
Fully-Adaptive Minimal DeacUock-Free Packet Routing in Hypercubes,

Meshes, ancl Other Networks

Gustavo D. Pifarr6 “t$ Luis Gravano *t$

e-mail: pifarre@tmevm2. vnet.ibm. com e-mail: gravano@buevm2. vnet.ibm.com

Sergio A. FelPerin *tl Jorge L. C. Sanz $t

e-mail: felperin~@buevm2 .vnet.ibm.com e-mail: sanz@ibm.com

Abstract

This paper deals with the problem of packet-switched

routing in parallel machines. Several new routing al-

gorithms for different interconnection networks are pre-

sented. While the new techniques apply to a wide va-

riety of networks, routing algorithms will be shown for

the bypercube, the 2-dinleusional mesh, and the shuffle-

exchange. The techniques presented for hypercubes and

meshes are fully-adaptive and minimal. A similar tech-

nique can be devised for tori. A fully-adaptive and mill-

imal routing is one in which all possible minimal paths

bet,ween a source and a destination are of potential use

at the time a message is injected into the network. Min-

imal paths followed by messages ultimately depend on

the local congestion encountered in each node of the

network. In the shuffle-exchange network, the routing

scheme also exhibits adaptivity but paths could be up

to 3 log N long for an N node machine. The shuflle-

exchange algorithm is the first adaptive and deadlock-

free method that requires a small (and independent of

N) number of buffers and queues in the routing nodes

for that network.

* ESLAI, Escuela Superior Latino Americana de Informitica,
CC 3193,(1000) Buenos Aires, Argentina.

t Computer Research and Advanced Applications Group, IBM
Argentina, Ing. E. Bntti 275, (1300) Buenos Aires, Argentina.

+ Computer Science Dept., IBh’1 Almadeu Research Center, San

Jos6, California.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,

requires a fee and/or specific permission.

Furthermore, all of the new techniques are completely

free of clea.dlock situations. In dynamic message injec-

tion models, the routing methods are also ensured to be

free of livelock if messages competing for resources are

handled with fairness.

In contrast to other approaches in which adaptivity,

deadlock and livelock freedom can be guaranteed at the

expense of complex architectures, the algorithms pre-

sented in this paper require a very moderate amount

of routing hardware. In particular, it will be shown

that only two central queues per routing node of the

network are necessary for the cases of the 2-dinlensional

mesh and the hypercube, and four queues for the shufHe-

exchange.

This paper demonstrates that “ hauging” an intercon-

nection network from a node [Gu1181, MS80, BGSS89,

Kon90] is a convenient methodology for creating and vi-

sualizing routing functions and understanding deadlock-

free policies for queue utilization. In some cases, in-

terconnections can be lwng from an arbitrary node,

producing new interesting routing functions [I? FGS91].

While the methods presented in this paper are for packet

routing, some generalizations are possible for worm-hole

routing on 2-dimensional tori [G PS91],

In addition, simulation results corresponding to hy-

percubes of up to 16K nodes are reported for both static

and dynamic injection models.

1 Introduction.

Message routing in large interconnection networks has

attracted a great deal of interest in recent years. Differ-

ent underlying machine models have been used [DS86a],

[RBJ88, Ran85], [Upf89, LM89], [Va188], [KS90], [NS],

[Hi185]. Some fundamental distinctions among routing

algorithms involve the length of the messages injected

@ 1991 ACM 089791-438-4/91/0007/0278 $1.50

278

in the network, the static or dynamic nature of the in-

jection model, special assumptions on the semantic of

the messages, architecture of the network and router,

degree of synchronization in the hardware, and others.

In terms of message length, several issues have been

studied concerning the ways to handle long messages

(ofpot,entially unknown size) andvery shortrnessages

(typically of 100 bits). Recently, new techniques and

architectures have been proposed based on worm-hole

routing [L) St36a], [DSt36b], and packet-switched rout-

ing [1< S90]. In between packet-routing and worm-hole

lie some hybrid approaches, as the virtual cut-through

technique [1<1<7~].

Two subjects of long-standing interest in routing are

deadlock and livelock freedom. Techniques that per-

form without deadlocks or livelocks have been shown

on different models. Some algorithms succeed in accom-

plishing deadlock-free or livelock-free routing only in a

probabilistic sense [1{ S90], [Pip84]. In other algorithms,

deadlock freedom is guaranteed in a deterministic sense

[DSt36a], [Kon90], [RBJ88, Ran8.5], [LNIR88], [W81],

[Gun81, MS80].

Several techniques have been developed that avoid

deadlock by defining an ordering on the critical re-

sources, and allowing each message to progress through-

out the network by occupying resources in a strictly

monotonic fashion. The central idea for avoiding dead-

lock in the works of [DS86a], [RBJ88, Ran85], [1<01190],

[BGSS89], [Gun81, MS80], and others is to order the

use of resources potentially intervening in the genera-

tion of deadlocks. This idea results in the generation

of a directed acyclic graph (DAC+) of the resources. All

DAG-based methods can be used for both wornl-hole

and packet routing. This methodology has been useLI

by the authors of’ this paper to create a wide vari-

ety of new adaptive routing methods for hypercubes,

meshes, sl~~lffle-f;xclla llges, cube-connected cycles, and

other networks [PFGS9 1]. Some of the DAG’s proposed

in [PF(3S91] will be utilized in this paper.

Most known techniques that completely avoid livelock

and deadlock situations do that at the expense of some

hardware resources. These hardware resources will in-

crease with the degree of adaptivity desired in the rout-

ing of the messages. In the work of [DS86a], moderate

resources are proposed for practical deterministic deacl-

lock freedom on some networks, but, routing techniques

are oblivious. On the other hand, in [K01190], an adap-

tive method for routing in the hypercube is proposed.

This method performs well on simLdatioIM involving LL1>

to 161{ nodes.

Some methods may become impractical for efilcient

routing on large interconnection networks due to either

the amount of work done during routing or the reqni.red

architecture resources in a node. The recent work re-

ported in [KS90] shows a striking reduction of hardware

resources by providing an adaptive deadlock-free rout-

ing algorithm dubbed Chaos. The method has a non-

zero probability that a message will not reach its desti-

nation after t routing steps, for an arbitrary t.However,

this probability tends to zero as t approaches infinity.

Furthermore, the technique in [1{ S!30] applies only to

packet routing and paths followed by the messages are

not necessarily minimal.

Restricting the set of availal)le paths in the network

to a subset suitably chosen is a common way to re-

duce the hardware resources necessary for deadlock-

free routing. When stringent restrictions are applied,

oblivious algorithms or methods with partial adap-

tivity will be obtained. This class of routing algor-

ithms has been studied thoroughly for meshes and

tori [Lei’JO]. On the other hand, if few restrictions

are imposed on the set of possible routes general.ed

by a routing function, impractical algorithl”ns may re-

sult. For example, the structured buffer pool [Gun81,

MS80] guarantees deadlock freedom by adding all nec-

essary resources so that a DAC4 is obtained. This will

result in an excessive a.motnlt of hardware necessary in

a routing node aucl tJlis situation will not be improved

by allowing messages to depart from the DAG routes if

queue space is available [M S80].

A .full,y-adaptive minimal routing scheme is one in

which all poss;ble minimal paths between a source and

a destination are of potential use at the time messages

are injected into the network. Paths followed by the

messages depend on the traffic congestion found in the

nodes of the network. For example, the minimal rout,-

ing functions presented in [BGSS89] and [Kon90] are

aot fully-adaptive because several minimal routes are

not allowed to take place. Full-adaptivity is a feature

from which one can hope to obtain the best possible

performance if no source of randomization is used. Full-

ada.ptivity has heen used by Upfal in [Upf89] to pro-

duce a deterministic. optimal algorithm for routing in

the nndtibutterfiy. Multibutterflies are extremely rich

in terms of the number of minimal paths between i~ny

pair of nodes.

Optimal performance cannot be obtained in scme

networks if oblivious routing is used. This involves

both deterministic performance [13H82] and even prob-

abilistic performance if only minimal paths are used

[va182]. on the other hand, fully-aclaptive rninimality

with boundecl-size queues has the potential of providing

practical performance. Furthermore, finding deternlin-

279

istic and probabilistic bounds for static models of packet

injection in adaptive routiug is still an open problem for

all cube-type networks.

A fully-adaptive, minimal, deadlock-free wornl-ho]e

routing algorithm for the 2-dimensional mesh has been

described in[Ni90, Ni91]. Routinga lgorithmsforw-orm-

hole routingou general k-ary n-cubes with these char-

acteristics have been presented in [LH91]. Recent

progress done by three of the authors of this paper

[GPS91] includesan algorithmfo rfully-adaptivemiu-
imal, deadlock- and Iivelock-free, worm-hole routing on

2-dimensional tori that uses fewer resources than the

algorithm in [LH91] for this network. ‘This technique

is believed to be practical for the involved intercomlec-

tions and the routing model because of its very mod-

erate hardware resources, fully-adaptive minimalityj de-

terministic assurance of deadlock and livelock freedom,

and promising performance for cliflerent injection mod-

els. AlsG, in [GPS91] both minimal and non-minimal

adaptive, cleadlock- and livelock-free wornl-ho]e routing

algorithms for the hy-percube have been presented.

In this paper, a number of algorithms for packet rout-

ing are shown. These techniques are fully-adaptive min-

imal (except for the one for the shutlle-exchange, which

is not fully-adaptive), deadlock- and livelock-free and

require a very moderate amount of resources in the rout-

ing nodes. The new methods are presented for hyper-

cubes, meshes, and shufile-exchange networks.

The organization of this paper is as follows. In Sec-

tion 2, some tmmillology and concepts concerning static

and dynamic. deadlock freedom will be introduced. In

Sections 3, 4, and 5, the main results of this paper

are presented. In these sections, algorithms for fully-

adaptive routing on hypercubes, 2-dimensional meshes,

and for adaptive routing on shuilh-exchange networks

will be shown. In Section 6, the functional clesigns of

the routing node for the above three interconnections

are shown. These designs give emphasis to the number

of buffers sharing a physical link, and the operation and

number of central queues in the node. In Section 7, the

results obtained from the simulations involving hyper-

cubes of up to 161{ nodes are presented. Simulations

on higher- dimeusioual hypercubes and other topologies

will be reported EOOU.

2 Adaptive Routing and Dead-

lock Freedom: definitions and

terminology.

In packet routing, the critical resources are the queues

used to store the messages during their way towards

their destinations. Deadlock will arise if and only if

there exists a. set of full queues occupied by messages

such that all of these messages need a. slot, of a queue

that belongs to the set in order to continue their way

toward their destinations.

Each node of the network will have associated with

it a certain number of queues. Each node has a pair of

distinct queues, namely the injection and the delivery

queues. Messages will be injected in the injection queue,

and they will be consumed from the clelivcry queue. The

routing function will be expressed in terms of the queues

of each node. The set of delivery queues of all the net,-

work will be referred to as De/zuQ . Notice that each

delivery queue identifies a unique node of the network.

The set of injection queues will be referred to as lnjcciQ

Each message has a destination associated with it,

given by the function Dest : Messages + DelizlQ .

A total routing function l?. : Queues x D.elzvQ ~

T(Queues) is such that R. (q, d) indicates which are the

next possible hops of a message with dest,iuation d that

is currently in q. Possibly, a delivery queue d may not

be reachable from a given non-delivery, non-injection

queue q. In such a case, ‘R (q, d) should be equal to 0.

Ii? has to verify the following constraints:

1.

2.

if qz ~ 72 (ql, d), then the node to which qz belongs

is at most, one hop away in the ne t,wor k from ql’s.

R builds a nomempt,y set of paths from any iujec-

tion queue to any delivery clueue. .Furtbermore, as

paths are built by selecting locally each hop among

the possible ones, 7? must guarantee that no mes-

sage will get stuck at a dead-end. These two con-

ditions are expressed in the following one. Let, r

be an injection queue and d a delivery queue. If

floql . . . qj, is a path in D such that qo = r, and
%+1 c ~ (qi, d) ‘V’O < i < p, then, there exists
a path qrqfl+l . . . qk in D such that qk = d, and

qj+lER(qj,d)Vpsj<k.

The queue dependency graph (QDG) corresponding to

a set, of queues Q and a routing function 77. is a directed

graph such that its set of vertices is Q and there exists

au eclge from qi to qj (qi, qj G Q) iff there exist an

injection queue s and a delivery queue d such that, R

280

builds a route from s to d passing through both q~ and

Q, and qj @ R (qi, d). (This clefinit ion is related to the

one presentecf in [DS86a] regarding virfual channels,)

Clearly, if the QDG correspoudiug to a set of queues

and a routing function is acyclic (i.e. it is a DAC,),

then, the greedy routing algorithm resulting from 7? is

deadlock free.

Let D = (Q, AS) be an (acyclic) queue dependency

graph. Then, Q is the set of queues and As the set

of links between the queues. Let, d+ (Q,A,)(q)~{q’ c

Q : (~, d) 6 A } be the set of direct successors of q.

Whenever there is no ambiguity, the subscripts will be

dropped.

Every non-delivery queue has fiuite (independent of

the size of tl~e network) size. The delivery queues of D

will have infinite size, to model the fact that messages

are eventually consumed at them. Le vcl (q) is the length

of the longest path between any member of Injecf Q and

q. For every q, Level (q) is fiuite because D is acyclic.

In previous work, rout,ing functions are built such that

the resulting QDG’s are acyclic. Although this condi-

tion is sufflcieut to guarantee deadlock freedom, it is too

strong, and can be relaxed: the queue dependency graph

has to be dynamically acyclic, i.e. cyclic wait must not

arise in a dynamic environment [MS80].

This paper uses a model for such dynamically acyclic

queue dependency graphs in the generation of practical

routing algorithms for hypercubes, meshes, a.ncl shuffle-

exchanges.

Let Ad c Q x Q be a set such that 4 n 4 =

o, and, if (q~,q~) ~ .4d , then q~ is at most one hop

away from ql in tke network. Furthermore, it must

hold that, if (ql, q~) ~ Ad , then ql @ DeliuQ , and

qz $! InjecfQ This means that in the extended graph to

be defined below, injection aud delivery queues continue

to have only that function. Although it is not necessary,

it will be required that if (q, q’) ~ Ad then Level (q) ~

Level (q’). This is not a restriction because if Level (q) <

Level (q’) then (q, q’) can be included in A, , and D will

still be acyclic. Now, let ~ = (Q , A, U&) be the

extension of D by .4d Somet imcs, D wili be called the

underlying DAC. of D Note that ~ is not necessarily

a DAC.. In the following, A$ will be called the stafic

~z7?.k’.scfaud l!d Wili be called the dynamic link sft. Let

fi be a. routing function on D , observing the following

conditions: ‘dq, q’ E Q , d E -Delic Q :

1. If q’ c ~. (q, d), then (Q, Q’) G .4,, UA~

2. ‘R (y, d) g ‘i (q, d).

3. Ifq’ E ~ (q, d) andq’ @ ‘R (q, d) then’R (g’, d) # O.

This means that if a message can be routed along

a dynamic. link, it will still have the possibility of

taking a static link as a next step towards its desii-

natiou. Therefore, at any moment, every message

has a static-link path that takes it to its destina-

tion. In other words, every message will be able

to progress towards its target queue through t,lle

underlying DAG.

Let A be a routing function and D be the QDG

associated with it. Furthermore, suppose that D is the

underlying DAC, of D The following greecly algorithm

can be used to route messages over D from the injection

to the delivery queues.

Route(q)

/* q

(01)

(02)

(03)

is the queue executing the algorithm */

select q’ E d+ D (f’) ‘ (not Fuii (q’)

and q’ E ‘R (q, Desf (Head (q))))

Insert (Hfad (q), q’)

RemoveHead (q)

It is supposed that once a q finds and selects some q’

verifying the condition in line (01) it gains the access

to a place in q’, and can execute lines (02) and (03) of

the algorithm above. Note that select may return a q’

satisfying condition in line (01) according to any crite-

rion, as loug as it does so if the set of queues satisfying

(01) is not empty.

‘1’he proof of the deadlock freedom of this algorithm

is easy, and it can be found in [PGFS91].

3 Hypercube Algorithm.

In this Section, a fully-adaptive minimal routing algo-

rithm for the hypercube will be presented. A routing

function will be built that, uses dynamic links. So, the

QDG associated with this routing function will have cy-

cles. As said above, this routing function should be re-

garded as an extension of an acyclic rou{ing function

(i.e. a routing function whose QDG is acyclic) so as to

guarantee that the routing algorithm is acyclic. Next,

this u 7)dcrlying routing function, and how to exteud it

to achieve the final one will be described.

The routing function that results from routing over

the hypercube as bung from node O . ..0 will be used as

the underlying acyclic function. This routing algorithm

has been presented in [13GSS89], for implementing vir-

tual barriers on the hypercube. A similar idea has been

281

used in [Kon90] for implementing a minimal adaptive

routing algorithm on the hypercube. The idea on which

this hanging algorithm is based is the following. The

algorithm consists of two phases. In phase A, each mes-

sage travels as moving downwards through the network,

always moving towards its clestiuat ion, as much as pos-

sible. So, in this phase, each message starts heading

to node 1 . . . 1 (whick happens to be the node that is

opposite to node O. . . O). So, in phase A, each message

turns the incorrect 0s in the address of its source node

into 1s.

In phase B, every message arrives at its destination

by following an upwards path. III this phase, messages

move towards node O . ..0 again. So, in this phase, each

message turns the incorrect 1s of its source address into

0s. Therefore, all the required corrections are termi-

nated at the end of this phase. Consequently, each mes-

sage arrives at its destination.

The following illlplelllelltatioll of this algorithm is

such that the corresponding QDG is acyclic. Each node

n should have two queues, q~,,z (associatecl with phase

A), aucl qB,rl (associated with phase B)! as well as an

injection queue i,,, and a delivery queue dn, as discussed

above. During the first phase, messages move through

the q~ queues of the nodes they visit. When a. message

switches phase, it has to start moving through the q~

queues of the nodes visited. The QDG resulting from

this implementation is acyclic. Therefore, the algorithm

associated with it, is deadlock-free. See Figure 1 for the

QDC; of a 3-hypercube, in which the injection and de-

livery queues have not been drawn.

As messages are forced to correct first the incorrect

0s into 1s ancl only afterwards the incorrect 1s into 0s,

congestion around node 1 ...1 is likely to take place.

Now, dynamic links will be adcled to the QI)G in such

a way that they- will allow messages to change incorrect

1s into 0s while being in phase A if the message finds

place in the qA queue of the corresponding node, at

a certain moment,. The resulting algorithm, which is

deadlock- free (see Section 2), is the following. Each

message is injected, and starts moving through the qA

queues of the different nodes it visits (phase .4) while it

has any O to correct into 1. After performing the last

O to 1 correction, the message will enter the q~ queue

of the corresponding node, and will start doing the 1 to

O corrections neecled until it arrives at its clestiuatlion

node.

With the queue policy just outlined, the resulting

routiug algorithm is deadlock-free, and allows each mes-

sage to wait for correcting any of the possible dimensions

it has to correct. Consequently, there will be no partic-

000

000 St- nnb ml ,h4.@-.# $4,.”

%— h?. +sW,v *

—

Cm.7mbBtlks

Figure 1: A 3-hypercube hung from node 000 with

namic links.

cly-

ular congestion near node 1 ...1 as in the previous al-

gorit hm, as messages are allowed to move upwards even

if they are in phase A, as a. result of the newly added

dynamic links. ‘This algorithm requires only two queues

per node, plus the injection and delivery queues, and is

fully-adaptive.

The. routing function. In the following, ~i (k) is

the number that has the same binary rcpresentat,iou as

“~~Ldigit,, /cz.k but for the t

Formally, the routing function is the following:

{

{!i%}

i (i,, d,,,) =
if 3j z sj # nlj and sj = O

{~B,s}

otherwise

I Vj : (nj # mj a 71j = 1)

{Cln, }

ifn=rn

[

{qB,t:’(n) : 71~ # nl.~ }

i (m,,,, L) =
if n # m

{4, }

(ifn=7n

282

Then, the following theorem can be easily proved,

Theorem 1 The rouling algoriihm just described for

the hypercube is fully-adoptive, Iltiailttal, deadlock- and

{iuclock-frcej and can be implcmcnkd using 2 queues per

node, plus an il)jcctiou and a deiivcy queue per node.

Simulation results of this algorithm for hypercubes of

up to 161(nodes are reported in Section 7.

(0,0)

4 Mesh Algorithm.

A routing function for the mesh will be presented herein

terms of the ideas of dynamic links. The scheme is min-

imal and deadlock free. Although the following descrip-

tion focuses on 2-dinmnsional meshes, the technique can

be easily generalized for k-dimensional Ineshesl for any

arbitrary k.

The key idea is to have two phases: in phase A the

messages approach to their destination visiting nodes

in such a way that if a message passes from (x, y) to

(Z’) y’) in one routing step, then z < z’ or y < y’.

In phase 1?, messages visit nodes with lower number

instead of those with higher number. In other words,

the mesh is hung from node (O, O) in phase A and the

messages visit nodes with higher level, where the level of

(x, y) is x + y. In phase B, the mesh is hung from node

(n – 1, n – 1) and the nodes are visited in decreasing

level order. A message changes from phase A to phase

B if it has nothing to correct in phase A. This scheme

can be implemented using two queues in each node, qA

for phase A messages and qB for phase D messages. In

this way, the scheme is deadlock free, because the queue

dependency graph is acyclic.

(2,0) (0,2)

(0,2)(2,0)

v
(0,0) —

Static Ilnks not chan@ng phaso

Siat~lln~ changing phaac

Dynamic Ilnks

I?igllre 2: A 3-nlesh hung from node (O, O) with dynamic

links.

The routing function. 1

{

qA,(x,y)

~ (~(z)y))~(.,tu)) =
ifz>xorw>y

q~,(x,vj
if.z~zandw~y

] In this section, ‘R (a, b) is the set of all the right members

satisfying the associated condition involving a and b. The same

applies to the definition of R below.

283

I
4J,7J)

[

4Z>Y)
ifx=zaudy=w ifx=zandy=w

qA, (.c+l,y)
~ (@,(x, Y))~(.z,w)) =

~B,(z,u–l)

ifz>x ifw<y
~ (qA,(r,y)) ‘i(z,w)) =

~A,(:I!,g+l) (tB,(t-l,y)

ifw>y if.z<x

I YB,(.r,tJ)

ifz~xandw~y This new scheme is more adaptive than the first one

[

‘(.r,v)

described above. It can be implemented using only two

queues, one for each plmse, and it is still deadlock free.
ifx=zandy=w

This can be proved using the ideas of dynamic links

R (qB,(.z,y), d(z,w)) =
w3,(J7,y-1) exposed in Section 2. Note that in the first p])ase the

ifw<y
routing function %? is defined as if the mesh were not

9B,(,,u–l,y) hung.
ifz<x

Then, the following theorem can be easily proved.

This routing function allows some degree of adaptiv-

ity. But suppose that some message starts from node
Theorem 2 The routiug algorithm just d~scribcd for

(x, y) towards its destination (v, w), and let u < x and
ill. e mesh is fully- adapi ive, minimal, deadlock- and

w > y. Following the function above, this message
livelock-free, and can bc implemented usiag 2 queues pcr

has only one path, namely correct its second dimem
node, plus an injection and a deiivery queue per node.

sion, change phase and correct its first dimension. So,

it has no adaptivity at all.

In the following, this scheme will be extended to a

fully adaptive one, that is still deadlock free and uses

the same number of queues.

This is done by allowing every message in phase A to

pass to queue 9A of any neighboring node (and not only

to those of higher level) if it stall has some descending

pafh to puss through. The phase change mechanism is

the same as in the previous scheme. In phase B, the

messages still have to go through ascending paths.

The rout ing function.

I ~A,(.I’+1,1/)

ifz>x

U,(r-l,y)

ifz<zandw>y
fi (~A,(.r,Y), d(z,w)) = <

qA,(,:r,y+l)

ifw>y

Ll,(x)y-l)

ifz>zandw<y

I fiB,(x,y)

ifz~xandwsy

A fully-adaptive and minimal routing technique for

packet-switching over tori can be achieved using 4

queues per node (plus an injection and delivery queue

per node) following an idea similar to the one presented

in [C;PS91] for worm-hole routing over tori.

5 Shuffle-Exchange Algorithm.

In [P FGS91], a deadlock-free routing technique for Lhe

shufbexchange network using only a constant number

of virtual channels per link has been presented. Next, a

description of a modification of that technique for packet

switching is given, followed by a possible extension using

dynamic links to achieve adaptivity.

Firstj consider a 2n-nocle shuf~e-exchange network as

without the exchange links. Each connected component

of the graph will be called a shuffle cycie. Note that

every node in a shuffle cycle has the same number of 1s

in its binary address. Then, the level of a. shuflle cycle

can be defined as the number of ones in the address

of any of its nodes. The idea of the algorithm is to

break the shuffle cycles using the techuique presented in

[DS86a] in the context of worn-hole routing, and then,

visit the cycles so as to avoid deadlock. Any node of a

cycle can be chosen to break it.

The routing strategy can be defined in two phases.

In the first one, messages can move from one shuffle cy-

cle to another whenever the new cycle has higher level.

In the second phase, messages visit the shutlles cycles in

284

000

‘\
101

$//)’ /
/,/ \

/ ,/ ,-101Q
*

101 110

/
001

-9
100

v— Static links not

000 eh.mglng ph...
—-

h= Ilnks

Figure 3: fi 3-slltl~e-excllallgf: hung from node 000 with

dynamic links.

decr(?asillg orclf:r ~vitllr espcctlt otlleirlevel. The routing

algorithm consists of visilillg the dimensions of the ad-

dress to correct twice, once ineacb phase. In eachphase,

dimensions are }-isited using the shufffe links. Conse-

quently, every path has at most! 3n steps: at most 2n

shufIle steps and at most n exchange steps (see Figure

3).

After going through a shuffk liuk, every message has

to know which dimension of the destination corresponds

to the current least significant bit so as to know whether

the least significant, bit has to be corrected or not. So,

each message must, record the nulnber of shuffle links

it has already traversed. l’his is necessary to compare

the least significant bit of the current node address with

the corresponding bit, of the destination address so as to

decide what to do as the next step. If these bits disagree,

that dimension will have to be corrected at that step or

not depending on the phase the message is in. In the

first, phase, a dimension will be corrected if it has to be

changed from O to 1. Note that this restriction implies

that the new cycle has higher level. In the second phase,

the reverse direction of the exchange links is used. Only

will a change from 1 to O be allowed. So, the level of

the cycles that are visited decreases during the secouc[

phase.

The routing fuuc tion that has just been clescribed

needs ouly two queues per uode for breaking the shuffle

cycles. It is uec.essary to break the shuffle cycles twice:

once for each phase. Therefore, each node will have 4

queues, and au injection and a delivery queue.

The messages can either be cousumccl as soon as they

arrive at their destiuatious for the first time, or when ar-

riving at their destinations after finishing the 2rL shuIfflc

transitions.

Next, the nlodification of the routing flmction de-

scribed above by adding dynamic links is presented.

Basically, the main change introduced is that a mes-

sage will be allowed to traverse an exchange link that

corrects the current dimension from 1 to O even if the

message is in its first phase. In other words, a mes-

sage will be allowed to correct a 1 to O if it happens to

find place to do it during the first phase. If not, that

dimellsiou will have to bc changed during the second

phase. As a result of these chauges, the resulting ro,utl-

ing algorithm is adaptive, as a given message may take

alternative paths as a consequence of local congestion:

e.g. it nlay or may not correct a 1 into a O during the

first phase (see Figure 3). See [PC~FS91] for a formal

and more de~ailed defiuit,iou of the routing function.

Then, the following theorem can be easily proved

Thcmrcm 3 The routing algorithm just described for

the 2“ -node shuf~e-exchange neituork is adaptive,

deadlock- and livelock-jreej and can be inlplcmentcd us-

ing 4 queues per node, plus an injection and a deliocry

queue per nod<. Furthermore, fhc route each message

takes has al Inost 3n steps.

6 The design of the node.

In this Section, a possible node model to implement, the

routing algorithms presen(ed in Sections 3, 4, and 5 will

be presented. The node models are a modification of

the one presented in [Kon90] to implement a partially

adaptive routing algorithm for the hypercube.

As described above, a message can move from a queue

to another queue following two types of transitions, ei-

ther through dynamic Iiuks or through static links, fol-

lowing the ternlinology used in Section 2. There exists

a dynamic or static link between a pair of queues c,nly

if these queues are at distance at most one in the phys-

ical network, i.e. if either the queues are in the Stlnle

285

node or at adjacent nodes (nodes connected by a phys-

ical link in the network). If (ql, gz) c A$ UAd , then

qz will receive messages from q~. So, there must ex-

ist a physical connection between ql and qz. If ql and

q2 belong to adjacent nodes, then this physical collec-

tion is the physical link between the two nodes. On the

other hand, if ql and q2 belong to the same node, then,

there must exist an internal connection between the two

queues so as to allow internal passage of message within

the nodes. Given a queue q, some fair policy must be

implemented so as to guarantee fair access to q to all

the resources that may want to access q.

Each node will have both an injection and a deliv-

ery queue, as explaiuecl above, as well as all the queues

used by the routing algorithm. Each physical link will

have associated with it input and output buffers. In

general, there will be two types of buffers associated

with each physical link: those associated with dynamic

links and those wit h static links. Consider link j, in-

cident to nodes n. and n’. If traffic corresponding to

clynamic links can enter node n from node n’ through

link j, then link j will have an input buffer in node

n and an output buffer in node 7~.’ associated with the

dynamic transitions. So, when a. message wants to go

out, of node n’ through link j via a dynamic transition,

it will be placed in the output buffer corresponding to

dynamic traffic of link j and it will arrive at the input

buffer in node n that is associated with both dynamic

transitions and link j. If tra.fflc corresponding to static

links can enter queue q in node n through link j, then

link j will have an input buffm associated with queue q

in node n and an output buffer associated with queue

q in node n’. So, if some queue q’ in node n’ wants to

send a message through link j to queue q via a static

transition, then it will place the message in the output

buffer correspoudiug to link j and queue q in node n’.

Figures 4, 5 and 6 illustrate the node model corre-

sponding to the algorithms presented in Sections 3, 4

and 5, respectively. A more detailed description of these

models can be found in [PGFS91].

7 Simulation of the algorithm.

In this Section, simulations results of the routing algo-

rithm proposed will be shown for the hypercube.

7.1 The activity of the node.

dim 3 dlm 2 dim 1 dim O

0 0
; t ; t

1 I
I f 1

t t t t

I 1 I 1 I
+ +

+ 1
1

0 1 0 1

dim 3 dlm 2 dim 1 dim O

Figure 4: Node 0101 of the 4-Hypercube,

In the simulations presented below, each node is sul>-

posed to have an injection queue of size 1. The size of

286

(X+l ,y) (x-1 ,y) (X+l ,y) (X,y-1)

I 4 1
, I

I I I I I

(X+l ,y) (x-1 ,y) (X,y+l) (X,y-1)

Figure 5: The node for tile Mesh.

I

— Queue 3 —

— Queue 4 —

Figure 6: The node for the Shuffle-Exchange.

~A and qB qucum has been fixed arbitrarily to b. The

idea is to have a queue size that does not change with

the size of the network. Following the node descrip-

tion given in Section 6, nodes and links should work

in a. synchronous manner, but are independent of each

other. So, each routing cycle consists of one node cycle

and one link cycle. In the node cycle, each node fills its

output buffers from low to high dimensions, taking mes-

sages from the queues in FIFO order. This means that

if two messages want to enter the same buffer, the first

one in the queue in FIFO order will get it. Then, the

node reads its input, buffers and its injection buffer and

moves their messages to the requirecl queues, if there

is place to do so. This is carried out in a fair way. It,

should be noted that it takes a message at least t too

routing steps to go through a node: one to go from]the

input (or injection) buffer to some queue and another

to go from the queue to the output buffer.

During the link cycle, each link tries to send a packet

in each direction. Note that some links have a.ssocia led

two output buffers. As only one packet can use the link

during a. single cy-cle, packet,s may have to wait in lbe

output buffers. Of course, a packet can go through a

link only if the corresponding input buffer (on the otlller

side of the link) is empty.

The simulations that have been performed show the

behavior of the algorithm for many difTerent injection

models and colmnunication patterns, described by ‘the

following parameters:

● Injection Mockl: ‘he injection model can be ei-

ther

—

—

dynamic or static.

In the ~lyn a m ic model, each node tries to in-

ject a message in the network in every cycle

with some probability ~. The simulations have

been run for A = 1. The dynamic injection

of randomly destined packets models the sit-

uation in which tile nodes communicate with

each other indcpendent,ly. The dynamic injec-

tion of messages with the same destination is

a very useful pattern of col~llll(lllicatioll that

models a coarse-grain parallel program with

structured communication patterns. In the

first case, the destinations of messages from

a given source are chosen at random. In the

second case, a permutation a is chosen in ad-

vance, and every node i selects o(i) as des-

tination for every message it injects into the

network .

The ill.jrction is slafic if each node has au a

priori fixed uumber of packets to inject iu the

network. ‘Ile simulations have been run for

287

both 1 and log N packets at each node.

For both models, the average latency and maxi-

mllm lateuc.y messages suffer is measured. For dy-

namic iujec tiou, also the effective injection rate is

measured. The effective injection rate is defined as

the ratio between the number of times the nodes

succeeded in injecting messages iut,o the network

and the number of times the nodes attempted to

inject.

● Communication Pattern: Tl~e following conl-

munication patterns have becl~ tried:

– Random Routiug: The destination of each

message is chosen randomlyz. It should be

noted that this pattern of communication does

not necessarily geuerate permutations.

– Complcnmnt: The destination of each mes-

sage is the node whose binary address is the

complement of the address of its origin.

– Transpose: If ; = log N is even, the trans-

pose of

the binary address b,, -1, ,b%, b;-l, b.

is b~–l, . . . ,bo, J,,_l, b.. If n is odd, its

central bit remains unchanged and the address

is modified as before.

– Leveled Pernmtation: It has been defined

that the level of a node is its Hamming weight.

A leveled permutation is one in which every

node sends messages to a node in its sanle

level. In [FcS90] it has been reported that

cougestiou may arise for this sort of pernmtla-

tious in an oblivious routing technique where

minimal paths are chosen at random.

In tables 1 to 8 the results of the simulations that

have been performed for static injection are presented.

Tables 9 to 12 show the results for dynamic iujectiou.

It should be emphasized that uocle activities are con-

sidered to take two time cycles. In the tables, N is

the number of nodes of the hypercube, n is the num-

ber of dimensions of the hypercuhe, Laug is the average

latency oft he messages, L ,naz is the maximum latency

any packet experienced, and lr (%) is the effective im

jection rate.

8 Acknowledgments.

We would like to thank S. I{ollstalliillidou, C. T. Ho,

J. Bruck and R. Cypher for their many suggestions and

2Node p will choose t.hc destination of every message it injects

wit h uniform probability over the set V – {II}.

comments.

References

[BGSS8!J] Y. Birk, P.B. Gibbons, D. Soroker, aud

[BH82]

[DS86a]

[DS86b]

[FCS90]

[C;e181]

[C; PS91]

[Guntil]

[Hi185]

[KK79]

[Kon90]

J .1, .C. Sanz. A simple mechanisnl for efficient

barrier synchrouizatiou in MIMI) machines.

RJ 7078 (67141) Computer Science, IBM Al-

maden Research Center, October 1989.

A. Borodin and J .J2. Hopcroft. Routing,

Merging and Sorting on Parallel Models of

Computation. In Symposium on Theory of

Computingj pages 33---344, 1!)8’2.

W. Dally and C. Seitz. Deadlock-free routilig

in multiprocessor intercon nec Lion network.

5206 :TR:86, Computer Science Depa.rt]neut,l

California Institute of Technology, 1986.

W. J. Dally al~d C. L. Seitz. The Torus Rout-

ing Chip. Dis/rihutcd Con/Zmting, (1):187-

196, 1986.

M.L. Fulgha.rn, R. Cypher, and .J. L.C. Sauz.

A comparison of SIMD hypercube rout,illg

strategies. R.J 7722 (71587), IBM Almaden

Research Center, 19!10.

D. Geleruter. A DAG-based algorithm for

pre~-ention of store-and-forward deadlock in

packet networks. IEJYE Transact ious on

Contputers, c-30:709-715, October 1981.

L. C+ravauo, G.D. Pifa.rr4, and J.L.C. Sa.uz.

Adaptive Worm-hole Routing in Tori and

Hypercubes. TR:91-10, IBM Argentina -

CRAAG, March 1991.

K.D. C+uuther. Prevention of deadlocks

in packet-switched data transport system.

IEEE Transactions on Coljllj~uliicatioli,~,

coin-29(4), April 1’381.

D. Hillis. The Connection Machine. The

MIT Press, 1985.

P. Kern-mni and L. Kleiurock. Virtual Cut-

Through: A new computer c.oin~lltlllication

switching technique. Computer Net works,

(3):267-286, 1979.

S. Konstantiniclou. Adaptive, minimal rout-

ing in hypercube. In 6th. MIT Conference ou

Aduonced Research in VLSI, pages 139-153,

1990.

288

[1<s90]

[Lei90]

[LH91]

[LMW]

[LMR88]

[MS80]

[Ni90]

[Ni91]

[NS]

I ‘FGS91]

[PGFS91]

[Pip84]

S. I{ollstalltil~icloIta lldJ,. Snyder. The Chaos

router: A practical application of random-

ization in network routing. In Aid. Annual

AChf SPAA, pa&’S 21--30, 1990.

T. J,eighton. Average Case Analysis of

Greedy Routing Algorithms on Arrays. In

SPAA, 1990.

D. II. Linder and J .C!. Harden. An Adaptive

and Fault Tolerant, Wormhole Routing Strate-

gy for k-ary ?l-cubes. IEEE TInnsaction,s 011

Computers, 40(1):2-12, .January 1991.

T. Leighton and B. Maggs. Expanders might

be practical: Fast algorithms for routing

around faults on lnultibutterfiies, In IEEE,

editor, 30ih Annual Sylnposium on Founda-

tions oj Compatcr Scicn CC, pages 384--389,

October 1989.

T. Lcightou, B. Maggs, and S. Rae. Universal

packet routing algoritllnls. 1988.

P.M. Merlin and P..J. Schweitzer, Deadlock

avoidance in store-and-forward networks. 1:

Store-aud-forwarcl deadlock. IEEE Trans-

actions 07L C707n7n un~calions, 28(3), March

1980.

L .M. Ni. ~ol)lllllll~icatio:~ Issues in Multi-

collq>uters. In Pwcecdiugs of th e First Work-

.s11op oI~ Parallel Processing, Tuiwan, 1990.

L.M. Ni, February 1991. Personal CoJnlnt]-

nicatlion.

J .Y. Nga.i and (~ .1.. Seitz. A framework for

adaptive routing. 5246: TR:t37, [(oll]pllter

Science T)epartnwnt,, (.{aliforllia [ustitute of

-Ikcllllology.

G .D. Pifarr+, S .A. Felperiu, L. C;ravano, and

J .L. (3. Sanz. New techniques for cond~ina-

tion, adaptivity, cleacllock-frc(: clolll and syll-

chronizatiou in massively parallel routing. In

Preparation, 19!31.

G.D. I?ifarr6, L. Gravauo, S.A. Felperin,

and J .1,.(; . Sanz. Fully-Ad apiive Minimal

Deadlock-Free Packet Routing in Byper-

cubes, hleshes, and Other Networks. Tech-

nical report, IBM Ah]laden Research Center,

1991.

N. Pippeuger. Parallel communication with

limited buffers. In Forrndaf.ions of Con]puter

Science, pages 127-136, 1984.

[R,au85]

[RB.J8S]

[[Jpf89]

[Va182]

[va18s]

Table 1: Ralldoin Routing, 1 l)a,cket,

N Lavg L ~a~

1: 1024 10.96 19

11 2048 12.09 21

12 4096 13.08 25

13 8192 14.03 27

14 16384 15.04 29

Table 2: Complement, 1 packet.

n N I)a,,g L,,l ~,r

10 1024 21 21

11 2048 23 23

12 4096 25 25

13 8192 27 27

14 161384 29 29

A .C; . Rauade. How to emulate shared mem

or-y. In Foundations of Computer Scacnce,

pages 18.5- 1!34, 1985.

A. C;. Ranade, S.N. Bhat, tmd S.1,. Johnson.

The Fluent Abstract Machiue. In J. Allen

and F .T. Leighton, editors, Fif~h MJrT con-

,fer. euce ou udvan ccd research in VLSI, pages

71-93. The MIT press, March 1988.

E. UIJfal. Au O(log N) deterlninist,ic packet,

routing scheme. In 21St An71 uai A C~ll-

SIGA CT b’ymposiu m on Th.tory of CoII~,Put -

ing, May 1989.

L. G. Valiant. Opt imality of a two-phase

strategy for routing in interconnection net-

works. March 1982.

1,.G. Valiant. General purpose parallel ar-

chitectures. Iu J. van Leerrwen, editor,

IIandl)ook of Theoretical Con~putcr 5’cic7tm.

North-Holland, 1988.

289

Table 3: Transpose, 1 packet.

n N ~ CM!(J L mm-

10 1024 11.09 21

11 2048 11.09 21

12 4096 13.13 25

13 81!)2 13.13 25

14 16384 15.23 29

Table 4: Leveled Permutation, 1 packet.

n N L .Ug L,,,,a,c

10 1024 10.10 21

11 2048 10.98 21

12 4096 12.06 25

13 8192 13.07 25

14 16384 14.03 29

Table 5: Ra.ndoni Rout, i]lg, n packets.

N L ~,,q 1,,,2,..,

;0 1024 11.i3 22

11 2048 12.52 25

12 4096 13.76 27

13 8192 15.02 30

14 16394 1.6.54 32

Table 6: Complement, n packets.

N L ~,,g L,na.,,

:0 1024 21 21

11 2048 24.99 30

12 4096 28.61 3.5

13 8192 32.74 39

14 16384 36.23 44

Table 7: Transpose, n packets.

N L .Ug L ,,,,GX

;; 1024 12.27 26

11 2048 12.40 32

12 4096 16.01 37

13 8192 16.22 36

14 16384 20.49 43

Table 8: Leveled I’ernmta.tiou, n. packets

N La,,g L ~ac r

;0 1024 10.78 23

11 2048 tl,77 25

12 4096 13.17 28

13 8192 14.60 32

14 16384 16.03 37

Table 9: Random Routing, ~ = 1.

, , ,
14 I 16364 \ 18.30 I 49 76 1

Table 10: Colnplement, ~ = 1

N La,,g L,nax 1, (%)

:0 1024 33.32 52 55

11 2048 39.29 58 49

12 4096 45.60 68 45

13 8192 52.87 79 41

14 16384 60.70 90 38

Table 11: Transpose, A= 1.

N La,,g L,na. IV (%)

;0 1024 14.67 36 83

11 2048 14.67 36 83

12 4096 15.78 49 73

13 8192 20.31 54 71

14 16384 27.33 66 61

Table 12: Leveled Pernmta.tion,A=l.

11 N L .Ug L,n,ax I, (%)

9 512 11.28 37 94

10 1024 12.47 43 91

11 2048 13.50 48 89

12 4096 15.17 56 84

13 8192 16.91 53 80

14 16384 18.46 57 75

290

