Fully-Adaptive Minimal Deadlock-Free Packet Routing in Hypercubes,

Meshes, and Other Networks

Gustavo D. Pifarré *t*

e-mail: pifarre@buevm2.vnet.ibm.com

Sergio A. Felperin **

e-mail; felperin@buevm?2.vnet.ibm.com

Abstract

This paper deals with the problem of packet-switched
routing in parallel machines. Several new routing al-
gorithms for different interconnection networks are pre-
sented. While the new techniques apply to a wide va-
riety of networks, routing algorithms will be shown for
the hypercube, the 2-dimensional mesh, and the shuffle-
exchange. The techniques presented for hypercubes and
meshes are fully-adaptive and minimal. A similar tech-
nique can be devised for tori. A fully-adaptive and min-
imal routing is one in which all possible minimal paths
between a source and a destination are of potential use
at the time a message is injected into the network. Min-
imal paths followed by messages ultimately depend on
the local congestion encountered in each node of the
network. In the shuffle-exchange network, the routing
scheme also exhibits adaptivity but paths could be up
to 3log N long for an N node machine. The shuflle-
exchange algorithm is the first adaptive and deadlock-
free method that requires a small (and independent of
N) number of buffers and queues in the routing nodes
for that network.

*x ESLAI, Escuela Superior Latino Americana de Informética,
CC 3193,(1000) Buenos Aires, Argentina.

t Computer Research and Advanced Applications Group, IBM
Argentina, Ing. E. Butti 275, (1300) Buenos Aires, Argentina.

} Computer Science Dept., IBM Almaden Research Center, San
José, California.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1991 ACM 089791-438-4/91/0007/0278 $1.50

Luis Gravano **

e-mail: gravano@buevm2.vnet.ibm.com

Jorge L. C. Sanz ¥

e-mail: sanz@ibm.com

Furtherinore, all of the new techniques are completely
free of deadlock situations. In dynamic message injec-
tion models, the routing methods are also ensured to be
free of livelock if messages competing for resources are
handled with fairness.

In contrast to other approaches in which adaptivity,
deadlock and livelock freedom can be guaranteed at the
expense of complex architectures, the algorithms pre-
sented in this paper require a very moderate amount
of routing hardware. In particular, it will be shown
that only two central queues per routing node of the
network are necessary for the cases of the 2-dimensional
mesh and the hypercube, and four queues for the shuffle-
exchange.

This paper demonstrates that "hanging” an intercon-
nection network from a node [Gun81, MS80, BGSS89,
Kon90] is a convenient methodology for creating and vi-
sualizing routing functions and understanding deadlock-
free policies for queue utilization. In some cases, in-
terconnections can be hung from an arbitrary node,
producing new interesting routing functions [PFGS91].
While the methods presented in this paper are for packet
routing, some generalizations are possible for worm-hole
routing on 2-dimensional tori [GPS91].

In addition, simulation results corresponding to hy-
percubes of up to 16 K nodes are reported for both static
and dynamic injection models.

1 Introduction.

Message routing in large interconnection networks has
attracted a great deal of interest in recent years. Difler-
ent underlying machine models have been used [DS86a),
[RBJ88, Rand5), [Upf89, LM89], [Valss], [KS90], [NS],
[Hil85]. Some fundamental distinctions among routing
algorithms involve the length of the messages injected

in the network, the static or dynamic nature of the in-
Jjection model, special assumptions on the semantic of
the messages, architecture of the network and router,
degree of synchronization in the hardware, and others.

In terms of message length, several issues have been
studied concerning the ways to handle long messages
(of potentially unknown size) and very short messages
(typically of 100 bits). Recently, new techniques and
architectures have been proposed based on worm-hole
routing [DS86a), [DS86D], and packet-switched rout-
ing [KS90]. In between packet-routing and worm-hole
lie some hybrid approaches, as the virtual cut-through
technique [KK79].

Two subjects of long-standing interest in routing are
deadlock and livelock freedom. Techniques that per-
form without deadlocks or livelocks have been shown
on different models. Some algorithms succeed in accom-
plishing deadlock-free or livelock-free routing only in a
probabilistic sense [KS90], [Pip84]. In other algorithms,
deadlock freedom is guaranteed in a deterministic sense
[DS86a), [Kon90], [RBJISS, Ran85], [LMRSS], [Gel81],
[Gun81, MS80].

Several techiniques have been developed that avoid
deadlock by defining an ordering on the critical re-
sources, and allowing each message to progress through-
out the network by occupying resources in a strictly
monotonic fashion. The central idea for avoiding dead-
lock in the works of [DS8&6a], [RBJ88, Ran85], [Kon90],
[BGSS89], [Gun8l, MS80], aund others is to order the
use of resources potentially intervening in the genera-
tion of deadlocks. This idea results in the generation
of a directed acyclic graph (DAG) of the resources. All
DAG-based methods can be used for both worm-hole
and packet routing. This methodology has been used
by the authors of this paper to create a wide varl-
ety of new adaptive routing methods for hypercubes,
meshes, shuflle-exchanges, cube-connected cycles, and
other networks [PFGS91]. Some of the DAG’s proposed
in [PFGS91] will be utilized in this paper.

Most known techniques that completely avoid livelock
and deadlock situations do that at the expense of some
hardware resources. These hardware resources will in-
crease with the degree of adaptivity desired in the rout-
ing of the messages. In the work of [DS86a), moderate
resources are proposed for practical deterministic dead-
lock freedom on some networks, but routing techniques
are oblivious. On the other hand, in [Kon90], an adap-
tive method for routing in the hypercube is proposed.

TlliS lnethod I)eI‘fOI‘H]S we]l on Sil]lLllat.iOI]S involving up

to 161 nodes.

Some methods may become impractical for efficient

279

routing on large interconnection networks due to either
the amount of work done during routing or the required
architecture resources in a node. The recent work re-
ported in [KS90] shows a striking reduction of hardware
resources by providing an adaptive deadlock-free rout-
g algorithm dubbed Chaos. The method has a non-
zero probability that a message will not reach its desti-
nation after ¢ routing steps, for an arbitrary ¢. However,
this probability tends to zero as ¢ approaches infinity.
Furthermore, the technique in [KS90] applies only to
packet routing and paths followed by the messages are
not necessarily minimal.

Restricting the set of available paths in the network
to a subset suitably chosen is a common way to re-
duce the hardware resources necessary for deadlock-
free routing. When stringent restrictions are applied,
oblivious algorithms or methods with partial adap-
tivity will be obtained. This class of routing algo-
rithms has been studied thoroughly for meshes and
tori [Lei90]. On the other hand, if few restrictions
are imposed on the set of possible routes generated
by a routing function, impractical algorithms may re-
sult. For example, the structured buffer pool [Gun8l,
MS80] guarantecs deadlock freedom by adding all nec-
essary resources so that a DAG is obtained. This will
result in an excessive amount of hardware necessary in
a routing node and this situation will not be improved
by allowing messages to depart from the DAG routes if
queue space is available [MS80].

A fully-adapiive minimal routing scheme is one in
which all possible minimal paths between a source and
a destination are of potential use at the time messages
are injected into the network. Paths followed by the
messages depend on the traffic congestion found n the
nodes of the network. For example, the minimal rout-
ing functions presented in [BGSS89] and [Kon90] are
not fully-adaptive because several minimal routes are
not allowed to take place. Full-adaptivity is a feature
from which one can hope to obtain the best possible
performance if no source of randomization is used. Full-
adaptivity has been used by Upfal in [Upf89] to pro-
duce a deterministic optimal algorithmn for routing jn
the multibutterfly. Multibutterflies are extremely rich
in terms of the number of minimal paths between any
pair of nodes.

Optimal performance cannot be obtained in some
networks if oblivious routing is used. This involves
both deterministic performance {BH82] and even prob-
abilistic performance if only minimal paths are used
[Val82]. On the other hand, fully-adaptive minimality
with bounded-size queues has the potential of providing
practical performance. Furthermore, finding determin-

istic and probabilistic bounds for static models of packet
injection in adaptive routing is still an open problem for
all cube-type networks.

A fully-adaptive, minimal, deadlock-free worm-hole
routing algorithm for the 2-dimensional mesh has been
described in [Ni90, Ni91]. Routing algorithms for worm-
hole routing on gencral k-ary n-cubes with these char-
acteristics have been presented in [LH91]. Recent
progress done by three of the authors of this paper
[GPS91] includes an algorithm for fully-adaptive min-
imal, deadlock- and livelock-free, worm-hole routing on
2-dimensional tori that uses fewer resources than the
algorithm in [LH91] for this network. This technique
is believed to be practical for the involved interconnec-
tions and the routing model because of its very mod-
erate hardware resources, fully-adaptive minimality, de-
terministic assurance of deadlock and livelock freedom,
and promising performance for different injection mod-
els. Also, in [GPS91] both minimal and non-minimal
adaptive, deadlock- and livelock-free worm-hole routing
algorithms for the hypercube have been presented.

In this paper, a number of algorithms for packet rout-
ing are shown. These techniques are fully-adaptive min-
imal (except for the one for the shuffle-exchange, which
is not fully-adaptive), deadlock- and livelock-free and
require a very moderate amount of resources in the rout-
ing nodes. The new methods are presented for hyper-
cubes, meshes, and shuffle-exchange networks.

The organization of this paper is as follows. In Sec-
tion 2, sone terminology and concepts concerning static
and dynamic deadlock freedom will be introduced. In
Sections 3, 4, and b, the main results of this paper
are presented. In these sections, algorithms for fully-
adaptive routing on hypercubes, 2-dimensional meshes,
and for adaptive routing on shuffle-exchange networks
will be shown. In Section 6, the functional designs of
the routing node for the above three interconnections
are shown. These designs give emphasis to the number
of buffers sharing a physical link, and the operation and
number of central queues in the node. In Section 7, the
results obtained from the simulations involving hyper-
cubes of up to 16N nodes are presented. Simulations
on higher-dimensional hypercubes and other topologies
will be reported soon.

280

2 Adaptive Routing and Dead-
lock Freedom: definitions and
terminology.

In packet routing, the critical resources are the queues
used to store the messages during their way towards
their destinations. Deadlock will arise if and only if
there exists a set of full queues occupied by messages
such that all of these messages need a slot of a queue
that belongs to the set in order to continue their way
toward their destinations.

Each node of the network will have associated with
it a certain number of queues. Each node has a pair of
distinct queues, nanely the injection and the delivery
queues. Messages will be injected in the injection queue,
and they will be consumed froin the delivery queue. The
routing function will be expressed in terms of the queues
of each node. The set of delivery queues of all the net-
work will be referred to as DelivQ) . Notice that each
delivery queue identifies a unique node of the network.
The set of injection qucues will be referred to as Injeci@

Each message has a destination associated with it,
given by the function Dest : Messages — DelivQ .

A total routing function R : Qucues x Deliv@ —
P(Queues) is such that R (¢, d) indicates which are the
next possible hops of a message with destination d that
1s currently in ¢. Possibly, a delivery queue d may not
be reachable from a given non-delivery, non-injection
queue ¢. In such a case, R (g,d) should be equal to 0.
R has to verify the following constraints:

1. if g2 € R (q1,d), then the node to which g3 belongs
is at most one hop away in the network from ¢q;’s.

‘R builds a non-empty set of paths from any injec-
tion queue to any delivery queue. Furthermore, as
paths are built by selecting locally each hop among
the possible ones, R must guarantee that no mes-
sage will get stuck at a dead-end. These two con-
ditions are expressed in the following one. Let r
be an injection queue and d a delivery queue. If
goq1 ---4qp 18 a path in D such that ¢g = 7, and
gi+1 € R (¢:,d) VO < 7 < p, then, there exists
a path ¢pqpy1...q5 in D such that ¢ = d, and
gi+1 €R (g5,) Vp < j <k

The queue dependency graph (QDG) corresponding to
a set of queues) and a routing function R is a directed
graph such that its set of vertices is @ and there exists
an edge from ¢; to ¢; (gi,q; € @) iff there exist an
injection queue s and a delivery queue d such that R

builds a route from s to d passing through both ¢; and
g;, and ¢; € R (g;. d). (This definition is related to the
one presented in [DS86a] regarding wirtual channels.)
Clearly, if the QDG corresponding to a set of queues
and a routing function is acyclic (i.e. it is a DAG),
then, the greedy routing algorithm resulting from R is
deadlock free.

Let D = (@, As) be an (acyclic) queue dependency
graph. Then, @ is the set of queues and A; the set
of links between the queues. Let d* (@A,)(q)é{q’ €
Q : (q.¢) € As } be the set of direct successors of q.
Whenever there is no ambiguity, the subscripts will be
dropped.

Every non-delivery queue has finite (independent of
the size of the network) size. The delivery queues of D
will have infinite size, to model the fact that messages
are eventually consumed at them. Level(g) is the length
of the longest path between any member of Inject@) and
q. For every q, Level (q) is finite because D is acyclic.

In previous work, routing functions are built such that
the resulting QDG’s are acyclic. Although this condi-
tion is sufficient to guarantee deadlock freedom, it is too
strong, and can be relaxed: the queue dependency graph
has to be dynamically acyclic, i.e. cyclic wait must not
arise in a dynamic environment [MS80).

This paper uses a model for such dynamically acyclic
queue dependency graphs in the generation of practical
routing algorithms for hypercubes, meshes, and shuffle-
exchanges.

Let Ay C Q x @ be aset such that 4, NA; =
§, and, if (q1,92) € Aq , then ¢; is at most one hop
away from ¢; in the network. Furthermore, it must
hold that, if (qi,92) € Agq , then ¢1 &€ Deliv@ , and
q2 € Inject@ . This means that in the extended graph to
be defined below, injection and delivery queues continue
to have only that function. Although it is not necessary,
it will be required that if (¢,¢’) € Ag then Level (q) >
Level (¢'). This is not a restriction because if Level (g) <
Level (¢") then (g, ¢') can be included in A, , and D will
still be acyclic. Now, let D = (Q , A, U Ag) be the
extension of D by A; . Sometimes, D will be called the
underlying DAG of D . Note that D is not necessarily
a DAG. In the following, A; will be called the static
link set and Az will be called the dynamic link sel. Let
R be a routing function on D, observing the following
conditions: Yq,q' € Q ,d € Deliv@ :

1.If¢ €R (¢g.d), then (q.4') € A, U Ay .
2. R (¢,d) CR (g,d).
3. ¢ €R (¢, d)and ¢’ € R (q,d) then R (¢',d) # 0.

281

This means that if a message can be routed along
a dynamniic link, it will still have the possibility of
taking a static link as a next step towards its desli-
nation. Therefore, at any moment, every message
has a static-link path that takes it to its destina-
tion. In other words, every message will be able
to progress towards its target queue through the
underlying DAG.

Let R be a routing function and D be the QDG
associated with 1t. Furthermore, suppose that D is the
underlying DAG of D . The following greedy algorithm
can be used to route messages over D from the injection
to the delivery queues.

Route(q)

/* q is the queune executing the algorithm */

(01) select ¢ €dt b (¢) :+ (not Full (¢')
and ¢ € R (g, Dest (Head (q))))

Insert (Head (q),q')
RemoveHead (q)

(02)
(03)

It is supposed that once a ¢ finds and selects some ¢’
verifying the condition in line (01) it gains the access
to a place in ¢’, and can execute lines (02) and (03) of
the algorithm above. Note that select may return a ¢’
satislying condition in line (01) according to any crite-
rion, as loug as it does so if the set of queues satisfying
(01) is not empty.

The proof of the deadlock freedom of this algorithin
is casy, and it can be found in [PGFS91].

3 Hypercube Algorithm.

In this Section, a fully-adaptive minimal routing algo-
rithm for the hypercube will be presented. A routing
function will be built that uses dynamic links. So, the
QDG associated with this routing function will have cy-
cles. As said above, this routing function should be re-
garded as an extension of an acyclic routing function
(i.e. a rouling function whose QDG is acyclic) so as to
guarantee that the routing algorithm 1s acyclic. Next,
this undcrlying routing function, and how to extend it
to achieve the final one will be described.

The routing function that results from routing over
the hypercube as hung from node 0...0 will be used as
the underlying acyclic function. This routing algorithm
has been presented in [BGSS89], for implementing vir-
tual barriers on the hypercube. A similar idea has been

used in [Kon90] for implementing a minimal adaptive
routing algorithm on the hypercube. The idea on which
this hanging algorithm is based is the following. The
algorithm consists of two phases. In phase A, each mes-
sage travels as moving downwards through the network,
always moving towards its destination, as much as pos-
sible. So, in this phase, each message starts heading
to node 1...1 (which happens to be the node that is
opposite to node 0...0). So, in phase A, each message
turns the incorrect Os in the address of its source node
into 1s.

In phase B, every message arrives at its destination
by following an upwards path. In this phase, messages
move towards node 0...0 again. So, in this phase, each
message turns the incorrect 1s of its source address into
0s. Therefore, all the required corrections are termi-
nated at the end of this phase. Consequently, each mes-
sage arrives at its destination.

The following inmiplementation of this algorithm is
such that the corresponding QDG is acyclic. Each node
n should have two queues, ¢4, (associated with phase
A), and ¢p n (associated with phase B), as well as an
injection queue 7, and a delivery queue d,,, as discussed
above. During the first phase, messages move through
the g4 queues of the nodes they visit. When a message
switches phase, it has to start moving through the ¢p
queues of the nodes visited. The QDG resulting from
this implementation is acyclic. Therefore, the algorithm
associated with it is deadlock-free. See Figure 1 for the
QDG of a 3-hypercube, in which the injection and de-
livery queues have not been drawn.

As messages are forced to correct first the incorrect
0s into 1s and only afterwards the incorrect 1s into Os,
congestion around node 1...1 is likely to take place.

Now, dynamic links will be added to the QDG in such
a way that they will allow messages to change incorrect
1s into Os while being in phase A if the message finds
place in the g4 queue of the corresponding node, at
a certain moment. The resulting algorithm, which is
deadlock- free (see Section 2), is the following. Each
message 1s injected, and starts moving through the ¢4
queues of the different nodes it visits (phase A) while it
has any 0 to correct into 1. After performing the last
0 to 1 correction, the message will enter the ¢p queue
of the corresponding node, and will start doing the 1 to
0 corrections needed until it arrives at its destination
node.

With the queue policy just outlined, the resulting
routing algorithm is deadlock-free, and allows each mes-
sage to wait for correcting any of the possible dimensions
it has to correct. Consequently, there will be no partic-

282

——
Static Nnks not ohanglng phase

000

Stefic Mnks changing phase

P——
Figure 1: A 3-hypercube hung from node 000 with dy-
namic links.

ular congestion near node 1...1 as in the previous al-
gorithim, as messages are allowed to move upwards even
if they are in phase A, as a result of the newly added
dynamic links. This algorithm requires only two queues
per node, plus the injection and delivery queues, and is
fully-adaptive.

The routing function. In the following, £(k) is
the number that has the same binary representation as
k but for the i digit, k;.

Formally, the routing function is the following:

{245}

if3j:s; #mjand s; =0
{as,}

otherwise
{qA)g!(n) Ty £ my}

ifdj:n; £mjandn; =0
. {4p.n}
R (94,0, dm) if n # m and

Vii(n; #m; =>n;=1)

7€ (iSy dm)

{dn}
ifn=m
{qB,é?‘(n) Tmy F g}
R (4B, dw) = {dﬁ n#m
ifn=m

Then, the following theorem can be easily proved.

Theorem 1 The routing algorithm just described for
the hypercube is fully-adaptive, minimal, deadlock- and
livclock-free, and can be implemented using 2 queues per
node, plus an injection and a delivery queue per node.

Sunulation results of this algorithim for hypercubes of
up to 16 K nodes are reported in Section 7.

4 Mesh Algorithm.

A routing function for the mesh will be presented here in
terms of the ideas of dynamic links. The scheme is min-
imal and deadlock free. Although the following descrip-
tion focuses on 2-dimensional meshes, the technique can
be easily generalized for k-dimensional meshes, for any
arbitrary k.

The key idea is to have two phases: in phase A the
messages approach to their destination visiting nodes
in such a way that if a message passes from (&r,y) to
(z',y') in one routing step, then z < 2’ or y < ¥'.
In phase B, messages visit nodes with lower number
instead of those with higher number. In other words,
the mesh is hung from node (0,0) in phase A and the
messages visit nodes with higher level, where the level of
(z,y) is £ + y. In phase B, the mesh is hung from node
(n — 1,n — 1) and the nodes are visited in decreasing
level order. A message changes from phase A to phase
B if it has nothing to correct in phase A. This scheme
can be implemented using two queues in each node, ¢4
for phase A messages and gp for phase B messages. In
this way, the scheme is deadlock free, because the queue
dependency graph is acyclic.

The routing function. !
9a,(vy)
. fz>zorw>y
R (1 ,d =
(a0 e) aB,(r,y)

fz<zandw<y

1In this section, R (a,b) is the set of all the right members
satisfying the associated condition involving a and b. The same
applies to the definition of R below.

283

(0.2)

(0,2)

(0,0)

——
Statlc links not changing phose

——
Stotle tinks changing phase

—
Dynamic iinks

Figure 2: A 3-mesh hung from node (0, 0) with dynamic
links.

d(’m,y)

fer=zandy=w
9A,(z+1,9)
ifz>ue
(IA,(;v,y+1)
if w>y
4B (x,y)
fz<zandw<y

R (QA,(I,y)) d(z,w))

dir,y)
fr=zandy=w
dB,(ry—1)

R (qB,(.v,y);d(z,w)) fw<y

QB,(‘.IT—I,‘]/)
fz<e

This routing function allows sonie degree of adaptiv-
ity. But suppose that some message starts from node
(z,y) towards its destination (v,w), and let v < # and
w > y. Following the function above, this message
has only one path, namely correct its second dimen-
sion, change phase and correct its first dimension. So,
it has no adaptivity at all.

In the following, this scheme will be extended to a
fully adaptive one, that is still deadlock free and uses
the same number of queues.

This is done by allowing every message in phase A to
pass to queue g4 of any neighboring node (and not only
to those of higher level) if it still has some descending
path to pass through. The phase change mechanisim is
the same as in the previous scheme. In phase B, the
messages still have to go through ascending paths.

The routing function.

JA,(xy)
fz>zorw>y

4B,(v.y)
fz<randw<y

R (i(;r,y)) d(z,ur))

d(:r,y)
fr=zandy=w
94 (x+1,y)
if z>a
dA (z—1,9)

N ifz<xandw>y
R (’IA,(‘-v,y)’d(z:w)) 9A,(x,y+1)

fw>y
AA,(z,y-1)
fz>randw<y

1B,(z,y)
fz<randw<y

284

Az y)
Hfr=zandy=w
9B (z,y-1)
ifw<y
4B.,(r-1,9)
ifz<z

R (1B.(rg)> disw)) =

This new scheme is more adaptive than the first one
described above. It can be implemented using only two
queues, one for each phase, and it is still deadlock free.
This can be proved using the ideas of dynamic links
exposed in Section 2. Note thal in the first phase the
routing function R is defined as if the mesh were not
hung,.

Then, the following theorem can be easily proved.

Theorem 2 The routing algorithm just described for
the mesh is fully-adaptive, minimal, deadlock- and
Livelock-free, and can bc implemented using 2 queues per
node, plus an injection and a delivery qucue per node.

A fully-adaptive and minimal routing technique for
packet-switching over tori can be achieved using 4
queues per node (plus an injection and delivery queue
per node) following an idea sunilar to the one presented
in [GPS91] for worm-hole routing over tori.

5 Shuffle-Exchange Algorithm.

In [PFGS91], a deadlock-free routing technique for the
shuffle-exchange network using only a constant number
of virtual channels per link has been presented. Next, a
description of a modification of that technique for packet,
switching is given, followed by a possible extension using
dynamic links to achieve adaptivity.

First, consider a 2"-node shuffle-exchange network as
without the exchange links. Each connected component
of the graph will be called a shuffle cycle. Note that
every node in a shuffle cycle has the same number of 1s
in its binary address. Then, the level of a shuflle cycle
can be defined as the number of ones in the address
of any of its nodes. The idea of the algorithn: is to
break the shuffle cycles using the technique presented in
[DS86a] in the context of worm-hole routing, and then,
visit the cycles so as to avoid deadlock. Any node of a
cycle can be chosen to break it.

The routing strategy can be defined in two phases.
In the first one, messages can move from one shuffle cy-
cle to another whenever the new cycle has higher level.
In the second phase, messages visit the shuflles cycles in

000

[,
Static finks not
changing phase

000

—_——
Static links
changing phase

S od
Dynamlio links

Figure 3: A 3-shuffle-exchange hung from node 000 with
dynamic links.

decreasing order with respect to their level. The routing
algorithm consists of visiting the dimensions of the ad-
dress to correct twice, once in each phase. In each phase,
dimensions are visited using the shuffle links. Conse-
quently, every path has at most 3n steps: at most 2n
shuflle steps and at most n exchange steps (see Figure
3).

After going through a shuffle link, every message has
to know which dimension of the destination corresponds
to the current least significant bit so as to know whether
the least significant bit has to be corrected or not. So,
each message must record the number of shuflle links
it has already traversed. This is necessary to compare
the least significant bit of the current node address with
the corresponding bit of the destination address so as to
decide what to do as the next step. If these bits disagree,
that dimension will have to be corrected at that step or
not depending on the phase the message is in. In the
first phase, a dimension will be corrected if it has to be
changed from 0 to 1. Note that this restriction implies
that the new cycle has higher level. In the second phase,
the reverse direction of the exchange links is used. Only
will a change from 1 to 0 be allowed. So, the level of

285

the cycles that are visited decreases during the second
phase.

The routing function that has just been described
needs only two queues per node for breaking the shuffle
cycles. It is necessary to break the shuffle cycles twice:
once for each phase. Therefore, each node will have 4
queucs, and an injection and a delivery queue.

The messages can either be consumed as soon as they
arrive at their destinations for the first time, or when ar-
riving at their destinations after finishing the 2n shuffle
transitions.

Next, the modification of the routing function de-
scribed above by adding dynamic links is presented.
Basically, the main change introduced is that a mes-
sage will be allowed to traverse an exchange link that
corrects the current dimension from 1 to 0 even if the
message 1s in its first phase. In other words, a mes-
sage will be allowed to correct a 1 to 0 if it happens to
find place to do it during the first phase. If not, that
dimension will have to be changed during the second
phase. As a result of these changes, the resulting rout-
ing algorithm is adaptive, as a given message may take
alternative paths as a consequence of local congestion:
e.g. it may or may not correct a 1 into a 0 during the
first. phase (see Figure 3). See [PGFS91] for a formal
and more detailed definition of the routing function.

Then, the following theorem can be easily proved.

Theorem 3 The routing algorithm just described for
the 2"-node shuffle-exchange network is adaptive,
deadlock- and livelock-free, and can be implemented us-
ing 4 queues per node, plus an injcction and a delivery
queue per node. Furthermore, thc roule each message
takes has al most 3n steps.

6 The design of the node.

In this Section, a possible node model to implement the
routing algorithms presented in Sections 3, 4, and 5 will
be presented. The node models are a nodification of
the one presented in [Kon90] to implement a partially
adaptive routing algorithm for the hypercube.

As described above, a message can move from a queue
to another queue following two types of transitions, ei-
ther through dynamic links or through static links, fol-
lowing the terminology used in Section 2. There exists
a dynamic or static link between a pair of queues cnly
if these queues are at distance at most one in the phys-
ical network, i.e. if either the queues are in the same

node or at adjacent nodes (nodes connected by a phys-
ical link in the network). If (g1,¢92) € A; U Ay , then
g2 will receive messages from ¢;. So, there must ex-
ist a physical connection between ¢; and ¢y. If ¢; and
g2 belong to adjacent nodes, then this physical connec-
tion is the physical link between the two nodes. On the
other hand, if ¢; and ¢ belong to the same node, then,
there must exist an internal connection between the two
queues so as to allow internal passage of message within
the nodes. Given a queue ¢, some fair policy must be
implemented so as to guarantee fair access to ¢ to all
the resources that may want to access ¢.

Each node will have both an injection and a deliv-
ery queue, as explained above, as well as all the queues
used by the routing algorithm. Each physical link will
have associated with it input and output buffers. In
general, there will be two types of buffers associated
with each physical link: those associated with dynamic
links and those with static links. Consider hnk 7, in-
cident to nodes n and n’. If traffic corresponding to
dynamic links can enter node n from node n’ through
link 7, then link j will have an input buffer in node
n and an output buffer in node n’ associated with the
dynamic transitions. So, when a message wants to go
out of node n’ through link j via a dynamic traunsition,
it will be placed in the output buffer corresponding to
dynamic traffic of link j and it will arrive at the input
buffer in node n that is associated with both dynamic
transitions and link j. If traffic corresponding to static
links can enter queue ¢ in node n through link 7, then
link j will have an input buffer associated with queue ¢
in node n and an output buffer associated with queue
q in node n’. So, if some queue ¢’ in node n’ wants to
send a message through link j to queue ¢ via a static
transition, then it will place the message in the output
buffer corresponding to link j and queue g in node n'.

Figures 4, 5 and 6 illustrate the node model corre-
sponding to the algorithms presented in Sections 3, 4
and b, respectively. A more detailed description of these
models can be found in [PGFS91].

7 Simulation of the algorithm.

In this Section, simulations results of the routing algo-
rithm proposed will be shown for the hypercube.

7.1 The activity of the node.

In the simulations presented below, each node is sup-
posed to have an injection queue of size 1. The size of

286

dim 3 dim 2 dim 1 dim 0
1 0 1 0
T A & &

—1]
T
T
Queus Queue
A B
injection Delivery
Queue Queue
r 3 Y 3
[y ? [T
0 1 0 1
dim 3 dim 2 dim 1 dim 0

Figure 4: Node 0101 of the 4-Hypercube.

(X+1 -Y) (X“1 ’Y) (x+1 -Y) (X:Y—‘)

! I ! I

-t
T
Queue Queue
A B
Injection Delivery
Queue Queue
l I
(x+1'Y) (X_11Y) (X'Y+1) (X-Y—1)

Figure 5: The node for the Mesh.

N
L

Queue 1

Queue 2

Queue 3

NN .

N

Queue 4

Figure 6: The node for the Shuffle-Exchange.

287

g4 and ¢p qucues has been fixed arbitrarily to 5. The
idea is to have a queue size that does not change with
the size of the network. Following the node descrip-
tion given in Section 6, nodes and links should work
in a synchronous manner, but are independent of each
other. So, each routing cycle consists of one node cycle
and one link cycle. In the node cycle, each node fills its
output buffers from low to high dimensions, taking mes-
sages from the queues in FIFO order. This means that
if two messages want to enter the same buffer, the first
one in the qucue in FIFO order will get it. Then, the
node reads its input buffers and its injection buffer and
moves their messages to the required queues, if there
is place to do so. This is carried out in a fair way. [t
should be noted that it takes a message at least {wo
routing steps to go through a node: one to go from the
input (or injection) buffer to some queue and another
to go from the queue to the output buffer.

During the link cycle, each link tries to send a packet
in each direction. Note that some links have associated
two output buffers. As only one packet can use the link
during a single cycle, packets may have to wait in the
output buflers. Of course, a packet can go through a
link only if the corresponding input buffer (on the other
side of the link) is empty.

The simulations that have been performed show the
behavior of the algorithm for many different injection
models and communication patterns, described by the
following parameters:

¢ Injection Model: The injection model can be ei-
ther dynamic or static.

— In the dynamic model, each node tries to in-
ject a message in the network in every cycle
with some probability A. The simulations have
been run for A = 1. The dynamic injection
of randomly destined packets models the sit-
uation in which the nodes communicate with
each other independently. The dynamic injec-
tion of messages with the same destination is
a very useful patiern of communication that
models a coarse-grain parallel program with
structured communication patterns. In the
first case, the destinations of messages from
a given source are chosen at random. In the
second case, a permutation ¢ is chosen in ad-
vance, and cvery node i selects o(7) as des-
tination for cvery message it injects into the
network.

The injection is static if each node has an a
priori fixed number of packets to inject in the
network. The simulations have been run for

both 1 and log N packets at each node.

For both models, the average latency and maxi-
mum latency messages suffer is measured. For dy-
namic injection, also the effective injection rate is
measured. The effective injection rate is defined as
the ratio between the number of times the nodes
succeeded in Injecting messages into the network
and the number of times the nodes attempted to
inject.

e Communication Pattern: The following com-
muunication patterns have been tried:

Random Routing: The destination of each
message is chosen randomly?. It should be
noted that this pattern of communication does
not necessarily generate permutations.

Complement: The destination of each mes-
sage is the node whose binary address is the
complement of the address of its origin.

Transpose: If n = log N is even, the trans-

pose of
the binary address b,-1,...,bz,ba_1,...,bo
Is b%_l,...,bo,bn_l,u.,b%. If n 1s odd, its

central bit remains unchanged and the address
1s modified as before.

Leveled Permutation: It has been defined
that the level of a node is its Hamming weight.
A leveled permutation is one in which every
node sends messages to a node in its sanie
level. In [FCS99] it has been reported that
congestion may arise for this sort of permuta-
tions in an oblivious routing technique where
minimal paths are chosen at random.

In tables 1 to 8 the results of the simulations that
have been performed for static injection are presented.
Cables 9 to 12 show the resulls for dynamic injection.
It should be emphasized that node activities are con-
sidered to take two time cycles. In the tables, N is
the number of nodes of the hypercube, n is the num-
ber of dimensions of the hypercube, L,y is the average
latency of the messages, Lnqp is the maximum latency
any packet experienced, and I, (%) is the effective in-

v
Jection rate.

8 Acknowledgments.

We would like to thank S. Konstantinidou, C. T. Ho,
J. Bruck and R. Cypher for their many suggestions and

?Node p will choose the destination of every message it injects
with uniform probability over the set V — {p}.

288

comumnents.

References

[BGSS89] Y. Birk, P.B. Gibbons, D. Soroker, and
J.L.C. Sanz. A simple mechanism for efficient
barrier synchronization in MIMD machines.
RJ 7078 (67141) Computer Science, IBM Al-
maden Research Center, October 1989.

[BII&2] A. Borodin and J.E. Hopcroft. Routing,
Merging and Sorting on Parallel Models of
Computation. In Symposium on Theory of

Computing, pages 338--344, 1982.

[DS86a] W. Dally and C. Seitz. Deadlock-free routing
i multiprocessor interconnection network.
5206:TR.:86, Computer Science Departiment,

California Institute of Technology, 1986.

[DS86b] W.J. Dally and C. L. Seitz. The Torus Rout-
ing Chip. Distributed Computing, (1):187-
196, 1986.

[FCS90] M.L. Fulghamn, R. Cypher, and J.L.C. Sanz.
A comparison of SIMD hypercube routing
strategies. RJ 7722 (71587), IBM Almaden

Research Center, 1990.

[Gel81] D. Gelernter. A DAG-based algorithm for
prevention of store-and-forward deadlock in
packet networks. IFEFE Transaclions on

Computers, ¢-30:709-715, October 1981.

[GPS91] L. Gravano, G.D. Pifarré, and J.L.C. Sanz.
Adaptive Worm-hole Routing in Tori and
Hypercubes. TR:91-10, IBM Argentina -

CRAAG, March 1991.

K.D. Gunther. Prevention of deadlocks
in packet-switched data transport system.
IEEE Transactions on Communications,
com-29(4), April 1981.

[Gun8&l1]

[Hilg5] D. Hillis. The Connection Machine.

MIT Press, 1985.

The

[KK79] P. Kermani and L. Kleiurock. Virtual Cut-
Through: A new computer communication

switching technique. Computer Nclworks,
(3):267-286, 1979.

[Kon90] S. Konstantinidou. Adaptive, minimal rout-
ing in hypercube. In 6th. MIT Conference on
Advanced Research in VLSI, pages 139-153,

1990.

[KS90]

[Lei90]

[LHO1]

[LMS89]

[LMRSS]

[MS80]

[Ni90]

[Nig1]

[NS]

[PFGS91]

[PGFS91]

[Pip84]

5. Konstantinidon and L. Snyder. The Chaos
router: A practical application of random-
ization in network routing. In 2nd. Annwal

ACM SPAA, pages 21--30, 1990.

T. Leighton. Average Case Analysis of
Greedy Routing Algorithms on Arrays. In
SPAA, 1990.

D.H. Linder and J.C. Harden. An Adaptive
and Fault Tolerant Wormbhole Routing Strat-
egy for k-ary n-cubes. IEEE Transactions on
Compulers, 40(1):2~12, January 1991.

T. Leighton and B. Maggs. Expanders might
be practical: Fast algorithms for routing
around faults on multibutterflies. In IELE,
editor, 30" Annual Symposium on Founda-
tions of Computcr Science, pages 384-389,
October 1989.

T. Leighton, B. Maggs, and S. Rao. Universal
packet routing algorithims. 1988.

P.M. Merhn and P.J. Schweitzer. Deadlock
avoidance n store-and-forward networks. 1:
Store-and-forward deadlock. [FEE Trans-
actions on Commaunicalions, 28(3), March

1980.

L.M. Ni. Communication Issues in Multi-
computers. In Proceedings of the First Work-
shop on Parallel Processing, Taiwan, 1990.

L.M. Ni, February 1991. Personal Commnu-
nication.

J.Y. Ngai and C.L. Seitz. A framework for
adaptive routing. 5246:TR:87, Computer
Science Department, California Institute of
Technology.

G.D. Pifarré, S.A. Felperin, L. Gravano, and
J.L.C. Sanz. New techniques for combina-
tion, adaptivity, deadlock-freedom and syn-
chronization in massively parallel routing. In
Preparation, 1991.

G.D. Pifarré, L. Gravano, S.A. Felperin,
and J.L.C. Sanz. Fully-Adaptive Minunal
Deadlock-Free Packet Routing in Hyper-
cubes, Meshes, and Other Networks. Tech-
nical report, IBM Almaden Research Center,

1991.

N. Pippenger. Parallel communication with
limited buffers. In Foundations of Computer
Science, pages 127 — 136, 1984.

[Ran85)

[RBISS]

[UpfR9)

[Valg2]

[Val&s]

Table 1: Random Routing, 1 packet.

n N Lavy | Limas

10 | 1024 | 10.96 19

11| 2048 | 12.09 21

12 | 4096 | 13.08 25

13] 8192 | 14.03 27

14 | 16384 | 15.04 29
Table 2: Complement, 1 packet.

n N L avy Lmaf
10] 1024 21 21
111 2048 23 23
12 1 4096 25 25
13 | 8192 27 27
14 | 16384 29 29

A.G. Ranade. How to emulate shared mem-
ory. In Foundations of Compuicr Science,
pages 185 — 194, 1985.

A.G. Ranade, S.N. Bhat, and S.1.. Johnson.
The Fluent Abstract Machine. In J. Allen
and F.T. Leighton, editors, Fifth MIT con-
ference on advanced research in VLSI, pages
71 — 93. The MIT press, March 1988.

E. Upfal. An O(log N) deterministic packet
routing scheme. In 21%% Annwal ACM-
SIGACT Symposium on Theory of Compul-
ing, May 1989.

L. G. Valiant. Optimality of a two-phase
strategy for routing in interconnection net-
works. March 1982.

L.G. Valiant. General purpose parallel ar-
chitectures. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science.
North-Holland, 1988.

Table 3: Transpose, 1 packet.

n N Lavg Lma.r
10 | 1024 | 11.09 21
11 | 2048 | 11.09 21
12 | 4096 | 13.13 25
13 | 8192 | 13.13 25
14 | 16384 | 15.23 29

‘able 4: Leveled Permutation, 1 packet.

n N Lavg Loar
10 | 1024 | 10.10 21
11| 2048 | 10.98 21
12 | 4096 | 12.06 25
13 | 8192 | 13.07 25
14 | 16384 | 14.03 29

Table 5: Random Routing, n packets.

7 N L avg Limar
10 | 1024 | 11.33 22
11] 2048 | 12.52 25
12 | 4096 | 13.76 27
13 | 8192 | 15.02 30
14 | 16394 | 16.54 32

Table 6: Complement, n packets.

n Z\’T L avyg L max
10 | 1024 21 21
11| 2048 | 24.99 30
12 | 4096 | 28.61 35
13 | 8192 | 32.74 39
14 | 16384 | 36.23 44

Table 7: Transpose, n packets.

n N Lavg Lm.ax
10 | 1024 | 12.27 26
11| 2048 | 12.40 32
12 | 4096 | 16.01 37
13 | 8192 | 16.22 36
14 | 16384 | 20.49 43

290

Table 8: Leveled Permutation, n packets.

n N Laug Lmar
10} 1024 | 10.78 23
11| 2048 | 11.77 25
12 | 4096 | 13.17 28
13 | 8192 | 14.60 32
14 | 16384 | 16.03 37

Table 9: Random Routing, A = 1.

L]

N I Lavg I Lm.(u? I 17' (%) ”

10 | 1024 | 12.10 30 93
11 | 2048 | 13.47 35 89
12 | 4096 | 15.01 37 85
13 | 8192 | 16.58 44 81
14 | 16364 | 18.30 49 76
Table 10: Complement, A = 1.
n N Lavg LmaI [7' (%)
10 | 1024 | 33.32 52 55
11] 2048 | 39.29 b8 49
12 | 4096 | 45.60 68 45
13 | 8192 | 52.87 79 41
14 | 16384 | 60.70 90 38
Table 11: Transpose, A = 1.
n N Lavg Lpar | Ir (%)
10 | 1024 | 14.67 36 83
11| 2048 | 14.67 36 83
12 | 4096 | 15.78 49 73
13 | 8192 | 20.31 54 71
14 | 16384 | 27.33 66 61

Table 12: Leveled Permutation, A = 1.

n N L avy Lmax | Ir (%)
9 512 | 11.28 37 94
10 | 1024 | 12.47 43 91
11 | 2048 | 13.50 48 89
12 | 4096 | 15.17 56 84
13 | 8192 | 16.91 53 80
14 | 16384 | 18.46 57 75

