since switching in a node can be decoupled into a
set of eight independent 3 x 3 adaptive crossbars.

Both of the new algorithms work for messages of unknown
size, thus yielding new routing techniques for both packet-
switched and worm-hole models of message transmission. In
addition, as no central queue is mandatory, these techniques
can be used for combined routing, i.e., both short fixed-size
packets, and long messages of unknown size are handled by
the same network and routing resources.

The second part of this paper compared four worm-hole
techniques for the two-dimensional torus. Simulation results
on the performance of the four worm-hole algorithms were
reported for a dynamic injection model and different traffic
patterns and message lengths. *-Channels displayed better
performance than the other routing algorithms tried in all of
the experiments. Regarding the algorithms that require smaller
crossbars, 4-Classes outperformed Linder-Harden’s for every
traffic pattern and message length tried.

APPENDIX A

Lemma 3.1: The star-channel dependency graph CDG* as-
sociated with R is acyclic.

30 40 50
Throughput

Proof: Consider the dependencies existing between
channels belonging to orientation X with prefix ¢,+,0.
Suppose the head of a message m enters channel
€} 4.0, (8n_ryssyyzo)” LDEM, T has to correct dimension
¢ following the X' orientation, and m has not taken a
wrap-around along dimension X; yet. If m’s head enters
channel C;,+,0,(yn_1,~-,y,v,~~,yo) afterwards, then it' fo]lqws
that m has still not taken any wrap-around along dimension
X; yet. So, if y; < x;, then m’s head would have had to
move following orientation X, contradicting the minimality
of R. So, y; > ;. Consequently, no cycles can exist in
CDG* involving channels belonging to orientation X, & with
prefix 4, +,0 exclusively. Analogously, no cycles can exist
in CDG* involving exclusively channels with prefix i, +, 1.
In addition, if a message m enters a star channel with prefix
i,+,1, then m has already taken a wrap-around link along
dimension X;. Therefore, m will never enter a channel with
prefix 4, +,0 again, from the definition of R. Consequently,
for a given dimension X, there cannot be any dependency
from a channel with prefix 4,+,1 to a channel with prefix
i,4+,0 in CDG*. Analogous conclusions can be drawn for
orientation X, i =n—1,---,0.

Furthermore, as the routing function R is minimal, never
can a message enter a star channel corresponding to orientation
X after entering a star channel corresponding to orientation
X[, or vice versa. Therefore, there are no dependencies
between channels corresponding to a dimension X; that have
different orientations, ¢ = n — 1,---,0.

So, if there is a cycle in CDG*, it must involve star channels
corresponding to different dimensions.

Consider a dependency from a channel ¢}, ,, , to a channel

oty zr» With @ # j. If the head of a message m enters
c;“o,w,m, it follows from R that at that moment X; was

the most significant dimension m’s head had to correct. As
the routing algorithm is minimal, and as X; was the most
significant dimension that needed correction when m’s head

1248

entered ¢}, . then i > j. Therefore, there cannot be
any cycle involving virtual channels corresponding to different
dimensions. Consequently, CDG* is acyclic.

Lemma 3.2: The routing algorithm that results from routing
function R is free of deadlock.

Proof: First, suppose that no channel in C* ever partici-
pates in a deadlock cycle. Therefore, as from the definition of
R the head of a message that has not arrived at its destination
always has a channel in C* in its waiting set of virtual
channels, no deadlock can ever arise, as virtual channels are
assigned fairly, and messages are of finite length.

So, it suffices to show that no channel in C* ever participates
in a deadlock cycle.

As from Lemma 3.1, CDG* is acyclic, each channel in C*
can be assigned a level in CDG*: Let ¢* € C*. Then, level
(¢*) is the length of the longest path between any root r* of
CDG* such that there is a path from r* to ¢* in CDG*, and c*.
A virtual channel 7* € C* is a root of CDG* if r* has indegree
0 in CDG*. As CDG* is acyclic, level(c*) is finite Vc* € C*.

It will be shown that no channel in C* can ever participate
in a deadlock cycle by using induction on the level of the
star channels.

o Basis: Let I* € C* be such that it has outdegree 0 in
CDG*. The basis is correct since every ¢ € C* has a
channel [* € C* with outdegree 0 reachable from c*,
because CDG* is acyclic. Suppose that [* participates in
a deadlock cycle, i.e., I* holds a flit of a message m
that is deadlocked. As m is deadlocked, m’s head has
not arrived at its destination node yet. Therefore, when
m’s head entered [*, from the definition of R, m’s head
had at least one possible next step within C*. But this is
not possible, as [* has outdegree 0 in CDG*. Then, m’s
head arrived at its destination by entering [*. So, m is
not deadlocked. Consequently, I* can never participate in
a deadlock cycle.

o Inductive Step: Consider virtual channel ¢* € CDG”. It
is supposed that ¢* can never participate in a deadlock
cycle, V¢'* € C* : level (¢*) > level(c*). Suppose
that at a certain moment, there exists a message m with
destination d that is deadlocked such that ¢* contains a flit
of m’s. So, m’s head has not arrived at its destination yet
(as otherwise, m would not be deadlocked). Then, m’s
head is at a virtual channel ¢ € C' (not necessarily in C*)
such that 3¢ € C* : ¢* € R(c, d), from the definition
of R. Then, as ¢* € C*, and by definition of CDG", it
follows that (¢*,c*) € D*. Then, level (¢*) > level (c*),
as CDG* is acyclic. So, by inductive hypothesis, ¢’ can
never participate in a deadlock cycle. Then, as messages
are finite and virtual channels are assigned fairly, m’s
head will eventually have c¢™* available. Consequently, m
is not deadlocked.

Therefore, no channel in C* can ever be involved in a deadlock
cycle.

APPENDIX B

Theorem 4.1: The 4-Classes algorithm is correct, deadlock-
free, and yields a worm-hole fully-adaptive minimal routing
technique for the two-dimensional torus using eight virtual
channels per bidirectional link.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

Proof: Only class X*Y* will be analyzed here. The
other three classes can be treated analogously.

e Correctness: First consider a two-dimensional k-torus
with k odd. Then, a message in class X TY 1 will remain
in this class until it is delivered. If only the virtual
channels with prefix 0 are considered (or equivalently,
only those with prefix 1), then a directed network is
obtained that allows to route from any node (z,y) to
any other node («,y’) if and only if z < ' and y < ¥/’
In addition, never can a message use wrap-around links
twice along the same dimension, as all the routes built by
the routing algorithm are minimal.

Given a message m with a source node (z,y) and a
destination node (2, ') such that m belongs to class X tY'*,
there are four possible cases:

— z < 7’ and y < %/ In this case, v moves through
channels with prefix 1 ((5) and (6)), and keeps visiting
channels with prefix 1 until it arrives at its destination
node, using any of the minimal paths ((11) and (13)).

— z > ' and y < ¥': In this case, m starts moving

through channels with prefix 0 ((1) and (3)), and moves
adaptively using any of the minimal paths ((7) and
(9)) until it uses a wrap-around link corresponding
to dimension X. Then, m starts moving through the
channels with prefix 1 ((8)). Note the special case when
the wrap-around channel is taken as the first routing
step ((2)).
After using the wrap-around channel, m will enter a
virtual channel ¢; x (g, such that y"” < y. Therefore,
m will be able to reach node (', y’) using adaptively
all the minimal paths through channels with prefix 1
((11) and (13)).

— £ < 2’ and y > y': Analogous to the previous case,
using (10) instead of (8), and (4) instead of (2).

— x>’ and y > ¢': m starts moving through channels
with prefix 0 ((1) and (3)), and will move adaptively
using all the minimal paths ((7) and (9)) until it takes
a wrap-around link ((8) or (10)). Note the special case
when m takes a wrap-around link as its first routing
step ((2) and (4)). After taking a wrap-around link, m
starts moving adaptively through channels with prefix
1 ((11) and (13)) until it takes the second wrap-around
link ((12) or (14)). After this, m has arrived at a virtual
channel cg g o,y such that z” < z’ and Yy < 9.
Therefore, m will move towards node (z’,y’) through
channels with prefix 0 using (7) and (9).

As k is odd, a message will belong to only one class, as
all the minimal paths from a message’s source node to its
destination node belong to only one class.

If k is even, then a message m may belong to one, two, or
four classes. If m belongs to 4 classes, then it is k/2 steps
away from its destination along both dimensions X and Y. m
will be injected in the injection channel at its source node. As
m takes its first step, it will fix one orientation in which to
correct the dimension along which this first step is taken. So,
after this first step, m will belong to two classes.

Now, the case of a message m belonging to two classes
will be analyzed. Suppose that m belongs to classes XY+

GRAVANO et al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

and X~Y*. Then, if m has been injected in node (z,y),
and has as destination node (z/,y’), then |z — z/| = k/2. As
explained above, before moving along dimension X, m will
travel through virtual channels corresponding to class X TY'+.
When m takes its first step along dimension X, there are two
possible cases:

— The first step along dimension X is taken following
orientation X+, Therefore, from the routing function,
m will remain in class X*Y™ until it arrives at its
destination, as the distance from the nodes m will visit
and m’s destination node will never be k/2 again. The
reason for this is that /n will not be able to abandon class
X*Y+ unless it is k/2 steps away from its destination
along some dimension. But m is less than k/2 steps
away from (z’,y’) along dimension X and dimension
Y, and it can only move closer to (z’,y’) by following
the routing function as far as class X 7Y * is concerned.
So, m will not switch to another class, and the argument
for the case k odd applies.

— The first step along dimension X is taken following
orientation X ~. Therefore, from the routing function,
m will move to class X~Y*. Furthermore, suppose
that m entered node p by taking this first step in
dimension X. As m was k/2 steps away from node
(z',y') before switching class, then either X+ or X~
could be chosen as orientations to correct dimension
X following minimal paths. So, class X ~Y* contains
all the minimal paths from node p to node (z’,y’),
as p is k/2 — 1 steps away from node (z’,y’) along
dimension X following orientation X ~. Furthermore,
as explained in the previous case, m will never leave
class XY T. In addition, when changing class, m is
treated as being injected in node p for the definition
of the channels through which m will move in class
X~Y™. Consequently, the same arguments as in the
case k odd apply to show that m will be able to reach
its destination.

The case of m belonging to other pairs of classes can be
treated analogously.

» Freedom from Deadlock: It will be proved that the routing
algorithm is deadlock-free by showing that the channel
dependency graph (CDG) associated with R is acyclic.
Again, the case k odd will be analyzed first.

First, notice that the injection channels have indegree 0
in the CDG, and so, they cannot participate in any cycle
in the CDG. Regarding the other virtual channels, they can
be divided into disjoint sets according to the class (XY,
X1tY—, X-Y™*, or X~ Y) to which they belong. Never will
a message pass from a virtual channel in one of these classes
to a virtual channel in another class if k& is odd. Consequently,
the analysis of the existence of cycles can be performed
independently for each of these four classes of virtual channels.
X*Y* will be analyzed below. The other three cases can be
handled analogously.

As pointed out above, no injection channel can participate
in a cycle in the CDG. So, (1) through (6) do not generate any
cycle in the CDG. A cycle in the CDG cannot consist solely

1249

of channels with prefix 0. This is so because if the equations
that define movements within this set of channels, i.¢., (7) and
(9), allow transitions from a channel ¢ 4 (5) t0 a channel
Co,d,(a',y)> then T +y < ' + 9. An analogous consideration
can be made regarding a cycle consisting solely of channels
with prefix 1, but using (11) and (13). So, only the case in
which a cycle is formed by both channels with prefix 0 and
prefix 1 has to be analyzed. Furthermore, a cycle must have
both a link from a channel with prefix O to a channel with
prefix 1, and a link from a channel with prefix 1 to a channel
with prefix 0.

Consider a link from a channel with prefix 1 to a channel
with prefix 0. Such a dependency can only be built by (12)
and (14). The link will be either (c1,4,(k—1,y) C0,X,(0,9)) OF
(€1,d,(2,k—1) C0,Y,(z,0))» fOr some d € {X,Y}. Consider the
first case. A message m using that dependency is going
through a wrap-around link corresponding to dimension X.
Therefore, m started moving through the network using virtual
channels with prefix 0, and then it switched to the channels
with prefix 1 by taking a wrap-around corresponding to
dimension Y. As a result of this, and the fact that the paths
taken by messages are shortest, y < |k/2], as a message
travels at most | k/2| steps along any dimension. Summing up,
there can only be a dependency in the CDG from c¢; g (x—1,y)
to o x,(0,9) if ¥ < [k/2]. Analogously, there can only be
a dependency from ¢ g (s k—1) 0 Coy,(z,0) if T < Lk/2].
Consequently,

Al ={co ey d=X,Y;(x=00ry= 0)
and z,y < |k/2]}

is the set of all the virtual channels with prefix O that may
have a dependency from a channel with prefix 1 in the CDG.

For a cycle to exist, it must have a link from a channel with
prefix O to a channel with prefix 1.

Ay ={codg(ay):d=X,Y;(z=k—-1lory=k— 1)}

is the set of channels that may have a dependency to a channel
with prefix 1. To reach a channel in Ay from a channel in A;
following a path in the CDG, there must exist links in the
CDG from a channel in

AS = {cﬂ,d,(:c,y) td= X=Y7(I < Lk‘/ZJ and y= l.k/2.J)
or (y < |k/2] and z = |k/2])}
to a channel in
Ag ={co,dy(zy) 4= X,Y; (z < |k/2] and y = |k/2]
+1)or (y < |k/2] and z = |k/2] + 1)}

It will be proved that there are no links from A3 to Ay in the
CDG. Therefore, the CDG is acyclic.

To see this, notice that a message m arriving at a channel
in As has already taken two wrap-around links necessarily. m
could not have taken only one wrap-around, as in that case,
it would be in a channel with prefix 1. Finally, if m had not
gone through any wrap-around yet, as it is in a channel with
prefix 0, it would have to take a wrap-around link. Otherwise,
it would have started moving through channels with prefix
1, according to R. So, m would have to travel at least |k/2]

1250

steps more along one dimension, to be able to wrap. But this is
not possible. So, m has already taken two wrap-around links,
one in each dimension. So, if m would move from a channel
in A; to a channel in A4, this would involve traveling more
than |k/2] steps along one dimension. Then, no message at
a channel in As ever passes to a channel in A,. Therefore,
the CDG is acyclic for the case k odd. Now, the case k even
will be analyzed. As explained above, messages can change
from one class to another according to their final destination.
Messages can switch from class X +Y * to either class XY~
or class X~Y*, and from class X+Y~ and class X~Y*
to class XY ~. Never can a message switch from class
X-Y~ to class XTY ™, for example. Without considering
this switching between the classes, the CDG is acyclic (case
k odd). So, if there is a cycle in the CDG, it must involve
at least one dependency generated by this switching between
the classes.

Suppose that a dependency from a virtual channel belonging
to virtual network X*TY T to a virtual channel belonging to
X~Y™ participates in a cycle in the CDG. Therefore, there
must be a dependency from some virtual network towards
X+Y*. But this is not possible, because no message can
switch from a virtual network other than XY™ to virtual
network X 7Y *. The other possible cases are analyzed analo-
gously. Consequently, the CDG is acyclic for the case k even
as well.

ACKNOWLEDGMENT

The authors are indebted to four reviewers for their very
useful comments and suggestions.

REFERENCES

[11 S. Borkar, R. Cohn, G. Cox, S. Gleason, T. Gross, H. T. Kung, et al.,
“iWarp: An integrated solution to high-speed parallel computing,” in
Proc. Supercomputing 88, ACM, 1988.

[2) P. Berman, L. Gravano, G. D. Pifarré, and J. L. C. Sanz, “Adaptive
deadlock-and livelock-free routing with all minimal paths in torus
networks,” in Proc. 4th Symp. Parallel Algorithms and Architectures
(SPAA), June 1992,

3] Y. Birk, P. B. Gibbons, D. Soroker, and J. L. C. Sanz, “A simple

mechanism for efficient barrier synchronization in MIMD machines,”

RJ 7078 (67141) Comput. Sci., IBM Almaden Res. Ctr., Oct. 1989.

K. Bolding and L. Snyder, “Mesh and torus chaotic routing,” in

MIT/Brown Advanced Res. in VLSI and Parallel Syst. Conf.,” Mar. 1992.

[S) F. Chong, E. Egozy, A. DeHon, and T. Knight, “Multipath fault

tolerance in multistage interconnection networks,” Transit note # 48,

MIT, June 1991.

R. Cypher and L. Gravano, “Adaptive deadlock-free packet routing in

torus networks with minimal storage,” in Proc. ICPP 92, 1992.

R. Cypher and L. Gravano, “Requirements for deadlock-free, adaptive

packet routing,” in Proc. PODC 92, 1992.

[8] W. J. Dally and H. Aoki, “Adaptive routing using virtual channels,”

Tech. Rep., MIT, 1990.

W. J. Dally, “Virtual-channel flow control,” in /7th Annu. Int. Symp.

Comput. Architecture, May 1990.

W. J. Dally and C. L. Seitz, “The torus routing chip,” Distrib. Comput-

ing, pp. 187-196, 1986.

., “Deadlock-free message routing in multiprocessor interconnec-

tion networks,” IEEE Trans. Comput., vol. 36, pp. 547-553, May 1987.

W. J. Dally and P Song, “Design of a self-timed VLSI multicomputer

communication controller,” in Proc. Int. Conf. Comput. Design, 1987,

pp- 230-234.

J. Duato, “Deadlock-free adaptive routing algorithms for multicomput-

ers: Evaluation of a new algorithm,” in Proc. 3rd IEEE Symp. Parallel

and Distrib. Processing, IEEE, Dec. 1991.

[4

[6

[7

9

—

[10]
(1
[12]

(13]

[14]

(151

[16]

(171

[18]

[19]

[20]
[21]
[22]
(23]
[24]

(25]

[26]

(271

(28]

[29]

(30

[31]
(32]

[33]

[34]

[35]

[36)

371

[38]
(39}

(40}

[41]

[42]

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 12, DECEMBER 1994

M. L. Fulgham, R. Cypher, and J. L. C. Sanz, “A comparison of SIMD
hypercube routing strategies,” in Proc. ICPP *91, Int. Conf. Parallel
Processing, 1991.

S. A. Felperin, L. Gravano, G. D. Pifarré, and J. L. C. Sanz, “Fully-
adaptive routing: Packet switching performance and worm-hole algo-
rithms,” in Supercomputing, 1991.

S. A. Felperin, L. Gravano, G. D. Pifarré, and J. L. C. Sanz, “ Routing
Techniques for Massively Parallel Communication,” Proc. IEEE, Special
Issue on Massively Parallel Computers, vol. 79, no. 4, Apr. 1991.

S. A. Felperin, H. Laffitte, G. Buranits, and J. L. C. Sanz, “Deadlock-
free minimal packet routing in the torus network,” Tech. Rep. 91-22,
IBM Argentina, CRAAG, 1991.

D. Gelernter, “A DAG-based algorithm for prevention of store-and-
forward deadlock in packet networks,” IEEE Trans. Comput., C-30, pp.
709-715, Oct. 1981.

C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” in Proc.
19th Annu. Int. Symp. Comput. Architecture, May 1992, pp. 278-281.
L. Gravano, G. D. Pifarré, S. A. Felperin, and J. L. C. Sanz, “Adaptive
deadlock-free worm-hole routing with all minimal paths,” Tech. Rep.
91-21, IBM Argentina, CRAAG, 1991.

K. D. Gunther, “Prevention of deadlocks in packet-switched data trans-
port system,” IEEE Trans. Commun., COM-29, no. 4, Apr. 1981.

D. Hillis, The Connection Machine. Cambridge, MA: MIT Press, 1985.
S. L. Johnsson and C. T. Ho, “Optimum broadcasting and personalized
communication in hypercubes,” IEEE Trans. Comput., 38, no. 9, pp.
12491268, Sept. 1989.

C. R. Jesshope, P. R. Miller, and J. T. Yantchev, “High performance
communication in processor networks,” in Proc. 16th Annu. Int. Symp.
Comput. Architecture, pp. 150-157, May 1989.

P. Kermani and L. Kleinrock, “Virtual cut-through: A new com-
puter communication switching technique,” Comput. Netw., vol. 3, pp.
267-286, 1979.

S. Konstantinidou, “Adaptive, minimal routing in hypercubes,” in 6th.
MIT Conf. Advanced Res. VLSI, 1990, pp. 139-153.

C. P. Kruskal and M. Snir, “The performance of multistage intercon-
nection networks for multiprocessors,” IEEE Trans. Comput., vol. C-32,
pp. 1091-1098, Dec. 1983.

S. Konstantinidou and L. Snyder, “The Chaos router: A practical
application of randomization in network routing,” in 2nd. Annu. ACM
SPAA, 1990, pp. 21-30.

, “Chaos router: Architecture and performance,” in /8th Int. Symp.
Comput. Architecture, IEEE, May 1991, pp. 212-221.

S. Konstantinidou and E. Upfal, “Experimental comparison of multistage
interconnection networks,” RJ:8451 (76459), IBM Almaden Res. Ctr.,
Nov. 1991.

T. Leighton, “Average case analysis of greedy routing algorithms on
arrays,” in SPAA, 1990.

D. H. Linder and J. C. Harden, “An adaptive and fault tolerant wormhole
routing strategy for k-ary n-cubes,” IEEE Trans. Comput., vol. 40, no.
1, pp. 2-12, Jan. 1991.

D. Lenoski, J. Landon, K. Gharachorloo, W. Weber, A. Goopta, and J.
Hennessy, “Overview and status of the Stanford Dash multiprocessor,”
in Int. Symp. Shared Memory Multiprocessing, Tokyo, Japan, Apr. 1991.
T. Leighton and B. Maggs, “Expanders might be practical: Fast algo-
rithms for routing around faults on multibutterflies,” in [EEE 30th Annu.
Symp. Foundat. of Comput. Sci., Oct. 1989, pp. 384-389.

T. Leighton, B. Maggs, and S. Rao, “Universal packet routing algo-
rithms,” in Proc. 29th IEEE Symp. Foundations Comput. Sci., 1988, pp.
256-269.

P. M. Merlin and P. J. Schweitzer, “Deadlock avoidance in store-
and-forward networks, 1: Store-and-forward deadlock,” IEEE Trans.
Commun., vol. 28, no. 3, pp. 345-354, Mar. 1980.

L. M. Ni and P. K. McKinley, “A survey of routing techniques in
wormhole networks,” MSU-CPS-ACS-46, Dep. Comput. Sci., Michigan
State Univ., Oct. 1991.

J. Y. Ngai and C. L. Seitz, “A framework for adaptive routing,”
5246:TR:87, Comput. Sci. Dep., California Inst. of Technol., 1987.

, “Adaptive routing in multicomputers,” in Opportunities and
Constraints of Parallel Computing, J. L. C. Sanz, Ed. New York:
Springer-Verlag, 1989.

G. D. Pifarré, L. Gravano, S. A. Felperin, and J. L. C. Sanz, “Fully-
adaptive minimal deadlock-free packet routing in hypercubes, meshes,
and other networks,” in Proc. 3rd Annu. ACM Symp. Parallel Algorithms
and Architectures, 1991.

N. Pippenger, “Parallel communication with limited buffers,” in Foun-
dat. of Comput. Sci., pp. 127-136, 1984.

A. G. Ranade, “How to emulate shared memory,” in Foundat. of
Comput. Sci., pp. 185-194, 1985.

GRAVANO ez al.: ADAPTIVE DEADLOCK- AND LIVELOCK-FREE ROUTING IN TORUS NETWORKS

[43] A. G. Ranade, S. N. Bhat, and S. L. Johnson, “The Fluent abstract
machine,” in Fifth MIT Conference on Advanced Research in VLSI, J.
Allen and F. T. Leighton, editors. Cambridge, MA: The MIT Press,
Mar. 1988, pp. 71-93.

P. Raghavan and E. Upfal, “A theory of wormhole routing in parallel
computers,” Tech. Rep., IBM Res., Dec. 1991.

P. Y. Song, “Design of a network for concurrent message passing
systems,” Master’s thesis, Massachusetts Inst. of Technol., Dep. Comput.
Sci., May 1988.

E. Upfal, “An O (log N) deterministic packet routing scheme,” in 21st
Annu. ACM SIGACT Symp. Theory of Computing, May 1989,

L. G. Valiant, “General purpose parallel architectures,” in Handbook of
Theoretical Computer Science, J. van Leeuwen, Ed. Amsterdam, The
Netherlands: North-Holland, 1988.

[44]

[45]

[46]

[47]

Luis Gravano received the B.S. degree in com-
puter science from the Escuela Superior Latino-
Americana de Informatica (ESLAI) in 1991, and
the M.S. degree in computer science from Stanford
University, Stanford, CA, USA, in 1994,

From 1990 until 1992, he was a Researcher at
the Computer Research and Advanced Applications
Group at IBM Argentina. He has been a Student
Visitor to the IBM Almaden Research Center, CA,
USA, three times. He is now a doctoral student at the
Computer Science Department, Stanford University,
Stanford, CA, USA. His current areas of research interest include databases
and parallel computers.

Gustavo D. Pifarré received the B.S. degree in
computer science from the Escuela Superior Latino-
Americana de Informatica (ESLAI) in 1991,

In 1990, he joined the Computer Research and
Advanced Applications Group at IBM Argentina as
a Researcher. He has been a Student Visitor to the
IBM Almaden Research Center, CA, USA, three
times. He is now a Professor and doctoral student at
the Department of Computer Science, Universidad
de Buenos Aires, Argentina. His current areas of
research interest include multicomputers, multipro-
cessors, routing algorithms, parallel processing, and computer architectures.

Mr. Pifarré is the recipient of a research scholarship from the Universidad
de Buenos Aires, as well as a scholarship from ESLAL

Pablo E. Berman reccived the B.S. degree in
computer science from the Escuela Superior Latino-
Americana de Informatica (ESLAI) in 1992.
During 1991 and 1992, he was a Researcher
at the Computer Research and Advanced Applica-
tions Group in IBM Argentina, working on parallel
computers. He is now an independent software con-
sultant. His current areas of research interest include
software engineering, operating systems, connectiv-
ity, real-time programming, and distributed systems.

1251

Jorge L. C. Sanz (M’82-SM’86-F91) received the
M.S. degree in computer science, the M.S. degree
in mathematics, and the Ph.D. degree in applied
mathematics from the Universidad de Buenos Aires,
Argentina, in 1977, 1978, and 1981, respectively.

Since 1993, he has been a Professor of Electrical
and Computer Engineering at the University of
Hlinois at Urbana-Champaign, USA. He is also
affiliated with the Coordinated Science Laboratory
there, and is also Manager of the Advanced Appli-
cations and Innovative Technologies Group at IBM
Argentina, Buenos Aires, Argentina. He was an Instructor with the Department
of Mathematics, Universidad de Buenos Aires, Argentina, during 1978 through
1980, and conducted research as a scholar member of the National Council
of Scientific and Technical Research of Argentina for four years. He was
a recipient of many scholarships and was a member of the Argentinian
Institute of Mathematics. He was a Visiting Scientist at the Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign, USA, during
1981-82. He was a Visiting Assistant Professor in the Department of Electrical
Engineering and the Coordinated Science Laboratory in 1983. During 1983, he
was a member of the summer visiting faculty at the Department of Computer
Science at the IBM Research Laboratory in San Jose, CA, USA. From 1984
to 1993, he was with the Department of Computer Science, IBM Research
Laboratory, San Jose, CA, USA, as a Research Staff Member. He conducted
work on industrial machine vision, parallel computing, and multidimensional
signal processing. He was the Technical Manager of the machine vision group
during 1985-86. He has also been an Adjunct Associate Professor at the
University of California at Davis, USA, where he conducted research as the
Associate Director of the Computer Vision Research Laboratory until 1988.
He has served as a consultant for several companies in the USA.

Dr. Sanz is a member of ACM. In 1986, he received the IEEE Acoustics,
Speech, and Signal Processing Society’s Paper Award for a publication
in IEEE TRANSACTIONS ON ACOUSTICS, SPEECH,, AND SIGNAL PROCESSING.
He is a Committee Member of the Multidimensional Signal Processing
Group of the IEEE Acoustics, Speech, and Signal Processing Society. He
was an Associate Editor of IEEE TRANSACTIONS ON ACOUSTICS, SPEECH,
AND SIGNAL PROCESSING from August 1987 until August 1989. He was
the Editor of TEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE
INTELLIGENCE special issues on industrial machine vision and computer vision
technology in 1988. Also, he is an Editor-in-Chief of Machine Vision and
Applications: An International Journal, and is author of the book Radon
and Projection Transform-Based Computer Vision (Springer-Verlag 1988). He
is the Editor of the book Advances in Machine Vision (Springer-Verlag).
He is also a coauthor of the book Massively Parallel Computing: Theory,
Algorithms, Applications, and Technology (Springer-Verlag 1991). He has
been Chair and Organizer of the 1988 IEEE Workshop on Machine Vision,
held in Ann Arbor, MI, USA. He has been the Chair and Organizer of the
IBM Almaden/National Science Foundation Workshop on Opportunities and
Constraints of Parallel Computing. He was the Program Committee Chair
of the VI IEEE Acoustics, Speech, and Signal Processing Workshop on
Multidimensional Signal Processing. He was the Program Committee Chair
of the Computer Architecture Chapter at the 1990 International Conference
on Pattern Recognition. He is Chair of the Industrial Machine Vision Chapter
of the International Association of Pattern Recognition, and is a member of
the Architecture Chapter of that organization.

