#### **CS1001**

Lecture 24

#### **Overview**

- Encryption
- Artificial Intelligence
- Homework 4

## Reading

- Brookshear, 11.6
- Brookshear, 10

#### **Homework 4**

- Check Courseworks
- Problems based on
  - Handout (Smullyan, Natural Deduction)
  - Question from Ch. 10
  - Question from Ch. 11

#### **Some Trivial Schemes**

- Caesar cipher: substitution cipher:
  - $-A \rightarrow D, B \rightarrow E$
- Captain Midnight Secret Decoder rings:
  - shift variable by n: IBM → HAL, or :
    - (letter + offset) mod 26
  - only 26 possible ways of secret coding.
- Monoalphabetic cipher:
  - generalization, arbitrary mapping of one letter to another
  - 26!, approximately  $4 \times 10^{26}$
  - statistical analysis of letter frequencies
- One-time pad
  - A random sequence of 0's and 1's XORed to plaintext

#### **Definitions**

- Process data into unintelligible form, reversible, without data loss
- Usually one-to-one (not compression)
- Other services:
  - Integrity checking: no tampering
  - Authentication: not an imposter
- Plaintext encryption → ciphertext decryption → plaintext

## **Computational Difficulty**

- Algorithm needs to be efficient.
  - Otherwise only short keys can be used.
- Most schemes can be broken: depends on \$\$\$.
  - E.G. Try all possible keys.
- Longer key is often more secure:
  - Encryption O(N+1).
  - Brute-force cryptanalysis:  $O(2^{N+1})$ , twice as hard with each additional bit.
- Cryptanalysis tools:
  - Special-purpose hardware.
  - Parallel machines.
  - Internet coarse-grain parallelism.

# Secret Key vs. Secret Algorithm

- Secret algorithm: additional hurdle
- Hard to keep secret if used widely:
  - Reverse engineering, social engineering
- Commercial: published
  - Wide review, trust
- Military: avoid giving enemy good ideas

# **Cryptanalysis: Breaking an Encryption Scheme**

- Ciphertext only:
  - Exhaustive search until "recognizable plaintext"
  - Need enough ciphertext
- Known plaintext:
  - Secret may be revealed (by spy, time), thus<ciphertext, plaintext> pair is obtained
  - Great for monoalphabetic ciphers
- Chosen plaintext:
  - Choose text, get encrypted
  - Useful if limited set of messages

# Models for Evaluating Security

- Unconditional security (perfect secrecy)
  - Observation of ciphertext provides no information
  - Uncertainty/entropy H(p) = H(p|c)
- Complexity-theoretic security
- Provable security
  - As difficult to break as solving well-known and supposedly difficult problem
- Computational security
- Ad hoc security

#### **Brute Force Attacks**

- Number of encryption/sec: 1 million to 1 billion/sec
- 56-bit key broken in 1 week with 120,000 processors (\$6.7m)
- 56-bit key broken in 1 month with 28,000 processors (\$1.6m)
- 64-bit key broken in 1 week with 3.1 × 10<sup>7</sup> processors (\$1.7b)
- 128-bit key broken in 1 week with 5.6 × 10<sup>26</sup> processors

## **Types of Cryptography**

- Hash functions: no key
- Secret key cryptography: one key
- Public key cryptography: two keys public, private

### Secret Key Cryptography

- Same key is used for encryption and decryption
  - Symmetric cryptography
- Ciphertext approximately the same length as plaintext
- Substitution codes, DES, IDEA
- Message transmission:
  - Agree on key (but how?)
  - Communicate over insecure channel
- Secure storage: crypt

# Secret Key Cryptography (Cont'd)

- Strong authentication: prove knowledge of key without revealing it:
  - Send challenge r, verify the returned encrypted {r}
  - Fred can obtain chosen plaintext, cihpertext pairs
    - Challenge should chosen from a large pool
- Integrity check: fixed-length checksum for message
  - Send MIC along with the message

## **Public Key Cryptography**

- Asymmetric cryptography
- Invented/published in 1975
- Two keys: private (*d*), public (*e*)
  - Encryption: public key; Decryption: private key
  - Signing: private key; Verification: public key
- Much slower than secret key cryptography

# Public Key Cryptography (Cont'd)

- Data transmission:
  - Alice encrypts  $m_a$  using  $e_B$ , Bob decrypts to  $m_a$  using  $d_b$ .

#### Storage:

 Can create a safety copy: using public key of trusted person.

#### Authentication:

- No need to store secrets, only need public keys.
- Secret key cryptography: need to share secret key for every person to

# Public Key Cryptography (Cont'd)

- Digital signatures
  - Encrypt hash h(m) with private key
    - Authorship
    - Integrity
    - Non-repudiation: can't do with secret key cryptography

#### **Hash Algorithms**

- Message digests, one-way transformations
- Length of h(m) much shorter then length of m
- Usually fixed lengths: 48-128 bits
- Easy to compute *h*(*m*)
- Given h(m), no easy way to find m
- Computationally infeasible to find  $m_1$ ,  $m_2$  s.t.  $h(m_1) = h(m_2)$
- Example:  $(m+c)^2$ , take middle *n* digits

## Hash Algorithms (Cont'd)

#### Password hashing

- Doesn't need to know password to verify it
- Store h(p+s), s (salt), and compare it with the user-entered p
- Salt makes dictionary attack less convenient
- Message integrity
  - Agree on a password p
  - Compute h(p|m) and send with m
  - Doesn't require encryption algorithm, so the technology is exportable

### **Public Key Crypto's Trick**

- Consider the Knapsack problem (p482)
- We have a knapsack filled with numbers
- The goal is to select out a series of numbers that adds to some desired number
- How do we do this efficiently?

#### The Trick

- The trick is factoring
- You know ahead of time what certain properties of the number will be. This allows you to reduce the problem to a computable one
- Otherwise, you are dealing with a nonpolynomial problem

### **Artificial Intelligence**

- Reasoning (Production Systems
  - Goal is to derive a solution given facts and rules
- Searching
  - You are given facts and rules and search all possible combinations to find some desired solution (usually minimum/max)
- Heuristics
  - Operate based on guidelines you know to be true about a problem

## **A Production System**



### **Artificial Intelligence**

- Neural Networks
- Genetic Algorithms
- Machine Learning