CS1001

Lecture 17/

Overview

s Homework 3
m Project/Paper
m Object Oriented Design

Goals

m Learn Object-Oriented Design
Methodologies

Assignments

m Brookshear: Ch 5.5, Ch 6.3/6.4,
Ch 7 (especially 7.7) (Read)

m Read linked documents on these slides
(slides will be posted in courseworks)

Objectives:

m Review the main OOP concepts:

— inheritance

— abstraction
— encapsulation
— polymorphism

m Get an appreciation for the complexity of
object-oriented design.

What are OOP’s claims to
fame?

m Better suited for team development

m Facilitates utilizing and creating reusable
software components

m Easier GUI programming
m Easier program maintenance

OOP in a Nutshell:

m_A program models a world of interacting
objects.

m Objects create other objects and “send
messages” to each other (in Java, call each
other’s methods).

m Each object belongs to a class; a class
defines properties of its objects. The data
type of an object is its class.

m Programmers write classes (and reuse
existing classes).

Main OOP Concepts:

m Inheritance
m Abstraction
m Encapsulation
m Polymorphism

m Event-driven computations

Inheritance

m A class can extend another class, inheriting
all its data members and methods while

redefining some of them and/or adding its
own.

m A class can implement an interface,
implementing all the specified methods.

m Inheritance implements the “is a”
relationship between objects.

Inheritance (cont’'d)

subclass superclass
or extends or
derived class base class
subinterface extends superinterface

class implements Interface

10

Inheritance (cont’'d)

m In Java, a subclass can extend only one
superclass.

m In Java, a subinterface can extend one
superinterface

m In Java, a class can implement several
interfaces — this is Java’s form of
multiple inheritance.

11

Inheritance (cont’'d)

m An abstract class can have code for some
of its methods; other methods are
declared abstract and left with no code.

m An interface only lists methods but does
not have any code.

m A concrete class may extend an abstract
class and/or implement one or several
interfaces, supplying the code for all the
methods.

12

Inheritance (cont’'d)

m Inheritance plays a dual role:

— A subc
superc

— A subc

ass reuses the code from the
ass.

ass (or a class that implements an

interface) inherits the data type of the
superclass (or the interface) as its own
secondary type.

13

Inheritance (cont’'d)

m Inheritance leads to a hierarchy of classes

and/or interfaces in an application:

Game

Solitaire

GameFor2

BoardGame

Chess

Backgammon

14

Inheritance (cont’'d)

m An object of a class at the bottom of a
hierarchy inherits all the methods of all the
classes above.

m It also inherits the data types of all the
classes and interfaces above.

m Inheritance is also used to extend
hierarchies of library classes, reusing the
library code and inheriting library data
types.

15

Inheritance (cont’'d)

m Inheritance implements the “is a”
relationship.

m Not to be confused with embedding (an
object has another object as a part), which
represents the “has a” relationship:

A sailboat is a boat

A sailboat has a sail A

16

Quiz

m True or False? Inheritance is helpful for
the following:

Team development
Reusable software
GUI programming
Easier program maintenance

OO0 O

17

Answer

m True or False? Inheritance is helpful for
the following:

Team development
Reusable software
GUI programming
Easier program maintenance

ORNN O

18

Abstraction

m Abstraction means-ignoring-irrelevant
features, properties, or functions and
emphasizing the relevant ones...

> T—
[>
LE “Relevant” to what?

m ... relevant to the given project (with an
eye to future reuse in similar projects).

19

Abstraction (cont’'d)

s Example fromjavax.swing:

public abstract class AbstractButton

Fields:

The data model

protected ButtonModel model “— that determines the

etc.
Methods:

button’s state

void addActionListener (ActionListener I);

String getActionCommand();
String getText()
etc.

Apply to any button:
“regular” button, a
checkbox, a toggle
button, etc.

Abstraction (cont’'d)

java.lang.Object
|

+--java.awt.Component

+--java.awt.Container

+--javax.swing.JComponent

Extends features
of other abstract
and concrete
classes

+--javax.swing.AbstractButton

21

Encapsulation

m Encapsulation means that all-data members
(fields) of a class are declared private.
Some methods may be private, too.

m The class interacts with other classes (called
the clients of this class) only through the
class’s constructors and public methods.

m Constructors and public methods of a class
serve as the /nterface to class’s clients.

22

Encapsulation (cont'd)

m Ensures that structural changes remain
local:

— Usually, the structure of a class (as defined by
its fields) changes more often than the class’s
constructors and methods.

— Encapsulation ensures that when fields
change, no changes are needed in other
classes (a principle known as “locality”).

23

Quiz

m True or False? Abstraction and

encapsulation are helpful for the
following:

Team development
Reusable software
GUI programming
Easier program maintenance

OO0 O

24

Answer

m True or False? Abstraction and

encapsulation are helpful for the
following:

Team development
Reusable software
GUI programming
Easier program maintenance

NORNKN

25

Polymorphism

= \We often-want to refer to-an-object by
its primary, most specific, data type.

m This is necessary when we call methods
specific to this particular type of object:

ComputerPlayer playeri = new ComputerPlayer();

if (player2.getAge () < 10)
player1.setStrategy (new Level1Strategy ());

HumanPlayer player2 = new HumanPlayer("Nancy", 8);

26

Polymorphism (cont’'d)

= But sometimes-we-want torefer to-an
object by its inherited, more generic

type:

Player players[] = new Player|[2];
players[0] = new ComputerPlayer();

game.addPlayer(players[0]);
game.addPlayer(players[1]);

players[1] = new HumanPlayer("Nancy”, 8);

Both ComputerPlayer
and HumanPlayer
implement Player

27

Polymorphism (cont’'d)

m Why disguise an object as a more
generic type?
— To mix different related types in the same
collection

— To pass it to a method that expects a
parameter of a more generic type

— To declare a more generic field (especially in
an abstract class) which will be initialized
and “‘specialized” later.

28

Polymorphism (cont’'d)

m Polymorphism ensures that the
appropriate method is called for an object
of a specific type when the object is
disguised as a more generic type:

while (game.notDone())

{

players[k].makeMove(); «— Iheappropriate

k = (k + 1) % numPlayers; makeMove method is
) called for all players
(e.g., for a
HumanPlayer and a
ComputerPlayer).

29

Polymorphism (cont’'d)

m Good news: polymorphism is already
supported in Java — all you have to do is
use it properly.

m Polymorphism is implemented using a
technique called /ate (or dynamic)
method binding. which exact method to
call is determined at run time.

30

OO0 Software Design

m Designing a good OOP application is a
daunting task.

m It is largely an art: there are no precise rules
for identifying classes, objects, and methods.

m Many considerations determine which classes
should be defined and their responsibilities.

m A bad design can nullify all the potential OOP
benefits.

31

OO0 Design (cont'd)

m A few considerations that determine which
classes are defined and their responsibilities:

— Manageable size

— Clear limited functionality

— Potential reuse

— Support for multiple objects

— The need to derive from a library class

— The need to make a listener or to implement a
particular interface

— The need to collect a few data elements in one
entity

32

Review:

s Name the main software development
concerns that are believed to be addressed
by OOP.

m Explain the dual role of inheritance.

m Can an interface extend another interface?
If so, what does it mean?

m Can an interface extend a class? If so,
what does it mean?

m Why do you think Java does not allow a
class to extend several classes?

33

Review (cont'd):

m Whatisabstraction?

m Explain how encapsulation helps in
software maintenance.

s Why sometimes objects end up disguised
as objects of more generic types?

m What is polymorphism?

34

