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with other systems; (4) improvements to an earlier algorithm for hierarchically mapping thematic
roles to surface positions; and (5) development of a diagnostic tool for lexicon coverage and correct-
ness and use of the tool for verification of English, Spanish, and Chinese lexicons. An evaluation of
Chinese–English translation quality shows comparable performance with a commercial translation
system. The generation system can also be extended to other languages and this is demonstrated and
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1. Introduction

This paper describes Lexogen, a system for generating natural-language sentences
from Lexical Conceptual Structure (LCS), an interlingual representation (Dorr,
1993b). The system has been developed as part of a Chinese–English Machine
Translation (MT) system, called ChinMT; however, it has also been successfully
used for many other MT language pairs (e.g., Spanish and Arabic (Dorr et al.,
1995)) and other natural-language applications (e.g., cross-language information
retrieval (Dorr et al., 2000)).

The work presented here focuses on large-scale sentence-level Hybrid (rule-
based/statistical) Natural Language Generation (NLG) in the context of interlingual
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MT. Most work on NLG systems has been done within a symbolic framework.
Recently, there has been more work on statistical NLG (e.g., IBM travel reports
(Ratnaparkhi, 2000)) and hybrid NLG (e.g., Nitrogen (Langkilde and Knight,
1998b) and FERGUS (Alshawi et al., 2000)). There is also a sizeable amount of
research in NLG on text planning and generation beyond the sentence level (Hovy,
1988; Vander Linden and Scott, 1995; Olsen, 1997; Marcu et al., 2000).

In the context of MT, the interlingual approach is the most committed to mul-
tilinguality, as opposed to transfer MT or direct MT (Polguère, 1991). Interlingual
MT systems share the advantage of reuse of knowledge (lexicons or algorithms)
at the expense of higher complexity. Examples of interlingual MT include PIVOT

(Okumura et al., 1991) and Rosetta (1994). Multilingual NLG systems tend to
focus on specific domains with non-linguistic inputs such as database entries or
human-created conceptual representations instead of interlinguas. Examples of
such systems are Météo (Chandioux, 1989), DRAFTER-I (Paris et al., 1995) and
TECHDOC (Rösner and Stede, 1994).

The contributions of this work include:

− Development of a large-scale hybrid NLG system with language-independent
components.

− Enhancements to an interlingual representation and associated algorithm
(Dorr, 1993b) for generation of ambiguous input.

− Development of an efficient reusable language-independent linearization
module with a grammar-description language that can be used with other
systems. Additionally, the target-language grammar can be reused by de-
velopers of MT systems from new input languages, e.g., those studied in
recent TIDES-related efforts (Cebuano, Hindi).

− Improvements to an earlier algorithm (Dorr et al., 1998) for hierarchically
mapping thematic roles to surface positions.

− Development of a diagnostic tool for lexicon coverage and correctness and
use of the tool for verification of English, Spanish, and Chinese lexicons. An
evaluation of Chinese–English translation quality shows comparable perform-
ance with a commercial translation system. The generation system can also
be extended to other languages and this is demonstrated and evaluated for
Spanish.

The next two sections provide overviews of hybrid NLG and LCS-based MT,
respectively. The LCS interlingual representation is discussed in more detail in
Section 4. Section 5 discusses the Lexogen generation system. Section 6 describes
how the Lexogen system can be used to generate output in other languages by
adding appropriate target-language resources. A comparison with other sentence
generation systems is presented in Section 7. An evaluation of several different
aspects of the performance of our system is given in Section 8.
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2. Hybrid Natural Language Generation

Most NLG systems follow a symbolic approach that depends on manually creating
a system with rules reflecting an understanding of the relationship between input
and output. The most basic symbolic approach to NLG, and by far the most com-
mon, is template filling. Templates are an excellent choice for very domain-specific
interfaces such as ATM machines or junk mail labels; however, they are extremely
limited for large-scale domain-independent (or even domain-specific) applications
(Reiter, 1995). As for the more realistic systems concerned with larger domains
and robust behavior, two major approaches to symbolic NLG are Systemic Gram-
mar and Functional Unification Grammar (FUG) (Jurafsky and Martin, 2000).
Within Systemic Grammar – implemented in the paradigm of Systemic Functional
Linguistics (Halliday, 1985) – a generation grammar is constructed as a system
network of realization statements (grammar rules) that specify mappings from in-
put features to syntactic positions and surface forms. One example of this approach
is the Penman generation system (Penman, 1989; Mann and Matthiessen, 1985).
FUG uses unification of input representations, called Functional Descriptions, and
an FUG as its main process for generation decision making (Elhadad and Robin,
1992; Elhadad et al., 1997). The original functional unification formalism was put
forward by Kay (1979).

In contrast to the symbolic approaches, statistical natural language processing
is concerned with the creation of computer programs that can perform language-
processing tasks by virtue of information gathered from (typically large) corpora.
Usually this information is in the form of statistics, but it may be distilled into other
forms, such as dictionary entries, or various kinds of rules (Charniak, 2000). In the
context of statistical NLG, the object is to create a mathematical model in which the
process of mapping meaning representations to fluent natural language is statistic-
ally enabled. This approach was used in IBM air travel reports (Ratnaparkhi, 2000),
which was the first system to learn mappings from semantics to surface realization
automatically by searching for parameters and learning them automatically without
using a hand-crafted grammar. What made this possible was a limited domain with
simple semantic representations (simple sets of attribute–value pairs) and an avail-
able semantically annotated corpus. This system is at best a proof of concept for
the use of statistical techniques for semantic-to-surface mapping. It works well for
domains with similar complexity to air travel (for which template-based systems
already seem adequate). However, the techniques used in it are useless for large-
scale domain-independent NLG applications especially with the lack of large-scale
semantically annotated corpora.

Hybrid NLG systems combine symbolic and statistical techniques to maxim-
ize the advantages and minimize the disadvantages of these different approaches.
Large-scale systems need large amounts of lexical, grammatical, and conceptual
knowledge. While statistical approaches are quite successful in collecting lexical
information such as n-grams, they lack the ability to extract conceptual knowledge
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automatically. Moreover, most available knowledge bases have many gaps that
compromise their robustness in handling input with missing pieces of knowledge
(Knight and Hatzivassiloglou, 1995). Therefore, they require restrictive defaults
or large sets of rules that must be created manually and are restricted by domain.
Also defaults can often be wrong and disfluent. Hybrid systems try limiting the
space of ambiguity resulting from linguistically blind statistical hypotheses us-
ing linguistically motivated, albeit overgenerating, rules. Statistical knowledge is
then used to rank and make the final choice. Examples of hybrid NLG systems
include Nitrogen (Langkilde and Knight, 1998a,b,c)1 and FERGUS (Alshawi et al.,
2000). On the symbolic–statistical continuum, Lexogen is in the middle: a hybrid
approach that borrows from the benefits of the approaches at either end of the
continuum. Section 7 compares Lexogen to both Nitrogen and FERGUS.

3. LCS-based MT

One of the major challenges in natural language processing is the ability to make
use of existing resources. In this project we have reused existing resources, where
feasible, while also creating new reusable resources for multilingual generation.
Existing resources include the LCS representation and English lexicon, as well as
aspects of the Nitrogen generation system (Langkilde and Knight, 1998b) includ-
ing its “Abstract Meaning Representation” (AMR) and lattice representations, the
morphological generator, and statistical lattice extractor. We have additionally built
a language-independent decomposition module, which requires a target-language
lexicon in order to be reconfigured for a particular target language, a language-
independent realizer, which requires a target-language grammar, and extensions
to the representation languages. The modular design of the Lexogen system (see
Figures 1 and 6) allows for easy reuse of particular resources, being able to swap in
and out different modules that can perform the same function, or use components
for tasks other than Chinese–English translation. In particular, we have used three
different linearization components, and the same generation system has been used
for broad, shallow generation for information retrieval as well as translation.

Reusing resources in large-scale applications can often be difficult, because of
the barriers created by large differences in syntax, semantics, and ontologies of
these resources. A case in point is the wide range of “interlingual representations”
used in MT and cross-language processing. Such representations are becoming
increasingly prevalent, yet views vary widely as to what these should be composed
of, ranging from purely conceptual knowledge representations that have little to
do with the structure of language, to very syntactic representations that maintain
most of the idiosyncrasies of the source languages. The Lexogen generation system
makes use of resources associated with two different (kinds of) interlingua struc-
tures: LCS and AMR. The two representations serve different but complementary
roles in the translation/generation process. The deeper lexical-semantic expressive-
ness of LCS is essential for language-independent lexical selection that transcends
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Figure 1. LCS-based MT.

translation divergences (Dorr, 1993a). The shallower yet mixed semantic-syntactic
nature of AMRs makes them easier to use directly for target-language realization.

The use of two representations in generation mirrors the use of two repres-
entations on the analysis side of LCS-based MT, in which a parsing output is
passed to a semantic-composition module; the target-language AMR is analogous
to the source-language parse tree (see Figure 1). The Composition module takes the
source-language parse tree and creates a deeper semantic representation (the LCS)
using a source-language lexicon. During generation, the Decomposition module
in Lexogen performs a reverse step that uses a target-language lexicon to create
the hierarchical word and feature structure, a “parse-like” AMR. The linearization
module flattens an AMR into a sequence of words. Because of the ambiguity
inherent in all of the modules involved from the parser to the lexicons, multiple
sequences are created, represented compactly in a lattice structure. Lexogen uses
the statistical extraction module of the generation system Nitrogen (Langkilde and
Knight, 1998b,c) to select among alternative outputs, using n-gram probabilities of
target-language word sequences.

The next section discusses the LCS representation in deeper detail.

4. Lexical Conceptual Structure

Linguistic knowledge in the lexicon covers a wide range of information types, such
as verbal subcategorization for events (e.g., that a transitive verb such as hit occurs
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with an object noun phrase), feature information (e.g., that the direct object of
a verb such as frighten is animate), thematic information (e.g., that John is the
agent in John hit the ball), and lexical-semantic information (e.g., that spatial verbs
such as throw are conceptually distinct from verbs of possession such as give). By
modularizing the lexicon, we treat each information type separately, thus allowing
us to vary the degree of dependence on each level. For example, the thematic level
may be used during lexical selection for determining the main verb of the target-
language sentence (hit vs. slap), whereas the feature level may be used during
syntactic realization for determining the type of direct object associated with the
selected verb (ball vs. idea).

The most intricate component of lexical knowledge is the lexical-semantic
information, which we encode in the form of LCS as formulated by Dorr
(1993b, 1994) based on work by Jackendoff (1983, 1990, 1996). LCS is a compos-
itional abstraction with language-independent properties that transcend structural
idiosyncrasies. This representation has been used as the interlingua of several
projects such as UNITRAN (Dorr, 1993a) and MILT (Dorr, 1997a).

Formally, an LCS is a directed graph with a root. Each node is associated with
certain information, including a “type”, a “primitive” and a “field”. The type of an
LCS node is one of Event, State, Path, Manner, Property or Thing. There are two
general classes of primitives: “closed class” (also called “structural primitives”,
e.g., cause, go, be, to) and “open class” primitives (also called “constants”, e.g.,
john+, reduce+ed, jog+ingly). Suffixes such as +, +ed, +ingly are markers
of open class primitives, signaling also the type of the primitive (Thing, Prop-
erty, Event, etc.). We distinguish between the structural primitive go, denoting
generalized movement, and the constant go+ingly: the first appears in many
lexical entries but the second appears only in specific lexical entries such as the
one for the English verb go. Fields specify the domain of a particular primitive,
e.g., Locational, Possessional, and Identificational.2 Structurally, an LCS
node has zero or more LCS children. There are three ways a child node relates to
its parent: as a subject (maximally one), as an argument, or as a modifier.3

An LCS captures the semantics of a lexical item through a combination of
semantic structure (specified by the shape of the graph and its structural primitives
and fields) and semantic content (specified through constants). The semantic struc-
ture of a verb is something the verb shares with a semantic verb class whereas the
content is specific to the verb itself. For example, all the verbs in the semantic class
of “Run” verbs (run, jog, walk, zigzag, jump, roll, etc.) have the same semantic
structure but vary in their semantic content.

It is important to point out that LCS is not a deep knowledge representa-
tion. Rather, it is a representation that normalizes structural idiosyncrasies of
different languages to provide a consistent methodology for handling translation
divergences. Resolving pragmatic and stylistic questions is addressed by other
researchers in the field (Hirst, 1987; Hovy, 1988; Olsen, 1997).
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Semantic verb classes were initially borrowed from the classification in Eng-
lish Verb Classes and Alternations (Levin, 1993). Our LCS Verb Database (LVD)
extends Levin’s classification by refining the class divisions4 and defining the un-
derlying meaning components of each class in the LCS representation. LVD also
provides a relation between Levin’s classes and both thematic role information and
hand-tagged WordNet synset numbers. The first public release of the LVD is now
available for research purposes (Dorr, 2001).

Consider the sentence (1a). This can be fully represented (except for features
such as tense, telicity, etc.) as shown in (1b) glossed as (1c).

(1) a. John jogged to school.

b. (event go loc
(thing john+)
(path to loc

(thing john+)
(position at loc (thing john+) (thing school+)))

(manner jog+ingly))

c. ‘John moved (location) to the school in a jogging manner’

Figure 2 shows the lexicon entry for one sense of the English verb jog and the
preposition to.5 These entries include several pieces of information such as the root
form of the word, introduced by the field :DEF_WORD, and the word’s semantic verb
class, introduced by the field :CLASS.

The field :THETA_ROLES specifies the set of thematic roles appearing in the
“Root LCS” (RLCS) entry. Theta roles preceded by an underscore (“_”) are oblig-
atory, whereas roles proceeded by a comma (“,”) are optional. Parentheses indicate
that the corresponding phrases must necessarily be headed by a preposition. Some-
times the specific preposition is provided inside the parentheses. The roles are
ordered in a canonical order that reflects their relative surface order: first available
role is subject; second is object; and so on.

The field :WN_SENSE links the entry to its corresponding WordNet synset. The
Lexicon entries use WordNet 1.6 senses (Fellbaum, 1998; Miller and Fellbaum,
1991).

The most important field in the lexicon entry is :RLCS, which introduces the
uninstantiated LCS corresponding to the underlying meaning of the word entry
in the lexicon. The top node in the RLCS for jog in Figure 2 has the structural
primitive go in the locational field. Its subject is marked with a star “*” indicating
that the node must be filled recursively with other lexical entries during semantic
composition. The restriction on this particular LCS node is that the filler must be
of type thing. The number 2 in that node specifies the thematic role, in this case,
theme. The second and third child nodes are in argument positions filled with the
primitives FROM and TO. The numbers 3 and 5 stand for source and goal particle
respectively. The numbers 4 and 6 stand for source and goal. Table I contains a list
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(DEFINE-WORD
:DEF_WORD "jog"
:CLASS "51.3.2.a.ii"
:THETA_ROLES "_th,src(),goal()"
:WN_SENSE (01315785 01297547)
:LANGUAGE ENGLISH
:RLCS
(event go loc (* thing 2)

((* path from 3) loc (thing 2)
(position at loc (thing 2) (thing 4)))

((* path to 5) loc (thing 2)
(position at loc (thing 2) (thing 6)))

(manner jog+ingly 26))
:VAR_SPEC ((3 :optional) (5 :optional)))

(DEFINE-WORD
:DEF_WORD "to"
:LANGUAGE ENGLISH
:LCS (path to loc

(thing 2)
(position in loc (thing 2) (* thing 6))))

Figure 2. Lexicon entries for jog and to.

of variable numbers with their associated thematic roles. The second argument in
the jog RLCS is the substructure (to loc ...) that unifies with the RLCS for the
preposition to. This secondary RLCS itself has a star-marked argument that must
be instantiated with a thing such as school.

The variable specifications (indicated here as :VAR_SPEC) assign the arguments
headed by FROM and TO an :optional status. Other possible variable specifica-
tions that appear in our lexicon include :obligatory, :promote, :demote, :EXT
(external), :INT (internal) and :conflated (see Dorr (1993a) for more details).

The current English lexicon contains 10,000 RLCS entries such as those in
Figure 2 (see also Figure 7 below). These entries correspond to different senses
of over 4,000 verbs. Figure 3 compares four of the nine RLCS entries for the verb
run. These entries are classified by verb class. Verb classes are used as templates
to generate the RLCS entries of verbs in the class. For example, the lexical entry
for bake in class 26.3 would be identical to the top RLCS entry shown in Figure 3,
except that node 9 would instead contain the primitive bake+ed rather than run+ed.

As described in Dorr (1993b), the meaning of complex phrases is captured
through a “composed LCS” (CLCS). A CLCS is constructed (or composed) from
several RLCS entries corresponding to individual words. The composition process
starts with a parsed tree of the input sentence and maps syntactic leaf nodes into
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Table I. Inventory of thematic roles.

# Thematic Role Definition

0 No thematic role assigned

1 AG Agent

2 TH, EXP, INFO Theme or experiencer or information

3 SRC() Source preposition

4 SRC Source

5 GOAL(), PRED() Goal or pred preposition

6 GOAL Goal

7 PERC() Perceived item particle

8 PERC Perceived item

9 PRED Identificational predicate

10 LOC() Locational particle

11 LOC Locational predicate

12 POSS Possessional predicate

13 TIME() Temporal particle preceding time

14 TIME Time for TEMP field

15 MOD-POSS() Possessional particle

16 MOD-POSS Possessed item modifier

17 BEN() Beneficiary particle

18 BEN Beneficiary modifier

19 INSTR() Instrumental particle

20 INSTR Instrument modifier

21 PURP() Purpose particle

22 PURP Purpose modifier or reason

23 MOD-LOC() Location particle

24 MOD-LOC Location modifier

25 MANNER() Manner

26 Reserved for conflated manner

27 PROP Event or state

28 MOD-PROP Event or state

29 MOD-PRED() Identificational particle

30 MOD-PRED Property modifier

31 MOD-TIME Time modifier
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26.3 Verbs of Preparing
(event cause (* thing 1)

(event go ident (* thing 2)
(path toward ident (thing 2)

(position at ident (thing 2) (property run+ed 9))))
((* for 17) poss (*head*) (* thing 18)))

Example: John ran the store for Mary.
Other verbs: bake boil clean cook fix fry grill iron mix prepare roast roll run wash ...

47.7.a Meander Verbs (from to)
(event goext loc (* thing 2)

((* path from 3) loc (thing 2) (position at loc (thing 2) (thing 4)))
((* path to 5) loc (thing 2) (position at loc (thing 2) (thing 6)))
(manner run+ingly 26))

Example: The river runs from the lake to the sea.
Other verbs: crawl drop go meander plunge run sweep turn twist wander ...

47.5.1.b Swarm Verbs (Locational)
(event act loc (* thing 2)

((* position [at] 10) loc (thing 2) (thing 11))
(manner run+ingly 26))

Example: The dogs run in the forest.
Other verbs: bustle crawl creep run swarm swim teem ...

51.3.2.a.i Run Verbs (Locational,Theme only)
(event go loc (* thing 2)

((* path from 3) loc (thing 2) (position [at] loc (thing 2) (thing 4)))
((* path to 5) loc (thing 2) (position [at] loc (thing 2) (thing 6)))
(manner run+ingly 26))

Example: The horse ran into the field from the barn.
Other verbs: climb crawl fly jog jump leap race run swim walk ...

Figure 3. Different RLCS entries for run.

RLCS entries whose argument positions are filled with other RLCS entries. For
example, the two RLCS entries we have seen already can compose together with
the constants for John and school to give the CLCS for the sentence (1a), shown
in (1b) above. The star-marked node (* path from 3) is optional, and is left un-
filled in this case. The same RLCS could also be used to compose different CLCS
representations (in combination with other RLCS entries) to produce sentences like
those in (2).

(2) a. John jogged from home.

b. John jogged from home to school.

A CLCS can also be decomposed on the generation side in different ways de-
pending on the RLCS entries from the target language. Figure 4 uses a compressed
graphical representation of LCS to compare visually three different decompositions
in three languages of a single CLCS. The CLCS generated can be paraphrased as
(3).

(3) John caused himself to go to the inside of a room in a forceful manner.
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Figure 4. Different CLCS decompositions into English, Spanish and Arabic.

The input to Lexogen is a text representation of a CLCS in a format called
“longhand”. It is equivalent to the form shown in (1b), but makes certain inform-
ation more explicit and regular (at the price of increased verbosity). The CLCS
can be either a fully language-neutral interlingua representation, or one which
still incorporates some aspects of the source-language interpretation process. The
latter may include grammatical features on LCS nodes as well as “functional
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nodes”, which correspond to words in the source language that have no lexical
content, serving merely as place-holders for feature information. Examples of these
nodes include punctuation markers, coordinating conjunctions, grammatical aspect
markers, and determiners.

An important new extension to the LCS input language is the in-place repres-
entation of ambiguous subtrees, using a “Possibles” node – denoted :possibles –
which specifies the various possible candidate subtrees that could appear at a given
point. Each candidate is a child of the Possibles node, and a fully disambiguated
CLCS would include exactly one of the candidates in place of each Possibles node.
For example, the structure in (4) (with some aspects elided for brevity) represents a
node that could be one of three possibilities resulting from an ambiguous Chinese
parse of among developing countries. The first and third possibilities are incorrect
analyses. In the second, the root of the subtree is a functional node, passing its
features to its child, country+ in a fully language-neutral CLCS.

(4) (:possibles
(middle+ (country+ (developing+/p)))
(functional (postposition among)

(country+ (developing+/p)))
(china+ (country+ (developing+/p))))

Possibles nodes can appear at any point in the LCS tree, indicating a set of
subtrees that are “possible” fillers for the Possibles node. As with other nodes,
Possibles may appear in multiple places in the LCS tree, and in the case of Possibles
nodes, the same choice must be made for each appearance in the tree, in a given
fully expanded LCS.

It is important to point out that in ChinMT, sentences were not quite as simple
as the examples used so far to explain the LCS approach. Figure 5 displays a CLCS
from ChinMT that was derived from the Chinese sentence in (5).

(5) 21

zai di 21 jie dong-xing-ao zhongyang yinhang zuzhi hangzhang yantaohui
shang, zhongguo renmin yinghang fu hangzhang yin jieyan jiu “ ziben dali-
ang liuru qingkuang xia hongguan jingji zhence de xietiao ” wenti facbiao
yijian
AT card 21 SESSION SEA-SINGAPORE-MACAO CENTRAL BANK

ORGANIZATION PRESIDENT SEMINAR ON, CHINA-PEOPLE’S-BANK

DEPUTY PESIDENT YINJIEYAN THEN “ CAPITAL LARGE INFLUX SITU-
ATION UNDER LARGE ECONOMY POLICY sub AGREEMENT ” QUESTION

EXPRESS OPINION

‘At the 21st Southeast Asia–Singapore–Macao Central Bank Organization
Presidents’ Symposium, vice president of the People’s Bank of China Yin
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Figure 5. Large-scale CLCS for sentence (5).

Jieyan expressed his opinion on “coordination of macro-economic policy
with a large capital inflow”.’

Figure 5 is a static view from a dynamic LCS viewer, which compactly shows
one of many possible ambiguous readings, while providing access to other readings
as well as an indication of other possibilities. Possibles nodes are represented as
nodes with small black boxes underneath, one box per possibility, with a particular
choice shown in the node and subtree below. By clicking on another of the boxes,
another view is shown, changing the node and subtree presented for this Possibles
node. For example, in Figure 5, the top node has four distinct possibilities corres-
ponding to the verbs issue, publish, and announce (two instances of the latter). The
number of distinct possible CLCS representations in this example is 128, with an
average of 50 nodes per CLCS. Compare these figures to those for the example in
Figure 4: zero ambiguity, one CLCS, and ten nodes.

The rest of the examples in this paper will refer to a less complex sentence (6).
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(6)
mei
US

danfang
UNILATERAL

xuejian
REDUCE

zhongguo
CHINA

fangzhipin
TEXTILE-PRODUCT

chukou
EXPORT

pei’e
QUOTA

‘The United States unilaterally reduced the China textile export quota.’

The representation for this example is shown in (7a), which roughly corresponds
to the gloss (7b). This LCS is presented here without all the additional features,
or type and function markers, for sake of clarity. Moreover, it is only one of eight
possible LCS compositions produced by the analysis component from the input
Chinese sentence (6).

(7) a. (cause (united_states+)
(go ident (quota+ (china+) (textile+) (export+))

(toward ident (quota+ (china+) (textile+) (export+))
(at ident (quota+ (china+) (textile+) (export+))

(reduce+ed))))
(with instr (*HEAD*) nil)
(unilaterally+/m))

b. ‘in a unilateral manner, the United States caused the quota (modified
by China, textile and export) to go identificationally (or transform)
towards being at the state of being reduced’

5. The Lexogen Generation System

The architecture of the Lexogen generation system is presented in Figure 6, show-
ing the main modules and submodules, and flow of information between them. In
the generation process, the first phase, “Lexical Choice”, uses language-specific
lexicons that relate lexical items in the target language to their LCS representa-
tion. The output of this phase is a target-language representation of the sentence
in a modified form of the AMR interlingua called LCS-AMR. The second phase,
“Realization”, first handles the linearization and morphology to generate lattices of
target-language sequences from the LCS-AMR and then statistically extracts pre-
ferred sequences using a bigram language model. For linearization, we use our own
language-independent linearization engine, Oxygen (Habash, 2000). For the stat-
istical extraction (and morphological generation), we use the Nitrogen generation
system, from ISI (Langkilde and Knight, 1998b,c).

As mentioned in Section 3, the modular design of Lexogen allows for independ-
ent usage of each of its components. Each component operates on its input and
produces its output, which could come from the components indicated in Figure 6,
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Figure 6. Lexogen architecture.

or other components that produce the appropriate input structures. We have used
this advantage in maintaining and improving the system. For example, we have
tested three different linearization components, and can use a separate realizer,
which produces all output sentences rather than the best one according to n-gram
statistics.

5.1. LEXICAL CHOICE

The first major component, divided into four pipelined submodules as shown in
Figure 6, transforms a CLCS structure into an LCS-AMR structure. This new
representation is a modified form of the AMR interlingua that uses words and
features specific to the target language, and also includes syntactic and semantic
information from the LCS representation that is relevant for realization.

5.1.1. Pre-processing

The pre-processing phase converts the text input format into an internal graph
representation for efficient access of components (with links for parents as well
as children). This phase also removes extraneous source-language features, such
as the distinction between postposition and preposition, or classifier type informa-
tion. For example, the CLCS in (4) is converted during pre-processing to remove
the functional node and promote country+ to be the head of one of the possible
subtrees. This involves a top-down traversal of the tree, including some complex-
ities when functional nodes without children (which then assign features to their
parents) are direct children of Possibles nodes. There is no ASCII-printable form
for the data-structure output of the pre-processing phase; however, the result of
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post-processing the CLCS in (4) would be equivalent to the CLCS in (8), with a
feature “among” as part of the node country+ in the middle reading.

(8) (:possibles
(middle+ (country+ (developing+/p)))
(country+ (developing+/p))
(china+ (country+ (developing+/p))))

5.1.2. Lexical Access

The lexical access phase compares the internal CLCS form to the target-language
lexicon, “decorating” the CLCS tree with the RLCS entries of target-language
words which are likely to match substructures of the CLCS. The matching between
a given CLCS and the target-language lexicon is potentially a complex process,
given the large amount of structural similarity between the entries of the lexicon.
For example, the differences between the RLCS entries for run and bake in class
26.6 would be distinguished only by looking down five nodes deep from the root
(cf. Figure 3 and the discussion of verb classes above). In a previous version of
the system, we represented the lexicon in a trie structure, so that individual entries
were only consulted at appropriate points in the CLCS tree traversal. This still
proved a fairly complex and inefficient procedure given the large number of places
that complex structures can be embedded (e.g., complement events). Our current
approach uses a multi-phase process, in which RLCS entries are first located based
on the distinguishing information (e.g., run+ed vs. bake+ed) and then placed in
the appropriate matching node (CAUSE) for later comparison.

The lexical-access process thus proceeds as follows. In an off-line lexicon
processing phase, each word in the target-language lexicon is stored in a hash
table, with each entry keyed on a designated primitive, an “anchor” that is the
most distinguishing node in the RLCS. Information is also kept about how deep
from the root of the RLCS this primitive’s node is to be found. For example, the
designated primitive for the RLCS entries corresponding to class 26.3 would be
run+ed (or bake+ed), and the depth would be 5. On-line decoration then proceeds
in a two-step process, recursively examining each node in the CLCS:
1. Look for RLCS entries stored in the lexicon under the CLCS node’s primitive.
2. Store retrieved RLCS entries at the node in the CLCS that matches the root

of this RLCS (following a number of parent links from the CLCS node
corresponding to the depth of the designated primitive).

Figure 7 shows some of the English entries matching the CLCS in (7a). For most
of these words, the designated primitive is the only node in the corresponding LCS
for that entry. For reduce, however, reduce+ed is the designated primitive. When
traversing the CLCS nodes in (7a), this entry will be retrieved at the reduce+ed
node in step 1; it will then be stored at the root node of the LCS in (7a) in
accordance with step 2.
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(:DEF_WORD "reduce"
:CLASS "45.4.a"
:THETA_ROLES "_ag_th,instr(with)"
:WN_SENSE (00154752 00162871 00163072 00163532)
:LANGUAGE ENGLISH
:LCS (event cause (* thing 1)

(event go ident (* thing 2)
(path toward ident (thing 2)

(position at ident (thing 2) (reduce+ed 9))))
((* position with 19) instr (*head*) (thing 20)))

:VAR_SPEC ((1 (animate +))))

(:DEF_WORD "United States" :LCS (thing united_states+ 0))

(:DEF_WORD "China" :LCS (thing china+ 0))

(:DEF_WORD "quota" :LCS (thing quota+ 0))

(:DEF_WORD "with"
:LCS (position with instr (thing 2) (* thing 20)))

(:DEF_WORD "unilaterally"
:LCS (manner unilaterally+/m 0))

Figure 7. Lexicon entries.

5.1.3. Alignment/Decomposition

The heart of the lexical choice phase is the “decomposition” process. In this phase,
we attempt to align RLCS entries selected by the lexical access portion with parts
of the CLCS, to find coverings of the CLCS graph that satisfy the “full coverage
constraint” of the original algorithm described in Dorr (1993b). LCS “graph match-
ing” is a special case of generalized graph matching. In LCS graph matching we
exploit the constraints inherent in the LCS representation such as the availability
of anchoring points discussed earlier to increase the efficiency of the matching
algorithm without any effect on final quality. Our algorithm differs from that in
Dorr (1993b) in its inclusion of some extensions to handle the in-place ambiguity
represented by the Possibles nodes.

The algorithm recursively checks whether CLCS nodes match corresponding
RLCS nodes coming from the lexical entries retrieved and stored in the previous
phase. If incompatibilities are found (obligatory nodes of the RLCS do not match
any nodes in the CLCS input), then the RLCS lexical entry is discarded. If, on the
other hand, all (obligatory) nodes in the RLCS match against nodes in the CLCS,
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then the rest of the CLCS is recursively checked against other lexical entries stored
at the remaining unmatched CLCS nodes.

A CLCS node matches an RLCS node, if the following conditions hold:
− The primitives are the same (or the primitive for one is a wild-card, represen-

ted as nil).
− The types (Thing, Event, State, etc.) are the same (or nil).
− The fields (identificational, possessive, locational, etc.) are the same (or nil).
− The positions (e.g., subject, argument, or modifier) are the same.
− All obligatory children of the RLCS node have corresponding matches

(recursively invoking this same definition) to children of the CLCS.
Star-marked nodes in an RLCS (see discussion above) require not just a match

against the corresponding CLCS node, but also a match against another lexical
entry. Thus, in (7a), the node (united_states+) must match not only with the
corresponding node from the RLCS for reduce in Figure 7 (* thing 1), but also
with the RLCS for United States, (thing united_states+ 0).

Subject and argument children are obligatory unless specified as optional,
whereas modifiers are optional unless specified as obligatory (see Figure 2 for an
example of an optional marking). In the RLCS for reduce in Figure 7, the nodes
corresponding to agent and theme (numbered 1 and 2, respectively) are obligatory,
while the instrument (the node numbered 19) is optional. Thus, even though there
is no matching lexical entry for node 20 (star-marked in the RLCS for with), the
main RLCS for reduce is allowed to match, though without any realization for the
instrument.

A complexity in the algorithm occurs when there are multiple possibilities, i.e.,
a Possibles node in a CLCS. In this case, only one of these possibilities is required
to match all the corresponding RLCS nodes in order for a lexical entry to match. In
the case where some of these possibilities do not match any RLCS nodes (meaning
there are no target-language realizations for these constructs), these possibilities
are pruned at this stage. On the other hand, ambiguity can also be introduced at the
decomposition stage, if multiple lexical entries can match a single structure.

The result of the decomposition process is a match structure indicating the
hierarchical relationship between all lexical entries which, together, cover the input
CLCS.

5.1.4. LCS-AMR Creation

The match structure resulting from decomposition is then converted into the ap-
propriate input format used by the Nitrogen generation system. Nitrogen’s input,
AMR, is a labeled directed feature graph written using the syntax for the Penman
Sentence Plan Language (Penman, 1989). A BNF structural description of an AMR
is shown in (9).

(9) AMR = <concept> | (<label> / <concept> {<role> <AMR>}*)
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(a7537 / |reduce|
:LCS-NODE 6253520
:LCS-VOICE ACTIVE
:CAT V
:TELIC +
:LCS-AG (a7538 / |United States|

:LCS-NODE 6278216
:CAT N)

:LCS-TH (a7539 / |quota|
:LCS-NODE 6278804
:CAT N
:LCS-MOD-THING (a7540 / |China|

:LCS-NODE 6108872
:CAT N)

:LCS-MOD-THING (a7541 / |textile|
:LCS-NODE 6111224
:CAT N)

:LCS-MOD-THING (a7542 / |export|
:LCS-NODE 6112400
:CAT N))

:LCS-MOD-MANNER (a7543 / |unilaterally|
:LCS-NODE 6279392
:CAT ADV))

Figure 8. LCS-AMR corresponding to the CLCS in (7a).

An AMR is either a basic concept such as |run|, |john| or |quickly| or
a labeled instance of a concept that is modified by a set of feature–value pairs.
Features, or “roles”, can be syntactic (such as :subject) or semantic (such as
:agent). The basic notation “/” is used to specify an instance of a concept in a
non-ambiguous AMR.

We have extended the AMR language to accommodate the thematic roles
and features provided in the CLCS representation; the resulting representation
is called an LCS-AMR. We use the prefix :LCS- to distinguish the LCS terms
from those used by Nitrogen which have similar names. Figure 8 shows the LCS-
AMR corresponding to the CLCS in (7a), decomposed using the lexicon entries in
Figure 7.

The LCS-AMR in Figure 8 can be read as an instance of the concept |reduce|
whose category is a verb and whose voice is active. The concept |reduce| has
two thematic roles related to it, an agent (:LCS-AG) and a theme (:LCS-TH); and
it is modified by the concept |unilaterally|. The different roles modifying
|reduce| come from different origins. The :LCS-NODE value comes directly from
the unique node number in the input CLCS. The category, voice and telicity are
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derived from features of the RLCS entry for the verb reduce in the English lexicon.
The specifications agent and theme come from the RLCS representation of the
verb reduce in the English lexicon as well, as can be seen by the node numbers 1
and 2, in the lexicon entry in Figure 7. The role :LCS-MOD-MANNER combines the
fact that the corresponding AMR has a modifier role in the CLCS and that its type
is a Manner.

We have additionally extended the AMR syntax by providing the ability to spe-
cify an ambiguous AMR as an “instance-less” conglomeration of different AMRs;
this is achieved by means of the special role :OR. For example, a variant of the LCS-
AMR in Figure 8 in which the root concept is three-way ambiguous would appear
as in (10) (details below the root omitted). :OR represents the same sort of subtree
ambiguity in LCS-AMRs as Possibles nodes represent in LCSs. In addition, there
is an AMR construct *or*, which represents simple ambiguity of objects (rather
than whole subtrees).

(10) (# :OR (# / |reduce| . . . )
:OR (# / |cut| . . . )
:OR (# / |decrease| . . . ))

5.2. REALIZATION

The lexical choice phase concludes with the production of an LCS-AMR, as
described in the previous section. This LCS-AMR representation is then passed
to the realization module, which produces target-language strings for the com-
plete sentence. The realization module uses the Nitrogen approach to generation:
allowing overgeneration of possible sequences of target-language words from the
ambiguous or underspecified AMRs and then deciding amongst them based on n-
gram frequency. The interface between the linearization module and the statistical
extraction module is a word lattice of possible renderings. The Nitrogen package
offers support for both subtasks, linearization and statistical extraction. Initially,
we used the Nitrogen grammar to do linearization, but complexities in recasting
the LCS-AMR roles as standard AMR roles as well as efficiency considerations
(that will be discussed later in detail) compelled us to create our own linearization
engine for writing target-language grammars, Oxygen (Habash, 2000).

In the realization module, we force linear order on the unordered parts of an
LCS-AMR. This is done by recursively calling grammar rules that create vari-
ous phrase types (NP, PP, etc.) from aspects of the LCS-AMR. The result of the
linearization phase is a word lattice specifying the sequence of words that make
up the resulting sentence and the points of ambiguity where different generation
paths may be taken. Example (11) shows the word lattice corresponding to the
LCS-AMR in Figure 8.
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(11) (SEQ (WRD "*start-sentence*" BOS)
(WRD "united states" NOUN)
(WRD "unilaterally" ADJ)
(WRD "reduced" VERB)
(OR (WRD "the" ART)

(WRD "a" ART)
(WRD "an" ART))

(WRD "china" ADJ)
(OR (SEQ (WRD "export" ADJ)

(WRD "textile" ADJ))
(SEQ (WRD "textile" ADJ)

(WRD "export" ADJ)))
(WRD "quota" NOUN)
(WRD "*end-sentence*" EOS))

The keyword SEQ specifies that what follows is a list of sublattices in their cor-
rect linear order. The keyword OR specifies the existence of disjunctive paths for
generation. In our example, the noun quota is given a disjunction of all possible
determiners since its definiteness is not specified. Also, the relative order of the
words textile and export is not resolved so both ordering possibilities are inserted
into the lattice.

Finally, the Nitrogen statistical extraction module evaluates the different paths
represented in the word lattice and orders the different word renderings using uni-
and bigram frequencies calculated based on two years of the Wall Street Journal
(Langkilde and Knight, 1998c). Example (12) shows Nitrogen’s ordering of the
sentences extracted from the lattice in (11).

(12) United States unilaterally reduced the China textile export quota.
United States unilaterally reduced a China textile export quota.
United States unilaterally reduced the China export textile quota.
United States unilaterally reduced a China export textile quota.
United States unilaterally reduced an China textile export quota.
United States unilaterally reduced an China export textile quota.

The next two sections discuss linearization issues and linearization implement-
ation using Oxygen.

5.2.1. Linearization Issues

The unordered nature of siblings under an LCS-AMR node complicates the
mapping between roles and their surface positions, yielding several interesting
linearization issues. In this section, we look at some of the choices made for our
English realizer for ordering linguistic constituents.

5.2.1.1. Sentential Level Argument Ordering English sentences are realized ac-
cording to the pattern in (13). That is, first subordinating conjunctions, if any, then
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modifiers in the temporal field (e.g., now, in 1978), then the subject, then most other
modifiers, the verb (with collocations if any) then spatial modifiers (up, down), then
the indirect object and direct object, followed by prepositional phrases and relative
clauses. In the case of multiple modifiers corresponding to a specific part of the
pattern, for example temporal modifiers, all permutations of these modifiers are
realized. This specific linear order pattern was produced by consulting standard
grammatical sources (e.g., Quirk et al. 1985) as well as experimentation with dif-
ferent variants. Nitrogen’s morphology component was also used, for example, to
give tense to the head verb. In the example above, since there was no tense specified
in the input LCS, the telicity of the verb was used to infer past tense, thus producing
reduced in (11)–(12).6

(13) (SubConj ,) (TempMod)* Subj (Mod)* V (coll) (SpaceMod)* (IObj) (Obj)
(PP)* (RelS)*

5.2.1.2. Thematic Role Ordering Given the general shape for a sentence (13),
there is still an issue of which thematic role should be mapped to which argument
positions. This situation is complicated by the lack of one-to-one mapping between
a particular thematic role and an argument position. For example, a theme can be
the subject in some cases and it can be the object in others or even an oblique.
Observe cookie in (14).

(14) a. John ate a cookie. (object)

b. The cookie contains chocolate. (subject)

c. She nibbled at a cookie. (oblique)

To solve this problem, a thematic hierarchy is used to determine the argu-
ment position of a thematic role based on its co-occurence with other thematic
roles. Several researchers have proposed different versions of thematic hierarchies
(Jackendoff, 1972; Giorgi, 1984; Nishgauchi, 1984; Carrier-Duncan, 1985; Ki-
parsky, 1985; Bresnan and Kanerva, 1989; Larson, 1988; Wilkins, 1988; Baker,
1989; Alsina and Mchombo, 1993; Grimshaw and Mester, 1988).7 Ours differs
from these in that it separates arguments (e.g., agent and theme) from obliques
(e.g., location and beneficiary) and provides a more complete list of thematic roles
(30 roles overall, see Table I) than those of previous approaches (maximum of eight
roles).8

The final thematic hierarchy for arguments, shown in (15), was extracted by ana-
lyzing subcategorization information in the :THETA_ROLES field for all the verbs
in our English lexicon. The thematic hierarchy is paired with a syntactic hierarchy
that specifies the syntactic positions the thematic roles are mapped to.

(15) Thematic Hierarchy:
ext > ag > instr > th > perc > goal > src > ben > *
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Syntactic Hierarchy:
Subject > Object > Indirect-Object

Thus, in the case where a theme occurs alone, this role is mapped to the subject
position, which is then realized as the first argument position, as in (16a). If a theme
and an agent co-occur, the agent is mapped to the subject position and the theme is
mapped to the object position. Subject and object are realized as first and second
argument positions respectively, as in (16b). When three roles co-occur, typically
an agent and a theme occurring with a goal, a source or a beneficiary, they are
mapped to subject, object and indirect object respectively. Of course, the surface
order of the syntactic positions, as described in (13), forces the indirect object to
appear before the direct object, as in (16c). In this example, the decision to realize
Maryben as an argument not an oblique (i.e., a PP such as for Mary) is done as
part of the decomposition step in the lexical choice module (Section 5.1). In the
alternative case, only the non-oblique arguments, the agent and theme, are pro-
cessed through the thematic hierarchy. As for the ordering of obliques, all possible
permutations are generated after the arguments.

(16) a. Cookiesth are cheap.

b. Johnag baked cookiesth.

c. Johnag baked Maryben cookiesth.

The pseudo-role ext is used when the :VAR_SPEC field in the lexical entry of a
verb includes an :EXT marker indicating that the verb violates the normal thematic
hierarchy. The ext marker refers to an externally marked thematic role such as the
perceived John in (17). For the LCS-AMR in Figure 8, the thematic hierarchy is
what determines that United States is the subject and quota is the object of the verb
reduce. A more detailed discussion is available in Dorr et al. (1998) and Habash
and Dorr (2001b). We will return to discuss thematic hierarchies later in this paper
when evaluating English and Spanish realization.

(17) Johnperc pleases Maryth.

5.2.1.3. NP Modifier Ordering In most cases, our input CLCS representations
had little hierarchical information about multiple modifiers of a noun. Our initial,
brute-force solution was to generate all permutations and depend on the existing
statistical extraction (in Nitrogen) to decide amongst them. This technique worked
well for noun phrases of about six words, but was too costly for larger phrases (of
which there were several examples in our test corpus). We improved both the cost
of permutation generation and the fluency of the top choices by ordering adjectives
within classes, inspired by the adjective ordering scheme in Quirk et al. (1985). The
classification scheme is shown in Table II. Each adjective in the target-language
lexicon was assigned to one of these classes.
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Table II. Classification of adjectives.

Type Examples

Determiner all, few, several, some

Most adjectival important, practical, economic

Age old, young

Color black, red

Participle confusing, adjusted, convincing, decided

Provenance China, southern

Noun Bank_of_China, difference, memorandum

Denominal nouns made into adjectives by adding -al,

e.g., individual, coastal, annual

If multiple words fall within the same group, permutations are generated for
them. This situation can be seen for the LCS-AMR in Figure 8 with the ordering
of the modifiers of the word quota: China, export and textile. The word China
fell within the Provenance class of modifiers which gives it precedence over the
other two words. The words export and textile, on the other hand, fell in the Noun
class and therefore both permutations were passed on to the statistical component.
Without this ordering, more permutations would be given to the statistical com-
ponent, which, in this case, would also get a less appropriate result: *textile China
export quota rather than China textile export quota.

Similar solutions have been used before by other generation systems (Mann and
Matthiessen, 1985; Shaw and Hatzivassiloglou, 1999) albeit never within a hybrid
NLG approach as is done here. Another approach to modifier ordering that is fully
statistical was proposed by Malouf (2000).

5.2.2. Oxygen Linearization Implementation

The linearization module is an implementation of a grammar (comprised of a set of
rules) governing the relative word ordering (syntax) and word form (morphology)
of an LCS-AMR in the target language. This section discusses Oxygen (Habash,
2000), the linearization engine used to build the target-language linearization mod-
ule in Lexogen. To highlight the advantages of Oxygen, we preface the discussion
with brief descriptions of two other linearization modules that we have used: one
from Nitrogen, and an English linearizer written in Lisp.

5.2.2.1. Nitrogen Linearization The Nitrogen generation system provides its
own linearization module in which a linearization engine performs on-line inter-
pretation of a linearization grammar. The grammar is written in a special grammar
description language that utilizes two basic operations: “recast” and “linearize”.
A recast transforms an AMR into another AMR based on features of the original
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AMR. One example of recasting is the conversion of an AMR containing thematic
roles into an AMR containing arguments in their surface position through the use
of a thematic hierarchy. A linearize decomposes an AMR into linearly ordered
constituents, recursively applying the grammar to each. The grammar description
language provides tools for defining conditions on which to make decisions to
recast and/or linearize an AMR.

The advantages of this approach are reusability, extensibility, and language
independence. Its main drawback is speed. Another drawback for Nitrogen’s linear-
ization grammar is a limited and inflexible grammar formalism. First, conditions of
application are limited to equality of concepts or existence of roles at the top level
of an AMR only. Second, recasting operations are limited to adding feature–value
pairs and introducing new nodes. Finally, there is no mechanism to perform range-
unbounded or computationally complex transformations such as multiplication or
division to format numbers correctly in the target language. The first two issues can
be addressed by writing multiple rules and cascading information in order to imple-
ment complex decisions. However, this solution increases the size of the grammar
and further reduces the performance speed. As for the third issue, handling complex
transformations is simply impossible to implement with the current formalism. A
deeper look at these issues is provided in Habash (2000).

5.2.2.2. Lisp-based Linearization To overcome Nitrogen’s drawbacks of speed,
limitations on size of input structures, and inflexibility of transformation con-
structs, we built a linearizer directly in Common Lisp, implementing the grammar
rules using special-purpose functions. While this overcomes the drawbacks, it has
its own disadvantage in that this hard-coding of grammar rules can make the system
rather redundant, difficult to understand and debug, non-reusable and language spe-
cific. After exploring both approaches in the Lexogen system, we adopted a hybrid
implementation that maximizes the advantages and minimizes the disadvantages
of the previous two linearizers. The result is the linearization module Oxygen.

5.2.2.3. Oxygen Linearization Oxygen uses a linearization grammar description
language to write grammar rules which are then compiled into a programming
language for efficient performance. Oxygen contains three elements: a linearization
grammar description language (OxyL), an OxyL-to-Lisp compiler (oxyCompile)
and a run-time support library (oxyRun). Except for Nitrogen’s morphological
generator submodule, all of the Oxygen components were built in our lab. Target-
language linearization grammars written in OxyL are compiled off-line into
Oxygen Linearizers using oxyCompile (Figure 9).

Figure 9. Oxygen compilation step.
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Oxygen Linearizers are Lisp programs that require the oxyRun library of basic
functions in order to execute (Figure 10). They take AMRs as input and create word
lattices that are passed to a statistical extraction unit.

Figure 10. Oxygen runtime step.

The separation of the linearization engine (oxyRun) from the linearization
grammar (OxyL) combines in one system the best of two worlds: the simpli-
city and focus of a declarative grammar with the power and efficiency of a
procedural implementation. The approach provides language independence and
reusability since target-language-specific aspects are contained only in the specific
OxyL grammar. The separation of language-specific code (compiled OxyL) from
language-independent code (oxyRun) is efficient, especially when running multiple
linearizers for different languages at the same time as in multilingual generation.

Moreover, Oxygen’s linearization grammar description language, OxyL, is as
powerful as a general-purpose programming language but with a focus on lineariza-
tion needs. This is accomplished through providing powerful recasting mechanisms
and allowing the embedding of code in a standard programming language (Lisp).
This allows for efficient implementation of a variety of realization problems such
as number formatting. OxyL linearization grammars are also simple, clear, concise
and easily extensible. An example of the simplicity of OxyL grammars is the reduc-
tion of redundancy. For example, the handling of :OR ambiguities in each phrase
rule (see (10) for example) is hidden from the linearization grammar designer and
is treated only in the compiler and support library. For a detailed presentation of
OxyL’s syntax, see Habash (2001).

Figure 11 presents a small OxyL grammar fragment that is enough to linear-
ize the LCS-AMR in Figure 8. In this grammar, the user-defined recast operation
&TH-order uses the OxyL special hierarchical recast operator “<!” to recast a
small hierarchy of (agent, instrument, theme, source and goal) into subject and ob-
ject positions. Rules %S and %NP linearize the different LCS-AMRs associated with
specific categories (V and N respectively). Tokens prefixed with “@” are pointers to
specific LCS-AMRs. For example, @subj refers to the LCS-AMR paired with the
role :subj. However, note that since @lcs-mod-thing matches three roles (i.e.
China, export and quota), an ambiguous LCS-AMR is created and all its permuta-
tions are explored linearly. This is done at the engine level and is hidden from the
user.

A linearization can specify hard-coded elements such as the determiners in %NP.
Alternatives are generated by inserting an *or*ed list of words or by using the OR
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:Recast &TH-order
(@this <! ((:subj :obj) /

(:lcs-ag :lcs-instr :lcs-th :lcs-src :lcs-goal)))
:Rule %S

(-> (OR (@subj (@inst +- past) @obj @lcs-mod-manner)
(@obj (*or* "was" "were") (@inst +- pastp)

"by" @subj @lcs-mod-manner)))
:Rule %NP

(-> ((*or* "a" "an" "the") @lcs-mod-thing @inst))

:MainRule
((?? (&eq @cat V) -> (do %S (&TH-order @this))

?? (&eq @cat N) -> (do %NP)
-> (@inst))

Figure 11. A simple OxyL grammar.

operator to generate multiple paraphrases. In Rule %S, two alternative realizations
are specified in the past tense. The first is an active voice realization and the second
is a passive voice realization that hard-codes the passive auxiliaries was and were.
In both cases, the morphological recast operator “+-” is used to generate the correct
form of the verb (past and past-participle respectively).9

The rule :MainRule determines which phrase-level rule to apply by considering
the category, i.e. part of speech, of the LCS-AMR instance. This is accomplished
using the automatically defined function @CAT, which returns the value associated
with the field :CAT in the LCS-AMR. The sequence “?? X -> Y -> Z” roughly
corresponds to “if X then Y else Z”. The rule :MainRule is applied recursively
until no more LCS-AMRs exist.

The complete English Linearization grammar used in Lexogen is much larger
and more complex than the one shown in Figure 11. It includes 14 different phrase-
structure rules and four user-defined recast operations and it is about 300 lines
of code long. In terms of maintainability, the length of the grammar should be
compared with the Nitrogen grammar, which is over 1,500 lines. In this respect,
the Oxygen grammar is more maintainable.

The simplicity of the linearization grammar is a central feature of the hybrid
NLG approach which depends on the later statistical components to make the final
decision based on n-gram information. The grammar specifies the simpler long-
distance phrase linearization decisions which n-gram statistics cannot capture,
while the n-gram statistics encode the complex local preferences that are harder
to specify in a grammar. The quality of the English output produced is evaluated in
Section 8.

In the next section, we discuss how to generate other languages using Lexogen.
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6. Generation into Multiple Languages

Multilinguality or language independence refers to the degree of reusability
of a system’s components and resources for different languages. Not all NLG
approaches are compatible with multilinguality as a goal, e.g., template-based gen-
eration. On the other hand, some researchers have invested a great deal of effort
in creating environments for the development of NLG lexicons and systems with a
multilingual spirit. One such environment is the Komet-Penman Multilingual De-
velopment Environment which provides an interface for developing large-scale sets
of multilingual systemic-functional linguistic descriptions (Bateman, 1997; Bate-
man et al., 1999). A distinction can be made between “weak” multilinguality,
where only components are shared, and “strong” multilinguality, where com-
ponents and parts of the resources are shared (Rösner, 1994). Most multilingual
NLG systems exhibit weak multilinguality (Kittredge et al., 1988; Okumura et al.,
1991; Polguère, 1991; Vander Linden and Scott, 1995).

The design of Lexogen and its resources is highly compatible with multilin-
guality as a goal. The Lexogen algorithms are language-independent and the LCS
lexicons are reusable for a new language without modification for both analysis and
generation. While most of our effort has been spent on generation into English, in
the context of Chinese–English translation, there has been some work using these
components for generation into other languages. The retargeting of the system for
other languages involves only the following language-specific resources:

− target-language LCS lexicon: a set of RLCS entries linking target-language
words to LCSs, as described in Section 4;

− target-language linearization grammar, in OxyL (see Section 5.2.2);
− word n-gram statistics for the target language, for use by lattice extractor.

In addition, the following pre-processing steps are also needed for creating a
generation system for the target language:

− hashing of target-language lexicon by “designated primitives”, for on-line
rapid retrieval (see Section 5.1.2);

− running oxyCompile on the linearization grammar to create an Oxygen
Linearizer for the target language (see Section 5.2.2);

− creation of a target-language n-gram database, for use by the statistical lattice
extractor.

An important feature of a translation approach using an interlingua such as LCS
is that the same lexicon can be used for analysis and generation. Thus, we already
have a major component for a Chinese generation system. Likewise, large LCS
lexicons also exist for other languages such as Spanish and Arabic (Dorr, 1997a).

We have also created a linearization component for Spanish, using a simple
OxyL Spanish linearization grammar. This grammar concentrates on argument
word order relative to the verb. It utilizes a thematic hierarchy mapping that is very
similar to that of English. We avoided dealing with complex Spanish morphology



HYBRID NATURAL LANGUAGE GENERATION FROM LEXICAL CONCEPTUAL STRUCTURES 109

by using the simple “near-future” construction (va a + INF). An example is shown
in (18).10

(18) alguienag

SOMEONE

va
GOES

a
TO

colocar
PLACE

algoth

SOMETHING

en
IN

algogoal

SOMETHING

‘Someone will place something in something’

In addition to the lack of a complete phrase structure for parts of speech other than
verbs, the Spanish linearization grammar currently does not generate null-subject
clauses or clitics. In principle, both phenomena can be handled with a recast rule
that would fire after the thematic hierarchy recast: in null-subject cases, this rule
would conjugate the verb and make the subject empty. In the case of clitics, it
would add a clitic that matches the gender and number of the object.

A similar but even less sophisticated linearization grammar was created to
generate Chinese. A preliminary study showed some promising results as far as
thematic hierarchy mapping. However Chinese seems to require more complex
linearization rules and post-lexical selection manipulations especially for obliques.
Although Chinese thematic–syntactic linking is similar to Spanish and English,
mapping from syntactic roles to surface positions is different. For example, the ba-
sic word order of Chinese is SVO, but the location of certain prepositional phrases
is pre-verbal rather than post-verbal. This is not a “problem” for Lexogen. It is a
problem as far as figuring out the governing linguistic rules since n-gram language
models might not be able to differentiate among overgenerated alternatives if they
included large constituents.

We have not yet built an n-gram extractor for other languages. Preliminary
evaluation of Spanish generation is given in Section 8.4.

7. Comparison with Nitrogen and FERGUS

As discussed earlier, the closest “relatives” to Lexogen are Nitrogen and FERGUS,
both hybrid NLG systems. The next two sections discuss these two systems. These
are followed by a section comparing Lexogen to Nitrogen and FERGUS.

7.1. NITROGEN

Nitrogen was the first hybrid NLG system (Langkilde and Knight, 1998a,b,c). It
was developed at the Information Science Institute at the University of Southern
California as part of JAPANGLOSS (Knight et al., 1994, 1995), a Japanese–English
newspaper MT system. Nitrogen breaks the generation process into two steps:
overgeneration and statistical extraction. The first step is implemented symbolic-
ally using a simple generation grammar. The second step is implemented using a
statistical uni/bigram model of the English language.

The input to Nitrogen is the AMR, as described in Section 5.1.4. The nodes
of an AMR are concepts from the Sensus ontology (Knight and Luk, 1994).11
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AMR labels are a mix of semantic (:agent, :patient and :source) and syntactic
relations (:subject, :object and :mod).

The Nitrogen symbolic generator uses morphological and syntactic know-
ledge to transform the input AMR into a word lattice that efficiently compresses
the space of possible paths. Morphological knowledge is implemented using a
morphology derivation grammar that handles both derivations and inflections.
Nitrogen overgenerates and depends on the statistical extractor to discard bad
cases. Syntactic knowledge in Nitrogen is implemented using a grammar data-
base that contains two types of transformation rules: linearization and recasting.
Linearization rules transform an AMR into a word sequence or several ambiguous
sequences. Recasting rules transform an AMR into another AMR by redefining the
original relations or AMR structure. The Nitrogen grammar is organized around
the semantic input rather than the syntax of English. The resulting word lattice is
passed on to a statistical language model of English to rank and extract the most
fluent paths. The language model estimates unigram and bigram probabilities from
a large collection of 46 million words of the Wall Street Journal.

7.2. FERGUS

FERGUS (Flexible Empiricist/Rationalist Generation Using Syntax) extends the
use of n-gram models with a tree-based statistical model and a traditional tree-
based syntactic grammar (Alshawi et al., 2000; Bangalore et al., 2000; Bangalore
and Rambow, 2000). Modeling syntax in FERGUS is done using an existing wide-
coverage grammar of English, the XTAG grammar developed at University of
Pennsylvania (XTAG-Group, 1999). XTAG is a Tree Adjoining Grammar (TAG)
(Joshi, 1987) that has been extended to include lexicalization and unification-based
feature structures (XTAG-Group, 1999). In TAG, the elementary structures are
phrase tree structures that are composed using two operations: (a) substitution
(which appends one tree at the frontier of another) and (b) adjunction (which inserts
a tree into the middle of another). Morphosyntactic constraints such as subject–
verb agreement and subcategorization can be specified within the tree structure
associated with the lexical items. There is no distinction between the grammar and
lexicon in lexicalized TAGs.

FERGUS is composed of three modules: the Tree Chooser, the Unraveler, and
the Linear Precedence (LP) Chooser. The input to FERGUS is an unordered de-
pendency tree labeled only with lexemes but no syntactic annotation. First the Tree
Chooser uses a stochastic tree model to choose TAG trees for the nodes in the
input tree. Then the Unraveler uses the XTAG grammar to produce a lattice of all
possible linearizations that are compatible with the semi-specified input tree and
XTAG. And finally, the LP Chooser selects the most likely traversal of this lattice
given the language model. The tree model used by the Tree Chooser and the trigram
model used by the Linear Precedence Chooser are both based on 1 million words
from the Wall Street Journal corpus.
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7.3. COMPARISON

Lexogen differs from Nitrogen and FERGUS on many dimensions. We focus here
on input, hybridity and resource complexity.

First, the input to FERGUS is much shallower and closer to the target-language
surface form than Lexogen’s LCS or, for that matter, Nitrogen’s AMRs. The AMR
and LCS are both deeper representations, but each encompasses different types
of knowledge. LCS contains information relevant to translation divergences and,
thus, is more powerful in handling cross-linguistic mismatches. The AMR is more
flexible in allowing both semantic and shallow syntactic roles to coexist in its
representation.

Secondly, although the three systems are hybrids, they have a different bal-
ance of statistical and symbolic components. FERGUS relies on more powerful
processing – both statistically and symbolically – than either of the other two ap-
proaches. FERGUS constrains its lattice of possible paths by symbolically handling
agreement and other morphology issues using the XTAG component. Nitrogen, on
the other hand, uses an explosively overgenerating simple grammar. Statistically,
FERGUS uses both a stochastic tree model and a trigram language model whereas
Nitrogen uses bigrams only. Lexogen falls between the two: symbolically, its LCS
lexicons are more rich and semantically deeper than the XTAGs used in FERGUS

but statistically, it uses only surface n-grams, essentially the same engine used in
Nitrogen’s statistical extractor.

Finally, Nitrogen’s simplicity, which can be seen in its simple grammar and
morphology is its biggest weakness due to: (a) interactions between simple rules in
Nitrogen’s grammar, which must be heavily controled in order produce reasonable
output; (b) the simplicity of the grammar, which results in an explosive overgen-
eration requiring inefficient use of time and space; (c) dependencies between
non-contiguous words, which cannot be captured by bigrams alone and for which
the simplicity of the grammar provides no compensation.

Lexogen addresses the first and second points by using the LCS lexicon and a
sophisticated Oxygen grammar that limits the overgeneration substantially. How-
ever, Lexogen would benefit from the techniques used in FERGUS for handling
long-distance dependencies, which are addressed explicitly by the XTAG grammar
at the symbolic level and by the Tree Chooser at the statistical level.

8. Evaluation

The evaluation of MT and NLG systems is more of an art than a science. Evalu-
ation of generation systems is difficult, because the ultimate criterion is translation
quality, which can, itself, be difficult to judge. Moreover, it can be hard to attribute
specific deficits to the analysis phase, the lexical resources, or the generation sys-
tem proper. A wide range of metrics and techniques have been developed over the
last 50 years to assess “how good” a system is. Evaluation schemas vary in their fo-
cus from addressing the system’s interface to system scalability, fidelity, space/time
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complexity, etc. Another dimension of variation is human versus automatic eval-
uation. Fully automatic evaluation, a task that is AI-complete (i.e., encompassing
all components of any system that would be deemed “intelligent”), is the ultimate
goal in the field.12

In Church and Hovy (1993), three categories of MT evaluation metrics are
described: system-based, text-based and cost-based. System-based metrics count
internal resources: size of lexicon, number of grammar rules, etc. These metrics
are easy to measure although they are not comparable across systems. In addition,
their value is questionable since they are not necessarily related to utility.

Text-based metrics can be divided into sentence-based and comprehensibility-
based. Sentence-based metrics examine the quality of single sentences out of
context. These metrics include accuracy, fluency, coherence, etc. Typically, sub-
jects evaluating sentences are given a description of the metric with examples
and are asked to rate the sentences on an n-point scale. These scales range from
3-point to 100-point. Comprehensibility metrics measure the comprehension or
informativeness of a complete text composed of several sentences. The subjects
are typically given questionnaires related to the processed text.

Text-based metrics are much more related to utility than system-based metrics,
but they are also much harder to measure. There are some automatic text-based
evaluation metrics that measure the amount of post-editing needed for a sentence
given a gold standard. These are variations on edit-distance, i.e., the number of
deletions, additions or modifications measured by words or keystrokes per page
or sentence. These techniques are not necessarily related to utility, however; Ban-
galore and Rambow (2000) showed that the smarter tree-based edit distance might
actually correlate better to human judgment.

A more recent automatic evaluation system is IBM’s Bleu (BiLingual Evalu-
ation Understudy), which is quick, inexpensive, language-independent and, most
importantly, highly correlating with human judgment (Papineni et al., 2002). Bleu
uses n-gram precision variation, which compares the generated string and the
reference string by taking the ratio of n-gram sequences in the generated string
that appear in the reference string to the total number of n-gram sequences in the
generated string. Bleu’s major contribution is the use of multiple references to score
translation candidates.

Cost-based metrics evaluate a system with respect to how much money/time
it saves/costs per unit of text, say a page. These are secondary metrics since they
depend on other metrics to evaluate how much post-/pre-processing is necessary
for a commercially functional system.

Other evaluation type distinctions are black-box vs. glass-box and intrinsic vs.
extrinsic evaluations. Black-box evaluations assess the behavior of the system as
a whole, while glass-box evaluations are component-wise evaluations. Within a
glass-box evaluation, one can distinguish between intrinsic and extrinsic evalu-
ations: intrinsic evaluations focus on how a particular component is behaving in its
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own terms, while extrinsic evaluations focus on how that component contributes to
the performance of the whole system (Cole et al., 1997).

There are many aspects of a system that can be evaluated; some are harder than
others. For example, to evaluate the efficiency of a system extrinsically, other as-
pects of the systems compared need to be constant. This is hard since efficiency and
other features of the system, especially quality of output, are interconnected. To be
able to make a reasonable comparative statement on efficiency of two systems, their
outputs must be quite similar. This makes the evaluation much harder to create. In
this paper we demonstrate the efficiency of our system based on modular improve-
ments in efficiency with comparable outputs such as in using Oxygen linearization
instead of Nitrogen’s grammar. This and other previous intrinsic evaluations are
discussed in the next section. Later, we evaluate the whole system on three extrinsic
aspects: translation quality, which is what matters at the end of the day, coverage
of linguistic phenomena, and retargetability to other languages.

8.1. INTRINSIC EVALUATIONS

Several intrinsic evaluations of specific components of Lexogen have been presen-
ted in previous papers. In Dorr et al. (1998) and also in more recent work (Habash
and Dorr, 2001a), the thematic hierarchy implementation proved successful and
the generation was demonstrated to be a diagnostic tool for fixing the lexicon,
algorithmic errors, and inconsistencies in English and Spanish output.

Another major evaluation addressed the general performance of the Oxygen
module (Habash, 2000). Oxygen was evaluated based on speed of performance,
size of grammar, expressiveness of the grammar description language, reusability
and readability/writability. The evaluation context was provided by comparing an
Oxygen linearization grammar for English to two other completed implementa-
tions, one procedural (using Lisp) and one declarative (using Nitrogen linearization
module). The three comparable linearization grammars were used to calculate
speed and size. Overall, Oxygen had the highest number of advantages and its
only disadvantage, speed, ranked second to the Lisp implementation.13

The generation component has also been used on a broader scale, generating
thousands of simple sentences – at least one for each verb sense in the English LCS
lexicon – creating sentence templates to be used in a cross-Language information
retrieval system (Dorr et al., 2000).

In the rest of this section, we report on both quantitative and qualitative extrinsic
evaluations of the system in several dimensions: translation quality, coverage
and retargetability. Translation quality can be seen as a system-depth evaluation
whereas coverage is a system-breadth evaluation. Retargetability focuses on the
extendibility of the system to other languages.
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Figure 12. MT evaluation interface: Accuracy.

8.2. TRANSLATION QUALITY EVALUATION

The Lexogen generation system has been used as part of ChinMT, a Chinese–
English Translation system focusing on a corpus of ten newspaper articles from
Xinhua (Chinese People’s Daily). The articles included 80 sentences that our trans-
lation system was able to parse, compose into LCS interlingua, and generate into
English successfully. Although the number of sentences is small, some of them are
quite complex, and represent a cross-section of the types of complex phenomena
handled in a large-scale MT effort. To measure the translation quality of the system,
we performed two human evaluations: one for accuracy (fidelity) and one for flu-
ency (intelligibility). Both tests used a set of 25 sentences randomly selected from
the 80 original Chinese sentences that completely pass our translation system. For
comparison purposes, we also used a commercial Chinese–English translation sys-
tem to translate these sentences: Chinese–English Systran 3.0 Professional edition.
Thus, we have both absolute quality metrics and a comparison to state-of-the-art
MT.

The test suite is a 2×2 grid: (accuracy, fluency) × (ChinMT, Systran). The total
number of subjects is 80, all of whom are native speakers of English. Each subject
participated in only one of the four possible evaluations (e.g., ChinMT accuracy or
Systran fluency) for all 25 sentences.14 The evaluation was performed online using
a web interface (see Figure 12).
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Table III. Accuracy criteria.

5 Contents of original sentence conveyed (might need minor corrections)

4 Contents of original sentence conveyed but errors in word order

3 Contents of original sentence generally conveyed but errors in

relationship between phrases, tense, singular/plural, etc.

2 Contents of original sentence not adequately conveyed, portions of

original sentence incorrectly translated, missing modifiers

1 Contents of original sentence not conveyed, missing verbs, subjects,

objects, phrases or clauses

8.2.1. Accuracy Evaluation

This evaluation measures the accuracy or fidelity of the translation system, i.e.,
how well a system preserves the meaning of the original text whether the target
language is fluent or not. The subjects were given 25 pairs of sentences. Each pair
consists of a human translation of the Chinese original and a machine-translated
version. Subjects were asked to rate the translation accuracy on a 5-point scale (see
Table III).15

A score of 5 is given where the content of the original sentence is fully conveyed
(might need minor corrections). A score of 1 is given where the content of the
original sentence is not conveyed at all. An earlier pilot study indicated that sub-
jects had a hard time with descriptions of the scale and preferred examples instead.
Thus subjects were provided with a table containing two manually constructed
examples per score to illustrate the idea behind the scoring scheme (see Table IV).
Figure 12 displays a screen capture of the web interface showing the first three
pairs of sentences in an accuracy evaluation form.

8.2.2. Fluency Evaluation

In the fluency evaluation, the subjects were given 25 machine-translated sentences.
The purpose of this evaluation is to measure the fluency (or intelligibility) of the
translation system. Subjects were asked to rate the fluency of machine-translated
sentences on a 5-point scale again loosely based on Nagao’s (1989) intelligibility
scale metric. The scale ranges from 5 (clear meaning, fluent sentence) to 1 (mean-
ing absolutely unclear, sentence not fluent). Table V details the criteria used in
measuring fluency.

Because fluency and intelligibility are both important for MT evaluation, we
chose a composed metric that includes both. Table VI describes the examples given
to the subjects to help them understand and use the scale. The actual evaluation
input looked like the examples provided in Figure 12 without the first column.
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Table IV. Accuracy scale examples.

Original Sentence (Human Translation)

The United States unilaterally reduced China’s textile export quotas.

Machine Translation Score

– United States reduced China’s textile export quota unilaterally. 5

– United States reduced China textile export quota unilaterally. 5

– United States cut China quota export textile unilaterally down. 4

– United States China quota export textile cuts down unilaterally down. 4

– United States down to slash of a export textile Chinese the quotas. 3

– Some states united slash down reducingly down China textile of export ration. 3

– Beautiful folk slashed porcelain export on own way. 2

– State reduce quota. 2

– It cut. 1

– China. 1

Table V. Fluency criteria.

5 Clear meaning, good grammar, terminology and sentence structure

4 Clear meaning but bad grammar, bad terminology or bad sentence structure

3 Meaning graspable but ambiguities due to bad grammar, bad terminology or bad
sentence structure

2 Meaning unclear but inferable

1 Meaning absolutely unclear

Table VI. Fluency scale examples.

Machine Translation Score

– The United States unilaterally reduced China’s textile export quotas. 5

– The United States unilaterally reduced China textile export quotas. 5

– United States cutted China export textile ration lonely. 4

– United States reduce down China quota textile export. 4

– United States reduce an quotas export textiling of the porcelain for the

only busy a decision. 3

– A chinese ration united states cut it down. 3

– States united unilateral cut an China textile speaks ration downwardly down. 2

– Cause states go quotas to reduced. 2

– Beautiful folk remedy partage China exportation filament on own shaving. 1

– Alone cut it up rations alone. 1
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Table VII. Chinese–English translation
quality results.

LCS-based MT Systran

Accuracy 3.08 3.01

Fluency 3.15 3.12

8.2.3. Translation Quality Evaluation Results

The results of the evaluation are presented in Table VII. The number in each cell
represents the average score given by all subjects on all sentences for each eval-
uation. ChinMT did slightly better than Systran but the difference is statistically
insignificant. Overall, the scores given show an average performance for both sys-
tems, glossed as follows: for accuracy, contents of original sentence are generally
conveyed but there are errors in the relationship between constituents (cf. Table III)
and for fluency, the meaning is graspable but ambiguities exist (cf. Table V).

The ChinMT system was able to perform as well as a commercial system that
took many person-years to develop, a promising result, given that our development
time for Chinese–English MT was significantly shorter. The Systran Chinese–
English MT system is the result of an estimated 20 person-years of work.16 It
utilizes a large lexicon of 150,000 root stems, 6,000 expressions, 1,000–2,000
Cantonese terms, 2,500 names, a 300,000-word safety-net lexicon (CETA diction-
ary) and an optional 2,000 military terms. With this coverage, the system’s strength
is in military, computer science, and electronics domains.

ChinMT was developed over six person-years. The English LCS lexicon in-
cludes about 12,000 entries, of which 9,500 are verbs and 900 are prepositions. The
remaining 1,200 are nouns and adjectives, which may be dynamically generated
based on specific domain needs.

ChinMT, as a modular interlingua-based system, has resources that are readily
extensible for use with other languages for both analysis and generation. A case
in point is a previous project for Language Tutoring using LCS resources was
retargeted from Arabic to Spanish in one sixth of the time it took to build the
original project (Dorr, 1997b).

8.2.4. Analysis of Translation Quality Results

For the most part, the Nitrogen strategy of overgenerating translation hypotheses
coupled with selection according to bigram likelihoods works very well (Langkilde
and Knight, 1998b). There are some difficulties that can be seen as responsible for
the average scores received. One major issue is that, especially with the bigram
language model’s bias for shorter sentences, fluency is given preference over trans-
lation accuracy. Thus, if there is some material that is considered optional (e.g., by
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the decomposition process) and there are lattice entries both with and without this
information, the extractor will tend to pick the path without this information. While
this technique is also very successful at picking out more fluent, terse formulations
(19), further work is needed to assess the right ratio of terseness to informativeness.
Also, bigrams are obviously inadequate for capturing long-distance dependen-
cies, and so, if things like agreement are not carefully controled in the symbolic
component, they will be incorrect in some cases.

(19) a. John went to the bank vs. *John went to at the bank

b. convincing proof vs. proof having convincingness

8.3. COVERAGE EVALUATION

For this evaluation, a test corpus of 453 simple CLCS representations corres-
ponding to all LVD classes (see Section 4) was constructed semi-automatically.17

The size of the test corpus guarantees large-scale coverage over verb behavior
and thematic role combinations, which is exhaustive for our purpose. The CLCS
representations were constructed by randomly selecting an LCS verb entry from
each English verb class and filling all its argument positions with simple noun
phrases (e.g. somethingth , someoneag , etc.) or simple subordinate clauses (e.g. to
do somethingprop , to be somepropertymod-prop, etc.) Table VIII shows some sample
English sentences corresponding to the CLCS representations in the test corpus.

Table VIII. CLCS test corpus examples.

Class Example

2 Someoneag wanted somethingth (to do somethingth)prop

10.5 Someoneag stole somethingth from somethingsrc for somethingben

22.1.C Someoneag mixed somethingth into somethinggoal

29.1.B Someoneth considered somethingperc (to be somepropertypred )mod-pred

45.2.A Someoneag folded somethingth with somethinginst

55.1.C Someoneth continued (to do somethingth)prop

For this evaluation, statistical extraction was disabled to evaluate the whole
range of possible outputs generated by the system. For example, each of the two
subclasses defining the dative alternations for the verb send are expected to gen-
erate both alternations (20). Out of 453 input CLCS representations, 25 failed the
lexical-selection process due to misformatted lexicon entries.

(20) a. John sent a book to Paul.

b. John sent Paul a book.
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Table IX. Coverage evaluation.

N = 428 Argument error Preposition error Word-order error

Class-based 6 (1%) 53 (12%) 5 (1%)

Verb-based 1% 9% 3%

In the remaining 428 cases, the lexical selection process appropriately generated
multiple sentences for each CLCS. All of these correctly corresponded to various
related alternations of the main verb. However, there were also cases of overgener-
ation resulting from preposition underspecification, which is inconsequential to our
evaluation (e.g. go (to, toward, towards, to at) somewhere). The average number of
sentences generated per class was four.

8.3.1. Coverage Evaluation Criteria

The results of generation were passed to a speaker of English who was asked to
mark sentences as being acceptable or not acceptable on three criteria: (a) argument
generation, (b) prepositional-phrase generation, and (c) word order. Acceptable ar-
gument generation is defined as the generation of all arguments of the verb whether
subject, object, or oblique. Acceptable prepositional-phrase generation is defined
as the generation of good preposition choices such as goal prepositions versus
source prepositions with an oblique goal and the generation of a prepositional
object. Finally, acceptable word order is word order that reflects the correct relation
of the arguments to the verb.

8.3.2. Coverage Evaluation Results

Table IX displays the results of this evaluation. The first row represents the number
and ratio of classes that generated no correct output for each error criterion. Some
classes generated both correct and incorrect outputs. These are counted as correct
with the assumption that given a good statistical extractor, the correct answer would
rank highest. The second row is an estimate of the percentage of unsuccessful gen-
eration of verb senses, where the raw class results are weighted by the number of
verbs in each class. On average each class contains 21 verbs, but since some classes
have more verbs in them than others, this second value seems a more appropriate
measure to evaluate coverage over the full lexicon (estimating actual verbs covered
rather than verb classes). Another useful metric might be to normalize based on
the probability of occurrence of verbs, giving more weight to frequently occurring
verbs. But this is a much more complicated task because it requires a corpus that
tags verb senses with appropriate LCS structures.

The results of this evaluation are quite encouraging in that they show a high
percentage of coverage over the LCS lexicon. Argument errors and word-order
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errors were due to incorrect lexical entries. For example, in the case of word-
order errors, specific realization information such as :EXT was missing from some
entries. This problem appeared in three subclasses of class 41.3.1 (Simple Verbs of
Dressing: don, doff and wear). In our lexicon, clothes, the object for all three verbs,
is considered the theme, and the subject of the sentence is the goal, source and
location respectively. Fixing these cases is a matter of adding the appropriate piece
of information in the lexicon. Preposition errors are more severe in that complete
entries for some prepositions were not found in the lexicon. These errors will be
fixed once the proper entries have been added. The generation system has thus been
quite helpful as a diagnostic tool for determining errors and inconsistencies in the
lexicon.

8.4. RETARGETABILITY

Finally, we examine Lexogen’s language independence. For this evaluation task
we used as input the same corpus of simple CLCS entries developed for the cov-
erage evaluation presented in the previous section, but we replaced the English
components with the Spanish ones as described in Section 6. For the purposes
of this evaluation, statistical extraction was disabled because we do not have a
Nitrogen bigram model for Spanish and because we wanted to examine the range
of alternations produced.

The results of the generation were passed to a speaker of Spanish to evaluate in
a similar manner to the coverage evaluation. One extra criterion in this evaluation is
a check on sense generation correctness, i.e., whether this Spanish verb is a proper
translation of the English verb given the argument structure presented in the verb
class.

As in the case of the English generation results presented in the previous section,
some of the Spanish sentences failed to produce any acceptable decompositions
due to problems with lexicon entries. However, there were many more sentences
that were produced which should not have been generated in Spanish. In theory,
the lexical selection process limits the number of choices using the LCS entry
of the Spanish verbs. But that process is only as good as the lexicon entries. In
cases where a bad sense is generated, the sentence involved is dropped from the
evaluation. Most failures in Spanish generation are due to missing verb entries
(29% of all input classes). Erroneous lexicon entries were responsible for another
10% of generation failures and an additional 5% of classes were dropped out of the
evaluation because there was no correct sense output. As a result only 254 out of
453 classes (56%) have been evaluated on argument, preposition and word-order
correctness.

Table X displays the results of this evaluation. The first row represents the num-
ber and ratio of classes that generated no correct output for each error criterion.
The second row represents the same ratios including class verb count as weights.
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Table X. Retargetability evaluation.

N = 254 Argument error Preposition error Word-order error

Class-based 15 (6%) 85 (33%) 4 (2%)

Verb-based 10% 44% 0%

The Spanish output is not as clean as the English output. It has more overgenera-
tion, more failures, and a higher error rate (except for word-order errors). Argument
errors are due to lexicon entries that were incorrect or missing. Most of preposition
errors were due to incorrect overgeneration resulting from extra incorrect entries
which were added to the lexicon automatically and were not manually checked.

A recent analysis of the Spanish lexicon indicates that 300 out of 453 semantic
verb classes (about 65%) were correctly ported automatically from English to
Spanish. (See Dorr (1997a) for more details of the porting process.) The remaining
35% were rapidly hand-corrected by one native speaker in less than a month. More
recently, the same approach has been taken for Chinese (Dorr et al., forthcoming),
with a similarly successful outcome.

However, the focus of this evaluation was not on the quality or coverage of
Spanish in our system. It was on the ease of retargetability of the system to another
language. And given this criterion, this evaluation is quite positive since the amount
of work that was needed was minimal. The Spanish lexicon already existed for
analysis purposes and the OxyL grammar was created in a short period of time
(two days). Of course improving the quality of the system will need more work
on both frontiers, the lexicon and the linearization grammar. There is also a role to
play in statistical extraction of the best generated sentence, especially for cases of
overgeneration that included both good and bad results.

9. Conclusions and Future Work

We have presented Lexogen, a system for hybrid NLG from LCSs. Lexogen is used
as part of a larger MT effort, and we have presented an evaluation of some key
components of the results. The system has been used both to generate very long,
complex, multiply ambiguous sentences (outputs of Chinese–English translations),
as well as thousands of simple sentence templates (spanning the whole of the Eng-
lish verb and preposition lexicons). Evaluation of the quality and correctness of
both modes has been carried out, showing comparable translation quality with a
commercial translation system which took longer to build. The generation system
can also be straightforwardly extended to other languages, given appropriate target-
language specific resources (lexicon and grammar), and this has been demonstrated
and evaluated for Spanish.
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Many Lexogen modules are designed with efficiency in mind. Examples include
(a) converting text input format into a graph for efficient access to components,
(b) accessing anchor points to increase the efficiency of the matching algorithm
during alignment/decomposition, (c) compiling linearization grammar rules into
a programming language for efficient performance, and (d) transforming AMRs
used to encode the input sentence into a word lattice that efficiently compresses the
space of possible paths.18

In addition to its utility for generating target-language sentences, the generation
system provides a crucial step in the development cycle for analysis and lexicon
resources. Changes to a lexicon, both extensions and corrections – which might
be done either manually or automatically – can be evaluated based on how they
will affect generation of sentences into that language. This has been a valuable
diagnostic tool for discovering both specific errors and lacunae in lexicon coverage.

The biggest remaining step is a more careful evaluation of different subsystems
and preference strategies to process more efficiently very ambiguous and complex
inputs, without substantially sacrificing translation quality. Also a current research
topic is how to combine other metrics coming from various points in the generation
process with the bigram statistics, to result in better overall outputs.
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Notes

1 The most recent version of Nitrogen is called Halogen (Langkilde-Geary, 2002).
2 Fields are specified for all primitives except CAUSE, which cuts across all possible fields.
3 Such relations are specified declaratively, in a Lisp structure with two-way parent–child links.
4 Levin’s original database contained 192 classes, numbering between 9.1 and 57; our refined ver-
sion contains 492, with more specific identifiers. For example, Levin’s class 51.3.2 “Run Verbs”
has been subdivided into 51.3.2.a.i “Run verbs–Theme Only”, 51.3.2.a.ii “Run verbs–Theme/Goal”,
51.3.2.b.i “Run verbs–Agent and Theme”, 51.3.2.b.ii “Run verbs–Agent/Theme/Goal”, and 51.3.2.c
“Run verbs–Locational”.
5 Certain components of the LCS occur in multiple places (e.g., (thing 2)) to facilitate compatib-
ility checking during the process of semantic composition.
6 See Dorr and Olsen (1996) and Olsen et al. (2001) for a detailed study of the use of telicity for
tense and aspect realization.
7 For an excellent overview and a comparison of different thematic hierarchies see Levin and
Rappaport Hovav (1996).
8 There are other generation systems with a larger set of semantic/thematic roles, e.g., the Nigel
generation system’s 100+ roles (Mann and Matthiessen, 1985). However, no thematic hierarchy is
used in generation in such systems.
9 Oxygen does not provide its own morphological generation component since that is a language-
specific module. Oxygen and previous realizers in Lexogen have used Nitrogen’s English morpholo-
gical generation component.
10 Our choice of present tense over future is consistent with findings of researchers who have
investigated temporal preferences based on a large-scale corpus analysis (Dorr and Gaasterland,
forthcoming).
11 This is a knowledge base of 70,000 nodes derived from several sources such as WordNet,
Longman’s Dictionary and the Penman upper model.
12 For excellent surveys of MT evaluation metrics and techniques, see Hovy (1999) and ISLE (2000).
13 A more efficient implementation of Oxygen is currently used with a larger grammar than the
one evaluated in Habash (2000). A Lisp implementation of the same larger grammar is still faster
than the newer Oxygen implementation. However, the gap in speed between the Lisp and Oxygen
implementations shrunk from Oxygen being 24 times slower than Lisp in Habash (2000) to only 1.5
times.
14 To avoid order bias that can result from degradation in subject performance over time, each grid
cell has two versions with different sentence display: (1 to 25) and (13 to 25, 1 to 12).
15 Loosely based on Nagao’s (1989) 7-point scale for fidelity.
16 This estimate is computed based on information provided through personal communication with
Mr Dale Bostad from NAIC (National Air Intelligence Center), the agency that sponsored the
development of this product.
17 Currently, the number of classes in LVD is 492. But at the time of conducting this evaluation, there
were only 453 classes.
18 A recent technique for encoding AMRs into forests improves on lattice compression even more
(Langkilde-Geary, 2002).
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