
Loop Pipelining for High-Throughput Stream Computation
Using Self-Timed Rings

Gennette Gill, John Hansen and Montek Singh
Dept. of Computer Science

Univ. of North Carolina, Chapel Hill, NC 27599, USA
{gillg,jbhansen,montek}@cs.unc.edu

ABSTRACT
We present a technique for increasing the throughput of stream process-
ing architectures by removing the bottlenecks caused by loop struc-
tures. We implement loops as self-timed pipelined rings that can op-
erate on multiple data sets concurrently. Our contribution includes a
transformation algorithm which takes as input a high-level program
and gives as output the structure of an optimized pipeline ring. Our
technique handles nested loops and is further enhanced by loop un-
rolling. Simulations run on benchmark examples show a 1.3 to 4.9x
speedup without unrolling and a 2.6 to 9.7x speedup with twofold
loop unrolling.

1. INTRODUCTION
This paper targets the domain of high-performance digital ICs that

are implemented using pipelined dataflow architectures. We focus on
stream processing architectures, i.e., those that take a stream of data
items and produce a stream of processed results. High-speed stream
processors are a natural match for many high-end applications, in-
cluding 3D graphics rendering, image and video processing, digital
filters and DSPs, cryptography, and networking processors. The de-
velopment of fast stream processors is likely to be key to sustain-
ing the explosive growth we are witnessing in consumer electronics,
multimedia applications, and high-speed networking.

While stream processors are well-suited to implementing algo-
rithms that are dataflow in character, a key challenge is the efficient
implementation of control constructs. In particular, the presence of
conditionals (“if-then-else” constructs) and loops (“for” and “while”
constructs) in algorithms typically creates performance bottlenecks
that limit the throughput of the resulting stream processor even if the
remainder of the algorithm is efficiently pipelined. While there has
been some recent work on addressing this challenge for condition-
als [4, 7], there is no satisfactory approach for efficiently handling
loop constructs. This paper, therefore, focuses on algorithmic loops,
and provides an efficient approach for their high-throughput imple-
mentation.

Existing approaches to implementing loop structures are limited
in the throughputs they can achieve. They focus primarily on lim-
ited concurrency improvements: (i) shaving off delays from the crit-
ical path of an iteration, e.g. by local transformations that change
sequential operations into parallel ones, and (ii) slight overlapping of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICCAD ’06, November 5-9, 2006, San Jose, CA
Copyright 2006 ACM 1-59593-389-1/06/0011 ...$5.00.

adjacent iterations, i.e. overlapping the end of one iteration with the
start of the next iteration of the same data item, or overlapping the
end of an item’s last iteration slightly with the next item’s first itera-
tion. These approaches can somewhat shorten the execution time of
each data item’s computation. However, none of these approaches
truly allow multiple data items to be processed concurrently; only a
single data item is allowed to be processed by the loop hardware at
any time. Thus, in existing approaches, even if the loop is pipelined
at the circuit level, it is effectively unpipelined at the algorithm level.

This paper presents an approach for efficiently implementing it-
erative loops in hardware, which truly achieves loop pipelining at
the algorithmic level. Unlike existing approaches that only target lo-
cal concurrency improvements, our approach focuses instead on al-
lowing multiple successive data items to be computed concurrently,
thereby offering more substantial throughput benefits. Our approach
is applicable to iterative algorithms in which successive data items
can be computed independent of each other, but where successive it-
erations on the same item are allowed to be dependent on each other.
This class of algorithms is quite rich and can be used in several real-
world applications including networking, encryption, multimedia ap-
plications, and differential-equation solvers.

Our contribution is twofold: (i) novel architectural building blocks
for implementing iterative architectures, and (ii) an automated syn-
thesis approach that allows high-level iterative algorithms to be mapped
onto these building blocks.

The core architectural building block—a self-timed ring structure—
directly implements iterative computations in an efficient manner.
We introduce a novel ring interface composed of several “helper”
blocks that allow the ring to operate at its ideal throughput, i.e. nei-
ther under-utilized nor congested. Our approach takes advantage of
one of the key benefits of self-timed architectures: modular design.
The architectural building blocks can be easily composed together
because they all have the same flexible external interface, which is
robust to differences in internal implementations and variations in
internal delays.

Our synthesis approach takes as input a high-level specification of
an iterative algorithm and generates the structure of its loop-pipelined
implementation. Our synthesis approach also handles conditionals,
sequential blocks, and parallel blocks, and is therefore applicable to
a rich class of algorithms. The modularity of our building blocks
allows our synthesis approach to easily handle nested loops, with
arbitrary level of nesting. Finally, our approach is further enhanced
by incorporating loop unrolling at the hardware level, i.e. replicating
loop hardware to further exploit data parallelism.

Our approach has been validated by applying it to a set of com-
plex examples with real-world applications, including iterative poly-
nomial root-finding, ordinary differential-equation solving, greatest-
common-divisor computation, a simple encryption algorithm, etc.

Each example was synthesized using a mature commercial asyn-
chronous synthesis flow—Haste/TiDE (formerly Tangram) tool suite
from Handshake Solutions [1], a Philips subsidiary—both with and
without our loop pipelining approach. The results of applying our ap-
proach are quite encouraging: 1.3–4.9x increase in throughput with-
out loop unrolling. When a twofold loop unrolling was applied, even
higher speedups were achieved: 2.6–9.7x.

The remainder of this paper is organized as follows. Section 2
presents background on self-timed ring architectures, and discusses
previous work on loop optimization. Section 3 then introduces our
new approach to loop pipelining; for simplicity of presentation, this
initial discussion focuses only on loops with a fixed number of it-
erations. The basic approach is then extended in Section 4 to pro-
vide several advanced features: handling loops with variable iteration
counts; handling nested loops; and exploiting loop unrolling.

2. PREVIOUS WORK AND BACKGROUND

2.1 Previous Work
Previous Approaches in Hardware Design. Several approaches

in hardware design have attempted to optimize iterative computa-
tion. However, their main objective is to reduce the latency of the
loop, as opposed to improving its throughput. One such approach
is the CASH compiler by Budiu and Goldstein [4], which translates
an ANSI C program into data-flow hardware. A different approach
by Theobald and Nowick [9] targets generation of distributed asyn-
chronous control from control-dataflow graphs, with the objective of
optimizing communication between the controllers, and between a
controller and its associated datapath object.

The above approaches offer very limited throughput benefit, since
they are mainly targeted to improving a loop’s latency. In particular,
the optimizations introduced by these approaches focus on shaving
off some delays from each loop iteration, and offer modest concur-
rency increases: the tail-end of an iteration for a given data item is
allowed to overlap somewhat with the start of that same item’s next
iteration, or the tail-end of an item’s last iteration overlaps some-
what the start of the next item’s first iteration. Neither approach al-
lows multiple distinct data items to be truly processed concurrently.
Hence, the throughput benefits of these approaches are modest, and
nowhere in the 2–10x range targeted by our proposed approach.

Like our approach, work by Kapasi, Dally et al. [7] targets ef-
ficient implementation of stream algorithms. However, it does not
address the critical challenge of pipelining loops and only addresses
the problems related to conditional branches.

Williams and Horowitz [10, 11] introduced the classic work on
self-timed rings. An iterative floating-point divider chip was de-
signed using a self-timed ring structure [11], which was later adapted
for use in the earlier HAL processors. However, this design did not
actually allow multiple data sets to be inside the ring concurrently.
In addition, their approach does not target translation of high-level
algorithms directly into hardware. A key contribution of [10] was
analysis of the performance of self-timed rings which can be loaded
with multiple data sets. This analysis is reviewed in Section 2.2.2.

Previous Approaches in Software Design. There are many loop
optimization techniques for software compilers; we mention a only
few relevant approaches here. In software pipelining [3] the goal is
to re-structure a loop so as to reduce the impact of inter-instruction
dependencies by mixing instructions from successive iterations. Par-
allelizing compilers often use some combination of loop unrolling
and compaction to achieve parallelization between successive loop
iterations [2]. There are other approaches used by parallelizing com-
pilers: loop skewing, index-set splitting, and node splitting [8]. How-
ever, many of these approaches apply only to loops that iterate over

Figure 1: A simple self-timed pipeline

arrays, with each iteration operating on a subsequent array element.
As such, they have limited applicability to algorithms that require
multiple iterations for each data item.

2.2 Background: Self-Timed Pipelines and Rings
This section briefly reviews asynchronous or self-timed pipelines

and rings, including their structure, operation and performance.

Structure. Figure 1 shows the basic structure of a self-timed pipe-
line. Each pipeline stage consists of a controller, a storage element
(“data latch”), and processing logic. A key feature is the absence of a
system-wide clock for global synchronization. Instead, synchroniza-
tion is achieved locally through request/acknowledge handshaking
between neighboring stages.

Operation. Data is transferred from one stage to next according
to the handshake protocol chosen for the pipeline. Typically, a stage
generates a request to initiate a handshake with its successor stage,
indicating that new data is ready. If the successor stage is empty it
accepts the data and performs two further actions: (i) it acknowl-
edges its predecessor for the data received and, (ii) initiates a similar
handshake with its own successor stage further down the pipeline.

Performance. There are three metrics typically used to character-
ize the performance of a self-timed pipeline: forward latency, reverse
latency, and cycle time. The throughput of the ring as a whole can be
derived from these three metrics. The forward latency is simply the
time it takes one data item to flow through an initially empty pipeline.
Thus, if the latency of Stagei is LStagei

, then the latency of the entire
pipeline is:

LPipeline =
∑

i

LStagei
(1)

Similarly, the reverse latency characterizes the speed at which empty
stages or “holes” flow backward through an initially full pipeline.
The reverse latency of the entire pipeline is simply the sum of the
stage reverse latencies:

RPipeline =
∑

i

RStagei
(2)

The cycle time of a stage, denoted by T Stagei
, is the minimum time

that must elapse after a data item is produced by that stage before
the next data item will be generated. Since a complete cycle of a
stage typically consists of transmitted a data item forward, followed
by accepting a hole from the next stage, the following relationship
holds:

T Stagei
= LStagei

+ RStagei
(3)

The maximum throughput a stage can support is simply the recip-
rocal of its cycle time. The cycle time of a linear pipeline is typically
limited by the cycle time of its slowest stage:

TPipeline = max
i

(
T Stagei

)
(4)

interface

Self-Timed Ring

problem in

solution out

Figure 2: A self-timed ring

Frequently, self-timed pipeline stages must be arranged in configu-
rations other than simple linear pipelines to meet the requirements of
an application. One configuration of special interest in this paper is
a self-timed ring. The ring structure allows one data item to repeat-
edly pass through the same sequence of processing stages, thereby
allowing iterative computations to be implemented.

Structure. Figure 2 shows the basic structure of a self-timed ring.
The ring contains a number of stages which perform computation and
an interface stage whose function is to load data items into the ring
and to drain results from the ring.

Operation. Once an item is introduced into the ring through
the interface stage, it revolves inside the ring until some terminating
condition indicates that the computation is complete. The result is
then drained from the ring through the interface stage.

Performance. The classic work by Williams [10] introduced a
useful metric for measuring the performance of a ring: the number
of times any data item crosses the interface stage per second. We will
refer to this measure as the ring frequency.

The performance of the ring is highly dependent on its occupancy,
i.e., the number of data items revolving inside it. When the number
of data items is small, the ring frequency is low, and the pipeline is
said to be “data limited.” On the other hand, when nearly every stage
of the pipeline is filled with data items, the performance is once again
limited because holes are needed to allow data items to flow through
the pipeline; in this scenario, the pipeline is said to be congested, or
“hole limited.”

Data Limited Operation. If there are k data items in the ring, then
in the time a particular data item completes one revolution around the
ring (i.e.,

∑
i LStagei

), all k items would have crossed the interface
stage. Therefore, the maximum ring frequency attainable is propor-
tional to the ring occupancy:

Ring Frequency ≤ k
/∑

i

LStagei
(5)

Hole Limited Operation. If the ring is filled with data items in
nearly all stages, then the ring frequency is limited by the number
of holes in the ring. For one data item to cross the interface stage,
exactly one hole must cross in the reverse direction. If there are h
holes in the ring, then in the time a particular hole completes one
revolution around the ring (i.e.,

∑
i RStagei

), all h holes would have
crossed the interface stage, thereby allowing h data items to advance.
The maximum ring frequency is therefore proportional to the number
of holes. Thus, if N is the number of stages in the ring, then h =
N − k, and we have the following bound on the performance:

Ring Frequency ≤ (N − k)
/∑

i

RStagei
(6)

Figure 3 shows a plot of the ring frequency versus its occupancy.
The rising portion of the graph represents the data limited region,
where performance rises linearly with the number of data items. The

1 2 N-2 N-10

Data
limited
region

Hole
limited
region

Max ideal freq
= 1/(L+R)

Limited by a
slow stage

Sl
op

e
=

 1
/Σ

L Slope = 1/ΣR

Ring Occupancy, k

R
in

g
Fr

eq
ue

nc
y

N

Figure 3: Upper bounds on the ring frequency

falling portion, similarly, represents the hole limited region, where
performance drops linearly with a decrease in the number of holes.

Limitations Due to a Slow Stage. If all the stages in the ring have
similar forward and reverse latencies, then the maximum attainable
performance will be the frequency at which the rising the falling lines
of Figure 3 intersect. This point represents a frequency that is the in-
verse of the cycle time of each ring stage: 1/T = 1/(L + R).
However, if some stages are slower than others, then the ring fre-
quency will be limited by the cycle time of the slowest stage. In the
figure, the horizontal line represents the maximum operating rate that
can be sustained by the slowest stage in the ring [10]:

Ring Frequency ≤ 1
/

max
i

(T Stagei
) (7)

The overall ring performance will always be constrained to lie under
the canopy formed by the three lines in Figure 3.

3. BASIC APPROACH:PIPELINING LOOPS
We now introduce our basic approach for converting iterative loops

into self-timed pipeline rings with the benefit of significantly higher
throughput. In this section, we focus on a simple case: a for loop
with a constant iteration count, i.e., it iterates the same number of
times on each data set. Our advanced approach is introduced in Sec-
tion 4, which is able to handle a wider variety of specifications, in-
cluding loops with variable iteration counts, nested loops, and un-
rolled loops.

We first motivate our work in Section 3.1 by showing how a for
loop can be a bottleneck in the compute pipeline, thereby severely
limiting throughput obtained. Then we introduce our approach for
eliminating this bottleneck, including hardware templates for pipelin-
ing the loop (Section 3.2), an algorithm for mapping a high-level
code fragment onto this template (Section 3.3), and an analysis of
the performance benefit our of approach (Section 3.4).

3.1 Motivation: The Loop Bottleneck
We illustrate our method using the simple code example shown

in Figure 4. This example represents a generic code fragment for
a streaming hardware system that iterates on every data set using
a for loop. In the example, the symbols s1 through s8 represent
statements.

The code consists of a main procedure that performs communi-
cation with the environment and a compute function that does the
computation. Once a data set is received from the environment by
main, it is sent to compute for processing, and the result is then sent
to the environment. These operations are performed repeatedly by
main,.

func compute(in context)
s1; s2;

for i = 1 to N
s3; s4; s5; s6;

end
s7; s8;
return(out context)

proc main
while (true) do

read(input);
output = compute(input);
write(output);

end

Figure 4: Sample code for a stream processor that iterates on
every data set using a for loop

s1 for N

s5 s4

s3s6

s2 s7 s8

loop block

read() write()

Figure 5: A simple implementation of the compute function

Rather than specifying variables in this code, we consider func-
tions to have a context which is operated upon and modified by each
statement. At the beginning of the compute function, the context
consists of the entire input set sent to the function call, labelled
in context. This initial context is augmented with any locally de-
fined variables before being sent into function. At the end of the
function, the context holds the set of outputs to be returned to the
calling environment.

The operation of the code fragment is as follows. The main pro-
cedure reads a data set from the environment and invokes compute
function. The value passed from main forms the initial context (i.e.,
set of inputs) for compute. Inside the body of compute, a certain num-
ber of statements—e.g., s1 and s2—operate on the context. Next,
the for loop operates on the context for N iterations. Then a certain
number of statements, represented by s7 and s8, operate on the con-
text after the for loop. Finally, the modified context is returned to
main, which communicates the relevant portion of it to the receiving
environment.

A direct translation of this code into data-driven hardware typi-
cally yields the schematic structure shown in Figure 5. Each state-
ment in the code—s1 through s8—becomes a pipeline stage. State-
ments s3 through s6 along with the for statement compose the loop
block. During operation, the data streams in from the environment
through the read() stage and is streamed out to the environment through
the write() stage.

A key observation is that the loop block has the same external in-
terface as an individual pipeline stage, even though internally it con-
tains an entire ring for iterative computation. Specifically, the loop
block accepts one data set from the predecessor stage, performs a
calculation, and passes the computed result on to a successor stage.
It does not accept new data until the results of the calculation have
been accepted by the successor stage.

Interestingly, the presence of a loop in the compute body has the
same effect on the performance of the stream processor as a single
pipeline stage with long latency. As discussed in Section 2.2.1, the
throughput of a pipeline is determined by the cycle time of the slow-
est stage (Equation 4), which in turn directly depends on that stage’s

s2

i < Ns3

if

s4

s5

i++

s6

s7s1 s8dist

counter

arbiter

interface

Figure 6: Proposed implementation of compute

latency (Equation 3).
As a result of this long effective latency and cycle time of the loop

block, the throughput of the entire stream processor is severely lim-
ited. Even if each of the individual stages—s1 through s8—are im-
plemented efficiently, the presence of a single long-latency for loop
drastically diminishes the throughput obtained through pipelining.
Figure 5 illustrates this bottleneck scenario by indicating the pres-
ence of data with a dot. Stages downstream from the loop block are
idle while the stages upstream from the loop block are stalled.

Although some existing approaches can generate slightly more op-
timal implementations than that of Figure 5, they still suffer from
the same bottleneck illustrated by this example, as discussed in Sec-
tion 2.1. While these approaches [4, 9] somewhat increase concur-
rency, they only allow a very slight overlap between successive data
sets.

3.2 Proposed Ring Structure
In order to overcome the bottleneck of loop computation, our ap-

proach introduces a novel structure based on a self-timed ring that
significantly improves performance by operating on several data sets
at once. However, there are three restrictions on the class of itera-
tive streaming algorithms that can be translated using our method:
(i) calculations on each distinct data set should not depend on each
other, (ii) no communication with the caller environment should oc-
cur within the body of the loop, and (iii) different statements in the
loop body should not share any resources. Note that our translation
scheme still applies to algorithms in which consecutive iterations on
the same data set do depend on each other.

Our proposed ring structure for the code in Figure 4 is illustrated
in Figure 6. In our implementation, the ring as a whole does not
have the same interface behavior as an individual pipeline stage: the
ring can actually accept a new data set while the previous one is (or
several previous ones are) still being operated on, space permitting.

The interface is composed of special-purpose “helper” stages—a
distributor, a counter, an arbiter, and an if stage—which allow multi-
ple data sets to enter the ring without interfering. Figure 6 illustrates
the ability of the ring to operate on multiple data sets by indicating
the presence of data with a dot. Note that each data set within the
ring is in a different stage of computation.

Our pipelined ring should ideally be filled with as many data sets
as possible without causing throughput degradation due to conges-
tion. As discussed in Section 2.2.2, every self-timed ring has some
ideal occupancy, C, at which it achieves maximum throughput. There-
fore, our strategy is to allow at most C elements to be present inside
the ring at any time. The ideal occupancy can be analytically com-
puted if the forward and reverse latencies of stage inside the ring are
known, as discussed in Section 2.2.2. If, however, these latencies
are unknown, or highly data dependent, the ideal ring occupancy is
determined by simulation.

The ring operates as follows. When a data set arrives from stage

IN(P1)

IN(P2) OUT(P2)

OUT(P1)

IN(if)
fork merge

Pipe(P1)

Pipe(P2)

B
OUT(if)IN(B) bool

SIN(S) OUT(S)

Pipe(cond)

ifdist

counter

arbiter

Pipe(P1)

IN(P1)

OUT(P1)

OUT(P1),
bool

IN(P1)

IN(P1)

token token

fork join

Pipe(P1)

Pipe(P2)

IN(P1)

IN(P2) OUT(P2)

OUT(P1)

Pipe(P1) Pipe(P2)
IN(P2)

(a) (b)

(e)(d)(c)

Figure 7: A graphical representation of each composition function a. Output of single stage(S) b. Output of compose sequential(P1,
P2) c. Output of compose parallel(P1, P2) d. Output of compose cond(B, P1, P2) e. Output of compose loop(P1, cond)

Pipe (P : program).
begin

if P is a single assignment statement S then
output single stage(S)

else if P is the sequential block ‘‘P1; P2’’ then
compose sequential(Pipe(P1), Pipe(P2))

else if P is the parallel block ‘‘P1 || P2’’ then
compose parallel(Pipe(P1), Pipe(P2))

else if P is the conditional ‘‘if(B) then P1 else P2’’ then
compose conditional(Pipe(B), Pipe(P1), Pipe(P2))

else if P is a loop ‘‘for (n) P1 end’’ or ‘‘while (cond) do’’ then
compose loop(Pipe(P1), Pipe(cond))

end

Figure 8: Our transformation algorithm

s2 as a new input to the loop, it is first sent to the distributor (la-
belled “dist” in the figure). If the ring is at less than ideal occupancy
(i.e if counter < C), the distributor sends the data set into the ring
and increments the counter to keep track of the ring occupancy. The
data set then progresses through the stages of the loop body. At the
end of an iteration, the data set passes through an if stage. If the ter-
minating condition is not met, the if stage passes the data set back
to the beginning of the ring. If the terminating condition is met, the
if stage sends the data set out of the ring and also sends a signal to
the decrement counter. If the ring had stopped accepting new data
sets because it had reached ideal occupancy, this decrementing of the
counter will allow a new data set to enter the ring.

One arbiter is necessary in this hardware scheme because data can
enter the beginning of the loop from two places. New data arrives
via the distributor, and current data loops back via the if stage. These
two events can occur at arbitrary times, making arbitration necessary.

3.3 Transformation Algorithm
The algorithm for our hardware translation scheme is shown in

Figure 8. The input to our algorithm is a high-level program; the
output is a pipelined structural implementation of that program. Cur-
rently, our approach handles the following types of language con-
structs: sequential blocks, parallel blocks, conditionals, and loops.

Our algorithm assumes the ability to perform live variable data-
flow analysis, in order to find IN and OUT sets of sections of code [8].
In particular, the IN set is the set of data values that are required to
go into a code fragment either because they may be used inside, or
because they may need to be relayed to a successor of that fragment.
The OUT set of a code fragment is the union of the IN sets of its
successors. These sets are used to determine which values need to be
communicated between stages.

Figures 7(a-e) show a graphical representation of our pipeline com-
position functions. In these figures, each box represents a set of one
or more pipeline stages. Each arrow represents a communication be-

tween pipeline stages. Labels on the arrows indicate the context, or
set of variables, that must be passed between stages. (Note that the
context is computed using the IN and OUT sets of sections of code.)

A stage or multi-stage block that is not yet connected to other
stages or blocks indicates an input port with an open circle, ◦, and
an output port with closed a circle, •. These ports will be connected
to ports of other stages or blocks at the next upper level of hierarchy
during the recursive traversal of our algorithm.

3.4 Performance Benefit and Overheads
Previous work on performance analysis of rings allows us to pre-

dict the speedup obtained by the use of our method. As discussed in
Section 2.2.2 and shown in Figure 3, the ring frequency is propor-
tional to the total number of data sets that are revolving inside the
ring, as long as the ring is not congested (i.e., “hole limited”). There-
fore, the maximum speedup of our approach is proportional to the
ideal ring occupancy.

The speed improvement of our method is largely due to improved
hardware utilization. A ring that holds only one data set has a high
amount of unused hardware at any given time. By allowing multiple
data sets, we are able to obtain high hardware utilization from the
components within the ring.

Our approach adds some overhead that decreases the actual speedup
and increases total area. Certain “helper” stages—such as the dis-
tributor, counter and arbiter—increase the latency of the ring and
add a small area overhead. Also, the counter has some latency and
therefore will not allow new data to enter immediately after old data
leaves. The most notable increase to area is the extra storage ele-
ments that are required in order to hold the entire context at each
ring stage. This overhead is necessary to allow each data set to hold
its own copy of the loop’s context, thereby enabling multiple data
sets to coexist independently within the ring.

4. ADVANCED APPROACH
In Section 3 we described our basic scheme for translating a loop

with a fixed number of iterations into a self-timed ring with maximal
throughput. In this section, we describe three advanced techniques:
(i) handling loops that have a variable (e.g., data-dependent) number
of iterations, (ii) handling nested loops, and (iii) using loop unrolling
to further improve performance.

4.1 Data-Dependent Loops
Many algorithms contain loops that iterate a different number of

times depending on the value of the input data set. Our basic ap-
proach of translating the loop into a self-timed ring can still be ap-
plied, but one problem arises. Specifically, if each data set is allowed
to leave the loop as soon as its computation has finished, the data

func GCD(a, b)
while(b != 0)

s = a - b;
if (s < 0)

then swap(a,b)
else a := s

return C

Figure 9: Euclid’s GCD solver

Table 1: Reordering in GCD computation.

inputs original re-ordered output
a b output value tag

100 208 4 19 1
209 190 19 3 2
45 219 3 4 0
252 114 6 6 3
136 146 2 2 4
43 169 1 5 6
15 155 5 1 5
133 77 7 7 7

sets will exit the loop in some order that may differ from the order in
which they entered. Thus, the data sets exit the loop out of order.

One example of an algorithm that has a data-dependent iteration
count is Euclid’s algorithm for computing the greatest common di-
visor (GCD) of two integers. A pseudo-code implementation of this
algorithm is shown in Figure 9. If the approach described in Sec-
tion 3 were used to implement this code, the values in the output
stream would be out of order. Table 1 shows the output in the orig-
inal order and the output generated by the GCD ring assuming an
occupancy of three.

Our solution to the reordering problem is to append a unique tag
to each data set; the tag represents a sequence number. For example,
the tags 0 through 7 are used in the GCD example in Table 1. This
tag becomes a part of the context of the loop, ensuring that even if
the results emerge from the loop out of order, they are still tagged
correctly.

This tag can be used in two different ways: (i) the out-of-order
results are simply passed on to the environment along with their tags,
or (ii) a re-order buffer is used to correctly order the items before
sending them to the environment.

The first method is preferable if the environment can handle tagged
outputs, which can be useful in applications such as graphic renderers
where outputs need not come out in order. The second method, which
introduces a re-order buffer, is preferable if the calling environment
must remain naı̈ve to the re-ordering problem. There has been much
research on the design of re-order buffers in the field of computer
architecture [6]; our approach simply leverages that work.

4.2 Nested Loops
Nested loops are implicitly handled by the recursive pipelining al-

gorithm shown in Figure 8. We provide an example here of a nested
loop transformation to illustrate this capability.

An example of an algorithm that has nested loops is the bisection
algorithm for finding a zero of a polynomial. Figure 10 shows the
pseudo-code for this algorithm. The body of function bisection con-
tains a while loop which successively halves the search interval for
finding a zero of the polynomial. Each iteration of this loop requires
the value of the polynomial to be evaluated at the mid-point of this in-
terval. This evaluation is carried out by calling the function poly eval
which, in turn, is an iterative algorithm based on Cramer’s rule, and
contains a for loop with data-dependent iteration count.

When our algorithm is applied to the bisection code in Figure 10, it

func bisection (coefs, tol, pos, neg)
1 while(abs (pos - neg) < tol)
2 mid := (pos + neg) / 2;
3 a := poly eval(coefs , mid);
4 if a < 0
5 then neg = midpt;
6 else pos = midpt;

return midpt;

func poly eval(coefs, x, degree)
a = coefs[degree];
for(i = degree-1; i ≥ 0; i--)

temp = a * x;
a = temp + coefs[i];

return a

Figure 10: Code for bisection and polynomial evaluation

= ifdist

counter

arbiter

i >= 0

+ i--

*

Figure 11: Structure for polynomial evaluation

begins by calling the function compose loop on the entire program.
(For convenience the individual statements in the code will be re-
ferred to by their numbered labels.) The function compose loop in
turn triggers a call to Pipe to pipeline the body of the loop. Af-
ter handling line 2, the algorithm calls compose sequential(Pipe(3),
Pipe([4-6])). The output of Pipe(3) is a ring structure that imple-
ments the polynomial loop, as shown in Figure 11. The poly eval
ring is finally composed sequentially with the rest of the statements
within the bisection body to form the structure shown in Figure 12.

4.3 Loop Unrolling
Unrolling the loop body to form a ring with a greater number of

stages can greatly improve performance when combined with our
hardware translation approach. Intuitively, this improvement results
from the duplication of hardware inside the loop and a corresponding
increase in the ring occupancy. Thus, the unrolled loop is able to
perform more “work” per unit time.

More formally, the ring frequency (at ideal occupancy, cf. Equa-
tion 7) remains fairly unchanged when the loop is unrolled, but every
“tick” at the loop’s interface now represents a greater amount of work
completed. In particular, if the loop is unrolled u times, every time a
data set crosses the interface stage, it indicates that u iterations have
just been completed on that data set, rather than just one. Therefore,
ignoring overheads, the loop’s effective computation throughput in-
creases by factor equal to the number of times it is unrolled, u.

As a second-order effect, loop unrolling actually also has the bene-
fit of somewhat reducing the overhead of the special-purpose “helper”
stages: the distributor, the counter and the arbiter. That overhead is
now amortized over a larger ring. As a result, the latency of each
data set will tend to somewhat decrease and hardware utilization will
slightly increase. One possible negative effect of loop unrolling is
that it can cause some data sets to be iterated over more times than
necessary, thereby requiring extra checks within the unrolled loop to
preserve the semantics of the computation.

Although loop unrolling is a common technique in both software

-
+

/ 2

dist

counter

arbiter

if

if

<

=
ifdist

counter

arbiter

i >= 0

+ i--

*

Figure 12: Bisection loop with nested polynomial evaluation

and hardware optimization, our current use of it has much differ-
ent goals and performance effects. In software compilers, the pri-
mary benefit of loop unrolling is to introduce more room to allow
instructions to be reordered, with the purpose of reducing stalls due
to branch and data hazards. In hardware translation approaches, such
as [4, 9], loop unrolling is used in conjunction with compaction to in-
crease concurrency within the loop body. However, these approaches
do not allow an increase in the occupancy of the loop, thereby ob-
taining limited throughput improvement. In contrast, our approach
increases the loop occupancy by the same factor as the number of
times it is unrolled, thereby obtaining dramatically higher speedup.

5. RESULTS
Benchmarks. Our approach targets iterative algorithms that oper-

ate on a stream of independent data sets. Section 4 discussed several
such examples: GCD, BISECT, and POLY. In addition to those ex-
amples, we tested implementations of the following algorithms as
benchmarks:

• BTREE: The BTREE algorithm searches a binary tree resid-
ing in ROM for a given input key. A key match returns the
data value associated with the node that matches the key. Be-
havior is highly data-dependent: the number of loop iterations
depends on how deep the input key’s node is in the tree.

• CRC: The cyclic redundancy check (CRC) algorithm calcu-
lates an 8-bit checksum for a given block of input data. This
algorithm has a fixed iteration count (16 iterations).

• ODE: The ODE example is the ordinary differential equation
solver from [12, 13, 9], based on the Euler method. It receives
as input the coefficients of a third degree ordinary differential
equation, along with an interval over which to integrate, initial
conditions, and a step size. Its output is the final value of the
dependent variable. The number of loop iterations depends on
the size of the interval and the step size.

• TEA: Tiny Encryption Algorithm (TEA) encrypts a 64-bit block
with a 128-bit key. The number of loop iterations depends on
the number of encryption rounds chosen. For this example, the
number of rounds was fixed at 32 (16 loop iterations).

Experimental Setup. The benchmark examples were synthesized
using the Haste/TiDE synthesis flow from Handshake Solutions [1],
a Philips subsidiary. Haste (formerly “Tangram”) is the only mature
automated asynchronous synthesis flow available at present. While
the control-dominated architectures that Haste currently produces are
not an ideal match for pipelined dataflow applications, this experi-
mental setup allows the relative performance benefit of our approach
to be accurately estimated.

For each of the benchmark examples, three different implementa-
tions were synthesized: (i) a baseline version (“Original”) that did
not use our approach; (ii) a second version (“Pipelined”) that used
our loop pipelining approach, but did not use loop unrolling; and
(iii) a final version (“Unrolled”) that employed a twofold unrolling
for its loop along with our loop pipelining approach. Simulation and
area estimation tools from the Haste suite were used to quantify the
latency, throughput and area of the resulting implementations. Since
the performance of some of the examples is data-dependent, input
streams containing as many as 100 data sets were used, and latency
and throughput results were averaged over them.

Results. Tables 2–3 summarize the results of our experiments.
Table 2 presents the area, latency and throughput obtained for each of
the benchmarks. The final column presents the normalized through-
put (relative to the “Original” version), to illustrate the performance
benefit of our approach. Finally, the area and latency overheads of
our approach are summarized in Table 3, once again normalized with
respect to the “Original” version.

Discussion. The results demonstrate that a substantial impact
on throughput is achieved by loop pipelining: up to 9.7x speedup.
Without the use of loop unrolling, our approach obtains a throughput
improvement by a factor of 1.3 to 4.9. When a twofold loop unrolling
was applied along with loop pipelining, the speedup obtained was
even higher: a factor of 2.6 to 9.7x.

In greater detail, algorithms that were pipelined into a relatively
small number of stages (CRC and GCD) had a limited potential for
loop pipelining because the maximum capacity of the self-timed ring
structures in these cases was low. As a result, the throughput benefit
was around 1.3x (without unrolling). On the other hand, algorithms
that were highly pipelined (BISECT, ODE, and TEA), had larger ring
structures which could accommodate a greater number of data sets
concurrently. For these benchmarks, the throughput increase was
substantially higher: a factor of 2 to 4.9x (without unrolling).

As expected, the twofold unrolling led to a throughput increase in
each case by a factor of 1.7 to 2.0x, yielding an overall combined
throughput benefit of 2.6 to 9.7x relative to the original implementa-
tion.

Although our approach results in a significant boost in throughput,
there are costs associated with the performance improvement. Shown
in Table 3 are the increases in total area consumed, and in the average
latency per data set.

In terms of area, the pipelined version adds the overheads of loop
control discussed in Section 3.4. Each pipeline stage must latch data
from the previous stage, so algorithms with many stages or large
contexts (e.g. BISECT) will see a large increase in area. By unrolling
the loop twofold, the total area of the implementation increased by a
factor of 1.3–1.9x.

The average latency for a data set also increased when loop pipelin-
ing was used. This was expected because, like most traditional pipelin-
ing approaches, our approach increases throughput at the expense of
latency. The latency overhead in most of the benchmarks was in the
1.4–3.6x range, except for the example that contained a nested loop,
BISECT. For BISECT, the latency overhead reported is substantially
higher (8.2x) due to the compounded overheads of its nested loops.

While the area and latency overheads may seem daunting, for
most applications the main performance measure is overall execution
time. By increasing latency and chip area, a dramatic improvement
in throughput results, reducing execution time by a large factor.

6. CONCLUSIONS AND ONGOING WORK
In this paper we presented a technique that allows loop hardware

to operate on many data sets at the same time. We proposed a novel
loop interface and a set of transformations from high-level code to

Table 2: Synthesis Results: Performance Benefit

Algorithm/ Area Latency Throughput Normalized
Approach (µm2) (ns) (Mega items/s) Throughput

BISECT
Original 28928 1946 0.51 1
Pipelined 98420 15960 1.03 2.0
Unrolled 184400 16000 1.76 3.4

BTREE
Original 2900 40 24.65 1
Pipelined 7335 110 41.91 1.7
Unrolled 10840 75 79.62 3.2

CRC
Original 4405 66 14.99 1
Pipelined 10730 193 19.79 1.3
Unrolled 15080 137 40.21 2.7

GCD
Original 1770 108 9.11 1
Pipelined 4998 390 12.24 1.3
Unrolled 6574 277 23.51 2.6

ODE
Original 8931 571 1.75 1
Pipelined 15610 1338 3.61 2.1
Unrolled 25630 1156 7.07 4.1

POLY
Original 23661 367 2.71 1
Pipelined 53880 1300 5.19 1.9
Unrolled 99280 1226 8.80 3.2

TEA
Original 30390 1205 0.83 1
Pipelined 96720 2529 4.04 4.9
Unrolled 166500 1704 8.07 9.7

Table 3: Area and Latency (Relative Overheads)

Pipelined Unrolled
Algorithm Area Latency Area Latency

(Norm.) (Norm.) (Norm.) (Norm.)
BISECT 3.4 8.2 6.4 8.2
BTREE 2.5 2.7 3.7 1.9
CRC 2.4 2.9 3.4 2.1
GCD 2.8 3.6 3.7 2.6
ODE 1.8 2.3 2.9 2.0
POLY 2.3 3.3 4.2 3.3
TEA 3.2 2.1 5.5 1.4

a pipelined loop structure. Our results showed significant through-
put improvement over the non-pipelined ring implementation, with
further benefits through unrolling.

More work needs to be done to decrease the area overhead of our
technique. Our current approach is conservative: each stage in the
ring structure stores a distinct copy of the maximal set of live vari-
ables that it may need. We are exploring more optimal techniques for
reducing this overhead.

In ongoing work, we are re-implementing the above benchmarks
in a true dataflow style, in order to eliminate the unnecessary control
overheads introduced by the Haste synthesis flow. We anticipate sig-
nificantly better performance and area results after this modification.
In addition, a loop-pipelined GCD design has been implemented in
silicon. Initial results indicate fully functional parts, though a com-
plete evaluation is pending.

A full-featured transformation algorithm is the next logical step in
this work. Additional features include support for resource sharing,
unrestricted communication with the environment, and handling de-
pendencies across data sets. Other loop optimizing techniques, such
as compaction, are also being pursued.

7. REFERENCES

[1] Handshake Solutions, a Philips subsidiary.
http://www.handshakesolutions.com/.

[2] A. Aiken and A. Nicolau. Perfect pipelining: A new loop
parallelization technique. In European Symposium on
Programming, pages 221–235, 1988.

[3] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software
pipelining. ACM Comput. Surv., 27(3):367–432, 1995.

[4] M. Budiu. Spatial Computation. PhD thesis, Carnegie Mellon
University, Computer Science Department, December 2003.
Technical report CMU-CS-03-217.

[5] A. Davis and S. M. Nowick. An introduction to asynchronous
circuit design. Technical Report UUCS-97-013, Dept. of
Computer Science, University of Utah, Sept. 1997.

[6] J. L. Hennessy and D. A. Patterson. Computer architecture: a
quantitative approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[7] U. J. Kapasi, W. J. Dally, S. Rixner, P. R. Mattson, J. D.
Owens, and B. Khailany. Efficient conditional operations for
data-parallel architectures. In Proc. of IEEE/ACM Intl. Symp.
on Microarchitecture, 2000.

[8] K. Kennedy and J. R. Allen. Optimizing compilers for modern
architectures: a dependence-based approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2002.

[9] M. Theobald and S. M. Nowick. Transformations for the
synthesis and optimization of asynchronous distributed
control. In Proc. ACM/IEEE Design Automation Conf., June
2001.

[10] T. E. Williams. Self-Timed Rings and their Application to
Division. PhD thesis, Stanford University, June 1991.

[11] T. E. Williams and M. A. Horowitz. A zero-overhead
self-timed 160ns 54b CMOS divider. IEEE Journal of
Solid-State Circuits, 26(11):1651–1661, Nov. 1991.

[12] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and
J. Arceo. The design and verification of a high-performance
low-control-overhead asynchronous differential equation
solver. In Proc. Int. Symp. on Advanced Research in
Asynchronous Circuits and Systems, pages 140–153. IEEE
Computer Society Press, Apr. 1997.

[13] K. Y. Yun, P. A. Beerel, V. Vakilotojar, A. E. Dooply, and
J. Arceo. The design and verification of a high-performance
low-control-overhead asynchronous differential equation
solver. IEEE Trans. on VLSI Systems, 6(4):643–655, Dec.
1998.

