: : : Associate Research Scientist
Gluseppe Dl Gughelmo Columbia University
giuseppe@cs.columbia.edu

R(‘H(‘ill?(;h ST%I tement “B http://www.cs.columbia.edu/ giuseppe

In the last decade, we have observed the rise of two significant paradigms that have rapidly proliferated
throughout the scientific domains: heterogeneous computing and machine learning. Heterogeneous
computing offers a solution to the decline of Moore’s Law and Dennard Scaling by replacing homogeneous
cores with custom, heterogeneous cores, known as accelerators. Heterogeneous computing enables
each portion of the computation to be executed with the specialized hardware best suited to optimize
its performance and cost. Machine learning (ML) is a semiautomatic process that creates programs
capable of solving broad classes of problems, such as regression and classification. As with traditional
programming, machine learning can benefit significantly from heterogeneous computing, especially with
specialized hardware tailored for the ML problem space. In my research, I aim to architect and promote
an automated design process for ML accelerators to optimize the performance and cost of groundbreaking
scientific applications.

e Previous Research Experience

In my Ph.D. thesis, I proposed a set of automatic-test pattern generation (ATPG) methodologies for
the functional validation of embedded systems [C6, TH2]. The importance of validation and verification
(VV) for shipping successful hardware systems is undeniable. While the purpose of verification is to
ensure that the design was manufactured correctly, validation aims to ensure that the design meets its
functional and extra-functional intent before manufacturing. My research was particularly focused on the
functional validation of digital systems in particular. Functional validation is the process that detects and
addresses the designer’s errors to ensure that the hardware’s logical design satisfies the specification. As
digital system complexity increases with each generation, the VV problem has become more challenging.
The trend is even more pronounced for embedded systems that combine a heterogeneous mix of hardware
and software modules. Hardware design teams dedicate between 60% and 80% of their efforts to VV.

The ATPG methodologies proposed in my Ph.D. are "concolic" in nature in that they combine concrete
and symbolic simulation of the design specifications made in languages such as VHDL/Verilog and
C/SystemC [C18]. The symbolic simulation solves for inputs that lead along specific hard-to-traverse
paths. When the traversal problem becomes infeasible for the solver to handle, concrete values are
fed to run the design simulation. This solution allows the traversal procedure to cover parts of the
design specifications that could not be reached through either pure symbolic methodologies or randomly-
generated stimuli. In addition, during my Ph.D. I investigated (1) design models to represent the design
under test [J1, J3]; (2) fault models to guide the stimuli generation at a higher level of abstraction
together with metrics to evaluate the generated stimuli [J5]; and finally (3) efficient simulation engines
[C8].

As a Postdoctoral Researcher, I extended my research interests from hardware to designing and
validating software for embedded systems. The importance of specification definition in the embedded-
software design flow has been proven over the years. The entire process relies on the accuracy of the
design specification, which is often ill-defined and prone to human error. I investigated the automatic
mining of functional properties to simplify specification definition for designers. At the time, the existing
approaches were limited to detecting either arithmetic, non-temporal invariants of programs or temporal
properties limited to the Boolean domain. I defined the first dynamic mining approach that can infer


mailto:giuseppe@cs.columbia.edu
http://http://www.cs.columbia.edu/~giuseppe

linear temporal logic (LTL) properties for embedded software. The resulting mined properties extend
temporal relationships to arithmetic expressions beyond the Boolean domain [C23]. Since my approach
considers the execution traces only, it does not require static analysis and is entirely independent from
the code implementation. I have also extended this software approach to the behavioral specification of
hardware components [C27].

Later on, I focused on (1) model-driven design (MDD) to elevate software design to a higher abstraction
level than traditional programming languages and (2) assertion-based verification (ABV) to define
temporal properties for the design functional verification. Both MDD and ABV had been adopted as
effective methodologies for embedded hardware design and verification. However, at the time, both MDD
and ABV had limitations that were preventing their integration into the software design and verification
flow. In particular, MDD requires integrating a practical methodology for monitoring specification
conformance, and dynamic ABV relies on simulation assumptions that were satisfied in the hardware
domain but were not easily guaranteed during the software execution. I proposed a suitable combination
of MDD and dynamic ABV as an effective software design and verification solution. In collaboration
with both academic and industrial partners, I worked on a suite of tools to support this integrated
approach [J6].

e Current Research Activity

As an Associate Research Scientist at Columbia University, I have contributed to the development and
dissemination of Embedded Scalable Platforms (ESP), a new system-on-chip platform that combines a
heterogeneous computing architecture with a companion system-level-design methodology [C38, C45,
T4-T8|.

The heterogeneous system-on-chip (SoC) has emerged as the most critical computing platform across
many application domains, from embedded systems to data centers. The natural progression towards
heterogeneous SoC results from the end of Dennard’s ideal CMOS scaling. Unable to continue scaling
down supply voltages, the integrated-circuit designers made two consecutive moves. First, they moved
towards parallelism by building homogeneous multicore architectures that integrated multiple, relatively
simple processor cores instead of a single, more complex, hyper-pipelined superscalar processor. Next,
they moved towards heterogeneity by combining the processor cores with an increasing number of
specialized-hardware accelerators, each capable of executing a dedicated function in a way that is orders
of magnitude more efficient than its corresponding software execution.

It is within this current paradigm of heterogeneous computing that ESP was conceived. The ESP
architecture addresses the complexity of component integration by balancing hardware specialization
and design regularity with a tile-based approach. The ESP methodology seeks to increase productivity
by moving the bulk of the engineering effort to the system level and reducing the gap between hardware
design and domain expertise. Building on top of the ESP methodology, my research activity develops
around four topical areas: the design of hardware accelerators, the accelerator design-space exploration
with high-level synthesis, the security and verification of heterogeneous SoCs, and the acceleration of
ML applications.

Researchers in academia and in industry have developed many different accelerators and accelerator-
rich architectures to obtain energy efficiency and high performance in embedded applications. As part of
my research on ESP, I have contributed to the definition of loosely-coupled accelerators for heterogeneous
SoCs [C30, C31, C34]. A loosely-coupled accelerator can achieve better performance than processor cores
thanks to specialized micro-architectures for both the accelerator logic and the local memories. The
accelerator logic can exploit spatial parallelism to execute multiple operations in parallel. Additionally,
while processor memories are designed for sequential access — even in the case of memory sharing with



the accelerator — local memories can be customized to allow the accelerator logic to perform multiple
memory operations within the same clock cycle and increase the hardware parallelism [C28, C29, J7].

In ESP, we also leverage high-level synthesis (HLS) to expedite the design of accelerators, improve the
process of design-space exploration (DSE), and promote the reuse of accelerators across different target
SoCs. HLS enables the automatic generation of hardware designs from high-level specifications given
in languages such as C/C++ or SystemC. With HLS, designers can specify complex functionalities by
working at a higher abstraction level than the register-transfer level. HLS tools offer a powerful set of
parameters, known as knobs, to optimize an accelerator’s architecture and evaluate different trade-offs
in terms of performance and cost. However, exploring a large region of the design space and identifying
a rich set of Pareto-optimal implementations are still complex tasks. I have co-authored papers that
define strategies to discover the most effective implementations from a cost and performance perspective,
while minimizing the number of HLS runs [C35, J8, J12].

The ESP methodology also extends to the field of security. Software-based attacks can exploit security
vulnerabilities or bugs in software applications, obtain unauthorized control of applications, and inject
malicious code. Dynamic information flow tracking (DIFT) has been proposed as a promising security
technique to protect systems against software attack. DIFT monitors the hardware operations to detect
suspicious data flows during the application execution to ensure that vulnerabilities are not exploited
and do not cause a security violation. Most of the approaches on hardware-based DIFT focus only on
securing processor cores and the associated logic, memories, and communication channels. However,
loosely coupled accelerators are vulnerable to such kinds of attacks as well. To address this vulnerability,
I collaborated on a methodology to extend the support of DIFT to loosely-coupled accelerators in
heterogeneous SoCs [C36, C43, J9].

In recent years, the design of specialized accelerators for machine learning has become the primary trend
across all computing systems. While the initial focus was mostly on systems in the cloud, the demand for
applying machine learning approaches to edge devices continues to grow. To date, most research efforts
have focused on the accelerator design in isolation, and rarely on integrating the accelerator design into a
complete SoC. I have worked on a complete system-level design flow which leverages many heterogeneous
accelerators in order to implement SoCs for embedded applications [C41]. I have also collaborated on
the realization of a proof-of-concept system architecture, showing the functionality of photonic switched
optically connected memory for large networks in deep learning [J10]. Finally, I have investigated the
design of ML accelerators in FPGA systems equipped with High-Performance Memory (HPM) [C44].

e [uture Research Goals

Machine learning has led to discoveries in various scientific disciplines, including biology, climate
research, and physics. Although the initial catalysts were the improved computational capabilities and
the release of large benchmark datasets, the recent adoption of machine learning in various scientific
applications has been fueled by well-documented open-source ML frameworks, such as TensorFlow, Caffe,
and PyTorch, as well as by educational materials, such as Fast.ai and Coursera. Armed with these tools,
domain scientists with minimal computational training can create highly performant models.

Significantly less attention has been focused on deploying machine learning in scientific practice, where
figures of merit are the latency per inference, computational cost, reliability, security, and ability to
operate in extreme environments. Some examples of application domains are: the trigger acquisition
systems for rare events such as the Large Hadron Collider where the latency of the sensing system is
less than 25ns; the ambulatory-health monitors at kHz frequencies where wireless-transfer of data is
not possible due to power limitations or security requirements; and the processing of data streams from
materials spectroscopy and quantum-computing, which are on the order of Th/s. Computing-service



companies provide scalable and accessible cloud and on-premises computation solutions, yet, there are
unresolved problems for scientific applications. Integrating machine learning with sensing systems is
difficult and results in inefficient and costly data transfer. Additionally, some ML applications are
constrained to operate with a limited energy supply. Finally, existing hardware cannot be customized for
ultra-low latency applications. Tools to design custom ML devices require in-depth knowledge of custom
programming languages and hardware, and thus are only used by engineers. These tools currently do not
support the rapid prototyping required by scientific-domain experts. The core problem is the decoupling
of ML tools and hardware design automation tools.

My research aims at developing and promoting an automated design process for ML applications with
a multi-objective optimization goal targeting performance, latency, energy, reliability, and security. As
an alternative to the distributed computing paradigm, I will focus my attention on edge computing.
Many key advantages come with this choice for scientific applications. Edge computing brings efficient
computing and memory as close as possible to the information source in order to reduce latency. It also
improves efficiency and scalability thanks to customized ML hardware. Finally, it guarantees reliability
and security via dedicated hardware that does not rely on networks and data centers.

To tackle these challenges, I have joined two novel research communities to broaden my expertise
and understand domain-scientist problems: FastML and tinyMLPerf. FastML is a group of physicists,
engineers, and computer scientists interested in deploying ML algorithms for unique and challenging
scientific applications. tinyMLPerf is a working group for the fast-growing field of ML technologies
and applications capable of performing on-device computation at extremely low power. Both of these
communities are part of the recent Open Source Hardware movement that fosters technological knowledge
and encourages research that is accessible, collaborative, and respectful of user freedom.

In this context of multi-disciplinary collaboration, I am actively contributing to the hls4dml project, a
framework for co-design and optimization of ML models on customizable devices. We have already seen
significant results in supporting with hls4dml a variety of models such as boosted decision trees, distance-
weighted graph neural networks, large convolutional neural networks and binary/ternary compressed
neural networks [U4,U6,J11,J13]. I intend to make hls4ml the platform for my research activity to bridge
the gap between software tools for scientific model training and design automation for ML hardware.
hls4ml will provide utilities for ML device co-design under practical performance, resource, latency, and
power constraints. It will also automate the construction of intellectual property blocks for deployment
on FPGAs and ASICs. The power of hlsdml lies in its ability to improve the performance-cost trade-off
of ML models and compile such models for hardware.

To summarize, my primary research goal is to develop an open-source scientific framework which
combines ML tools with hardware design automation. I have pursued this research to date by investigating
the design and verification of the hardware acceleration for heterogeneous computing. In the future, I
would like to offer my expertise to the scientific communities deploying ML models for their research
needs.

mee——— Pyblications

Complete references to the publications cited in this statement are available in the attached CV.



	Previous Research Experience
	Current Research Activity
	Future Research Goals
	Publications

