
Bottleneck Analysis and Alleviation in Pipelined

Systems: A Fast Hierarchical Approach

Gennette Gill and Montek Singh

University of North Carolina at Chapel Hill

Chapel Hill, NC 27599, USA

{gillg,montek}@cs.unc.edu

Abstract—Fast bottleneck detection and elimination is an
important component of any design flow that aims at producing
high-throughput systems. Bottlenecks can be difficult to find and
correct, because their causes are diverse and often subtle. In this
paper, we build on our recent method for performance analysis
to develop a method for bottleneck identification and alleviation
for pipelined asynchronous systems.

More specifically, this paper makes two contributions. First, we
introduce a method that, given a throughput goal, identifies which
parts of the pipelined system constrain its throughput. Each such
bottleneck is categorized based on the type of structural trans-
formation that could potentially alleviate it: increase degree of
pipelining (stage splitting, stage duplication, and loop unrolling);
decrease forward latency (stage merging and parallelization); and
perform slack matching. The second contribution is a method
that guides the user to systematically apply these modifications
to alleviate the bottlenecks and reach a target throughput goal.

We have validated the bottleneck analysis method on several
examples and were able to attain the desired throughput goal
in each case through iterative application of our bottleneck
alleviation method. Runtimes were negligible in all cases (less
than 50 ms).

I. INTRODUCTION

This paper introduces a fast hierarchical approach to address

a key challenge in high-performance design: finding and

correcting throughput bottlenecks in pipelined asynchronous

systems. Bottleneck detection consists of pinpointing the pre-

cise portion of the architecture that is limiting the achievable

throughput. Once a bottleneck has been found, our technique

systematically assists the designer to apply certain structural

transformations to alleviate the bottleneck.

In order to make the problem tractable, we focus on a spe-

cial class of asynchronous systems: those with hierarchically

composed pipelined architectures. Such structures are quite

common when the system is designed using high-level trans-

lation methods (e.g., Tangram/Haste [12], Balsa [6]) because

high-level specification languages tend to be hierarchically

block-structured. Moreover, even when the design approach

is ad-hoc, designers often tend to implement systems with

hierarchical structures. In particular, we target architectures

that are hierarchical compositions of basic pipeline stages us-

ing sequential, parallel, conditional, and iterative operators. By

focusing on this special but practically useful class of systems,

we are able to leverage information about their hierarchy to

provide fast runtimes, thereby making our approach suitable

for repeated application in a design flow.

Bottleneck detection and alleviation is critical to any de-

sign flow that aims at producing high-performance systems.

Bottlenecks can be difficult to find and correct because their

causes are diverse and often subtle. In particular, while in

synchronous systems, the problem often reduces to that of

finding the longest critical path between two clocked reg-

isters, the problem is much harder for asynchronous sys-

tems because the absence of clocking means the problem

is not easily decomposable. Further, for both synchronous

and asynchronous systems, merely finding local cycle times

is not sufficient because they do not account for complex

system-level interactions (e.g., systems with choice, feedback

due to algorithmic loops, etc.). In the absence of a fast

automated bottleneck analysis tool, a designer typically must

contend with costly simulation to search for bottlenecks, a

time-consuming and error-prone procedure that can make the

typical design-analyze-optimize cycle in the design flow quite

inefficient.

Central to the approach of this paper is the concept of

canopy graphs, i.e., the graph of a system’s throughput as

a function of the number of data items in the system (i.e., its

occupancy), which are often trapezoidal in shape, resembling a

canopy [23], [10], [15]. The key insight used in this work is as

follows. Given a system composed of, say, two subsystems,

it is generally non-trivial to compute the overall throughput

from only the knowledge of the throughputs of the two

subsystems. However, given the complete canopy graphs of

the two subsystems, it is relatively simple to compute the

canopy graph, and hence throughput, for the overall system.

That is, while throughputs of subsystems are not directly

composable, the canopy graphs are actually composable. Our

recent work [7] demonstrates and exploits this property to

yield a fast hierarchical method for throughput analysis.

The contribution of this paper is twofold. First, we introduce

a fast method for identifying throughput bottlenecks in a

pipelined system. To this end, we build upon our recent

analysis method as follows: given the canopy graph of a

system computed by the method of [7], identify the limits on

the achievable throughput, and descend the system’s hierarchy

to find the cause (i.e., push the “blame” onto lower levels of

hierarchy). One or multiple bottlenecks may be identified by

this method. The second contribution is a method that helps

alleviate the identified bottlenecks. In particular, it accepts a

given throughput goal, and reports those bottlenecks that need

1

to be corrected. For each bottleneck, the method suggests one

or more structural modifications that may help in correcting

that bottleneck, thereby guiding the designer to explore the

space of optimizations that may lead to meeting the desired

throughput goal.

The bottleneck identification and alleviation methods were

implemented in an automated tool, and validated using a num-

ber of examples. For each example, the throughput analysis

method correctly estimated the system’s throughput, as con-

firmed by Verilog simulation. Further, for each example, the

bottleneck identification method was used with a throughput

goal set higher than the analyzed throughput. In each case, sev-

eral bottlenecks were identified. Finally, the alleviation method

was used to guide us to correct the bottlenecks by applying

structural modifications. After the modifications, performance

analysis was used again to confirm that the throughput target

was met. In each case, the method successfuly identified and

helped alleviate the bottlenecks and reach the throughput goal.

The tool’s runtime was negligible (less than 50 ms).

a) Previous Work.: While there has been much work on

asynchronous performance analysis, the problem of bottleneck

analysis has so far not been adequately addressed. A recent

approach by Venkataramani et al. [22] introduces the notion

of a global critical path in a system, and uses simulation and

profiling to help the designer identify targets for optimization.

Although the approach can be useful in identifying bottle-

necks, its reliance on simulation can make it time-consuming.

Other prior approaches do not directly target bottleneck

identification, but focus instead on finding a system’s peak

achievable throughput. These include (i) simulation-based ap-

proaches [3], [18], [26]; (ii) Markov analysis methods [14],

[17], [25]; (iii) methods based on graph unfolding [13],

[4]; and (iv) closed-form analytical solutions [23], [9], [19],

[15]. The simulation, Markov analysis, and graph unfolding

methods all tend to require long running times. The closed-

form solutions, on the other hand, apply only to a limited set of

architectures (e.g., rings, meshes, linear and simple fork-join

pipelines). Recently, a graph-theoretic approach was proposed

that avoids graph unfolding to achieve quite fast runtimes [16].

However, all of the aforementioned approaches that are not

simulation-based cannot handle systems with choice, thereby

limiting their applicability to systems without conditionals or

data-dependent loops. Simulation-based approaches generally

are able to handle choice, but require long runtimes.

We recently introduced an analytical method that, like this

paper, focuses on hierarchical pipelined systems, and is able to

provide throughput estimates even for systems with over 100

stages in negligible runtime [7]. The method is able to handle

systems with choice. This paper builds upon that approach and

extends it to the problem of bottleneck analysis.

The remainder of this paper is organized as follows. Sec-

tion II provides background on the canopy graph method of

analyzing the throughput of asynchronous systems, including

a review of our recent hierarchical analysis approach [7]

that is the starting point for the work reported in this pa-

per. Section III then covers some preliminaries, including

Fig. 1: A simple self-timed pipeline

definitions and notation, that will be used throughout the

paper. Section IV presents our first contribution: the bottleneck

identification method. Section V than presents our second

contribution: the bottleneck alleviation approach. Section VI

presents experimental results, and finally Section VII gives

conclusions.

II. BACKGROUND: PERFORMANCE ANALYSIS USING

CANOPY GRAPHS

This section reviews the methods for throughput analysis

using canopy graphs. First, Section II-A focuses on rela-

tively simple structures: linear pipelines and rings. Then,

Section II-B reviews our recent approach [7] that extends

canopy graph analysis to the more complex structures of

conditionals and loops. Later, Sections IV and V will build

upon this background to present the new contributions of this

paper.

b) Assumptions.: The analysis method reviewed here

and the new approaches introduced later make the following

assumptions:

• Handshaking Model: The pipeline stages used the bun-

dled data model, and are each capable of storing one

data token concurrently with other stages (i.e., often

referred to as “fully decoupled,” or “full buffers,” or “high

capacity”). The analysis can be easily adapted to “half

buffers” as well.

• Second-Order Effects: The delay model ignores second-

order effects (e.g., the so-called Charlie and drafting

effects [5], [24]).

• Initialization: The pipeline stages are assumed to be

initialized empty upon power-up. The analysis can be

modified to accommodate non-empty initialization.

A. Analysis of Basic Pipelined Structures

1) A Pipeline Stage: Figure 1 shows the basic structure of a

bundled-data self-timed pipeline. Each pipeline stage consists

of a controller, a storage element (“data latch”), and processing

logic.

Three key metrics characterize the performance of a single

pipeline stage: (i) the forward latency, LStage
i
, is the time

it takes one data item to flow through Stagei assuming the

stage was empty and ready; (ii) the reverse latency, RStage
i
,

is the time it takes a “hole” to flow backward through Stagei

assuming the stage was initially full; and (iii) the cycle time,

TStage
i
, is the minimum time that must elapse between two

successive data items entering or leaving that stage. The cycle

time depends on the forward and reverse latencies and on the

2

1 2 N-2 N-10

Data
limited
region

Hole
limited
region

Max ideal throughput
= 1/(L+R)

Limited by a
slow stage

Slo
pe
= 1

/ΣL Slope = 1/ΣR

Ring Occupancy, k

Ri
ng
 Th

rou
gh
pu
t

N

Fig. 2: The throughput of a ring as a function of the

number of data items (a “canopy graph”)

type of handshaking used. Typically, for full-capacity stages,

a complete cycle consists of one forward and one reverse

latency, so the cycle time is the sum of the two latencies:

TStage
i

= LStage
i
+ RStage

i
.

2) Self-Timed Rings: The classic work on analyzing self-

timed rings is by Williams and Horowitz [23] and by Green-

street et al. [10], [9]. The throughput of the ring—measured

as the number of data items crossing any stage boundary per

second— is highly dependent on the ring’s occupancy, i.e., the

number of data items revolving inside it. In particular, the plot

of the maximum throughput versus occupancy, resembles the

shape of a canopy, and will be referred to in this paper as a

“canopy graph.” Figure 2 shows an example.

Data Limited Operation. When the number of data items

in the ring is small, the throughput is low because the stages

are underutilized, and the pipeline is said to be “data limited.”

In particular, if there are k items in the ring, then in the time a

particular data item completes one revolution around the ring

(i.e.,
∑

i LStage
i
), all k items would have crossed any stage

boundary in the ring. Hence, the maximum ring throughput is

proportional to the ring occupancy: tptRing ≤ k/
∑

i LStage
i
.

Hole Limited Operation. If the ring is filled with data

items in nearly all stages, then the ring throughput is limited

because holes are needed to allow data items to flow through

the pipeline; the pipeline is said to be “hole limited.” If there

are h holes in the ring, then in the time a particular hole

completes one revolution around the ring (i.e.,
∑

i RStage
i
),

all h holes would have crossed any stage boundary in the

ring, traveling in a direction opposite to data. Hence, h data

items would have crossed any stage boundary in the forward

direction. Thus, if N is the number of stages in the ring, then

h = N −k, and the maximum ring throughput is proportional

to the number of holes: tptRing ≤ (N − k)/
∑

i RStage
i
.

Limitations Due to Local Cycle Times. The ring throughput

is also limited by the cycle time of the slowest stage. In the

figure, the horizontal line represents the maximum operating

rate that can be sustained by the slowest stage in the ring:

tptRing ≤ 1/maxi(TStage
i
).

3) Linear Pipelines: The behavior of a linear pipeline,

under steady-state operation, can be modeled as that of a self-

timed ring. In particular, in steady state, as one item leaves

Fig. 3: Parallel composition: a) structure, b) canopy

graphs

the right end of the pipeline, another item enters on the left.

As shown by Lines [15] and Singh et al. [21], the linear

pipeline’s throughput is correctly modeled as a canopy graph,

with the same three constraints on its operation (data limited,

hole limited, and constrained by local cycle times).

However, there are two key differences that must be noted.

First, the occupancy in a linear pipeline can be fractional. That

is, unlike a ring which always contains an integral number of

items, a linear pipeline can have an average occupancy that

is non-integral (e.g., 4.5 items) because of phase differences

between entering and exiting items.

Second, a linear pipeline can actually operate in the entire

region under the canopy. In contrast, the operating point of a

ring in steady state is typically on the boundary of the canopy.

The reason for this difference is that the ring analysis assumed

that the ring is isolated and operates autonomously without any

interaction with the environment; therefore, it operates at the

maximum throughput possible for a given occupancy. On the

other hand, a linear pipeline’s operation is constrained by both

the left and right environments, which can force it to operate

at a throughput below the maximum attainable throughput for

a given occupancy.

4) Parallel and Sequential Composition: As shown by

Lines [15], canopy graph analysis can also be applied to

parallel and sequential compositions of linear pipelines.

For the fork-join parallel structure of Fig. 3a, the throughput

of the composition is constrained by the intersection of the

canopy graphs of the branches. The reason is that the operation

of the fork-join pair is constrained so that (i) the throughput of

each branch is the same, and (ii) the number of tokens in each

branch is the same (assuming they were initialized empty). The

result of the intersection of the constituent canopy graphs is

also a canopy graph as shown in Fig. 3b.

Similarly, when two pipelines are composed sequentially, as

in Fig. 4a, the throughput of the composition is constrained

by the horizontal sum of the canopy graphs of the two

constituents. The reason is that, once again, the throughput

of each pipeline must be the same, but the total occupancy

is now the sum of the occupancies of the two pipelines. That

is, the composition can attain any throughput that both of the

pipelines can sustain, and for each such throughput, the net

occupancy is simply the sum of the two occupancies. The

result is also a canopy graph as shown in Fig. 4b.

3

Fig. 4: Sequential composition: a) structure, b)

canopy graphs

!"#$% &"'(%

…

…

)#*(+,-%

)#*(+,.%

…
)""/%

Fig. 5: A pipelined, speculative choice construct

B. Analysis of More Complex Structures

Our recent work in [7] extended the canopy graph method

to handle conditional and iterative constructs. The former

correspond to if-then-else blocks of computation, and the latter

correspond to loops.

1) Conditional Constructs: Two flavors of conditionals

are commonly used: speculative and non-speculative. In the

former, both branches of computation are allowed to proceed,

and the Boolean outcome is then simply used to select the

result corresponding to the correct branch. At the structural

level, a speculative conditional is simply composed using fork-

join constructs, as shown in Fig. 5, where the join stage acts

as a multiplexor that reads both results but copies only one

of them to the output. Hence, the performance of speculative

conditionals can be analyzed using the method just described

for analyzing parallel fork-join compositions.

Non-speculative conditionals are implemented as shown in

Fig. 6. The incoming stream of data items is split into two

streams: an item is steered into either the then branch or the

else branch depending on the outcome of a Boolean evaluation.

Subsequently, the two streams are merged (i.e., interleaved)

into a single stream again. The merging is done so as to

preserve the original ordering of the data items as they exit the

conditional. Therefore, similar to the speculative conditional,

the Boolean value is again communicated to both the split and

merge stages.

Simplifying Assumption: For clarity of presentation,

the analysis described here ignores second-order effects

(e.g., effect on performance if Boolean outcomes are cor-

related/clustered). The complete approach in [7] does cover

these second-order effects, however, and the interested reader

is referred to it for details.

a) Performance Analysis.: Interestingly, the analysis of

a conditional construct is somewhat similar to the analysis

of a parallel fork-join pair, but with a slight modification to

incorporate branch probabilities. Consider a conditional that

…
…

!"#$%

#&'#%
!"#$%& '()*(&+,)-&

()!)
*$
%

()!)
+,!
%-++&#)$% …

…

Fig. 6: A pipelined, non-speculative choice construct

� � � � � � � �� � � � � � � � � � � �
split merge

� ��� ���	
� � �� ���	
��
������
�����
Fig. 7: A conditional from CRC

has probability p0 of branch0 being chosen and p1 of branch1

being chosen (p0 + p1 = 1). Then, to a first-order approx-

imation, the average throughput delivered by each branch

is proportional to that branch’s probability:
tpt

0

p0

= tpt
1

p1

.

Moreover, since items exit the conditional in the same order

they entered, the average occupancies of the two branches, k0

and k1, to a first-order, are also proportional to the branch

probabilities: k0

p0
= k1

p1
.

In other words, the operation of the two branches is con-

strained such that their occupancies and throughputs, when

divided by their respective branch probabilities, are equal.

This result suggests that the constraints on the operation of

the overall conditional can be computed by intersecting the

canopy graphs of the two branches after appropriate scaling.

Specifically, the canopy graph for each branch is scaled so both

its axes are divided by the respective branch probability. The

region underneath the intersection of the two scaled canopy

graphs, which is also a canopy graph, then represents the joint

operating region for the two branches. Finally, this result is

composed together as a fork-join with the third branch that

carries the Boolean outcome (See Fig. 6).

Fig. 7 is an example of a conditional found within the cyclic

redundancy check (CRC) algorithm. Suppose it is given that,

for this conditional, p0 = 0.7 and p1 = 0.3. Fig. 8 show the

canopy graphs for branch0 and branch1 scaled by 1

0.7
and 1

0.3
,

respectively. The effective maximum occupancy of the scaled

canopy graph for branch0 is the original branch occupancy,

16, divided by the scaling factor p0, which gives an effective

maximum occupancy of about 23 items. That is, when branch0

is completely full the two branches of the pipeline together

contain a total of 23 items.

The intersection of the two scaled graphs shows that the

conditional has an overall maximum throughput of 0.36. In-

terestingly, these throughput and occupancy values are higher

than either of the branches on its own, because the two

branches operate on distinct data sets in parallel. Fig. 8 also

shows data points from a Verilog simulation, which agree

with the results of the analysis. (Finally, this canopy must

be composed with the canopy graph of the Boolean branch,

4

0 5 10 15 20 25 30 35

0.0

0.1

0.2

0.3

0.4

0.5

Occupancy

T
h
ro
u
g
h
tp
u

branch
0

branch
1

combined

Predicted

Simulated

T
h
ro
u
g
h
p
u
t

Fig. 8: Canopy graph for CRC at p1 = 0.3

which is ignored for simplicity in this example.)

In general, the performance of a conditional is dependent on

the branch probabilities. If the branch probabilities are varied,

the scaling factors applied to the respective canopy graphs

vary, thereby resulting in different canopy graphs for the result.

2) Iterative Constructs: Loops in high level specifications

are typically implemented as self-timed rings in hardware.

Although the throughput of rings has been well studied [23],

[10], the analysis has mostly focused on isolated rings running

autonomously with a fixed number of data items and without

communication with an environment. The recent approach

of [7] extends the analysis to fully handle various types of

loops, and is reviewed here.

First, let us briefly note that loops can be implemented as

single-token or multi-token rings. Traditional hardware design

methods typically allow only a single token inside a ring.

This limits the performance, but avoids the complications of

allowing multiple data tokens within the ring. Recent work by

Gill et al. [8] introduced an approach to implementing certain

loops in a manner that allows them to operate on multiple

tokens concurrently. This approach to multi-token loops, called

loop pipelining, handles the flow of control using a special

ring interface, and handles structural hazards created by the

presence of multiple tokens by adding extra storage where

needed. A monitor in the interface prevents overfilling of the

loop by limiting its occupancy to some upper bound, k, so

as to avoid hole-limited scenarios. The approach assumes that

either the iteration count is the same for all data items so that

the items exit the loop in order, or that out-or-order completion

is acceptable, or if a reorder mechanism is needed, it is present

outside the loop.

The method of [7] analyzes the performance of loops

(single-token as well as multi-token) using canopy graphs.

The method first cuts open the loop, and focuses solely on

the loop’s body, which could be as simple as a linear pipeline,

or a complex hierarchical pipelined block. The performance

of this loop body is analyzed to yield a canopy graph. Next, a

new canopy graph is computed for the loop as a whole from

the canopy graph of the loop’s body as follows. If the loop is

a single-token ring, then the canopy graph of the loop body

is clipped at unit occupancy. On the other hand, if the loop

is a multi-token ring with at most k occupancy, then the loop

body’s canopy graph is clipped at occupancy k. Finally, the

canopy graph is scaled down by the number of iterations each

token undergoes. This scaling is required because the correct

measure of the loop’s throughput is actually the number of

� � � � � � � � � �� � � � � � � � � �� � � � � � � � � ����� ���branch0

branch1

Boolean

����Loop
interface

Fig. 9: Pipelined GCD loop

0 2 4 6 8
0.00

0.05

0.10

0.15

Occupancy

T
h
ro
u
g
h
tp
u

Loop body

Loop

Simulated

T
h
ro
u
g
h
p
u
t

Fig. 10: Canopy graph analysis for GCD

tokens entering/exiting per second from/to the loop’s input and

output environment; in contrast, the loop body’s throughput

is the number of tokens crossing an internal stage boundary

per second, which is higher. If the iteration count is variable,

the approach approximates the analysis by using the average

number of iterations per token.

As an example, Fig. 9 shows a pipeline ring that imple-

ments an iterative algorithm for finding the greatest common

divisor (GCD) of two numbers. The loop body consists of

a conditional, implemented speculatively (both branches are

computed, and the correct result selected using the Boolean

outcome). Suppose loop pipelining [8] was used to allow the

ring to operate with as many as 8 data tokens concurrently,

and that the average iteration count is given to be 3.33. First,

the canopy graph of the loop body is computed using the

method for analyzing parallel fork-join structures, to produce

the canopy graph of Fig. 10 (dashed lines). Next, the canopy

graph is clipped at occupancy 8, and finally scaled down by

the expected iteration count of 3.33 to yield the canopy graph

for the loop as a whole, also shown in the same figure (solid

lines). For experimental validation, the figure also shows data

from Verilog simulation, which follows closely with the result

of analysis.

Interestingly, as with linear pipelines, there are two key

differences between the performance of loops and that of

isolated self-timed rings that operate autonomously without an

environment. Much like linear pipelines, a loop’s occupancy

can be fractional because of phase differences between arrival

and departure of tokens. Moreover, a loop also can operate in

the entire region under the canopy, instead of just the canopy’s

boundary, because its operation may be so constrained by its

input and output environment.

5

III. PRELIMINARIES

This section briefly covers the specifics of how canopy

graphs are represented, and how the hierarchical system’s

topology is represented.

a) Canopy Graphs.: Every canopy graph consists of

some number of boundary segments that represent the max-

imum throughput at each possible occupancy. The operating

region of the system is the area below the canopy graph’s

boundary segments. Figure 11 shows an example canopy

graph. The boundaries of this canopy graph consist of the

following types of limiting segments: 1) forward segments

bound the operating region in the data-limited region of the

canopy graph and are determined by the forward latency of

the system; 2) top segments bound the operating region in the

cycle limited region of the canopy graph and are determined

by the longest effective cycle time; 3) reverse segments bound

the hole-limited region and are determined by the maximum

occupancy and reverse delay of the system. In systems that are

initialized as empty, the forward segment of a canopy graphs

will contain point at the origin. As a result, such systems will

always have exactly one forward segment and one or more

reverse segments. In some cases, the top segment may be

absent; we treat this as the degenerate case where the top

segment is a single point.

!"#$%

&"'()'*$% '+,+'-+./$%

'+,+'-+0/$%

1223#)425%

6
7
'"
3
8
7
#
3
!%

Fig. 11: Canopy graph C with four limiting segments

b) System Representation.: The systems that we consider

are hierarchical, so their structure can be represented by a

tree in which the leaf nodes represent individual stages and

all other nodes are either parallel, sequential, conditional,

or loop operators. Figure 13 depicts the tree structure of

a hierarchical system. Parallel and conditional nodes have

exactly two children, sequential nodes have two or more

children, and loop nodes have one child.

!
"#

!
$#

!
%#

!
&#

!
'#

!
(# !

)#

Fig. 12: Block level representation of a hierarchical
system

!"#$

%&"'$

%&"'$

(&)$

%&"'$%&"'$

!"#$
*+$

*,$

*-$

*.$ */$

*0$ *1$

Fig. 13: A tree representing system of Figure 12

IV. BOTTLENECK IDENTIFICATION

Finding the causes for a system’s throughput limits is

challenging because the throughput is determined by com-

plex interactions between its constituent stages. Using canopy

graphs as the basis for analysis can help expose the full range

of causes for a bottleneck. Our algorithm takes as input a

system’s hierarchical description, the delays associated with

individual stages (i.e., forward latency, reverse latency, and

cycle time; see Section II), and probability estimates for any

choices within the system. It gives as output an expression that

represents the parts of the system that limit the throughput.

More specifically, the output is an AND-OR expression that

specifies how the blame is assigned to the parts identified,

using AND-OR causalities.

Our bottleneck detection method consists of three basic

steps. The first step is to determine the canopy graph for the

entire system, hierarchically from the bottom up, by applying

the analysis method of [7]. Next, for each node in the tree

that represents the system’s hierarchy, we determine which of

its child nodes is responsible for limiting its canopy graph.

Finally, the set of nodes responsible for limiting the overall

system’s throughput is determined.

A. Step 1: Compute Overall Canopy Graph

The first step in finding the bottlenecks is to find the

canopy graph of the entire system by applying the method

of [7]. The analysis begins at the leaf nodes of the tree and

progresses upwards. Specifically, the canopy graph for a leaf

node is determined by the forward and reverse latencies of

the individual stage at that node. Subsequently, the canopy

graph at each non-leaf node is found by composing the canopy

graphs of its child nodes as described in [7]. During analysis,

the algorithm stores in each tree node the canopy graph

computed at that node; this information will be used in the

next step of the algorithm.

B. Step 2: Find Limiting Segments

Once the canopy graphs have been computed for each node

in the system’s hierarchical tree representation, the next step

is to determine which stages are responsible for the limiting

lines of the canopy graphs at each node. When more than one

child limits its parents canopy graph, the relationship between

contributing children is one of two possibilities: 1) AND-

causality: the child is part of a group of stages which jointly

6

limit the parent’s canopy and must all be structurally modified

to alleviate the bottleneck; or 2) OR-causality: though several

children contribute to limiting the parent’s canopy, changing

any one of them will alleviate the bottleneck. This method is

applied to all the nodes in the system’s tree representation.

The result is an AND-OR tree that identifies the bottlenecks

present throughout the system. This method is now described

in detail.

Given a node in the hierarchy tree, the method for comput-

ing which of its children is causing the parent’s canopy to be

limited depends on the type of composition represented by the

parent node. Each of the four cases is now discussed.

1) Parallel Nodes: The forward segment of a canopy graph

at a parallel node is limited by the child canopy graph in

which the forward segment has the most shallow slope. If the

forward segments of the two children have the same slope,

both segments are added to the AND-OR tree using an AND

operator, which indicates AND-causality, i.e., both children

must be structurally modified in order to change the forward

segment of their parent’s canopy. If only one child limits the

forward segment of the parent’s canopy, then that child alone

is added to the AND-OR tree (using a degenerate single-input

AND operator).

Similarly, each reverse segment of a canopy graph is limited

by one or both of its children. If it is limited by both, the

appropriate reverse segments of both are added to the AND-

OR tree using an AND operator. If only one child limits the

reverse segment of the parent’s canopy, then only that child is

added to the AND-OR tree.

The top segment of the canopy graph at a parallel node is

limited in one of two possible ways. First, if any of its children

have a top segment with the same limiting throughput value,

then that node is added (or those nodes are added) to the

AND-OR tree using an AND operator.

Second, the throughput may instead be limited by a slack

mismatch. Specifically, the forward segment of one child in-

tersects one of the reverse segments of the other child, thereby

limiting throughput of the composition, even though each

child individually could have supported higher throughput. In

this case, the offending reverse segment of one child and the

offending forward segment of the other child are both added to

the AND-OR tree using an OR operator. This case is one of OR-

causality because, as shown later in Section V, the bottleneck

can be removed by modifying either of the two children.

2) Conditional Nodes: The method for identifying bot-

tlenecks at a conditional node is similar to the method for

identifying bottlenecks at a parallel node, for all segment

types. Specifically, first the canopy of each child is scaled

by dividing it by the probability of that branch, as explained

earlier in Section II-B. Then, the conditional is treated as a

parallel node, and the method described above applied to all

segments of the conditional’s canopy graph.

3) Sequential Nodes: The forward segment of a canopy

graph at a sequential node is affected by the forward segment

of every child, so the forward segment of every child of the

sequential node is added to the AND-OR tree with an OR

operator.

Similarly, each reverse segment of the canopy graph is af-

fected by one reverse segment of every child. Specifically, the

reverse segment of the node spans some range of throughputs;

any child reverse segment that also falls within this range

affects that segment of the parent’s canopy. Each of these

reverse segments is added to the AND-OR tree with an OR

operator.

The top segment of sequential node is limited by the top

segment of that child that has the lowest throughput among

all children. If more than one of the child nodes have top

segments at the same throughput, each of them is added to

the AND-OR tree with an AND operator.

4) Loop Nodes: As described in Section II-B, the canopy

graph of a loop node is simply the canopy graph of the loop’s

body scaled down vertically by the expected iteration count.

Thus, the forward, top and reverse segments of the canopy of

the loop node are limited, respectively, by the forward, top

and reverse segments of its child’s canopy graph. Hence, the

child’s (i.e., the loop body’s) segments are added to AND-OR

tree (using a degenerate AND operator).

C. Step 3: Compute And-Or Bottleneck Formula

Once the AND-OR tree for the limiting segments has been

built, we can find an expression for the segments in the entire

system that affect the overall throughput. Figure 15 depicts

an AND-OR tree for the simple example of Figure 12. The

nodes are annotated with the type of limiting segment and

the operator of the and-or tree. At each node in the tree, the

responsibility can be placed upon the current node OR it can

be passed on to the child nodes of the AND-OR tree. The

final expression for this systems bottlenecks can be found by

recursively combining the expressions for each node.

Figure 14 shows pseudocode for the algorithm that deter-

mines this final expression. At each node, the expression for

its child nodes are found and combined with the operator

at that node. The expression for the node itself is then

added. Using the example of Figure 15, at node n0 first

the expressions for n1 and n2 are found and then the top

segment of n0 is appended to the expression with the OR

operator. The final expression for the bottlenecks in the system

is topn0
+ (topn1

· (topn2
+ (topn3

· topn4
))).

Expression limitingSegments(node, segment)
for each child of node

expression += limitingSegments(child, childsegment)
expression += operator

expression = segment ”OR” expression
return expression

Fig. 14: Pseudocode for generating limiting segment
expression

V. BOTTLENECK ALLEVIATION

In the previous section, we described an algorithm to find

the sets of stages that together limit the throughput of a system.

7

!"#$

%&"'$

(&)$

(&)$

%&"'$%&"'$

!"#$
*+!,-$

*+!,.$

*+!,/$

*+!,0$ *+!,1$

*+!,2$ *+!,3$

456$

456$

456$

Fig. 15: AND-OR tree for the system of Figure 13

In this section, we classify the different types of bottlenecks

and offer some solutions for each kind. Based on the type of

bottlenecks found in a given system, we offer these solution

choices as part of a user-guided tool for removing bottlenecks

to reach some target throughput.

A. Bottleneck Classification

To aid in alleviating bottlenecks, we categorize them based

on the type underlying problem within the system that needs

to be solved.

Type I: Latency Dependent Bottlenecks. Latency dependent

bottlenecks are caused by a part of the system having a forward

latency that acts as a bottleneck. If a forward segment has

been indicated as a limiting segment, this implies that a Type

1 bottleneck exists at that system node.

Type II: Cycle Time Dependent Bottlenecks. Cycle time

dependent bottlenecks occur when the cycle time of one part

of the system limits throughput. In terms of canopy graphs,

if a top segment is indicated by our bottleneck identification

method, this implies that a Type 2 bottleneck exists at that

system node.

Type III: Occupancy Dependent Bottlenecks. Occupancy

dependent bottlenecks are caused by part of the system having

insufficient buffering or a high reverse latency. If a reverse

segment is indicated as a limiting segment, this implies that a

Type 3 bottleneck exists at that system node.

B. Bag of TRICs

Each of these TRICs (TRansformations for Increasing the

Canopy) raises the throughput for some range of occupancies.

Although each of these TRICs has been used before, they

have not previously been explicitly analyzed based on how

they affect the canopy graph. This list is not intended to

be exhaustive but rather illustrative of the use of different

throughput optimization techniques within the framework of

our approach.

1) Coalescing stages: Two adjacent, sequential pipeline

stages can be grouped together into one stage, thereby re-

ducing the total forward latency by removing some latches

from the forward path. As indicated in Figure 16, the reduced

forward latency leads to expansion of the canopy graph to

alleviate Type I bottlenecks. However, this transformation may

also lead to and increased maximum cycle time and also

reduce the total effective occupancy. Additionally, this TRIC

applies only to adjacent leaf nodes composed in sequence.

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Fig. 16: Coalescing

2) Parallelization: As described in [11], sequential compu-

tations can sometimes be changed to occur in parallel, based

on the dependency graph of the computations. As indicated

in Figure 17, this reduces the forward latency by splitting

one sequential path into two parallel paths. However, it also

reduces the occupancy of the system. Additionally, this TRIC

applies only to nodes that are currently composed in series and

has the further restriction that the data dependencies between

the nodes must allow for parallel execution.

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Fig. 17: Parallelization

3) Stage Splitting: Stage splitting increases the level of

pipelining by taking a high-latency stage and splitting it into

two, lower latency stages. As indicated in Figure 18 this leads

to an increase in throughput due to the decreased cycle time of

the lower latency stages. It also increases the occupancy of the

system by adding a new stage. However, it also increase the

forward latency because the stage overhead (i.e. latches and

stage controllers) increases due to the fine-grained pipelining.

Additionally, this TRIC applies only to leaf nodes.

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Fig. 18: Stage Splitting

4) Loop Pipelining: Loop pipelining [8] is a method for

breaking up a high-latency loop, which essentially acts as a

single slow stage within the system. Although the details are

more complex than stage splitting, the result is similar and

the illustration of Figure 18 that was used for stage splitting

applies for loop pipelining as well. In particular, loop pipelin-

ing will worsen the forward latency of the loop improving

the throughput and increasing the maximum occupancy. This

TRIC, of course, applies only to loop nodes.

8

5) Duplication with Wagging: A wagging buffer [2] im-

proves throughput by sending data alternatingly along one

path and then the other. A node and all its children must be

fully duplicated in order to apply the wagging buffer method.

As illustrated in Figure 19, applying this TRIC increases the

throughput as well as the occupancy. It has a second order

effect of increasing the forward latency due to the overheads

of the wagging buffer, but this effect is constant regardless of

the amount of logic duplicated. This TRIC can be applied at

any type of node.

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Fig. 19: Duplication with Wagging

6) Loop Unrolling: Loop unrolling [8] improves through-

put by increasing number of algorithm iterations that a data

item completes during one trip through the ring, thereby

decreasing the total number of times that each item must cycle

through ring. Loop unrolling is a type of duplication, and has

the same effects on the canopy graph as illustrated in Figure

19. Specifically, the throughput and occupancy increase and a

small overhead for forward latency occurs. Additionally, this

TRIC can be applied only to loop nodes.

7) Buffer Stage Insertion: Buffer stage insertion is a

!""#$%&"'()
*
+,
#
-
*
$
#
.(

Fig. 20: Buffer Insertion

common technique for improving throughput, because it is

used to accomplish slack matching [1] [20]. As illustrated

in Figure 20 adding buffers increases the occupancy but also

worsens the forward latency. This TRIC can be applied at any

type of node.

C. Strategic Application of TRICs

Determining which transform will alleviate a bottleneck in

the system is non-trivial because each TRIC applies to only

some types of bottlenecks and some types of nodes. Based on

the AND-OR tree of bottlenecks, as described in Section IV,

our system reports a sum-of-products form of possible TRICs.

It then relies on the user’s knowledge of the design domain

to choose the TRIC that is most compatible with their needs

(e.g. a designer might avoid excessive duplication if area is a

concern.)

a) Determining TRIC Applicability.: Table I summarizes

the rules that our tool uses when determining which TRICs

to suggest to the user. In the table, a check mark indicates

that the TRIC is a good candidate for removing that type of

bottleneck, an X indicates that it will exacerbate a given type

of bottleneck, and a dash indicates that the TRIC will make

little to no change in that type of bottleneck.

Type 1 Type 2 Type 3

Coalescing
√

X X

Parallelization
√

- X

Stage Splitting X
√ √

Loop Pipelining X
√ √

Duplication -
√ √

Loop Unrolling -
√ √

Buffer Insertion X -
√

TABLE I: TRICs applicability to the bottleneck types

b) Iterative Algorithm for Bottleneck Alleviation.: The

use of our tool for iterative bottleneck elimination is described

by the very high-level algorithm of Figure 21. First, the user

picks some goal throughput for the system. Next, the algorithm

given in Section IV is used to identify the bottlenecks. Then

choices of TRICs and the nodes on which to apply them are

listed for the user. After applying one or more TRIC, the target

throughput might not yet have been met. Often, removing one

bottleneck reveals another one, so the method must be repeated

until the goal throughput is met or surpassed.

while(throughput < goal)
Find bottlenecks
List possible fixes
Apply user design choice

Fig. 21: Iterative algorithm for bottleneck alleviation

VI. RESULTS

We tested our bottleneck identification and alleviation meth-

ods on a number of examples with varied topologies: 1)

CORDIC: parallel and sequential 2) CRC: conditional and

sequential 4) DIFFEQ: parallel, sequential, and loop 5) MULT:

parallel We report two different versions of the CORDIC

example, one of which contains a conditional and another

which does not.

c) Bottleneck Identification.: Table II shows the results

of bottleneck identification. The table reports the size of the

example in terms of number of nodes in the hierarchical

tree representation of the system. It also shows the predicted

throughput of the system based on the analysis method of [7],

and for comparison shows Verilog simulation results for the

same example; this indicates that our analysis is quite accurate

for these examples. Stage latencies were chosen such that

a FIFO stage has a forward and reverse latency of 1 ns

each (i.e., a cycle time of 2 ns). More complex stages had

correspondingly longer latencies. The table further reports the

number of limiting segments found for each example, and the

runtime on a 2.1 GHz Intel Core 2 Duo machine. These results

demonstrate that our method is both fast enough to be part of

an iterative optimization loop and accurate enough to provide

useful bottleneck information.

9

Throughput (MHz) # Limiting Segments Found

Example Nodes Simulated Analysis Forward Top Reverse Runtime (ms)

CRC 26 286 292 16 1 12 42

Cordic Cond 30 90.9 90.9 12 2 9 21

Cordic 43 83.3 83.3 0 3 0 40

Diffeq 13 18.2 18.3 0 8 0 27

Mult 29 38.5 38.7 10 1 3 20

TABLE II: Bottleneck identification: finding limiting segments

Example Throughput Type
orig goal final # iterations I II III TRICS

CRC 286 342 345 4 1 0 3 coalesce; add bufffers

Cordic cond 90.9 109 111 2 0 0 2 add buffers

Cordic 83.3 100 101 2 0 1 2 split stages

Diffeq 182 218 267 1 3 0 0 split stages; duplicate

Mult 38.4 46.2 62.5 6 5 0 1 coalesce; add buffers

TABLE III: Iterative bottleneck alleviation

d) Bottleneck Alleviation.: Table III shows the bottleneck

alleviation results attained through iterative application of our

method to reach a goal throughput. Each of the examples

presents a different challenge to removing bottlenecks. In

order to highlight how examples of similar sizes can require a

different number of iterations and different TRICS to reach the

same throughput, we set the goal throughput for the iterative

algorithm shown in Figure 21 to be the same for each example

and iterate till the goal is reached.

In each example, we set the goal to be 20% higher than the

original throughput and performed some number of TRICs to

reach that goal throughput. For each example, there are many

different choices for eliminating bottlenecks; the results here

represent one possible set of choices for each example.

In every case, we were able to reach the desired throughput

through iterative application of our method. The table reports

the number of iterations that we used to reach this goal, the

type of bottlenecks that were targeted, and the TRICs used for

each example.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented a method for identifying the

bottlenecks in a hierarchical system. Our results indicate that

this method is both fast enough and accurate enough to be used

in the optimization loop as part of a design flow. We further

presented a user-guided iterative method for alleviating the

bottlenecks within a system, based on some performance goal.

This method was successful in reaching the target throughput

in all examples that we tried.

Though we presented several TRICs for improving the

throughput, this list is certainly not exhaustive. It is our

hope that others will have suggestions for additional TRICs—

whether they are currently known or newly discovered—that

will fit into the framework of our tool. The end goal is to have

a rich variety of TRICS, each of which is analyzed based on

its effect on the canopy graph and usefulness in treating each

of the three types of bottlnecks.

This work has focused solely on improving throughput

without considering the costs in terms of other useful met-

rics such as energy, latency, and area. Our tool relies on a

designer’s knowledge of their domain to choose among the

throughput improvement options. In the future, we hope to

integrate cost functions into this tool, which will indicate not

only throughput improvement but also the tradeoffs present.

The end goal is to have a fully automated system that allows

designer input for design space exploration.

REFERENCES

[1] P. A. Beerel, N.-H. Kim, A. Lines, and M. Davies. Slack matching
asynchronous designs. In Proc. Int. Symp. on Asynchronous Circuits
and Systems, 2006.

[2] C. H. K. v. Berkel, C. Niessen, M. Rem, and R. W. J. J. Saeijs. VLSI
programming and silicon compilation. In Proc. Int. Conf. Computer

Design (ICCD), pages 150–166, Rye Brook, New York, 1988. IEEE
Computer Society Press.

[3] S. M. Burns. Performance Analysis and Optimization of Asynchronous
Circuits. PhD thesis, California Institute of Technology, 1991.

[4] S. Chakraborty, K. Yun, and D. Dill. Timing analysis of asynchronous
systems using time separation of events. IEEE Trans. on Computer-

Aided Design, 18(8):1061–1076, Aug. 1999.

[5] J. C. Ebergen, S. Fairbanks, and I. E. Sutherland. Predicting performance
of micropipelines using Charlie diagrams. In Proc. Int. Symp. on

Advanced Research in Asynchronous Circuits and Systems, pages 238–
246, 1998.

[6] D. Edwards and A. Bardsley. Balsa: An asynchronous hardware
synthesis language. The Computer Journal, 45(1):12–18, 2002.

[7] G. Gill, V. Gupta, and M. Singh. Performance estimation and slack
matching for pipelined asynchronous architectures with choice. In Proc.

Int. Conf. Computer-Aided Design (ICCAD), pages 449–456, Nov. 2008.

[8] G. Gill, J. Hansen, and M. Singh. Loop pipelining for high-throughput
stream computation using self-timed rings. In Proc. Int. Conf. Computer-

Aided Design (ICCAD), Nov. 2006.

[9] M. R. Greenstreet and K. Steiglitz. Bubbles can make self-timed
pipelines fast. Journal of VLSI Signal Processing, 2(3):139–148, Nov.
1990.

[10] M. R. Greenstreet, T. E. Williams, and J. Staunstrup. Self-timed iteration.
In C. H. Séquin, editor, VLSI ’87. VLSI Design of Digital Systems, pages
309–322. North-Holland, Aug. 1987.

[11] J. Hansen and M. Singh. Concurrency-enhancing transformations for
asynchronous behavioral specifications: A data-driven approach. In Proc.
Int. Symp. on Advanced Research in Asynchronous Circuits and Systems.
IEEE Computer Society Press, Apr. 2008.

[12] The Haste/TiDE Design Flow. http://www.handshakesolutions.com.

10

[13] H. Hulgaard, S. M. Burns, T. Amon, and G. Borriello. An algorithm
for exact bounds on the time separation of events in concurrent systems.
IEEE Trans. on Computers, 44(11):1306–1317, Nov. 1995.

[14] P. Kudva, G. Gopalakrishnan, and E. Brunvand. Performance analysis
and optimization for asynchronous circuits. In Proc. Int. Conf. Computer
Design (ICCD). IEEE Computer Society Press, Oct. 1994.

[15] A. M. Lines. Pipelined asynchronous circuits. Master’s thesis, California
Institute of Technology, 1998.

[16] P. B. McGee and S. M. Nowick. An efficient algorithm for time
separation of events in concurrent systems. In Proc. Int. Conf. Computer-

Aided Design (ICCAD), 2007.
[17] P. B. McGee, S. M. Nowick, and E. G. Coffman. Efficient performance

analysis of asynchronous systems based on periodicity. In Proc. of the

3rd IEEE/ACM/IFIP Intl. Conf. on Hardware/Software Codesign and

System Synthesis (CODES+ISSS), pages 225–230, 2005.
[18] E. G. Mercer and C. J. Myers. Stochastic cycle period analysis in timed

circuits. In Proc. Int. Symp. on Circuits and Systems, pages 172–175,
2000.

[19] P. Pang and M. Greenstreet. Self-timed meshes are faster than syn-
chronous. In Proc. Int. Symp. on Advanced Research in Asynchronous

Circuits and Systems, pages 30–39, Apr. 1997.
[20] P. Prakash and A. J. Martin. Slack matching quasi delay-insensitive

circuits. In Proc. Int. Symp. on Asynchronous Circuits and Systems,
2006.

[21] M. Singh, J. A. Tierno, A. Rylyakov, S. Rylov, and S. M. Nowick.
An adaptively-pipelined mixed synchronous-asynchronous digital FIR
filter chip operating at 1.3 GigaHertz. In Proc. Int. Symp. on Advanced

Research in Asynchronous Circuits and Systems, pages 84–95, Apr.
2002.

[22] G. Venkataramani, M. Budiu, T. Chelcea, and S. C. Goldstein. Global
critical path: A tool for system-level timing analysis. In Proc. ACM/IEEE

Design Automation Conf., pages 783–786, June 2007.
[23] T. E. Williams, M. Horowitz, R. L. Alverson, and T. S. Yang. A self-

timed chip for division. In P. Losleben, editor, Advanced Research in

VLSI, pages 75–95. MIT Press, 1987.
[24] A. J. Winstanley, A. Garivier, and M. R. Greenstreet. An event spacing

experiment. In Proc. Int. Symp. on Advanced Research in Asynchronous
Circuits and Systems, pages 47–56, Apr. 2002.

[25] A. Xie and P. A. Beerel. Symbolic techniques for performance analysis
of timed systems based on average time separation of events. In Proc.
Int. Symp. on Advanced Research in Asynchronous Circuits and Systems,
pages 64–75, Apr. 1997.

[26] A. Xie and P. A. Beerel. Performance analysis of asynchronous circuits
and systems using stochastic timed Petri nets. In A. Yakovlev, L. Gomes,
and L. Lavagno, editors, Hardware Design and Petri Nets, pages 239–
268. Kluwer Academic Publishers, Mar. 2000.

11

