CS1001

Lecture 18

Overview

m Object Oriented Design

Goals

m Learn Object-Oriented Design
Methodologies

Assignments

m Brookshear: Ch 5.5, Ch 6.3/6.4,
Ch 7 (especially 7.7) (Read)

m Read linked documents on these slides
(slides will be posted in courseworks)

Abstraction

m Abstraction means-ignoring-irrelevant
features, properties, or functions and
emphasizing the relevant ones...

> T—
[>
LE “Relevant” to what?

m ... relevant to the given project (with an
eye to future reuse in similar projects).

Abstraction (cont’'d)

s Example fromjavax.swing:

public abstract class AbstractButton

Fields:

The data model

protected ButtonModel model “— that determines the

etc.
Methods:

button’s state

void addActionListener (ActionListener I);

String getActionCommand();
String getText()
etc.

Apply to any button:
“regular” button, a
checkbox, a toggle
button, etc.

Abstraction (cont’'d)

java.lang.Object
|

+--java.awt.Component

+--java.awt.Container

+--javax.swing.JComponent

Extends features
of other abstract
and concrete
classes

+--javax.swing.AbstractButton

Encapsulation

m Encapsulation means that all-data members
(fields) of a class are declared private.
Some methods may be private, too.

m The class interacts with other classes (called
the clients of this class) only through the
class’s constructors and public methods.

m Constructors and public methods of a class
serve as the /nterface to class’s clients.

Encapsulation (cont'd)

m Ensures that structural changes remain
local:

— Usually, the structure of a class (as defined by
its fields) changes more often than the class’s
constructors and methods.

— Encapsulation ensures that when fields
change, no changes are needed in other
classes (a principle known as “locality”).

Quiz

m True or False? Abstraction and

encapsulation are helpful for the
following:

Team development
Reusable software
GUI programming
Easier program maintenance

OO0 O

10

Answer

m True or False? Abstraction and

encapsulation are helpful for the
following:

Team development
Reusable software
GUI programming
Easier program maintenance

NORNKN

11

UML

m "Unified Modeling Language”
= Not so much a language, but more a
process for designing software

m Provides a rigorous way of describing
the high-level architecture and design
of a software system

Elevator Problem

A product is to be installed to control elevators in a building with m
floors. The problem concerns the logic required to move elevators
between floors according to the following constraints:

m Each elevator has a set of m buttons, one for each floor. These
illuminate when pressed and cause the elevator to visit the
corresponding floor. The illumination is canceled when the elevator
visits the corresponding floor.

m Each floor, except the first floor and top floor has two buttons, one
to request and up-elevator and one to request a down-elevator.
These buttons illuminate when pressed. The illumination is canceled
\C/Ivhen an elevator visits the floor and then moves in the desired

irection.

= When an elevator has no requests, it remains at its current floor
with its doors closed.

13

UML Components

UML is a modeling language that only
specifies semantics and notation

m Use Case Diagram

m Class Diagram

m Sequence Diagram

m Collaboration Diagram
m State Diagram

Use Case

m A generalized
description of how a
system will be used.

m Provides an overview
of the intended
functionality of the
system.

s Understandable by
laymen as well as
professionals.

15

Class Diagram

m Class diagrams show the static structure
of the object, their internal structure,
and their relationships.

Elevatnr{: st Elevator_Contraller | | Door

]

cornEnlnicate with

Eluttnn_

P

Elevator_Button Floor_Button

Sequence Diagram

m A sequence diagram and

collaboration diagram
conveys similar information | [| [|
“Button T ler T

but expressed in different) e |
ways. A Sequence diagram

illuminate

shows the explicit sequence

of messages suitable for o
modeling a real-time -

system, whereas a
collaboration diagram ' I
shows the relationships | | |
between objects. | | |

Collaboration Diagram

m Describes the set of interactions between classes or types

m Shows the relationships among objects

passenger

J,JI: PIess 4. update request
_:p

:Elevator Button

ElewatorContrallen

%

3rilluminate . o N

: /] D Open

7 cancel illuminate G: stop \\&
/ L/J 9: close

S:reach floar

Elewatar Loar

18

State Diagram

m A state diagram shows the sequences
of states an object goes through
during it's life cycle in response to
stimuli, together with its responses
and actions.

19

Detail

Elevatar

Bedirection : boolean
current_flaorr : int

Elewator I:-:untr-:ullerl

Doaar

¥ owel)
¥ctopr)
Botatuz)

1

m

n 1 |Biaar id - int Be:close : boolean = true
Brposition : int — — .
direction : boolean "3|'2'5Effl
i opent

Button

_E'illuminate :boolean = off

illuminatel

Btatus

Scancel dilluminater)

Elewatar_Button

EI-:--:-r_num sint

Floor Button

Brfloor num :int

direction : boaolean

20

Polymorphism

= \We often-want to refer to-an-object by
its primary, most specific, data type.

m This is necessary when we call methods
specific to this particular type of object:

ComputerPlayer playeri = new ComputerPlayer();

if (player2.getAge () < 10)
player1.setStrategy (new Level1Strategy ());

HumanPlayer player2 = new HumanPlayer("Nancy", 8);

21

Polymorphism (cont’'d)

= But sometimes-we-want torefer to-an
object by its inherited, more generic

type:

Player players[] = new Player|[2];
players[0] = new ComputerPlayer();

game.addPlayer(players[0]);
game.addPlayer(players[1]);

players[1] = new HumanPlayer("Nancy”, 8);

Both ComputerPlayer
and HumanPlayer
implement Player

22

Polymorphism (cont’'d)

m Why disguise an object as a more
generic type?
— To mix different related types in the same
collection

— To pass it to a method that expects a
parameter of a more generic type

— To declare a more generic field (especially in
an abstract class) which will be initialized
and “‘specialized” later.

23

Polymorphism (cont’'d)

m Polymorphism ensures that the
appropriate method is called for an object
of a specific type when the object is
disguised as a more generic type:

while (game.notDone())

{

players[k].makeMove(); «— Iheappropriate

k = (k + 1) % numPlayers; makeMove method is
) called for all players
(e.g., for a
HumanPlayer and a
ComputerPlayer).

24

Polymorphism (cont’'d)

m Good news: polymorphism is already
supported in Java — all you have to do is
use it properly.

m Polymorphism is implemented using a
technique called /ate (or dynamic)
method binding. which exact method to
call is determined at run time.

25

OO0 Software Design

m Designing a good OOP application is a
daunting task.

m It is largely an art: there are no precise rules
for identifying classes, objects, and methods.

m Many considerations determine which classes
should be defined and their responsibilities.

m A bad design can nullify all the potential OOP
benefits.

26

OO0 Design (cont'd)

m A few considerations that determine which
classes are defined and their responsibilities:

— Manageable size

— Clear limited functionality

— Potential reuse

— Support for multiple objects

— The need to derive from a library class

— The need to make a listener or to implement a
particular interface

— The need to collect a few data elements in one
entity

27

Review:

s Name the main software development
concerns that are believed to be addressed
by OOP.

m Explain the dual role of inheritance.

m Can an interface extend another interface?
If so, what does it mean?

m Can an interface extend a class? If so,
what does it mean?

m Why do you think Java does not allow a
class to extend several classes?

28

Review (cont'd):

m Whatisabstraction?

m Explain how encapsulation helps in
software maintenance.

s Why sometimes objects end up disguised
as objects of more generic types?

m What is polymorphism?

29

