About Me

I am currently a research scientist at Applied Communication Sciences. Prior to that, I was a postdoc with Tal Malkin, as a recipient of the Computing Innovation Fellowship. I received my PhD in July 2010 with Jonathan Katz in the computer science department at the University of Maryland. Here's my curriculum vitae (PDF).

Research Interests

My thesis (PDF) is on the subject of fairness in secure computation. I am also interested in practical applications of secure computation, especially in modern computing environments.

Publications

Click to read the abstract and download the paper, if available.

A Group Signature Scheme From Lattice Assumptions Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan Asiacrypt 2010
Group signature schemes allow users to sign messages on behalf of a group while (1) main- taining anonymity (within that group) with respect to an observer, yet (2) ensuring traceability of a signer (by the group manager) when needed. In this work we give the first construction of a group signature scheme based on lattices (more precisely, the learning with errors assump- tion), in the random oracle model. Toward our goal, we construct a new algorithm for sampling a random superlattice of a given modular lattice together with a short basis, that may be of independent interest.
Partial Fairness in Secure Two-Party Computation Dov Gordon and Jonathan Katz Eurocrypt 2010
A seminal result of Cleve (STOC '86) is that, in general, \emph{complete} fairness is impossible to achieve in two-party computation. In light of this, various techniques for obtaining \emph{partial} fairness have been suggested in the literature. We propose a definition of partial fairness within the standard real-/ideal-world paradigm that addresses deficiencies of prior definitions. We also show broad feasibility results with respect to our definition:~partial fairness is possible for any (randomized) functionality $f:X \times Y \rightarrow Z_1 \times Z_2$ at least one of whose domains or ranges is polynomial in size. Our protocols are always private, and when one of the domains has polynomial size our protocols also simultaneously achieve the usual notion of security with abort. In contrast to some prior work, we rely on standard assumptions only. We also show that, as far as general feasibility is concerned, our results are \emph{optimal} (with respect to our definition). Specifically, there exist functions with super-polynomial domain and range for which it is impossible to achieve our definition. Download PDF.
On Complete Primitives for Fairness Dov Gordon, Yuval Ishai, Tal Moran, Rafail Ostrovsky and Amit Sahai TCC 2010
For secure two-party and multi-party computation with abort, classification of which primitives are {\em complete} has been extensively studied in the literature. However, for \emph{fair} secure computation, where (roughly speaking) either all parties learn the output or none do, the question of complete primitives has remained largely unstudied. In this work, we initiate a rigorous study of completeness for primitives that allow fair computation.  We show the following results: - \textbf{No ``short'' primitive is complete for fairness.} In surprising contrast to other notions of security for secure two-party computation, we show that for fair secure two-party computation, no primitive of size $O(\log k)$ is complete, where $k$ is a security parameter.  This is the case even if we can enforce parallelism in calls to the primitives (i.e., the adversary does not get output from any primitive in a parallel call until it sends input to all of them).  This negative result holds regardless of any computational assumptions. - \textbf{Coin Flipping and Simultaneous Broadcast are not complete for fairness.}  The above result rules out the completeness of two natural candidates: coin flipping (for any number of coins) and simultaneous broadcast (for messages of arbitrary length). - \textbf{Positive results.}  To complement the negative results, we exhibit a $k$-bit primitive that \emph{is} complete for two-party fair secure computation.  This primitive implements a ``fair reconstruction'' procedure for a secret sharing scheme with some robustness properties.  We show how to generalize this result to the multi-party setting. - \textbf{Fairness combiners.}  We also introduce the question of constructing a protocol for fair secure computation from primitives that may be faulty.  We show a simple functionality that is complete for two-party fair computation when the majority of its instances are honest. On the flip side, we show that this result is tight: no functionality is complete for fairness if half (or more) of the instances can be malicious.
On the Round Complexity of Zero-Knowledge Proofs Based on One-Way Permutations Dov Gordon, Hoeteck Wee, David Xiao, and Arkady Yerukhimovich Latincrypt 2010
 We consider the following problem: can we construct constant-round  zero-knowledge proofs (with negligible soundness) for $\NP$ assuming  only the existence of one-way permutations? We answer the question  in the negative for fully black-box constructions (using only  black-box access to both the underlying primitive and the cheating  verifier) that satisfy a natural restriction on the ``adaptivity''  of the simulator's queries.  Specifically, we show that only languages in $\coAM$ have  constant-round zero-knowledge proofs of this kind.
Authenticated Broadcast with a Partially Compromised Public-Key Infrastructure Dov Gordon, Jonathan Katz, Ranjit Kumaresan and Arkady Yerukhimovich Symposium on Stabilization, Safety and Security of Distributed Systems, 2010
Given a public-key infrastructure (PKI) and digital signatures, it is possible to construct broadcast protocols tolerating any number of corrupted parties. Almost all existing protocols, however, do not distinguish between \emph{corrupted} parties (who do not follow the protocol), and \emph{honest} parties whose secret (signing) keys have been compromised (but who continue to behave honestly). We explore conditions under which it is possible to construct broadcast protocols that still provide the usual guarantees (i.e., validity/agreement) to the latter. Consider a network of $n$ parties, where an adversary has compromised the secret keys of up to $t_c$ honest parties and, in addition, fully controls the behavior of up to $t_a$ other parties. We show that for any fixed $t_c > 0$, and any fixed $t_a$, there exists an efficient protocol for broadcast if and only if $2t_a + \min(t_a, t_c) < n$. (When $t_c = 0$, standard results imply feasibility.) We also show that if $t_c, t_a$ are not fixed, but are only guaranteed to satisfy the bound above, then broadcast is impossible to achieve except for a few specific values of~$n$; for these ``exceptional'' values of~$n$, we demonstrate a broadcast protocol. Taken together, our results give a complete characterization of this problem. Invited for a special issue in Elsevier's Information and Computation journal.
Complete Fairness in Multi-Party Computation without an Honest Majority Dov Gordon and Jonathan Katz Theory of Cryptography Conference, 2009
Gordon et al.\ recently showed that certain (non-trivial) functions can be computed with complete fairness in the \emph{two-party} setting. Motivated by their results, we initiate a study of complete fairness in the \emph{multi-party} case and demonstrate the first completely-fair protocols for non-trivial functions in this setting. We also provide evidence that achieving fairness is "harder" in the multi-party setting, at least with regard to round complexity.
Complete Fairness in Secure Two-Party Computation Dov Gordon, Carmit Hazay, Jonathan Katz and Yehuda Lindell ACM Symposium on Theory of Computing (STOC) 2008
In the setting of secure two-party computation, two mutually distrusting parties wish to compute some function of their inputs while preserving, to the extent possible, various security properties such as privacy, correctness, and more. One desirable property is \emph{fairness}, which guarantees that if either party receives its output, then the other party does too. Cleve (STOC~1986) showed that complete fairness cannot be achieved \emph{in general} in the two-party setting; specifically, he showed (essentially) that it is impossible to compute Boolean XOR with complete fairness. Since his work, the accepted folklore has been that \emph{nothing} non-trivial can be computed with complete fairness, and the question of complete fairness in secure two-party computation has been treated as closed since the late '80s. In this paper, we demonstrate that this widely held folklore belief is \emph{false} by showing completely-fair secure protocols for various non-trivial two-party functions including Boolean AND/OR as well as Yao's ``millionaires' problem''. Surprisingly, we show that it is even possible to construct completely-fair protocols for certain functions containing an ``embedded XOR'', although in this case we also prove a lower bound showing that a super-logarithmic number of rounds are necessary. Our results demonstrate that the question of completely-fair secure computation without an honest majority is far from closed.
Rational Secret Sharing, Revisited Dov Gordon and Jonathan Katz Security and Cryptography for Networks 2006
We consider the problem of secret sharing among $n$ rational players. This problem was introduced by Halpern and Teague (STOC 2004), who claim that a solution is \emph{impossible} for $n=2$ but show a solution for the case $n\geq 3$. Contrary to their claim, we show a protocol for rational secret sharing among $n=2$ players; our protocol extends to the case $n\geq 3$, where it is simpler than the Halpern-Teague solution and also offers a number of other advantages.  We also show how to avoid the continual involvement of the dealer, in either our own protocol or that of Halpern and Teague. Our techniques extend to the case of rational players trying to securely compute an arbitrary function, under certain assumptions on the utilities of the players.

Teaching