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Abstract—This paper presents a systematic approach for mi-
croarchitectural exploration in pipelined asynchronous systems,
with the goal of achieving a specified throughput target while
minimizing a given cost function (based on energy, area, etc.).
The method includes a general framework that (i) allows for
a rich extensible set of microarchitectural transformations for
improving throughput; and (ii) can handle a variety of cost
functions, such as area, energy, Eτ

2 and the energy-area product.
In general, the space of transformations that can be applied to

a given circuit is potentially infinite because an arbitrarily long
sequence of transformations may be applicable. To compound
the challenge, the value of the given cost function can change
non-monotonically as successive transformations are applied (e.g.,
some transformations increase area, while others decrease area),
thereby making it difficult to apply a typical branch-and-bound
approach to prune the search space. Our method employs
simple but effective heuristic search strategies (including greedy,
lookahead, and breadth-first). A key contribution is to identify
commutativity of certain transformations, thereby pruning the
design space significantly. The approach was automated and
applied to a number of examples. Various throughput targets
were assumed: from 50% to 20x throughput improvement.
In each example, the approach was successful in meeting the
throughput target.

I. INTRODUCTION

This paper introduces an automated approach for bottle-

neck removal in pipelined asynchronous systems in order to

increase throughput. Automated bottleneck removal consists

of assessing the outcomes of applying each available micro-

architectural transformation and then choosing a sequence of

transformations that yield a system with the desired through-

put. Our approach is to use tree-search methods to explore the

set of possible solutions and find one that is low-cost, based

on a given cost metric.

As in past work [7], [8], we make this problem more

tractable by focusing on a special class of asynchronous

systems: those with hierarchically composed pipelined archi-

tectures. Such structures are quite common when the system

is designed using high-level translation methods (e.g., Tan-

gram/Haste [12], Balsa [6]) because high-level specification

languages tend to be hierarchically block-structured. More-

over, even when the design approach is ad-hoc, designers often

tend to implement systems with hierarchical topologies. In

particular, we target architectures that are hierarchical com-

positions of basic pipeline stages using sequential, parallel,

conditional, and iterative operators. By focusing on this special

but practically useful class of systems, we are able to leverage

information about their hierarchy to provide fast runtimes,

thereby making our approach suitable for repeated application

in a design flow.

The inclusion of bottleneck removal in an automated design

flow is important for reducing designer effort in creating high-

performance systems. For non-trival systems, the space of

possible solutions is too large for efficient manual search.

Moreover, the search space of possible optimizations is quite

complex to explore because the cost function may vary non-

monotonically: a transformation that seems to reduce perfor-

mance may actually be the first step on a path towards a

more efficient system design. Since system-level timing issues

can be quite subtle and complex in asynchronous design, the

absence of a fast automated bottleneck removal tool means

a designer typically must contend with time-consuming and

error-prone manual optimization, which hinders the practical-

ity of asynchronous design.

The contribution of this paper is a framework for auto-

mated exploration of the design space of alternative micro-

architectures starting from a given micro-architecture. We

evaluate this framework with a set of five simple but powerful

transformations: stage coalescing, stage splitting, duplication,

buffer insertion and loop pipelining. This list of possible

micro-architectural transformations is not intended to be ex-

haustive, but instead demonstrates that our framework is

flexible enough to use a variety of transformations and apply

them correctly to produce a high-throughput implementation.

We implement automated bottleneck removal as a tree

search in which each node represents a micro-architecture

(i.e., an implementation) with the same input-output behavior

as the given micro-architecture to be optimized. A node is a

solution if the throughput of the implementation meets the goal

throughput given for the system. Our framework employs three

different search methods for discovering a low-cost solution:

exhaustive breadth-first search, greedy search, and lookahead

search. Results show that lookahead search rapidly generates

a solution that is close to optimal for a variety of different

input examples.

A. Previous Work

While there has been much work on asynchronous per-

formance analysis, the problem of bottleneck analysis has

so far not been adequately addressed. A recent approach by

Venkataramani et al. [22] introduces the notion of a global



critical path in a system, and uses simulation and profiling to

help the designer identify targets for optimization. Although

the approach can be useful in identifying bottlenecks, its re-

liance on simulation can make each iteration time-consuming.

Additionally, bottleneck removal is not fully automated.

Methods presented by Beerel et al. [2], Prakash et al. [20],

and Smirnov et al. [1] remove bottlenecks by strategically

adding buffer stages to the circuit. These approaches, however,

focus only on buffer insertion (i.e., “slack matching”) and do

not target other micro-architectural transformations in concert

with the addition of buffers.

Other prior approaches do not directly target bottleneck

identification, but focus instead on finding a system’s peak

achievable throughput. These include (i) simulation-based ap-

proaches [3], [18], [26]; (ii) Markov analysis methods [14],

[17], [25]; (iii) methods based on graph unfolding [13], [4];

and (iv) closed-form analytical solutions [23], [9], [19], [15].

The simulation, Markov analysis, and graph unfolding meth-

ods all tend to require long running times. The closed-form

solutions, on the other hand, only apply to a limited set of spe-

cialized architectures (e.g., rings, meshes, and linear and sim-

ple fork-join pipelines). Recently, a graph-theoretic approach

was proposed that avoids graph unfolding to achieve quite fast

runtimes [16]. However, all of the aforementioned approaches

that are not simulation-based cannot handle systems with

choice, thereby limiting their applicability to systems with-

out conditionals or data-dependent loops. Simulation-based

approaches generally are able to handle choice, but require

long runtimes.

In contrast, this paper provides an analytical approach

that is fast, that can handle systems with choice, and that

provides systematic detection and elimination of system-

wide bottlenecks until a throughput target is reached. The

remainder of the paper is organized as follows. Section II

provides background on prior work on performance analysis

and bottleneck identification. Section III then introduces the

new automated method for microarchitectural exploration, and

Section IV presents powerful enhancements to the efficiency

of the method by pruning the search space. Section V presents

experimental results, and Section VI gives conclusions.

II. BACKGROUND

This paper uses past performance analysis work [23], [10],

[15], [7] as well as past work on bottleneck identification [8].

This section provides the necessary background on these

approaches because they are used as a starting point for the

work presented in this paper.

A. Performance Analysis

This section reviews relevant prior work in performance

analysis for pipelined systems, which forms the basis for bot-

tleneck identification and elimination. The analysis approach

is based on what we call canopy graphs.

1) Asynchronous Pipeline Stages: Figure 1 shows the basic

structure of a bundled-data self-timed pipeline. Each pipeline

Fig. 1: A simple self-timed pipeline
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Fig. 2: The throughput of a ring as a function of the

number of data items (a “canopy graph”)

stage consists of a controller, a storage element (“data latch”),

and processing logic.

Three key metrics characterize the performance of a single

pipeline stage: (i) the forward latency, LStage
i
, is the time

it takes one data item to flow through Stagei assuming the

stage was empty and ready; (ii) the reverse latency, RStage
i
,

is the time it takes a “hole” to flow backward through Stagei

assuming the stage was initially full; and (iii) the cycle time,

TStage
i
, is the minimum time that must elapse between two

successive data items entering or leaving that stage. The cycle

time depends on the forward and reverse latencies and on the

type of handshaking used. Typically, for full-capacity stages,

a complete cycle consists of one forward and one reverse

latency, so the cycle time is the sum of the two latencies:

TStage
i

= LStage
i
+ RStage

i
.

2) Analysis of Pipeline Rings: Williams and Horowitz [23]

and by Greenstreet et al. [10], [9] were the first to introduce the

use of canopy graphs for analyzing the throughput of pipelined

asynchronous systems. The throughput of the ring—measured

as the number of data items crossing any stage boundary per

second—is highly dependent on the ring’s occupancy, i.e., the

number of data items revolving inside it. In particular, the plot

of the maximum throughput versus occupancy, resembles the

shape of a canopy, and will be referred to in this paper as a

“canopy graph.” Figure 2 shows an example.

Data Limited Operation. When the number of data items

in the ring is small, the throughput is low because the stages

are underutilized, and the pipeline is said to be “data limited.”

In particular, if there are k items in the ring, then in the time a

particular data item completes one revolution around the ring



(i.e.,
∑

i LStage
i
), all k items would have crossed any stage

boundary in the ring. Hence, the maximum ring throughput is

proportional to the ring occupancy: tptRing ≤ k/
∑

i LStage
i
.

Hole Limited Operation. If the ring is filled with data

items in nearly all stages, then the ring throughput is limited

because holes are needed to allow data items to flow through

the pipeline; the pipeline is said to be “hole limited.” If there

are h holes in the ring, then in the time a particular hole

completes one revolution around the ring (i.e.,
∑

i RStage
i
),

all h holes would have crossed any stage boundary in the

ring, traveling in a direction opposite to data. Hence, h data

items would have crossed any stage boundary in the forward

direction. Thus, if N is the number of stages in the ring, then

h = N −k, and the maximum ring throughput is proportional

to the number of holes: tptRing ≤ (N − k)/
∑

i RStage
i
.

Limitations Due to Local Cycle Times. The ring throughput

is also limited by the cycle time of the slowest stage. In the

figure, the horizontal line represents the maximum operating

rate that can be sustained by the slowest stage in the ring:

tptRing ≤ 1/maxi(TStage
i
).

3) Canopy Graph Analysis: The above discussion presents

canopy graph analysis as it was first used to apply to pipelined

rings. Canopy graph analysis has since been extended for

analysis of more complex circuits, and the definition of the

canopy graph itself has been extended and formalized in [7],

[8].

Canopy Graph Definition. As illustrated in Figure 3, every

canopy graph consists of some number of boundary segments

that represent the maximum throughput at each possible oc-

cupancy. The operating region of the system is the area below

the canopy graph’s boundary segments. The boundaries of

this canopy graph consist of the following types of limiting

segments: 1) forward segments bound the operating region in

the data-limited region of the canopy graph and are determined

by the forward latency of the system; 2) top segments bound

the operating region in the cycle limited region of the canopy

graph and are determined by the longest effective cycle time;

3) reverse segments bound the hole-limited region and are

determined by the maximum occupancy and reverse delay of

the system. In systems that are initialized as empty, the forward

segment of a canopy graphs will contain the origin. As a result,

such systems will always have exactly one forward segment

and one or more reverse segments [8].

Application to Complex Systems. Though canopy graph

analysis was initially applied only to ring structures with a

constant occupancy [23], it has since been applied to more

complex systems. As shown by Lines [15] and Singh et

al. [21], the linear pipeline’s throughput is correctly modeled

as a canopy graph, with the same three constraints on its

operation: data limited, hole limited, and constrained by local

cycle times. Further, [15] applied canopy graph analysis to

pipelined systems that have fork-join parallelism.

Recent work by Gill et al. [7] extended canopy graph

analysis to any pipelined system that is a hierarchical compo-

sition of pipeline stages using sequential, parallel, conditional,

and iterative operators. The method exploits the hierarchical
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Fig. 3: Canopy graph C with four limiting segments [8]

nature of circuits generated from high level code in order

to achieve a fast runtime for estimating system performance.

Specifically, it separately computes the canopy graph for sub-

systems in the hierarchical system, and then composes the

graphs hierarchically.

Assumptions in Canopy Graph Analysis. The analysis

methods reviewed here make the following assumptions [7].

Since our work builds on past canopy graph analysis, it also

inherits these same assumptions.

• Handshaking Model: The pipeline stages used the bun-

dled data model, and are each capable of storing one

data token concurrently with other stages (i.e., often

referred to as “fully decoupled,” or “full buffers,” or “high

capacity”). The analysis can be easily adapted to “half

buffers” as well.

• Steady-State: Canopy graph analysis applies when a

system is in “steady state” operation. A system is said to

be in steady state when the frequency of items entering

and exiting remains constant.

• Second-Order Effects: The delay model ignores second-

order effects (e.g., the so-called Charlie and drafting

effects [5], [24]).

• Initialization: The pipeline stages are assumed to be

initialized empty upon power-up. The analysis can be

modified to accommodate non-empty initialization.

B. Bottleneck Analysis

Our recent work [8] used canopy graph analysis to identify

which parts of a circuit limit the throughput of the system.

The work in this paper leverages that research to create an

automated method for exploring possible bottleneck alleviation

solutions.

1) Bottleneck Identification: The method of [8] identifies

bottlenecks by finding the segments of the canopy graph

which limit throughput. The steps in that method are as

follows: 1) Compute the system canopy graph 2) identify

the limiting segments 3) compute an and-or formula that

represents bottlenecks (i.e., groups of “culprits,” with each

group being a candidate for bottleneck alleviation).

Step 1 uses the canopy graph based performance analysis [7]

to find the canopy graph of the entire system. Step 2 identifies

which parts of the circuit have canopy graph segments that

limit the canopy graph of the entire system. In particular,



TABLE I: TRICs and their applicability to each bottle-
neck type [8]

TRIC Type 1 Type 2 Type 3

Coalescing
√

X X

Parallelization
√

- X

Stage Splitting X
√ √

Loop Pipelining X
√ √

Duplication -
√ √

Loop Unrolling -
√ √

Buffer Insertion X -
√

for each limiting segment of the system canopy graph, there

are one or more nodes in the tree (which represents the

hierarchical structure of the circuit) that contribute to that

limiting segment. Step 3 generates a boolean formula that

indicates which nodes or sets of nodes of the circuit tree should

be modified in order to alleviate the bottleneck.

2) Bottleneck Classification: Previous work [8] classifies

bottlenecks based on which segment of a canopy graph limits

the throughput. We use the same terminology for classifying

bottlenecks in this paper.

Type I: Latency Dependent Bottlenecks. Latency dependent

bottlenecks are caused by a part of the system having a forward

latency that acts as a bottleneck. If a forward segment has

been indicated as a limiting segment, this implies that a Type

1 bottleneck exists at that system node.

Type II: Cycle Time Dependent Bottlenecks. Cycle time

dependent bottlenecks occur when the cycle time of one part

of the system limits throughput. In terms of canopy graphs,

if a top segment is indicated by the bottleneck identification

method, this implies that a Type 2 bottleneck exists at that

system node.

Type III: Occupancy Dependent Bottlenecks. Occupancy

dependent bottlenecks are caused by part of the system having

insufficient buffering or a high reverse latency. If a reverse

segment is indicated as a limiting segment, this implies that a

Type 3 bottleneck exists at that system node.

3) Bottleneck Alleviation Methods: A Transformation for

Increasing the Canopy Graph (TRIC) is a circuit transforma-

tion that can potentially alleviate a bottleneck [8]. Specifically,

a TRIC is a circuit transformation that raises the throughput

over some range of occupancies. TRICs can be categorized by

the type of bottleneck they can alleviate. The TRICs listed in

past work are summarized in Table I. Though this is not an

exhaustive list of all possible performance-improving circuit

transformations, the list shows that for each type of bottleneck

there are several possible TRICs to choose from.

III. AUTOMATED BOTTLENECK REMOVAL

This section describes the problem to be solved and our

method of solution in detail. Section III-A defines the problem

by specifying the inputs to and outputs from our solution

framework. Section III-B describes the search space, and

Section III-C presents methods for searching the space for

a solution.
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Fig. 4: Block level representation of a hierarchical

system
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Fig. 5: A tree representing system of Figure 4

A. Problem Domain

Our method needs as inputs the following: a hierarchical

representation of a circuit, a goal throughput, a set of TRICs,

and a cost function. The desired output is a sequence of TRICs

that, when applied to the circuit in the given order, yield a

new circuit that meets or exceeds the throughput goal while

minimizing the given cost function.

1) Input Circuit: Our method requires a hierarchical rep-

resentation of the circuit to be optimized. The hierarchical

representation consists of individual pipeline stages—each of

which has a forward latency, a reverse latency, and a cycle

time—and operators that combine those stages. The operators

supported are sequential, parallel, conditional, and iterative

composition operators. Figure 4 depicts a block diagram of

a circuit to be analyzed and optimized. Each block represents

a single pipeline stage. The hierarchical regions are marked

in order to highlight the nested, hierarchical structure of this

circuit.

Within our framework, we represent each hierarchical cir-

cuit as a tree in which the leaf nodes represent individual

stages and all other nodes are either parallel, sequential, con-

ditional, or loop operators. Figure 5 depicts the tree structure

of a hierarchical system. Parallel and conditional nodes have

exactly two children, sequential nodes have two or more

children, and loop nodes have one child.

2) Throughput Goal: The framework requires a throughput

goal for the circuit. The throughput of the system as a whole

will be computed using the method described in [7], and then

compared with the goal throughput.

3) Circuit Transformations (TRICs): In order to make

changes to the given circuit, our framework needs access to

a set of TRICs (TRansformations for Increasing the Canopy

graph) [7]. For use in our framework, a TRIC must specify



both how it changes the circuit tree and the criteria for its

applicability.

a) TRIC Applicability to a Bottleneck Type: Each TRIC

can alleviate some set of bottleneck types. The work in [7]

gives three different categories of bottlenecks that can occur;

these are given the labels Type I, Type II, and Type III.

Specifically, if a TRIC increases the area under the forward

segment of the canopy graph, that TRIC could potentially

alleviate a Type I bottleneck. Similarly, TRICs that affect the

top and reverse segments of the canopy graph can be applied

to Type II and Type III bottlenecks respectively. Note that

our framework does not determine bottleneck type each TRIC

applies to, but instead requires that this information be part of

the TRIC specification.

b) TRIC Circuit Changes: Each TRIC must specify

which set of circuit node types it can be applied to. For exam-

ple, the coalescing TRIC [8], which combines the functionality

of two stages into one stage, can be applied only to two leaf

nodes that are composed sequentially.

Each TRIC specifies its changes to the circuit in terms

of changes to the circuit tree, and the resulting circuit must

always be representable as a hierarchical circuit tree. Examples

of possible changes that a TRIC can make to the tree include

removing nodes, replacing nodes with nodes of a different

type, and adding nodes to a sequential construct. TRICs

are not allowed to generate any nodes with more than one

parent, thereby preserving the tree structure of the system

specification.

4) Cost Functions: Often, there are many different ways

to modify a circuit to reach a throughput goal. Therefore,

our framework requires a cost function that includes some

metric other than throughput. Common cost metrics include

the energy area product and Eτ2. For a cost function to be

compatible with our framework, it must be able to take the tree

representing the circuit as input and output the total cost of

the circuit. In addition, the cost function must be meaningful

when applied to any node in the circuit tree. For example,

applying the cost function to node n3 in Figure 5 should give

the cost of the sub-circuit including nodes n3, n5, and n6.

5) Output: The framework outputs the set of TRICS to

apply; this includes information about which nodes each TRIC

applies to and the order in which to apply the TRICS. It also

outputs the cost of the circuit for the given cost function, and

the throughput prediction for the circuit.

B. Solution Space

The solution space of this problem is the set of circuit

configurations that reach the goal throughput, with a secondary

goal of maintaining a low cost function. In this section, we

fully define the solution space by specifying the search tree

and also giving two methods for pruning the search tree.

1) Search Tree Structure: The search space can be repre-

sented by a tree structure in which each node corresponds to

a circuit with the same behavior as the original input circuit.

As an example, Figure 6 shows an example search tree for the

circuit in Figure 4. The root vertex of the tree, C0 represents
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Fig. 6: A sample search tree

the original circuit specification input to the system. Each of

its children represent the result of applying a TRIC to that

original specification. Specifically, for every vertex Ci there is

some set of transformations, TRICi, that potentially alleviate

a bottleneck in the circuit.

An edge from vertex Ci to vertex Cj exists if there is

some transformation in the set TRICi that changes the circuit

corresponding to Ci to the circuit corresponding to Cj . We

use the notation Ci
τ
→ Cj to denote that some TRIC, τ , when

applied to the circuit represented at node Ci will yield the

circuit at Cj . The weight of the edge is determined from the

given cost function. Specifically, the weight of an edge from

Ci to Cj is the change in the cost function between the two

circuits.

A path through the tree is a series of TRICs starting at

the root vertex C0 and ending at some vertex Ci. We use the

notation C0

pi

→ Ci to indicate that some path pi exists from

node C0 to node Ci. The tree consists of a set of vertices such

that for every vertex there is some path from the root node to

to that vertex. There is an edge from one vertex to another if

there is a TRIC that could be applied to a bottleneck in the

first circuit to produce the second. More formally, the set of

vertices, V , and edges, E, can be defined as follows:

V = {Ci | ∃piC0

pi

→ Ci}

E = {(Ci, Cj) | ∃τCi
τ
→ Cjs.t.τ ∈ TRICi}

2) Terminating Conditions: Edges in the graph can have

either positive or negative weights, depending on the specific

TRIC applied and the cost function being used. As a result, the

search space is non-monotonic, which makes it difficult to find

heuristics for pruning the search tree. Further, the search space

can be infinite because there can be arbitrarily long sequences

of TRICs to consider in the absence of methods to effectively

bound the search space.

Our framework currently uses two terminating search condi-

tions: reaching some maximum depth and finding what we call

a prime solution. Specifically, the setting the maximum depth

places the restriction that path length from the root vertex C0

to any graph vertex be less than d, that is ||p|| < d.

The second terminating condition is finding a prime solu-

tion. Intuitively, a prime solution is the first solution on a

given path that reaches the given throughput goal, g. This

limits the vertex set V by placing a restriction on the path p
that no other solution path exists that is a prefix of p. More



formally, Ci is a vertex in the search space iff ∀px|C0

px

→

Cx
p′

→ Ci, tpt(Cx) < g. That is, Ci is a reachable vertex

in the search space only if all the vertices that lie along the

path from C0 to Ci do not meet the goal. Note that since

our search space is non-monotonic, stopping the search at the

prime solution can potentially prevent the search from finding

a lower cost solution further past a prime solution. The trade-

off, which is worth this potential loss in solution quality, is

that using the prime solution prunes the search space to a more

manageable, non-infinite size.

C. Solution Methods

1) Exhaustive Search: An exhaustive search of the solution

space is quite time consuming. In an exhaustive search, every

possible path is explored until reaching the terminating con-

dition. For exhaustive search, we use both solution depth and

finding the prime solution as terminating conditions, thereby

pruning the search tree at some maximum depth and at every

prime solution. Figure 7 is a graphical representation of this

search. A search along a given branch terminates at the prime

solutions, shown as shaded circles.

Pseudocode for a recursive implementation of this algorithm

is shown in Figure 8. The exhaustive search method finds all

the solutions within the search tree, and then the lowest cost

solution that meets the throughput goal is reported as the final

solution.

Fig. 7: Exhaustive search with prime solutions as the
terminating condition

SolutionPath ExhaustiveSearch( TreeNode t, double goal )
for each t.getChild

if child.tpt >= goal
if lowCost > child.tpt

lowCostNode = child
else

ExhaustiveSearch( child, goal )
return lowCostNode.getPath

Fig. 8: Pseudocode for exhaustive search strategy

2) Greedy Search: A greedy search of the solution space

prioritizes the vertices of the search tree based on which of

the next vertices has the lowest heuristic function. If the node

that has the lowest heuristic function is a solution, (i.e. the

throughput is greater than the goal throughout) the search

ends and the lowest cost solution found is returned. Figure

9 is a graphical representation of a greedy search. Lightly

shaded nodes are analyzed but not taken while dark nodes are

the nodes along the chosen path. The final node is the prime

solution along that path.

Pseudocode for the greedy algorithm is shown in Figure 10.

Greedy search can be faster than an exhaustive search because

fewer vertices are visited. However, the solution obtained may

not be the lowest cost solution. The greedy search is also

bounded by prime solutions: it continues until it finds the first

solution along a path.

Fig. 9: Greedy search evaluates a smaller number of

nodes

SolutionPath greedy( TreeNode t, double goal )
for each t.getChild

if child.heuristic < lowHeuristic
lowHeuristicNode = child

if child.tpt >= goal AND child.cost < lowCost
lowCostNode = child

if lowHeuristicNode.tpt >= goal
return lowCostNode.SolutionPath

else
return greedy( lowHeuristNode, goal )

Fig. 10: Pseudocode for greedy search strategy

3) Lookahead Search: A lookahead search prioritizes ver-

tices based on cost information from nodes some depth, d,

down from each child of the current vertex. Thus, greedy

search can be called a special case of lookahead search with

a lookahead depth of 0 (i.e., only immediate children are

evaluated to determine the next step in the descent).

Figure 11 is a graphical representation of three steps in a

lookahead-2 search. The dark shaded nodes represent nodes

with the minimum value for the cost function at a given depth.

The algorithm takes one step in the direction of the shaded

node, and evaluates another set of nodes one level deeper

in that direction. Pseudocode for a recursive implementation

of this algorithm is shown in Figure 12. During the search,

algorithm keeps track of the minimum cost solution that it

has found at any point in the search space. When it finally

terminates, it will return this minimum cost solution.

A lookahead search can produce a more optimal solution

than a greedy search while still visiting a smaller number of

nodes than an exhaustive search. Therefore, it can offer a speed

advantage over exhaustive search while still returning a result

that is close to optimal.



Fig. 11: Three steps in a lookahead-2 search

SolutionPath LookAhead( TreeNode t, double goal, double depth )
for each t.getChild

expand Child lookDistance nodes ahead
record minCostSolution
record minHeuristicNode

if( minHeuristicNode.tpt >= goal )
return minCostSolution

else
return Lookahead( minHeuristicNode, goal, depth)

Fig. 12: Pseudocode for lookahead search strategy

IV. ADVANCED TREE PRUNING APPROACHES

This section details two further enhancements to our search

techniques. The first involves recognizing which sets of TRICs

are commutative (i.e. the order of the operations does not

matter.) The second is identifying when one TRIC effectively

undoes the action of a previously applied TRIC; we refer to

these TRICs as reciprocals. Both enable additional pruning of

the search space to eliminate redundant search paths, which

leads to faster optimization runtimes.

A. Commutative Transformations

1) Definition of Commutativity for TRICs: Two TRICs are

commutative if the order in which they are applied does not

affect either the structure or the performance of the resulting

circuit. Consider two TRICs τa and τb which transform graph

vertices such that C0

τaτb→ Cx and C0

τbτa→ Cy . If Cx and Cy

are equivalent for all possible initial nodes C0, then the two

TRICs are commutative.

2) Commutativity of the Bag of TRICs: The TRICs cur-

rently implemented in our tool are coalescing, stage splitting,

duplication, buffer insertion, and loop unrolling. When deter-

mining if the TRICs are commutative, we consider the set of

circuit hierarchy nodes that is affected by the TRIC. TRICs

that affect individual leaf nodes in the circuit hierarchy will

be commutative, since their effects on the circuit are strictly

local.

Loop unrolling and duplication, however, have more global

effects and are potentially not commutative. Both create copies

of some set of circuit nodes, thereby resulting in a change

to a large part of the circuit and limiting commutativity

of subsequent TRICs. For loop unrolling, we address this

issue by marking the circuit nodes that have been affected

by the loop unrolling. When subsequent transformations are

applied, the marking enables the framework to judge that the

transformation taking place after the loop unrolling is distinct

from one taking place before the loop unrolling.

In duplication, we address this issue by modifying the set of

TRICs that can be applied after duplication in order to restore

commutativity of the operation. In particular, once a portion of

the circuit has been duplicated, all TRICs that are applied to

one duplicated circuit component must also be applied to its

matching duplicated component. This is not likely to result in

loss of solution quality because applying a TRIC to only one

half of a duplicated node will not improve overall throughput.

This conclusion is reached based on knowledge of the

bottleneck identification method used by the framework, from

the work of [8]. Specifically, after duplication takes place, the

canopy graphs (i.e.the throughput plotted vs. the occupancy)

of the two duplicated paths will henceforth be combined

using the parallel operator. The parallel operator prescribes

that the canopy graphs of the two components are intersected

with each other. More formally, for duplicated components

the combined canopy graph is the minimum of the canopy

graph of each component: cg(k) = min(cg0(k), cg1(k)). If

two different TRICs, τa and τb are applied to the dupli-

cated nodes respectively, then the new canopy graph becomes

cg(k) = min(cga(k), cgb(k)). On the other hand, if the same

TRIC, τa, is applied to both of the duplicated components, the

resulting combined canopy graph is simply cga(k); similarly

if the same TRIC, τb, is applied to both of the duplicated com-

ponents, the resulting canopy graph is equal to cgb(k). Since

it is algebraically true that cga(k) ≥ min(cga(k), cgb(k))
and cgb(k) ≥ min(cga(k), cgb(k)), we conclude that the

throughput obtained by applying either τa or τb to both sides

will be equal to or greater than that obtained by applying τa

to one of the duplicated components and τb to the other.

For this reason, we preserve the commutativity of duplica-

tion with other operations by enforcing that TRICs applied to

one duplicated component must always be applied in kind to

the other. Preserving commutativity allows the search space

to be more effectively pruned and therefore further reduces

the execution time of the algorithm. While subtle interactions

between throughput and the cost function, which are not

covered by this explanation of commutativity for duplication,

may exist, comparing our results before and after pruning in

results Section V-B2 indicates that none of the best solutions

are lost after applying the as a pruning heuristic.

3) Exploiting Commutativity for Runtime Improvement:

Figure 13 shows a search tree composed of the permutations

of three TRICs: τa, τb, and τc. If the three operations are

commutative, the grayed nodes are removed from the search,

assuming a left-to-right traversal order for the tree.

We implement this pruning by creating a canonical repre-

sentation for each path already explored. The canonical rep-

resentation is a lexicographical reordering of the search path

such that two paths that are equivalent under commutativity

will also have the same canonical paths. Pseudocode for our

algorithm using canonical paths representations to prune the

search space is shown in Figure 14. After the tool determines a



!
a !b !c 

!
b 

!
c 

!
c 

!
b 

!
c !a !b !

a 

!
a !

c 
!
a !

b 

Fig. 13: Recognizing commutative operations to

prune the search space

CanonicalTest( CompositionNode node )
TRIC[] choices = bottleneckAnalaysis( node )
for each choice in choices

path += choice
canonical path = lexicographical order( path )
if( !previous paths.contains ( canonical path ) )

previous paths.add( canonical path )
TRICqueue.add( choice )

Fig. 14: Exploiting commutativity to prune the tree

set of possible next TRICs, it creates a canonical representation

for each one and adds the TRIC to the queue of TRICs to be

applied only if the canonical representation is not in the set

of paths already explored.

B. Reciprocal Transformations

1) Definition of Reciprocal for TRICs: Applying one TRIC

can potentially be the reciprocal of another, i.e., applying it

will undo the change made by an earlier TRIC such that the

resulting circuit has the same structure and performance char-

acteristics as the original circuit. More formally, consider two

TRICs τa and τb which transform nodes such that C0

τaτb→ Cx.

If Cx always equals C0 for all possible initial vertices C0, then

τb is the reciprocal of τa.

2) TRICs as Reciprocal Transoformations: Of the TRICs

used in our tool, there are two that are reciprocals of each

other. Specifically, coalescing and stage splitting, when applied

successively to the same pipeline stage, will net no resulting

change to the circuit. Although our current set of TRICs

does not include any other reciprocal transforms, introducing

new TRICs (e.g. transformations to increase or decrease the

level of parallelism) will likely create new pairs of reciprocal

transformations that, when taken together, reduce to an identity

transformation (i.e., cancel each other out).

3) Avoiding Identity Transforms to Improve Runtime: Fig-

ure 15 shows a search tree pruned to avoid identity transforms.

In this example, τa and τb together form an identity transform.

As a result, the tree vertex labeled as Cx is equivalent to the

vertex labeled at C0, and the shaded vertices will not be visited

during a search. Notice that the path consisting of the series

of TRICs τa, τb, τc is no longer explored. This will not result
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Fig. 15: Pruning search space to avoid identity trans-

forms

in the loss of a possible solution, however, because the path

consisting of only τc is equivalent.

We implement this optimization by flagging nodes within

the hierarchical circuit that have been coalesced or split by

past TRICs. These flags are then checked when determining

the set of possible TRICs at a search node vertex. For example,

if our tool lists coalescing among the possible optimizing

transformations on a circuit node that has already been split,

when that suggestion is checked against the flags it will be

removed and not explored during the search.

V. RESULTS

A. Experimental Setup

1) Circuit Examples: We test our approach for identifying

and alleviating bottlenecks on five examples of varied topolo-

gies and sizes. For each example, Table II indicates which

type of circuit constructs make up the specification, the initial

throughput as analyzed by the method of [7], and the number

of nodes in the hierarchical representation of the circuit.

2) TRICs Used: Previous work [8] gives examples of sev-

eral different TRICS that can be used to alleviate bottlenecks.

For the experiments given here, we used a set of five TRICs:

coalescing, stage splitting, duplication with wagging, buffer

TABLE II: Information about examples used

Name Circuit Type Nodes Throughput

DIFFEQ parallel, sequential, and loop 22 0.018

MULT parallel 10 0.038

CORDIC parallel and sequential 39 0.083

CRC conditional and sequential 23 0.029

JPEG Loop, conditional, and sequential 40 0.00047

TABLE III: TRIC applicability

TRIC Bottleneck Type Node Type

Coalescing Type I Leaf node

Stage Splitting Type II & III Leaf node

Duplication Type II & III Any node

Buffer Insertion Type III Sequential node

Loop Unrolling Type II & III Loop nodes



TABLE IV: Comparison between search methods

DIFFEQ MULT CORDIC CRC JPEG
Search Method Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s)

Exhaustive 0.036 20419 4.95 0.151 2151 882.81 0.250 1392 > 7200 0.5 196 > 7200 0.015 420445 > 7200

Greedy 0.036 21931 0.07 0.103 4485 0.07 0.167 2952 0.05 0.5 200 0.07 0.013 437606 0.20

Lookahead 1 0.036 21175 0.06 0.154 2197 0.22 0.182 2511 0.14 0.5 196 0.58 0.015 420445 15.29

Lookahead 3 0.036 21175 2.45 0.151 2151 15.65 0.250 1392 28.17 0.5 196 506.70 0.015 420445 495.35

TABLE V: Speed improvement with additional tree pruning

DIFFEQ MULT CORDIC CRC JPEG
Search Method Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s) Tpt Cost Time (s)

Exhaustive 0.036 20419 0.99 0.151 2151 21.47 0.250 1392 66.87 0.5 196 17.57 0.015 420445 2.70

Lookahead 1 0.036 21175 0.06 0.154 2197 0.20 0.182 2511 0.14 0.5 196 0.43 0.015 320445 0.39

Lookahead 3 0.036 21175 0.28 0.151 2151 4.22 0.250 1392 11.69 0.5 196 5.11 0.015 420445 1.16

insertion, and loop unrolling. Table III shows the bottleneck

types and circuit node types that each of the TRICs applies

to. While this is not an exhaustive set of possible circuit

transformations, it is sufficient in that each type of bottleneck

is handled by at least one of the TRICs.

3) Delay Models, Area and Energy: For these experiments,

we use estimates for delay, area, and energy for each stage

based on an estimate of its complexity. As in previous

work [8], the delay model estimates the forward and reverse

latency of a buffer stage at 1 ns, for a cycle time of 2 ns.

Stages with logic have longer forward latencies, based on a

rough estimate of the complexity of the logic (e.g. one full

adder has twice the forward delay of the buffer stage). Reverse

latencies are not affected by the presence of logic. Similarly,

we use a normalized area of one for each buffer stage and an

energy of two for each buffer stage.

B. Experimental Results

1) Comparing solution methods.: The running time and

solution quality for any example varies based on the type of

search method used. Table IV compares the the runtime of the

basic method described in Section III-A on a 2.1 GHz Intel

Core 2 Duo machine. For each example, the throughput goal is

low enough to obtain meaningful results from the exhaustive

method while being high enough to highlight the differences

between the methods. CORDIC, CRC, and DIFFEQ have a

50% throughput improvement goal while MULT has a 2x

throughput goal and JPEG has a 20x throughput goal. This

experiment uses the cost function of energy over the square

of throughput, which is equivalent to the common Eτ2 metric.

It also uses Eτ2 as its search heuristic during the greedy and

lookahead searches.

Table IV shows results for each solution method. The

lookahead method appears twice with two different lookahead

depths, 1 and 3. For every example, the exhaustive method is

the most time consuming while the greedy method is the least

time consuming. In addition, the exhaustive method gives a

lower cost solution than the greedy solution for every example.

Note that for some examples, the exhaustive method did not

fully finish after running for over 2 hours. The result shown

is the best out of the partial set of results.

Based on these results, the lookahead 1 search seems to

be the best tradeoff between runtime and solution quality. It

found the best solution possible for CRC and JPEG and is

within 4% of the best solution for DIFFEQ and MULT. On

CORDIC, however, it yields a cost that is 80% higher than the

best solution. In addition, as the throughput goals get higher,

the error in the lookahead 1 search will likely increase as well.

2) Runtime Improvement with Tree Pruning: Table V shows

the runtimes with the addition of the pruning methods de-

scribed in Section IV. Greedy is not included because it will

not benefit much from additional tree pruning. All the other

search methods find the same quality of solutions as those

without pruning, but with at a much faster runtime. The quality

of the results, in terms of throughput and cost, indicates that

the pruning we employ does not eliminate good solutions from

the search space.

Lookahead 1 search has the least amount of runtime benefit

from the use of additional pruning, since it was already

searching a much smaller number of vertices than the other

methods. Both lookahead 3 and the exhaustive search method

show large improvement in the execution time with additional

tree pruning. JPEG shows the most improvement, with the

exhaustive and lookahead 3 searches improving by 2662x and

428x respectively. Although DIFFEQ shows the least amount

of improvement, the speed improvement is still quite high:

exhaustive and lookahead 3 search runtimes improve by 5x

and 8.7x respectively.

Based on these results, the search method with the best

tradeoff between execution time and solution quality is looka-

head 3. In all but one of the examples, it reached a solution

with the same cost as the exhaustive solution. In DIFFEQ, it

was just 3.7% higher. For these reasons, lookahead 3 is the

search we use in the following experiments to gather all further

results.

3) Varying Cost Metrics and Goals: Based on the execution

time and solution quality of the examples in the previous

sections, lookahead 3 is a efficient method for finding a high-



TABLE VI: Results using different cost functions and goal throughputs

Various Cost Functions

Initial & Target Throughput Eτ2 Eτ · a Energy area Energy · area

Initial tpt Increase (X) Goal tpt Final tpt Cost Final tpt Cost Final tpt Cost Final tpt Cost Final tpt Cost

DIFFEQ
0.018 1.500 0.027 0.036 21175 0.031 17160 0.030 24 0.030 28 0.031 528
0.018 2.000 0.036 0.036 21175 0.038 26640 0.036 26 0.038 36 0.038 1008

MULT
0.038 2.000 0.077 0.151 2151 0.100 20700 0.077 44 0.077 44 0.077 1936
0.038 5.000 0.192 0.414 327 0.400 21725 0.200 50 0.200 100 0.200 4704

CORDIC
0.083 1.500 0.125 0.250 1392 0.128 57215 0.143 81 0.128 88 0.128 7304
0.083 2.000 0.167 0.333 801 0.274 61136 0.186 81 0.167 152 0.186 12636
0.083 3.000 0.250 0.500 364 0.404 55259 0.333 86 0.255 204 0.255 17748

CRC
0.286 1.500 0.429 0.500 196 0.500 7056 0.500 49 0.500 144 0.476 3360
0.286 2.000 0.571 0.571 266 0.571 19488 0.571 82 0.571 220 0.571 9676

JPEG
4.73E-04 20.000 9.47E-03 1.53E-02 420445 1.28E-02 1044108 1.28E-02 97 1.28E-02 136 1.28E-02 13386
4.73E-04 40.000 1.89E-02 2.22E-02 212625 2.22E-02 1096200 2.22E-02 105 2.22E-02 232 2.22E-02 24360
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Fig. 16: JPEG hierarchy with detected bottlenecks

quality solution, if it is not necessary that the solution be com-

pletely optimal. Table VI therefore uses the lookahead 3 search

method to find the solution for two different cost functions.

Each example is tested for two different throughputs: DIFFEQ,

CORDIC, and CRC have goals of 50% and 2x throughput

improvement while MULT has goals of 2x and 5x throughput

improvement and JPEG has goals of 20x and 40x.

For each example, we ran the search method with five

different cost metrics. The search heuristic used for each cost

was simply the cost over throughput. In every case, our system

was able to find a solution that meets the throughput goal. This

indicates the ability of our system to work with a variety of

different cost functions.

4) JPEG Case Study: A more detailed look at one example,

the JPEG encoder [11], shows the steps in the optimization

process. This benchmark uses 8-bit arithmetic and is set to

convert an image of 8 pixels by 8 pixels. Figure 16 shows

a diagram of the hierarchy of the JPEG encoder. It includes

nested loops, conditionals, and serial composition. The JPEG

benchmark was also modeled at the gate level in Veriog; the

tool for performance analysis can also output a Verilog model

of the hierarchical system.

Because the main bottleneck is the loop, one of the first

steps suggested by the bottleneck identification method is

loop unrolling. If the inner loop is unrolled one time (i.e. the

body of the inner loop is repeated twice) the performance is

expected to double. Figure 17 shows the analyzed performance

of the system after applying the loop unrolling TRIC one time.

For comparison, the non-optimized performance is displayed

again in the same chart. Verilog simulation confirms that
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Fig. 17: The performance of the JPEG benchmark
after loop unrolling

the throughput indeed reaches to twice the non-optimized

throughput. The throughput predicted by the analysis method

is 9.19E-4 and the throughput found through simulation is

9.46E-4. This is a percent error of about 2.9%. This may be

attributed to errors in modeling the circuit or to a possible

over-estimate of the overheads associated with a pipeline loop.

To provide a challenge for the optimization framework, we

next give it a goal throughput of 40x the initial throughput,

which would require it to attain the throughput of 1.84E-

2. The optimization method also needs a cost function to

minimize during its search; in this case we use Eτ2 as the cost

function. The optimization method performs a total of 13 steps

in reaching this goal, and in alleviates bottlenecks throughout

the entire system. Figure 16 indicates the areas of the circuit

in which the optimization method applies TRICs. The areas

are numbered to show the order in which the TRICs were

applied. In particular, the loop receives much attention, with

the first three TRICs going towards loop unrolling. Within the

loop, splitting of a slow stage also takes place. After the fifth

TRIC, the loop ceases to be the bottleneck and the attention

is turned to the first conditional in the system, which needs to

be slack matched. Finally, a very slow, large multiplication at

the end of the sequence of stages becomes the bottleneck, so

it is split and pipelined into a series of faster stages in using

a sequence of TRICs.

The final throughput of the system after all this optimization
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Fig. 18: JPEG performance after 40x throughput im-

provement

takes place is shown in Figure 18. The final performance

achieved is 2.2E-2. Though this slightly overshoots the perfor-

mance goal, the optimization system found that this circuit is

the best one for meeting the goal throughput of 1.84E-2 while

maintaining a low energy cost. For comparison, the results

before optimization are also shown on the same chart; the

reader must look closely as the initial throughput was much

lower.

VI. CONCLUSION

This paper presented a framework for iterative bottleneck

removal. Our results show our framework can identify a series

of circuit transformations that reach the desired throughput

goal while maintaining a low value for the given cost function.

The framework was able to achieve between 50% and 20x

throughput improvement when using the Eτ2 cost metric on

five example circuits without advanced pruning techniques.

With the addition of advanced pruning and searching tech-

niques, it was able to achieve between 2x and 40x throughput

improvement on all example circuits. When comparing the dif-

ferent search methods, the results also indicate that lookahead

3 search offers a good trade-off between algorithm run time

and solution quality compared to greedy search and exhaustive

search. The framework can handle a variety of different cost

metrics, and our results show successful optimization for five

different cost functions: Eτ2, energy·area·, energy alone, area

alone, and the energy-area product. All execution times using

advanced pruning techniques were less than two minutes for

all examples over all cost functions and throughput goals. The

results as a whole indicate that our framework is capable

of quickly providing high-quality solutions for minimizing

various cost functions while meeting a throughput goal.

REFERENCES

[1] A. T. Alexander Smirnov. Heuristic based throughput analysis and
optimization of asynchronous pipelines. In Proc. Int. Symp. on Advanced

Research in Asynchronous Circuits and Systems, May 2009.
[2] P. A. Beerel, N.-H. Kim, A. Lines, and M. Davies. Slack matching

asynchronous designs. In Proc. Int. Symp. on Asynchronous Circuits

and Systems, 2006.
[3] S. M. Burns. Performance Analysis and Optimization of Asynchronous

Circuits. PhD thesis, California Institute of Technology, 1991.
[4] S. Chakraborty, K. Yun, and D. Dill. Timing analysis of asynchronous

systems using time separation of events. IEEE Trans. on Computer-

Aided Design, 18(8):1061–1076, Aug. 1999.

[5] J. C. Ebergen, S. Fairbanks, and I. E. Sutherland. Predicting performance
of micropipelines using Charlie diagrams. In Proc. Int. Symp. on

Advanced Research in Asynchronous Circuits and Systems, pages 238–
246, 1998.

[6] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1):12–18, 2002.

[7] G. Gill, V. Gupta, and M. Singh. Performance estimation and slack
matching for pipelined asynchronous architectures with choice. In Proc.

Int. Conf. Computer-Aided Design (ICCAD), pages 449–456, Nov. 2008.
[8] G. Gill and M. Singh. Bottleneck analysis and alleviation in pipelined

systems: A fast hierarchical approach. In Proc. Int. Symp. on Advanced

Research in Asynchronous Circuits and Systems, May 2009.
[9] M. R. Greenstreet and K. Steiglitz. Bubbles can make self-timed

pipelines fast. Journal of VLSI Signal Processing, 2(3):139–148, Nov.
1990.

[10] M. R. Greenstreet, T. E. Williams, and J. Staunstrup. Self-timed iteration.
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