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Abstract

In thts paper, a strnulatton study on the perfor-

mance of some new algorithms for deadlock- and

lwelock-free adaptive routing is reported. Packet-
swztchcd fully -adaptive minzmal routing on the mesh

and the hypercube as ezplored for dt~erent tn~ection

models: stattc and dynamic. The algorithms stmu -

lated in this paper are the jirst known to be !ivelock-
and deadlock-free fully -adaptive minimal that requzre a
moderate amount of hardware. These techniques need
only two central queues per routing node.

The performance of these schemes IS measured for

dtfferent irafic models: random, complement, trans-
pose, bit-reversal and leveied permutations. Several

machine sizes are trted and critical parameters indi-

cating the performance of the routing algorithms are

measured such as throughput, maximum and average
latency, effective tn~ectaon, and saturation point. In
the case of the mesh network, the new method w com-
pared to an obltvzous scheme based on a simtlar routing
node model. In the present versaon of thts paper, stm -
u!atton results are reported for hypercubes up to 16K
nodes and for meshes of 11{ nodes.

Ftnallyl a fu!iy-adaptwe minzmal worm-hole rout-
ing algorathm for the torus network wiil be presented.

This technique is dead!ock- and hvelock-free and re-
quuvs only 8 vzrtual channels per physzcal bzdzrec-

tzonal link for zts implementation. Szmu!ations are
currently being performed to determme the practical
performance of this routing method.

1 Introduction and Definitions.

Deadlock freedom is one important property of
routing algorithms. In order to avoid deadlock, many
policies have been proposed [1, 2, 3, 4]. Generally,

these policies are based on the idea of defining a partial
order of the routing resources (either links or buffers)
because deadlock can arise only if there exists cyclic
waiting. This static restriction is too strong and can

be weakened as shown in [2, 4].
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Minimizing latency of routing schemes is an impor-
tant objective in the design of interconnection net-

works. Routers that realize the minimal number
of hops between the source and the destination of
messages are appealing. Also, routing schemes that
adapt the paths followed by messages according to lo-

cal congestion encountered in the network are good
candidates to reduce message latency and to pro-

vide higher throughputs. Livelock-freedom, deadlock-
freedom, adaptivity, and minimality of routes have
been realized in a single routing algorithm for hyper-

cubes and meshes in [4]. This family of algorithms re-

quires remarkably low hardware resources in the rout-
ing node.

Mathematical analyses yielding bounds for the be-

havior of routing techniques have received a great deal

of attention. Oblivious routing schemes have been an-

alyzed for several networks and probabilistic bounds
on the performance of different algorithms with static

injection have been shown [5, 6], [7], [8]., [9]. Even
when mathematical bounds can be estimated, the
practical performance of routing algorithms is import-
ant. To this end, simulation results for static injec-
tion models have been reported by several authors [5]
[101 [111.

On {he other hand, deterministic bounds have been
proved for sorting-based algorithms [12] and for adap-

tive algorithms based on multibutterfly construction

[13]. In general, the problem of finding mathemati-
cal bounds on the performance of adaptive routing for

general networks seems a challenging problem.

For dynamic message injection, several attempts
to model and measure the performance of intercon-
nection networks are known [14] [15] [16] [17]. Dy-
namic injection presents a paramount complexity to

the mathematical analysis of routing techniques and
in many cases, simulations of the involved networks

have been the only alternative to show the perfor-
mance achieved under different injection loads, topol-

ogy of interconnection, queue size, and arbitration of
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conflicting resources.

This work presents a number of simulation results

on the routing techniques for the mesh and the hyper-

cube presented in [4]. The simulation work is aimed at
showing the practicality of the new routing ideas for

different communication patterns and models of injec-
tion. Some comparisons are made with other routing

algorithms [18].

In same case:, messages are too big to be stored
completely within a one routing node. In this situa-

tion different routing algorithms and node models are
necessary. One approach is known as wormhole rout-
ing [3].

In this paper, a fully-adaptive minimal worm-hole
routing algorithm for the torus network is presented.

This technique is deadlock- and livelock-free and re-

quires a very moderate amount of resources in the

routing nodes [19]. The algorithm for the torus is

the first known to be fully-adaptive minimal involv-

ing only 8 virtual channels per physical link.

The organization of this paper is as follows. In Sec-
tion 1.1 the packet routing algorithms are presented,

followed by the node in Section 1.2. Section 2 presents
the assumptions made for the simulations, node ac-

tivity, injection policy and communication patterns.

Sections 3 and 4 present the results of the simulations
for the hypercube and the mesh, respectively. Section

5 will present the wormhole algorithm for the torus
network. Section 6 will present some conclusions.

1.1 The routing model.
In packet routing, the critical resources are the

queues used to store the messages during their way

towards their destinations. Deadlock will arise if and
only if there exists a set of full queues occupied by

messages such that all of these messages need a slot
of a queue that belongs to the set in order to continue

their way toward their destinations.

Each node of the network will have associated with
it a certain number of queues. Each node has a pair

of distinct queues, namely the injection and the de-
livery queues. Messages will be injected in the injec-

tion queue, and they will be consumed from the de-

livery queue. The routing function will be expressed

in terms of the queues of each node. To do so, each
queue will have an identifier that distinguishes it from

the rest of the queues. The set of delivery queues
of all the network will be referred to as DelivQ .

Notice that each delivery queue identifies a unique
node of the network. The set of injection queues
will be referred to as lnjectQ . Each message has a
destination associated with it, given by the function

Dest : Messages + De!tvQ .

A total routing function 72. : Queues x LJehvQ +

P(Queues ) is such that R (q, d) indicates which are
the next possible hops of a message with destination

d that is currently in q. Possibly, a delivery queue d

may not be reachable from a given non-delivery, non-
mjection queue q. In such a case, R (g, d) should be
equal to 0.

The queue dependency graph (QDG corresponding
)to a set of queues Q and a routing unction R is a

directed graph such that its set of vertices is Q and

\
there exists an edge from qi to qj qi, qj c Q) iff there

exist an injection queue s and a de ivery queue d such

that Z builds a route from s to q passing through

both qi and qj, and qj E R (qi, d). (This definition

is related to the one presented in [3] regarding virtual

channels.) Clearly, if the QDG corresponding to a set

?of queues and a routing function is acyclic i.e. it is

a DAG), then, the greedy routing algorithm resulting
from 72 is deadlock free.

Let D = (Q, A, ) be an (acyclic) queue dependency
graph. Then, Q is the set of queues and A, the set

of links between the queues. Let d– (Q,A~ )(q)4{q’ ~

Q : (q,d) c -4 } be the set of direct successors of
q. Whenever there is no ambiguity, the subscripts will

be dropped.
Every non-delivery queue has finite (independent

of the size of the network) size. The delivery queues

of D will have infinite size, to model the fact that

messages are eventually consumed at them. Level (q)
is the length of the longest path between any member

of Inject Q and q. For every q, Level (q) is finite because
D is acyclic.

In previous work, routing functions are built such
that the resulting QDG’s are acyclic. Although this

condition is sufficient to guarantee deadlock freedom,
it is too strong, and can be relaxed: the queue depen-

dency graph has to be dynamically acyclic, i.e. c clic

rwait must not arise in a dynamic environment [2 .

Let Ad C Q x Q be a set such that A, fIAd = 0,

and, if (ql, q2) c Ad , then q2 is at most one hop away

from ql in the network. Now, let D = (Q , A, U& )

be the extension of D by Ad . Sometimes, D will be

called the underlying DAG of ~ . Note that ~ is not

necessarily a DAG. In the following, As will be called

the static hnk set and Ad will be called the dynamic

link set.-

Let 7? be a routing function on ~ , observing the

following conditions: Qq, q’ c Q , d E DelivQ :

1. If q’ Efi (q, d), then (q, q’) c As UAd .

2. R (q, d) ~ Z (q, d).

3. If q’ E X (q, d) and q’ @7? (q, d) then R (q’, d) #

0. This means that if a message can be routed
along a dynamic link, it will still have the possi-

bility of taking a static link as a next step towards
its destination. Therefore, at any moment, every

message has a static-link path that takes it to its
destination. In other words, every message will be
able to progress towards its target queue through
the underlying DAG.

11In [4 the following routing idea has been proposed

for the ypercube. Level each node with its hamming

weight and divide the routing of each packet into two
phases. In its first phase, a message can be moved

from node s to a neighboring node d on a mznimal
path towards its destination either if the level of d is

greater than the level of s (this is a static move) or
if the level of d is smaller than the level of s and the

message has at least one more increasing-level step to

655



Figure 1: The QDG for the 3-hypercube. Figure 2: The QDG for the mesh
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make from d (this is a dynamic move). Once a message

has no more increasing-level steps to make, it begins
its second phase, in which all moves are decreasing-

level (the moves of the second phase are all static).

A similar routing algorithm can be developed for

the mesh if node (z, y) is leveled with x + y instead of

the hamming weight. Figures 1 and 2 show the QDGs

for the hypercube and the mesh, respectively.

It should be noted that these routings are fully-

adaptive, minimal, and deadlock-free. The deadlock-
freedom can be proved using the fact that the static
moves form a DAG and the dynamic ones satisfy the
restrictions described above. See [4] for details.

Throughout this paper, the routing just described
will be called FULL. The routing that results from

removing all the dynamic moves from FULL will be

called ADAPT. This routing is still adaptive and min-

imal but not fully-adaptive as some possible minimal
paths are excluded. The routing that results from

choosing one successor from the DAG in a determinis-
tic way will be called OBLIVIOUS. This last routing
has no adaptivity at all.

1.2 The model for the rout ing node.
Functional descriptions of the routing nodes needed

to implement the algorithms in the mesh and the hy-
percube were presented in [4]. This model, based on
the one presented in [20] for the hypercube, will be

described here briefly.

As described in Section 1.1, a message can move

from a queue to another queue following two types of

(0,0)

(2,0) (0,2)

1111! 1111

(0,0)
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transitions, either through dynamic links or through
static links. There exists a dynamic or static link be-

tween a pair of queues only if these queues are at dis-
tance at most one in the physical network, i.e. if either

the queues are in the same node or at adjacent nodes

(nodes connected by a physical link in the network).

Each node will have both an injection and a de-
livery queue, as well as the two queues used by the

routing algorithm. The injection queue will have size
1, modelling the fact that each node can generate at
most one message in each cycle and that no node will
be allowed to inject a new message until all the previ-
ously injected messages have begun its route. As will

be described later, the delivery queue is not needed.
The two central queues will have the (arbitrary) size

of 5 messages each. The idea is that the queue size

will be independent of the network size.

Each physical link will have associated with it input
and output buffers. In general, there will be two types

of buffers associated with each physical link: those
associated with dynamic links and those with static

links. Consider link j, incident to nodes n and n’. If
traffic corresponding to dynamic links can enter node
n from node n’ through link j, then link j will have an
input buffer in node n and an output buffer in node

n’ associated with the dynamic transitions. So, when
a message wants to go out of node n’ through link
j via a dynamic transition, it will be placed in the

output buffer corresponding to dynamic traffic of link

j and it will arrive at the input buffer in node n that is
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Figure 3: The node for the Mesh.
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associated with both dvnamic transitions and link i. If
traffic corresponding tb static links can enter que;e q
in node n through link j, then link j will have an input

buffer associated with queue q in node n and an output

buffer associated with queue q in node n’. So, if some

queue q’ in node n’ wants to send a message through
link j to queue q via a static transition, then it will

place the message in the output buffer corresponding
to link j and queue q in node n’.

This node model is illustrated for the mesh in Fig-
ure 3. The cross-hatched boxes correspond to buffers

associated with dynamic links. A similar node is ob-
tained for the hypercube (see [4]).

Possible hardware implement ations require only
one central queue and switching between input and

output buffers,

2 The simulations.

2.1 Network act hit y.
This section describes the activity of the network

in order to run the algorithms described in Sections

1.1 and 1.2. As latency will be measured in r-outing

cycles, a definition of the amount of work involved in

a cycle is needed.

Every routing cycle is divided into two parts, a node
cycle and a link cycle. During the node cycle, each
node is able to scan all its input buffers and its injec-
tion buffer and move the messages to the correspond-
ing queue, provided there is room for them. During

this scanning, messages addressed to that node are

consumed and removed from the network. In order

to avoid starvation, the input and injection buffers of

a node are arranged in a cycle, and they are scanned
cyclically, beginning with the first buffer that has not

found room in a central queue for its message in the
previous cycle. Once this step has been don!, the node

is allowed to inject a message in its injection buffer,
provided it is empty and the node has a message to
inject. Next, the queues send their messages to a suit-
able output buffer. The queues are scanned in FIFO

order, and all the messages that find their correspond-
ing output buffer empty are allowed to move there.

This step ends the node cycle. Note that every mes-
sage needs at least two routing cycles to pass through

a node,

In the link cycle, each linkl with a message in its

associated output buffer sends it to the corresponding

input buffer? provided that this buffer is empty. Note
that some hnks have two output buffers associated,

but only one message can pass through the link in a
single cycle. So, it is necessary to manage the link in
a fair way, to avoid that any message starves in an
output buffer.

2.2 Injection model.
There are two kind of injection models: the static

injection model in which every node has a fixed num-

ber of messages to inject, and the dynamic injection

model, in which each node wants to inject at arbitrary

moments. In the first case, the routing begins when

each node injects its first message, and ends when the

last message arrives at ~ts destination. The interest-
ing parameters of this kmd of mjectlon are L~~r, the
maximum latency, and L=Vg, the average latency.

In addition, in the second model it is worthwhile
to measure 1,, the effective injection rate: the num-

ber of times a node succeeded in injecting relative to

the number of trials, and the true injection It = lr~,

where A is the average number of packets that a node

tries to inject per cycle. Note that It is related to the

network throughput. If the throughput S is defined
as the average number of messages that are injected

in a cycle, then S = Nit. So, It is the throughput

normalized by the network size.

The dynamic injection model presents a number of
phenomena that do not show up in the static case.
The most obvious one is that dynamic injection leads

to infinite processes. So, in order to observe the inter-

esting phenomena the process has to be truncated at

some point. Another problem is that if ~ is too large,

the system can be saturated, i.e. Lm.z grows without

bound. So, the maximum A that maintains the system

unsaturated is a key parameter to measure.

Some simple bounds are known for ~. If N is the

number of nodes of the network, B the bisection of
the network [9] [21] and c the proportion of messages

that cross the bisection, then

NAc
~<B (1)

1Here each bidirectional link is considered as two links, one
in each direction.
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This formula means that, in every cycle, the average
number of messages injected in the network in that

cycle that are going to cross the bisection should be
less than the bisection in order to avoid saturation. So

A<~= Area. (2)

2.3 Communication Pat terns and Traffic
Charact erist its.

The performance of networks should be measured
for different patterns of communication and traffic
characteristics. Two communication patterns will be

used:

● Random Routing: Every message chooses its des-
tination randomly. This models the unstructured
pattern of communication that is present in many

applications.

● Fixed Permutations: In this case, a permutation

a is fixed in advance. A node p injects messages
with destination u(p). Dynamic injection mim-

ics the same kind of pattern when the number of
messages per node is much greater than the num-

ber of nodes, so the injection can be thought of as
continuous. In particular, the following permuta-
tions were simulated:

1. Transpose: In the mesh, the transpose

means that node (z, y) wdl send messages

to node (y, z). In the hypercube, the binary

address of the node will be split into halves,

and these halves will be swapped (if the di-
mension of the hypercube is odd, then the

middle bit will remain unchanged).

2. Complement: In the n x n-mesh, this means
that node (z, y) will send messages to node

(n – 1 –z, n – 1 – y)’. In the hypercube, the
complement is defined by complementing all

the bits in the binary address of the node.

3. Leveled Permutation: As defined in Section
1.1, each node has a level associated. So, a

leveled permutation is a random permuta-
tion in which every node sends messages to

some node in the same level.

4. Btt Reversal: In the hypercube, this permu-
tation is obtained by reversing the bit-string

of the binary address of the node and in the
n x n-mesh, by concatenating the [log ml bits
of each coordinate and then reversing the re-
sulting string.

3 The simulations for the mesh.
In this section, the simulation results for the mesh

will be presented. In this topology, the algorithms

FULL, ADAPT and OBLIVIOUS behave in the same
way for static injection. Therefore, only the results for
dynamic injection will be considered here. Recalling

2 It is supposed that the nodes are numbered from (O, O) to

(n-l, n-1).
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Equation 2, it should be noted that in an n x n-mesh,

B = n, N = nz, so Am.. = 2/(nc). This means that
J decreases very rapidly with n. The simulations fo-

cused on only one network size, i.e. the 32 x 32=1 K-

mesh, and tried to show the performance of the algo-

rithms FULL, ADAPT, and OBLIVIOUS for different
A’s.

One modification was made to the FULL algorithm
presented above for the mesh. Since the links are a

scarce resource in the mesh, the excessive use of dy-

namic transitions could sped all the routing because a

message trying to get through one of these transitions
can delay a message trying to make a static transition

through the same physical link. Hence, it was decided
that a message can be moved to an output buffer as-

sociated with a dynamic move only if no message is

waiting in the static buffer associated with the same

link. Note that this restriction is not related to the
deadlock-freedom property of the algorithm because

this property is proved by using only the fact that a

message has always a static path to its destination.

Thus, the restriction on the use of dynamic transi-

tions can only affect the performance of the FULL

algorithm.
Readers should note that after the network satu-

rates, the values in the plots shown below have no
meaning at all.

For all the communication patterns simulated,
there are plots for Laug, L~az, ~, (~o), and It aS a

function of A/Am.Z, i.e. the proportion of the maxi-

mum theoretical injection allowed in each case. Simu-

lations were performed for injection rates going from
10% of Amaz to its 80%, in intervals of 5~o.

In the following plots, the whole line stands for the

FULL algorithm, the more densely dashed line stands
for the ADAPT algorithm and the less dense one for

the OBLIVIOUS algorithm.

Due to space constraints, only the plots for Random
Routing and Transpose will be shown here. In [18] the
complete plots are presented.

The results are the following:

1.

2.

Random Routing. In this case, c = 1/2, so

A ma = 4/n = 0.125. Figure 4 shows that the

algorithm FULL was able to accept injection up

to the 75% of Amu before saturation, while both

ADAPT and OBLIVIOUS could only accept up

to the 50Y0. Before saturating, Lag and Lmaz

were slightly better for the FULL algorithm than
for the other two. Figure 4 also shows that

for FULL the mWimum It (and then the maxi-
mum throughput) 1s reached when A = 75 Yo~~~z,
It = 3/n = 0.09375.

Complement. Here, c = 1, so Amm = 2/n =

0.0625. The FULL algorithm accepted injection
Up to 6070 Of ~maz before saturation, ADAPT

accepted up to 50% and OBLIVIOUS accepted
45%. For FULL, It can grow up to 1.2/n = 0.0375

[18].

The most interesting difference between Random
Routing and Complement (this difference will be
preserved in the following two patterns) is that
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3.

4.

4

Table 1: Random Routing, 1 packet.

Complement saturates before Random Routing.
This is based on the fact that the structured pat-

terns are more congesting that the random ones.

Transpose. Here, c = 1/2 again, and Ama is
equal to that of Random Routing. For transpos-

ing, ADAPT and OBLIVIOUS are the same al-

gorithm. That is because in ADAPT a message

going from (x, y) to (x’, y’) can use the adaptiv-

ity of ADAPT only if (x < x’ and y < y’) or

(z > x’ and y > y’). But when going from (z, y)

to (y, z), none of these relations can be true, so
there is no adaptivity at all and ADAPT should

behave equal to OBLIVIOUS.

Figure 5 shows that the FULL algorithm stands

injection up to 35% of the maximum, while

OBLIVIOUS (and ADAPI) up to 25%. Then,

as shown in Figure 5 for FULL, It can be up to

1.4/n = 0.04375.

Bit Reversal. In this case, c = 1/2 again. FULL

accepted injections u to 30% of Amm, ADAPT

?’accepted up to the 25 0 and OBLIVIOUS does so
for up to 20%. For FULL, Ii was up to 1.2/n =

0.0375 [18].

The simulations for the hypercube.
In this Section, simulations results OF the routing

algorithm proposed will be shown for the hypercube.

Recalling Equation 2, it should be noted that for
the n-dimensional hypercube, B = 2“ /2 = N/2, so

A – l/c. This means that ~ does not depend onmax, —

the size of the network. Note that since c is a propor-

tionality factor, c < 1, and then A z 1. Also, because
of the node model, at most one packet can be injected
in each cycle. So, for the dynamic injection case, A
was fixed to 1.

In the tables, N is the number of nodes of the hy-

percube, n is the number of dimensions of the hyper-

cube. Also, LaVg is the average latency of the mes-

sages, and Lma$ is the maximum latency any packet

experienced, as before.
Tables 1 to 4 show the results of static injection

and Tables 5 to 8, the results for dynamic injection.

It should be noted that no saturation arises in the
hypercube, but 1, (%) degrades. This is due to the
fixed size of the queues.
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Table 2: Complement, 1 packet.

Table 3: Transpose, 1 packet.

Table 4: Leveled Permutation, 1 packet.

Table 5: Random Routing, ~ = 1.
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Table 6: Complement, A = 1.

Table 7: Transpose, A = 1.

n N La., L.a I, (%)

7

256 10.33 25 94
u

9 512 10.33 25 94
J

10 1024 14.6’/ 36
11 2048 14.6/ 83
12 4096 15.78 49 cf--
13 8192 20.31 54 71
14 16384 27.33

Table 8: Leveled Permutation, A = 1.

5 Fully-adaptive minimal worm-hole

routing in Tori.
In this Section, a fully-adaptive, minimal, deadlock-

free worm-hole routing algorithm for the torus net-
work will be described. This algorithm requires only a

moderate amount of resources for its implementation.

8 virtual channels (see [3]) per bidirectional physical
link are required, while allowing all the minimal paths

between any pair of nodes s, d to be of potential use

by those messages moving from s to d. In [22], a fully-
adaptive, minimal, deadlock-free worm-hole routing

algorithm for the torus network haa been presented,
but it requires that some links have 12 virtual channels

associated with them. The routing algorithm that will
be presented in this Section uses fewer virtual channels

than the one in [22].

Each of the two dimensions of the network, namely
X and Y, has two possible orientations: X+ or X-,
and Y+ or Y –, respectively. Node (z, y) is connected

to node (x+1 mod k, g) following orientation X+, and

to node (x– 1 mod k, y) following orientation X –. The

connections following orientations Y+ and Y- are de-

fined analogously.

If for a given node (z, y) dimension Y is fixed to

y, then a length- k cycle is defined by moving along
the X dimension. Cycles along dimension Y are de-

fined in an analogous manner. Given a message with
source node (~, y) and destination node (z’, y’), a min-

)
imal path from (z, y to (z’, y’) is built in such a way
that the message wi 1 have to travel through at most

Ij

k/2 links along dimension X and through at most

k/2 along dimension Y. To find such minimal paths,

the correct orientation along each dimension should be
chosen. This choice is independent for each dimension.

In this paper, only the case k odd will be considered.

The case k even presents certain subtleties that will

not be dealt with here for the sake of clarit y3. Con-

sider dimension X and the set of cycles associated with
this dimension. Moving along dimension Y does not
change the relative position within the different cy-

cles associated with dimension X that will be visited.

Similar considerations can be made for dimension Y.
Thereforel the set of minimal paths between any pair

of nodes 1s determined by a correct choice of the di-

rection in which to change each of the dimensions,

Consequently, when a message is injected in the

network, it will be classified into one out of 4 classes
according to the orientation in which each dimension

should be corrected in order to follow a minimal path
towards the destination. These 4 classes will be re-

ferred to as X+ Y+, X-Y+, X+ Y-, and X-Y-4.
Given a source node, a destination node, and an orien-

tation for each dimension, a “submesh is determined.
All minimal paths between a source and a destination

3 If k is even, and a message m is k/2 steps away from its

destination along dimension X, for example, then either orien-

tation along the X dimension can be taken in order to follow

minimal paths towarck m‘s destination.

4 Again, only the case of k-tori with k odd will be considered

here. If k is even, some messages may belong to more than one

class, depending on the final destination of the messages.
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node are included in the submesh determined by the

source, the destination and the orientation of each di-

mension chosen as explained above.

Now, the set of virtual channels associated with
each of the 4 classes into which messages are classi-

fied, viz X+ Y+, X-Y+, X+ Y-, X- Y-, will be pre-
sented. Each of these classes will have a particular

set of virtual channels assigned. There will be 2 vir-
tual channels per bidirectional physical link for each

of the classes. The definition of each of these 4 sets of
virtual channels is almost identical. So, only the case
X+Y+will be described here.

A message will belong to class X+ Y+ if the minimal

paths from its source towards its destination are built
by choosing X+ and Y+ as the orientation for cor-

recting dimensions X and Y, respectively. Only this
kind of messages will be routed through the virtual

channels associated with class X+ Y+.

Each physical link will have two virtual channels

associated in the set of virtual channels corresponding

to the class X+ Y+. These two virtual channels will
both use the underlying bidirectional physical link in
the same direction. Every virtual channel is identified
by a 3-uple: the first component of the 3-uple is either

a O or a 1 5. The second component is the dimension

associated with the underlying link: a O indicates the
X dimension, and a 1, the Y dimension. Finally, the

last component is the node in which a message arrives
by taking this virtual channel. For example, there are

two virtual channels from node (3, 2) to node (4, 2):

CO,O, (4,2) and C1,0,(4,Z).
Next, the routing function for routing on the k-

torus used for those messages belonging to class
X+Y+will be described. The routing function will

be defined in terms of the virtual channels just men-
tioned. Let m be a message with source node (a, y)

and destination node (x’, y’). A distinction has to be

made between those messages that will need to use the

wrap-around links and those that will not. If m does

not have to go through any wrap-around, then m will

visit only channels with prefix 1 until it arrives at its

target node. At each step, m will move along any of
the dimensions that need correction. If z > z’ then
m will use a wrap-around corresponding to dimension

X and orientation X+. If y > y’ then m will use a
wrap-around corresponding to dimension Y and ori-

entation Y+. Again, the use of wrap-arounds or not
along dimension X (resp. Y) depends exclusively on

the values of z and z’ (resp. y and y’). If either z > x’

or y > y’, then m will start moving through virtual
channels with prefix O again, moving along any of the

dimensions that need to be corrected, until it has to go
through a wrap-around. It is important to notice, as

will be emphasized below, that those virtual channels
co,d)(z,W) with d = O or d = 1, and O < Z,W ~ [k/2J

are not used during this first phase. Th;s is so because
if z > z’ and z < [k/2] then the path from z to z’

following X+ has length greater than [k/2] and so,

the X- orientation would have been chosen to cor-

5 This first component w ilf often be referred to as the p rejiz

of the virtual channel in what follows.

rect dimension X. An identical argument follows for
dimension Y.

After using a wrap-around, m will start moving

through virtual channels with prefix 1. m will go on
moving through channels with prefix 1 either until it

arrives at its destination node, or until it needs to use

another wrap-around, corresponding to the dimension

that has not gone through a wrap-around yet. At this
moment, m will start visiting channels with prefix O

again until it arrives at its target node. It is impor-
tant to note that the channels with prefix O that m

will use in its last phase towards its destination are
exact Iy those channels that have not been used yet, as
pointed out just above.

The routing algorithm that has just been described
allows each message to choose adaptively any one

among all the minimal paths from its source node to
its destination node. Furthermore, the routing algo-

rithm is deadlock-free.

It is supposed that every node (x, y) has an injec-
tzon channel C(z,g) into which node (x, y) injects its

messages.

Theorem 5.1 The routing algorithm presented in

Section 5 ts correct and deadlock-free.

Proofi The proof can be found in [19].

6 Conclusions.
This paper showed the performance of fully-

adaptive minimal algorithms for deadlock- and

livelock-free routing on hypercubes and 2-dimensional

meshes. Static and dynamic injection models have
been tried. Several communication patterns were
used: random, complement, bit-reversal, transpose,
and leveled permutations. These last four patterns are
useful to test the ability of the routing to cope with
potential congestion arising in practical routing. Fur-

thermore, different loads were applied to the routers

and critical network parameters such as average la-

tency, maximum latency, effective injection rate, true

injection, and throughput were measured.

The desirable properties that these routers have in

terms of deadlock-freedom and simple architecture of
the node are complemented with good routing perfor-

mances, as shown by the simulations in this paper.
Three algorithms called FULL, ADAPT, and

OBLIVIOUS were tried on the 2-dimensional mesh
for up to lK nodes. These algorithms exhibit differ-
ent amounts of adaptivity to congestion. It has been

shown the router FULL for the mesh has a better sat-
uration point and throughput than OBLIVIOUS and
ADA PT while similar latency is achieved by the three
methods. These conclusions hold for the four types

of communication patterns tried. These simulations
provide some evidence on the better performance of
the proposed adaptive algorithm for the machine size
tried. An important conclusion from the results ob-

tained for the fixed-permutation patterns is that net-
work saturation occurs at substantially smaller values

of applied load. For example FULL accepts up to 30~o
of the maximum theoretical load for bit-reversal per-

mutations while the same router yields up to the 75%
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of the maximum theoretical load for random routing.

The simulations clearly show that in cases where more

congestion is present in the network (as in the case of
fixed-permutations) the FULL router outperforms the
others by allowing a higher throughput.

In the cube, the results were extremely satisfactory,
for both static and dynamic injection. Random rout-
ing and three fixed-permutation patterns were tried.

Oblivious routers may generate congestion when used
on highly structured patterns such as routing-to-the-

transpose. Therefore, only the FULL router was used

in both static and dynamic injection models. No satu-

ration happened in the hypercubes of up to 16K nodes

for A = 1, as a consequence of the rich connectivity of

the network and the good performance of F lJLL.
The worm-hole routing algorithm for the torus pre-

sented in Section 5 is the first known to be fully-
adaptive minimal deadlock- and livelock-free involving

only 8 virtual channels per physical link. Simulations

are being performed to determine the practical perfor-

mance of this routing method.
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