+

CS1001

Lecture 13

Overview

+

m Java Programming

Goals

+

m Understand the basics of Java
programming

Assignments

+

m Brookshear: Ch 4, Ch 5 (Read)
m Read linked documents on these slides

(slides will be posted in courseworks)

Objectives:

Learn to distinguish the required syntax from the
conventional style

Learn when to use comments and how to mark them
Review reserved words and standard names

Learn the proper style for naming classes, methods,
and variables

Learn to space and indent blocks of code

Comments

+ m Comments are notes in plain English inserted
in the source code.

m Comments are used to:

— document the program’s purpose, author, revision
history, copyright notices, etc.

— describe fields, constructors, and methods
— explain obscure or unusual places in the code
— temporarily “comment out” fragments of code

Formats for Comments

m A "block” comment is placed between /* and
marks:

Exercise 5-2 for Java Methods
Author: Miss Brace

Date: 3/5/2010

Rev. 1.0

m A single-line comment goes from // to the
end of the line:
wt *= 2.2046; Convert to kilograms

Reserved Words

+- In Java a number of words are reserved for a
special purpose.

m Reserved words use only lowercase letters.

m Reserved words include:

— primitive data types: int, double, char, boolean,
etc.

— storage modifiers: public, private, static, final, etc.
— control statements: if, else, switch, while, for, etc.
— built-in constants: true, false, null

m [here are about 50 reserved words total.

Programmer-Defined
Names

m In addition to reserved words, Java
uses standard names for library
packages and classes:

String, Graphics, javax.swing, JApplet,
JButton, ActionListener, java.awt

m The programmer gives names to his
or her classes, methods, fields, and
variables.

Names (cont'd)

+ m Syntax: A nhame can include:
— upper- and lowercase letters
— digits
— underscore characters

m Syntax: A name cannot begin with a digit.

m Style: Names should be descriptive to
improve readability.

Names (cont'd)

+ m Programmers follow strict style conventions.

m Style: Names of classes begin with an
uppercase letter, subsequent words are
capitalized:

public class

m Style: Names of methods, fields, and
variables begin with a lowercase letter,
subsequent words are capitalized.

private final int = 30;
public void ()

Names (cont'd)

s Method names often sound like verbs:
setBackground, getText, dropCube, start

m Field names often sound like nouns:
cube, delay, button, whiteboard

m Constants sometimes use all caps:
PI, CUBESIZE

m It is OK to use standard short names for
temporary “throwaway” variables:

i, K, X, y, str

Syntax vs. Style

m Syntax is part of the language. The compiler
checks it.

m Style is a convention widely adopted by
software professionals.

m The main purpose of style is to improve the
readability of programs.

Syntax

‘ m The compiler catches syntax errors and
generates error messages.

m Text in comments and literal strings within
double quotes are excluded from syntax
checking.

m Before compiling, carefully read your code a
couple of times to check for syntax and logic
errors.

Syntax (cont'd)

m Pay attention to and check for:

— matching braces { }, parentheses (), and
brackets [|

— missing and extraneous semicolons

— correct symbols for operators
+, -, = <, <=, ==, ++, &&, etc.

— correct spelling of reserved words, library names
and programmer-defined names, including case

Syntax (cont’'d)
‘\‘ s Common syntax errors:

Public static int abs (int x)

{
If (x < 0);

{

X==X

'\
1eturn X; \

public static int sign (int x)

Style

+

m Arrange code on separate lines;
insert blank lines between
fragments of code.

m Use comments.

m Indent blocks within braces.

Style (cont'd)

 Betore: ater

public boolean public boolean moveDown()
moveDown(){if |

(cubeY<6*cubeX) If (cubeY < 6 * cubeX)
{cubeY+=yStep; {
return true;}else

return false;} \

else

{

return false;

]
}

cubeY += yStep;
return true;

Style (cont'd)

+ public void fill (char ch)

{
int rows = grid.length, cols = grid[0].length;

Intr, C;

for (r = 0; r < rows; r++)

{

for (c = 0; c < cols; c++)

{
grid[r][c] = ch;

Blocks, Indentation

—\— m Java code consists mainly of declarations and
control statements.

m Declarations describe objects and methods.
m Control statement describe actions.

m Declarations and control statements end with
a semicolon.

m No semicolon is used after a closing brace
(except certain array declarations).

Blocks, Indentation
(cont'd)

m Braces divide code into nested blocks.

m A block in braces indicates a number of
statements that form one compound

statement.

m Statements inside a block are indented,
usually by two spaces or one tab.

Blocks, Indentation (cont’'d)

+

Review:

+ = Name as many uses of comments as you can.

m Explain the difference between syntax and
style.

m Why is style important?

m Roughly how many reserved words does Java
have?

Review (cont'd):

+ m Explain the convention for naming classes,
methods and variables.

m Which of the following are syntactically valid
names for variables: C, _denom_, my.num,

AvgScore? Which of them are in good style?

m What can happen if you put an extra
semicolon in your program?

m What are braces used for in Java?

m IS indentation required by Java syntax or
style?

Objectives:

Review primitive data types
Learn how to declare fields and local variables

Learn about arithmetic operators, compound
assignment operators, and increment /
decrement operators

Learn how to avoid common mistakes in
arithmetic

Variables

+ m A variable is a "named container”
that holds a value.

mg=100-q;

means.

1. Read the current value of g
2. Subtract it from 100

3. Move the result back into g

Variables (cont'd)

+ m Variab

char, ¢

m Variab

es can
ouble,

€S Can

pe of different data types: int,
noolean, etc.

nold objects; then the type is

the class of the object.

m The programmer gives names to variables.

m Names usually start with a lowercase letter.

Variables (cont'd)

—\— m A variable must be declared before it can be
used:

int | count:

double| x,y;- Name(s)

m—-l JButton | go;

FallingCube| cube;

String] firstName; _

Variables (cont'd)

+ m The assignment operator = sets the variable’s
value:

count = 5;
X =0;
go = new JButton("Go");

firstName = args[0]; _

m A variable can be initialized in its declaration:

int count = 5;
JButton go
String firstName

Variables (cont’'d)

+ m Each variable has a scope — the area in
the source code where it is “visible.”

m If you use a variable outside
its scope, the compiler

reports a syntax error.

m Variables can have the same
name. use only when
their scopes do not intersect.

Fields vs. Local Variables

+ m Fields are declared outside all
constructors and methods.

m Local variables are declared inside a
constructor or a method.

Fields vs. Local Variables
1 (cont'd)

m Fields are usually grouped together,
either at the top or at the bottom of
the class.

m The scope of a field is the whole
class.

Fields

+ public class SomeClass

—

— Constructors
and methods

public class SomeClass

{

— Constructors
B nd methods

Variables (cont’'d)

T a

public void SomeMethod (...)

{

Int X;

int

X =5: //should be: x =5;

Primitive Data Types

+

m int m byte
m double m short
m char m long
= boolean m float

Constants
T newline.

ﬁ-

‘A’ '+, \n', "\t // char
-99, 2010, O // int
0.75, -12.3, 8., .5 // double

Constants (cont'd)

m Symbolic constants are initialized final
variables:

private final int delay = 30;

private final double aspectRatio = 0.7;

Constants (cont'd)

+

s Why use symbolic constants?

— easier to change the value throughout, if
necessary

— easy to change into a variable
— more readable, self-documenting code
— additional data type checking

Arithmetic
+ m Operators: +, -, /, *, %

m The precedence of operators and
parentheses work the same way as in
algebra.

®r M % n means the remainder when m is
divided by n (e.g. 17 % 5 is 2).

m % has the same rank as / and *

m Same-rank binary operators are
performed in order from left to right.

Arithmetic (cont'd)

+ m The type of the result is determined by the
types of the operands, not their values; this
rule applies to all intermediate results in
expressions.

m If one operand is an int and another is a
double, the result is a double; if both
operands are ints, the result is an int.

Arithmetic (cont'd)

+ O if aand b are ints, thena / b is
truncated to an int...

17 /5 gives 3
3/4 gives 0

m ...even if you assign the result to a double:
double ratio = 2 / 3;

Arithmetic (cont'd)

+ m [0 get the correct double result, use
double constants or the cast operator:

double ratio = 2.0 / 3;
double ratio = 2 / 3.0;

double factor = (double) m / (double)
n;

e factor = m / (double) n;
er2 =k / 2.0;
e r2 = (double) k / 2;

Arithmetic (cont'd)
| -

the range for ints is from

~-231to 231-1 (about -2-10° to 2:10°)

Overflow is not detected by the Java
compiler or interpreter

= 10

8
9

= 11
= 12
= 13
= 14

10"n = 100000000 I = 40320
10"n = 1000000000 I = 362880
10"n = I = 3628800
10"n = I = 39916800
10"n = ' = 479001600
10"n = =

10"n =

Arithmetic (cont'd)

+

m Use compound m Use increment
assignment and decrement
operators: operators:

a=a+b, —>a+=D; a=a+1l —a++;
a=a-b, — a-=>b; a=a-1, —a—;
h:

D

a=a*
a=a/b, —a/=D,

4

Review:

m What is a variable?

m What is the type of variable that holds an
object?

Review (cont'd):

+ m What is the range for ints?
m When is a cast to double used?
m Given

doub

doub
what is t

e dF = 68.0;
edC=5/ 9 * (dF - 32):

ne value of dC?

m When is a cast to int used?

m Should compound assignment operators
be avoided?

