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Abstract—This paper presents the design of a greatest common
divisor (GCD) chip as a case study in asynchronous or clockless
design. The design uses fine-grain asynchronous pipelining to
achieve fairly high performance. At the same time, the use
of robust asynchronous handshaking in lieu of clocking allows
the design to gracefully adapt its operation to voltage and
temperature variations, without the need for clock recalibration.

The design was fabricated in a 0.13µm CMOS process, using
standard cells and with full testability support. Resulting chips
were evaluated for performance and robustness, using a large
set of test vectors for good fault coverage. Under nominal
operating conditions (1.5V and 27

◦C), the fabricated parts were
able to deliver up to 8 giga GCD algorithmic iterations per
second (equivalent to 1 GHz clock speed). Moreover, they were
functionally correct across a wide range of voltages (0.5V to 4V)
and temperatures (−45

◦C to 150
◦C). This case study bolsters

our confidence in the potential of aynchronous design techniques
to help produce reliable ASICS that are fast, testable, and that
operate under a wide range of conditions.

I. INTRODUCTION

This paper presents the design of a greatest common divisor

(GCD) chip as a case study to investigate some of the

potential benefits of asynchronous or clockless design. In

particular, we are witnessing a trend where mobile applications

increasingly require chips that can deliver high performance

when needed, but that are ideally also capable of operating

robustly on scaled-down supply voltages when battery life is

at a premium [6]. While researchers believe that asynchronous

technology can deliver chips to satisfy this need, very few

concrete demonstrations of high-performance yet robust asyn-

chronous designs exist [1]. The goal of our case study was to

design, fabricate, test and evaluate a medium-complexity chip,

and to report whether the goals of high performance, voltage

and temperature robustness, and testability can be achieved

while expending reasonably low designer effort.

The GCD chip presented in this paper implements a modi-

fied version of Euclid’s iterative algorithm. A total of 98 self-

timed stages connected into the shape of a ring implement the

iterative algorithm. Each trip through the 98 stages represents

eight algorithmic iterations (i.e., an eight-way unrolled loop).

This level of fine-grain pipelining results in a fairly high

performance, equivalent to a 1 GHz clocked ASIC. However,

unlike a synchronous implementation, the asynchronous nature
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Fig. 1: A simple self-timed pipeline

of this design results in good robustness to temperature and

voltage variation.

The design was fabricated in a 0.13µm CMOS process,

using standard cells and with full testability support. Since

the design is clockless, its performance is measured and

reported in terms of the number of GCD algorithmic iterations

completed per second. A total of 24 parts were received and

all were tested. At nominal temperature and voltage (1.5V and

27◦C), the fabricated chips complete about 8 giga algorithm

iterations per second (equivalent to 1 GHz clock speed). Test-

ing was performed over a wide range of supply voltages (0.5–

4.0V) and temperatures (-45–150◦C), and all of the parts were

found to be functionally correct. The asynchronous nature of

the implementation allows the performance to gracefully vary

with varying operating conditions without the need for clock

recalibration. For example, at nominal temperature and 0.7V,

which is less than half of the nominal voltage, the performance

slows down to 1.4 giga iterations per second, but still remains

functionally correct. At a temperature of 150◦C but nominal

voltage, a performance of 6.7 giga iterations per second is

obtained. Finally, the implementation required a fairly modest

designer effort—the entire physical design entailed 5 person-

weeks of effort—which likely would not have been possible

but for the inherent modularity of asynchronous components

and the timing robustness of their interaction.

The remainder of this paper is organized as follows. Sec-

tion II gives background on asynchronous pipelines in general,

and on the Mousetrap pipeline style in particlar. Section III

presents the GCD chip’s design and implementation in detail.

Section IV describes the test setup and presents experimental

results. Finally, Section V gives conclusions.

II. BACKGROUND

A. Asynchronous Pipelines

1) General Pipeline Operation: Figure 1 shows the basic

structure of a bundled-data self-timed pipeline. Each pipeline
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Fig. 2: A Mousetrap pipeline

stage consists of a controller, a storage element (“data latch”),

and processing logic. In general, the data along with a request

arrives at a stage, the data is latched, and the request is sent on

to the next stage. Simultaneously, the stage acknowledges the

receipt of the data to the previous stage. This “handshaking”

allows the data to progress forward through the pipeline as

each stage completes its computation.

2) Mousetrap Pipelines: Mousetrap [8] is a high-speed

bundled-data asynchronous pipeline style that uses transition

signaling for its handshake protocol and static logic gates in

its datapath. A key feature of this pipeline style is that it can

be efficiently implemented using only standard cells.

a) Structure: Figure 2 shows the structure of a fragment

of a Mousetrap pipeline. Each stage consists of a data latch and

single XNOR gate that serves as a latch controller. Function

logic composed of static gates is inserted between the data

latches, along with matched delay elements to appropriately

delay the associated requests.

b) Operation: Initially, when the pipeline is empty, all

its latches are transparent and all the done, req and ack signals

are low. Each data item that enters the pipeline flips the values

of all these signals exactly once as it passes through each

successive stage. Thus, each transition, whether up or down,

represents a distinct event: the arrival of a new data item.

c) Timing Constraints: Two simple one-sided timing

constraints must be satisfied for the correct operation of

Mousetrap pipelines: setup time and hold time. Setup time

violations occur when the request arrives too late relative to the

data, while hold time violations occur when the latch is kept

transparent too long after data arrives. Setup time violations

can result in data corruption, and hold time violations can

result in either data corruption or loss of entire data items. [2]

B. Testing

As Shi et al. [7] describe, stuck-at faults in Mousetrap

pipelines cause either deadlocks or loss of data. Both can

be detected using functional testing, which does not require

additional test circuitry. Mousetrap pipelines may also contain

timing violations; Gill et al. [2] describe a non-intrusive

functional testing method for detecting certain specific types of

timing constraint (i.e., setup and hold) violations for Mouse-

trap. It requires no test circuitry within the chip, but relies

instead on carefully chosen test vectors applied in a specific

order. While neither testing method requires the addition

of test circuitry inside the chip, both do require sufficient

controllability and observability inside the chip through the

chip’s external interface.

C. Performance Analysis

1) Pipeline Stages: Three key metrics characterize the

performance of a single pipeline stage: (i) the forward latency,

LStage
i
, is the time it takes one data item to flow through

Stage
i

assuming the stage was empty and ready; (ii) the

reverse latency, RStage
i
, is the time it takes a “hole” to flow

backward through Stage
i

assuming the stage was initially full;

and (iii) the cycle time, TStage
i
, is the minimum time that must

elapse between two successive data items entering or leaving

that stage. The cycle time depends on the forward and reverse

latencies and on the type of handshaking used. Typically, for

full-capacity stages, a complete cycle consists of one forward

and one reverse latency, so the cycle time is the sum of the

two latencies: TStage
i

= LStage
i
+ RStage

i
. [10]

2) Self-Timed Rings: The classic work on analyzing self-

timed rings is by Williams and Horowitz [10] and by Green-

street et al. [3]. The throughput of the ring—measured as

the number of data items crossing any stage boundary per

second— is highly dependent on the ring’s occupancy, i.e.,

the number of data items revolving inside it. In particular, the

plot of the maximum throughput versus occupancy, resembles

the shape of a canopy, and will be referred to in this paper as

a “canopy graph.” Figure 3 shows an example.

Data Limited Operation. When the number of data items

in the ring is small, the throughput is low because the stages

are underutilized, and the pipeline is said to be “data limited.”

In particular, if there are k items in the ring, then in the time a

particular data item completes one revolution around the ring

(i.e.,
∑

i
LStage

i
), all k items would have crossed any stage

boundary in the ring. Hence, the maximum ring throughput is

proportional to the ring occupancy: tptRing ≤ k/
∑

i
LStage

i
.

Hole Limited Operation. If the ring is filled with data

items in nearly all stages, then the ring throughput is limited

because holes are needed to allow data items to flow through

the pipeline; the pipeline is said to be “hole limited.” If there

are h holes in the ring, then in the time a particular hole

completes one revolution around the ring (i.e.,
∑

i
RStage

i
),

all h holes would have crossed any stage boundary in the

ring, traveling in a direction opposite to data. Hence, h data

items would have crossed any stage boundary in the forward

direction. Thus, if N is the number of stages in the ring, then

h = N −k, and the maximum ring throughput is proportional

to the number of holes: tptRing ≤ (N − k)/
∑

i
RStage

i
.

III. DESIGN AND IMPLEMENTATION

Figure 4 shows the overall architecture of the core of the

GCD chip. The design is organized as a self-timed ring, which

iteratively computes the GCD function. To simply implemen-

tation, the operand width was chosen to be 8 bits, though

the architecture described here could be adapted for use with

wider operands (with proper control buffering). The datapath

of the entire ring was pipelined into a total of 98 stages, each

implemented Mousetrap pipeline stages. Specifically, the body
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Fig. 4: Overall architecture of GCD chip

of the GCD algorithm is repeated 8 times to create a ring, and

each iteration comprises 12 stages. Two “corner-turner” stages

were also added. The rest of this section details the design of

an individual GCD iteration as well as the ring interface.

A. Implementation of a Single Iteration

1) Datapath Design and Optimization: Figure 5 shows the

body of the iterative GCD algorithm along with a straightfor-

ward implementation. Both (a− b) and (b− a) are computed

using two separate subtract units, and then the values of a
and b are updated depending upon the test (a > b). This

straightforward implementation has significant area overheads,

because two subtract units are used as well as a comparator.

Figure 6 shows a simple way to optimize the loop body

that requires only a single subtract operation along with a

conditional swap based on the sign bit of the subtraction.

2) Pipelining an Iteration: The pipelined implementation

one algorithmic iteration, shown in Figure 6, consists of 12

Mousetrap pipeline stages. Eight stages make up the subtract

block while an additional four stages implement the condi-

tional swap. Figure 7 shows the layout of one iteration.

a) Subtract: The subtract block consists of a simple,

ripple-borrow, which is identical in architecture to a ripple-

carry adder [4]. If X and Y are the operand bits at a given

stage and Bin is the input borrow, then the result D and the

borrow output Bout generated at this stage are given by:

D = X ⊕ Y ⊕ Bin (1)

Bout = X · (Y + Bin) + Y · Bin (2)

if (a > b) 

        a := a - b 

    else 

        b := b - a 

> 

a 

b - 

b 

a - 

a 

a-b 

mux 

0 

1 

b-a 

b 

A 

B 
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0 

1 

a 
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b 

Fig. 5: Basic GCD algorithm, and the corresponding

dataflow implementation of one iteration
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s := a – b 

     if (s < 0) 

         swap(a, b) 

     else 

         a := s 

Fig. 6: Area-optimized GCD algorithm, and the

dataflow implementation of one iteration

The left portion of Figure 7 shows the layout of the eight

stages of the subtract block.

b) Conditional Swap: The swap operation uses multi-

plexors and consists of four pipeline stages. This level of

pipelining reduces the load driven by each individual stage

and facilitates routing of the data bits. The right portion of

Figure 7 shows the layout of the four stages of the conditional

swap.

3) Stage Implementation Details: This section presents

details of the implementation of each pipeline stage, including

design decisions to improve robustness. Figure 8 shows the

detailed implementation of each pipeline stage.

a) Datapath: The datapath consists of standard level-

sensitive D-type transparent latches and static logic function

blocks (either subtract logic or swap logic) that are imple-

mented using gates from a standard-cell library.

b) Control: The control logic consists of the XNOR

gate, its output buffers, and a matched delay, all of which

were implemented using standard gates. Two series inverters

amplify the controller’s output, in order to provide adequate

strength to drive the entire 24 bit datapath (8 bits each for a, b
and s). A matched delay consisting of four series inverters was

used which, for all stages, adequately matched the worst-case

delay through the function logic.

c) Robustness Considerations: Two design decisions

were made in order to ensure high robustness to timing

variations. First, buffer insertion did not employ the technique

of control kiting [5], [11]. In kiting, the control signal is sent

ahead of the data, with the assumption that the data will arrive
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before the latch becomes opaque. Kiting has the disadvantage

of reducing timing margins, thereby sacrificing robustness.

Therefore, this work did not use kiting, opting instead for

higher timing robustness. Second, as shown in Figure 8, the

acknowledgements were delayed by two inverter delays before

being sent to the previous stage. This delay was added in order

to give the current stage additional time to make its latch

opaque before the acknowledgement stimulates the previous

stage to generate the next data item. Overall, the cost of higher

timing robustness was an increase in the cycle time by four

inverter delays: two inverters due to control buffering, and

another two due to the delayed acknowledgments.

B. Interface

To aid in testing, the GCD interface allows full control-

lability of all inputs and full observability of all outputs. In

addition, during steady-state operation the interface provides

a decimated version of the ring’s frequency (divided by 64) so

that slow testing equipment can be reliably used to determine

the frequency.

1) Structure: As seen in Figure 9, the interface allows

the external environment to passively observe the request,

acknowledge, and data signals, as well as to actively control

them. In addition, the interface contains a frequency divider—

consisting of a series of six edge-triggered flip-flops—that

produces a frequency-decimated version of the request signal

(frequency divided by 64). To provide the environment with

full control, multiplexers and latches are added to the path of
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Fig. 9: Detail of the chip interface

each signal. This signals allow the environment to both stop

and start the cycling of data through the ring.

2) Metastability: Since the interface allows the chip to be

stopped suddenly during operation by essentially “cutting” the

ring open using the latch and multiplexer signals, the interface

has some non-zero probability of causing a metastable condi-

tion. In a metastable scenario, the acknowledge leaving the

first stage is in the process of transitioning at the same instant

that the environment makes the latch on the acknowledge

path opaque. This causes the outgoing acknowledgement to

erroneously toggle several times, thereby sending incorrect

signals to the environment. In such a situation, one or more

data items may be lost from the last stage of the ring. In

order to estimate the likelihood of the latter harmful metastable

scenario, we performed over 60,000 tests on our fabricated

chip; none resulted in any loss of data.

3) Support for Testability: The interface allows enough

controllability of inputs and observability of outputs to support

testing for stuck-at faults [7] and timing violations [2]. In par-

ticular, the interface allows for a new data input to be applied

at each of the input latches simultaneously. Additionally, it

allows the environment to remove individual data items while

observing the output. These are both necessary conditions for

exposing timing violations in a high-speed pipeline.

IV. RESULTS

A. Layout and Fabrication

Our chip was implemented in a 0.13µm process (IBM 8RF

CMOS). It was designed using the Cadence tool suite, using

a standard-cell library from the University of Washington.

Two versions of the GCD ring were fabricated on the same

die: a slower version with conservative timing margins and

a faster version with slightly tighter timing margins. Each

version contains 50K transistors and occupies 1.5X.5mm2.

Figure 10 shows the layout of the completed chip and a

photomicrograph of the fabricated die. Both versions were
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found fully functional during testing. Results for the faster

version are presented here; the throughput of the slower

version was about 15% lower.

Since the design was standard-cell, only coarse-grain gate

sizing and delay matching could be performed. In particular,

ideal gate sizes were computed using Logical Effort [9],

and then standard gates were chosen from the library that

most closely fit these calculations. SPICE simulations were

performed to estimate timing; all timing constraints were

satisfied with healthy margins.

B. Testing and Evaluation

1) Board Design and Operation: A custom test board,

shown in Figure 11, has a socket where the GCD chip is

inserted for testing. The chip interacts with two TI MSP430

microcontrollers: the left microcontroller manages data and

control to the chip, and the right microcontroller reads results

from the chip, including the operating frequency at the inter-

face. The microcontrollers communicate with each other using

a two-wire serial connection. The results are relayed to a PC

via on-board JTAG headers.

The operation of the board is in turn managed on the PC

using a custom application written in Java. The user inputs data

on the PC and sends it to the left microcontroller through a

USB connection. The microcontroller then initializes the GCD

chip, loads data into the ring, and begins the ring operation.

The operating throughput is measured by the right microcon-

troller and reported to the PC. Finally, the left microcontroller

opens the ring and drain the results, which are sent to the PC

for display and verification.

2) Test Operation: The operation of the chip consists

of the following four phases in sequence: (i) initialization,

(ii) loading of problem instances, (iii) computation by the ring,

and (iv) draining of results.

During initialization, an externally-supplied reset signal

initializes all of the pipeline stages in the ring to be empty.

Next the environment loads a set number of problem instances

by toggling the ingoing request signal while supplying the

desired test patterns.

The environment begins the computation phase by setting

the multiplexers in the interface to transmit signals between

the first and last ring stages. During the computation phase, the

external environment can observe the request and the toggling

at the interface of the chip. Since the ring was designed to

operate in the gigahertz range, it also includes divide-by-64

circuitry that produces a signal slow enough for our testing

equipment to read.

Finally, the environment drains the results. First it stops

the computation by making the interface latches opaque so

no requests can cycle through the ring. Then it toggles

the acknowledgement signal to the last pipeline stage while

reading out each resulting dataset one by one.

3) Fault Testing: The test patterns generated for this cir-

cuit according to the approach of [7] gave over 98% fault

coverage. For testing violations of the two timing constraints

of Mousetrap, a custom tool implementing the the non-

intrusive functional test approach of [2] was used. Test patterns

generated achieved 100% coverage for hold time violations

and about 33% coverage for setup time violations, yielding an

overall 66% fault coverage.

C. Results and Discussion

A total of 24 chip samples were tested, and all were found

fully functional, with no faults detected. Figure 12 presents

the throughput measured at various ring occupancies. The

results for the fastest and slowest chips tested are shown. The

fastest chip reported 1.01 billion toggles per second at the

observable interface to the chip, which indicates that the chip

was completing about 8.08 billion GCD iterations each second,

while the slowest chip was about 10% slower.

Note that the shape of the graph of Figure 12 agrees with

the expected performance of a pipelined ring as discussed in

Section II-C2. Although individual stages within the chip are

not directly observable, their forward and reverse latencies can

still be estimated. In particular, the total forward latency is in-

versely proportional to the slope of the line in the data-limited

region, and the total reverse latency is inversely proportional

to the slope of the line in the hole-limited region. The forward

latency of an individual stage is therefore estimated to be

170ps and the reverse latency 300ps.

1) Robustness Tests: In addition to basic test and evalua-

tion, the chips were subjected to extensive robustness tests by

varying temperature and voltage quite beyond nominal oper-

ating conditions. The results below show performance when

the occupancy is 45, which is within the peak performance

range of the canopy graph; the effect on performance at this

occupancy is representative of the effects at other occupancies.

Figure 13 demonstrates the effect of scaling the voltage

on peak performance. Extensive testing was performed over

the range of 0.5V–4V. The throughput changed automatically
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with the scaled voltage, and correct operation was observed

throughout this range. Figure 14 shows power consumption (in

milliWatts) for the chip. At nominal voltage, the peak power

consumption (measured at peak throughput) was 75 mW, and

the power consumption increases with increasing voltage.

Finally, Figure 15 demonstrates the effect of temperature

on the chip’s throughput. This test was performed at nominal

voltage. As expected, throughput decreases with an increase

in temperature. The chip was fully functional over the entire

range of temperatures tested (−45◦C to 150◦).

V. CONCLUSION

This paper presented the design and analysis of a GCD chip

as a case study in asynchronous design. It was implemented

as a self-timed ring using Mousetrap pipeline style [8], and

fabricated in a 0.13µm CMOS process. The chip was tested for

stuck-at faults and timing constraint violations, and evaluated

for performance over a wide range of supply voltages (0.5V

to 4V) and temperatures (from −45◦C to 150◦C). A total of

24 parts were received, and all were tested to be functionally

correct. The performance obtained was about 8 giga GCD

algorithmic iterations completed per second, which is equiv-

alent to a 1 GHz clocked ASIC. This case study bolsters our

confidence that asynchronous design techniques can be useful
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for the design of reliable ASICS that are fast, testable, and

that can operate under a wide range of conditions.
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