Virtual Active Networks

Gong Su
Mar. 22, 2000
Multi-Edged Network Applications

Traditional net apps: end-end computing
- Client-server software at end nodes
- The network is a best-effort packet-transport wire

Active net apps: multi-edge computing
- Application components dynamically deployed at net nodes
- Examples: intrusion protection, distributed simulation
- Need to interact with network resources & topology
VAN Node Architecture

- Enables EE to configure net resources & topology
- Enables EE to monitor & adapt to net changes

Diagram:

```
  VAN
  OS
  Node HW
  EE  EE  EE
  AA  AA  AA
```

- Node HW
- OS
- VAN
- AA
- EE
VAN: Middleware for Edge-Computing

VAN service architecture

- **VAN Local Manager (VLM)**
 - Manages local node resources
 - Monitors & reports resource status

- **VAN Domain Server (VDS)**
 - VAN provisioning
 - Resource acquisition
 - Performance monitoring

Diagram description:

- Physical link
- Virtual link
- Non-active node
- Active node with VAN Local Manager (VLM)
- VAN Domain Server (VDS)
- Application

Legend:

- Active node with VAN Local Manager (VLM)
- VAN Domain Server (VDS)
- VDS administrative domain
- Physical link
- Virtual link
- Non-active node

Columbia University, DCC Lab, March 2000
VLM and VDS Functions

- **VLM exports the following services to VDS’es and EE/AAs**
 - create/delete VN with desired CPU resource
 - create/delete VL with desired link resource
 - modify VN and VL resources
 - create/delete Virtual Ports (VPs)
 - bind/unbind VPs to/from VLs
 - send/receive messages to/from VPs

- **VDS export the following services to EE/AAs**
 - create/delete a VAN
 - join/leave a VAN
Using VAN For Active Fencing

Idea: route suspicious traffic to a protection VAN
- Create a VAN that captures traffic from suspicious sources
- Deploy active filters to analyze traffic and choke attack
- Example: choking denial of service attack using an active fence

Active fencing as a protection paradigm
- Dynamic: deploy response filters dynamically
- Source-centric: fence the source rather than targets
- Globally-coordinated protection
Problem: partition events flows in large-scale simulation

- Event streams tend to cluster dynamically
- Events are clustered by meaning, scenario & time scales
- Need a way to allocate resources to serve the intensity of a cluster

VAN is used to encapsulate clustered interactions

- VAN support cluster interactions:
 - e.g., VAN of aircraft, VAN of tanks; VAN of a battlefield
 - Dynamic formation of VAN & dynamic allocation of resources
 - E.g., allocate more resources to battlefield VAN
VAN service APIs
- VAN creation/deletion
- VN, VP, and VL creation/deletion
- VN engine and VL engine loading/unloading and configuration
- Monitoring and event handling

Experimental VN Engines and VL Engines
- VN engines: traffic redirection, IP routing (RIP capable)
- VL engines: plain UDP tunnel, QoS guaranteed (via RSVP) UDP tunnel

Command line front-end tool with scripting capability
VAN MIB instrumentation – monitoring via SNMP
Recent Accomplishments

- VAN release 0.1
- QoS enabled Virtual Links
- Integration with ISI ASP
- Integration with UCLA Panda
Near Term Goals: Deployment on ABone

Integration with anetd
- Livio Ricciulli at Metanetworks
- Adapt vanad to work with anetd

Deployment on ABone
- Bob Braden at ISI
- Make vanad part of ABone core software
Long Term Goals: Kernel Support & Applications

Kernel resource management support
- Scheduler extension
- Classifier extension
- Virtual link setup (QoS signaling + tunnel encapsulation)

Demo active applications
- Active fencing
- Others?