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Abstract

We propose a low-overhead method for delay fault test-
ing in high-speed asynchronous pipelines. The key features
of our work are: (i) testing strategies can be administered
using low-speed testing equipment; (ii) testing is minimally-
intrusive, i.e. very little testing hardware needs to be added;
(iii) testing methods are extended to pipelines with forks and
joins, which is an important first step to testing pipelines
with arbitrary topologies; (iv) test pattern generation takes
into account the likely event that one delay fault causes sev-
eral bits of data to become corrupted; and (v) test genera-
tion can leverage existing stuck-at ATPG tools.

In describing our testing strategy, we use examples of
faults from three very different high-speed pipeline styles:
MOUSETRAP, GasP, and high-capacity (HC) pipelines. In
addition, we give an in-depth example—including test pat-
tern generation—for both linear and non-linear MOUSE-

TRAP pipelines.

1. Introduction

Most asynchronous high-speed pipeline styles achieve high
performance by making timing assumptions, thereby sac-
rificing some timing robustness. Even if these timing as-
sumptions are verified during design, they may be violated
in practice due to delay faults caused by manufacturing vari-
ations and defects. Therefore, the ability to test for delay
faults in a fabricated chip containing high-speed pipelines
is critical to inspire confidence in the use of asynchronous
hardware.

Delay faults are quite challenging to test, both in terms
of test application and test pattern generation. Many de-
lay faults occur only under certain operating conditions
that seem difficult to create using typical low-speed test-
ing equipment. In addition, a single delay fault may cause
errors on one or several wires at once, leading to non-
deterministic error behavior that is difficult to test.

Several approaches [1, 6, 9] for testing delay faults have
been proposed earlier, but they are intrusive, i.e., they re-
quire additional test circuitry to be added to the pipeline.

The extra circuitry has an area overhead typically propor-
tional to the number of stages in the pipeline. In addition,
the added circuitry is typically on the critical path of each
stage’s cycle, thereby negatively impacting the pipeline’s
performance.

In this paper, we propose a new approach for delay
fault testing of asynchronous pipelines, which overcomes
the limitations of existing approaches. Our approach di-
rectly addresses the acknowledged challenges to delay fault
testing: activating “at-speed” delay faults using low speed
testing equipment, and handling non-deterministic error be-
havior. Moreover, our approach applies not only to linear
pipelines, but also to those with forks and joins; this is a first
step towards development of testing methods for pipelines
with arbitrary topology. Finally, we also introduce a method
of test pattern generation that can expose errors on multiple
wires caused by a single delay fault. Our pattern genera-
tion approach maps delay fault testing to stuck-at-fault test-
ing of a dual circuit, thereby allowing us to leverage exist-
ing stuck-at ATPG tools.

A key beneficial feature of our approach is that it is
minimally-intrusive, and hence low-overhead, yet it can cre-
ate the operating conditions necessary to expose delay faults
using only low speed testing equipment. In fact, our ap-
proach is non-intrusive for linear pipelines; no additional
circuitry is required to be added in order to test them. Al-
though some additional circuitry must be added for full fault
coverage of pipelines that have forks and joins, the total
number of extra gates added is proportional to the num-
ber of forks and joins present, not to the total number of
stages.

The remainder of the paper is organized as fol-
lows. Section 2 discusses previous work on asynchronous
pipeline testing, including stuck-at-fault testing for MOUSE-

TRAP. It also provides background on three asynchronous
pipeline styles which we will use to illustrate our ap-
proach: MOUSETRAP [11], GasP [12], and high-capacity
(HC) pipelines [10]. Section 3 proposes a classifica-
tion of timing constraints into two key categories—forward
and reverse—and proposes test strategies for delay faults
that occur when these constraints are violated. Section 4 ex-
tends our testing strategies to paths containing forks and
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joins. Section 5 applies our test strategy to linear MOUSE-

TRAP pipelines, and introduces a test pattern generation
method which can test for delay faults that cause er-
rors on an undetermined number of wires. Section 6 ad-
dresses testing of MOUSETRAP pipelines containing forks
and joins. Finally, Section 7 offers conclusions and direc-
tions for future work.

2. Previous Work and Background

This section discusses previous work in the testing of asyn-
chronous pipelines and presents background on three high-
speed asynchronous pipeline styles—MOUSETRAP, GasP,
and high-capacity (HC)—which are used in the remainder
of the paper to illustrate our test approach.

2.1. Previous Work

Several methods have been proposed for testing asyn-
chronous micropipelines. Pagey et al. [5] proposed meth-
ods for generating test patterns to test stuck-at faults in tra-
ditional micropipelines, but do not consider delay faults. A
more recent approach to testing micropipelines is by [2],
which focuses on test sequence generation for testing both
stuck-at and delay faults inside C-elements.

Several authors [1, 6] have proposed full-scan ap-
proaches for testing micropipelines. Though these full-scan
methods test both stuck-at faults and violations of the bun-
dled delay constraint, they are high-overhead in both area
and speed. Roncken et al. [7, 8] proposed a more opti-
mal approach that employs partial scan. Their approach
targets faults in both the control and datapath, and cov-
ers not only stuck-at fault testing, but also bridging faults
as well as IDDQ testing.

Recently, van Berkel et al. [14] have proposed adding
synchronous as well as LSSD modes of operation to asyn-
chronous circuits in order to make them testable. In ad-
dition, te Beest et al. [13] present an approach that uses
only multiplexers, instead of latches, to break feedback
loops, and thus leverage combinational test pattern gener-
ation without the overhead of scan latches. Both of these
approaches were proposed mainly in the context of the Tan-
gram/Haste design flow. Finally, Kondratyev et al. [3] have
proposed a test approach for NCL circuits.

None of the above approaches, however, addresses the
specific test needs of fine-grain high-speed asynchronous
pipeline styles.

Very recently, Shi et al. [9] have presented an approach
specifically targeted to testing high-speed asynchronous
pipelines. Testing of both stuck-at and delay faults is ad-
dressed. There are two limitations of their approach to de-
lay fault testing: (i) it is intrusive and therefore has area and
performance overheads, and (ii) it uses a limited delay fault
model that assumes the fault will only affect a single bit.

The approach of this paper overcomes the limitations
of [9] and provides a minimally-intrusive fault testing strat-
egy. It also handles a larger class of delay faults, in which a

single fault can cause errors on one or more bits simultane-
ously.

2.2. Background: Asynchronous Pipeline Styles

2.2.1. MOUSETRAP Pipelines. MOUSETRAP [11] is
a two-phase pipeline style that uses static logic. Since
MOUSETRAP uses transition signaling, every transition
on a request wire indicates new data is ready and ev-
ery transition on an acknowledge wire indicates that old
data can be overwritten. Thus, when the request and ac-
knowledge going into a stage are the same, the stage
becomes “empty” and when they are different the stage be-
comes “full”. The latches that hold data begin open and
close just after new data arrives.

Two simple one-sided timing constraints must be satis-
fied for the correct operation of the pipeline: setup time and
data overrun.

In order for data to be latched properly in stage N , the
data must arrive at least one setup time before the latch
closes. Figure 1 (a) illustrates this scenario. The path,
p1, that closes the latch begins when the request arrives,
passes through the bit latch, and finally through the XNOR.
The timing constraint is therefore: tdataN−1 + tsetupN

<
treqN−1

+ tLatchN
+ tXNORN↓.

Once data enters a stage N , it should be securely cap-
tured before new data is produced by the previous stage.
If this condition is violated, the data held in stage N will
be overwritten by new data. Figure 3 (a) illustrates the
two relevant paths. The path, p1, that closes the latch in
stage N contains only one XNOR gate. The path, p2, that
produces data in stagen−1 contains one XNOR, one latch,
and combinational logic. The timing constraint between
these two paths is: tXNORN−1↑ + tLatchN−1 + tlogicN−1

>
tXNORN↓ + thold

2.2.2. GasP Pipelines. GasP [12] is a four-phase
pipeline style that uses static logic. The data latches in a
GasP pipeline begin closed, and must open and then close
again upon receiving each new data item. The most dis-
tinctive feature of GasP is that a single wire, called the
state conductor, is used to transmit both the request and ac-
knowledge signals between a pair of adjacent stages. A low
signal on the state conductor wire indicates that the pre-
vious stage is“full” and a high signal indicates that it is
“empty”.

The controller for GasP is a self resetting NAND, as
shown in Figure 1. When both of the inputs to the NAND

go high, it goes low. After some delay, this low transi-
tion triggers the NAND to reset back to high. Specifically,
two possible reset paths, r1 and r2, can cause the NAND

to go high again. Path r1 consists of one pull up tran-
sistor and one inverter (inva). Path r2 consists of one
inverter (invb) and one pull down transistor. The time,
treset, to reset the NAND is the smaller of the two times:
treset = min(tpull up + tINVa↓, tINVb↑ + tpull down).
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To explain the operation of the GasP pipeline, we first
focus on the forward flow of data through the pipeline and
then on the reverse flow of empty space. Although GasP
has many timing constraints, we only discuss here two that
are relevant to our work.

In the forward path, consider the scenario of data and a
request arriving to an empty stage, stage N . In order for
data to be latched correctly, it must arrive at least one setup
time before the latch N closes. Figure 1(b) shows the paths
involved in this scenario. The path, p2, that closes the latch
N consists of one inverter, one NAND, and the self reset path
of the NAND. This timing constraint is therefore expressed
as: tdataN−1 + tsetupN

< treqN−1
+ tinvaN

+ tNANDN
+

tresetN + tINVcN↓
In the reverse path, data in stage N should be securely

captured before new data is produced by stage N − 1. Fig-
ure 3 (b) shows the relevant paths. The path, p1, that
closes the latch in stage N is the self reset path of the
NAND. (For easier interpretation, only one possible branch
of this path is shown in the figure.) The path, p2, that al-
lows new data to enter consists of one pull down transistor,
one NAND, one latch delay, and the delay of any combina-
tional logic in the stage. This leads to the timing constraint:
tresetN

+ tINVcN↓ + tholdN
< tpull upn

+ tNANDn−1↑ +
+tINVcN−1↑ + tLatchn−1 + tlogic

2.2.3. High-Capacity Pipelines. The high-capacity
(HC) pipeline [10] is a four-phase pipeline style that uses
dynamic logic. It is latchless. Instead, the dynamic logic of
each stage has an “isolate phase”, in which its output is pro-
tected from further input changes. Specifically, during the
isolate phase, the logic is neither precharging nor evaluat-
ing.

An HC pipeline stage simply cycles through three
phases. After it completes its evaluate phase, it en-
ters its isolate phase and subsequently its precharge phase.
As soon as precharge is complete, it re-enters the evalu-
ate phase again, completing the cycle.

New data arriving to an empty stage (i.e., a stage in
the evaluation phase) must arrive one setup time before
the stages switches from the evaluation phase to the isolate
phase. Figure 1 (c) shows the paths involved. The path, p1
that causes the isolate phase begins when a request arrives.
The request propagates through the asymmetric c-element,
then through the matched delay and to the controller. The
internal logic of the controller (an inverter) causes the eval-
uation phase to end. This constraint is represented as:
tdataN−1 + tsetupN

< treqN−1
+ taCN + tdelayN

+ tINVN

To protect new data from stage N − 1 from erroneously
overwriting data in stage N , stage N must enter the iso-
late phase one hold time before stage N − 1 provides new
data. Figure 3 (c) shows the paths involved. The path,
p1, that causes the isolate phase includes the matched de-
lay and the internal controller logic (an inverter). The path,
p2, that triggers new data includes the controller logic to
begin precharge (a NAND), the asymmetric C-element, the

matched delay, and the controller logic to begin evaluation
(an inverter). This leads to the timing constraint: tdelayN

+
tINVN

+ tholdN
< tNANDN−1 + taCN−1 + tdelayN−1

+
tINVN−1 + tEvalN−1

3. Test Approach

This section introduces our test strategy for high-speed
asynchronous pipelines. It focuses on testing delay faults,
since test methods for stuck-at faults have already been pro-
posed in [9].

The section begins by identifying two key categories of
timing constraints that may result in delay faults—forward
and reverse constraints—in Section 3.1, and then proposes
test strategies for each. Section 3.2 then gives functional
test methods for loading and unloading a pipeline that are
most likely to expose these delay faults.

The test approach is generalized in Section 4 to handle
forks and joins, which represents a first step toward han-
dling systems with arbitrary topologies. Test pattern gener-
ation is deferred till Section 5.

The test strategy is illustrated using examples of tim-
ing constraints from three different pipeline styles: MOUSE-

TRAP, GasP, and high-capacity (HC) pipelines.

3.1. Delay Fault Classification

For the purposes of designing fault tests, we have iden-
tified two key categories of timing constraints: forward and
reverse constraints.

A forward timing constraint is one that requires a down-
stream event to occur after an upstream event, i.e., in the
same direction as the flow of data. More specifically, the
pipeline operates correctly only if a particular event in stage
N occurs before a particular event in stage N + 1. Typi-
cal examples of forward constraints include setup time re-
quirements of many pipelines: the latch in stage N +1 must
“capture” a data item and be disabled only after the output
of stage N has been generated and stabilized. Such for-
ward constraints typically prevent situations where a data
item is not correctly transmitted from one stage to next. Vi-
olations of forward timing constraints are likely to mani-
fest when a data item is allowed to travel through an un-
congested or empty pipeline; such a scenario allows down-
stream events to occur unimpeded, thereby exposing viola-
tions of the forward constraint.

A reverse timing constraint, on the other hand, is one
that requires two events to be ordered such that the up-
stream event must occur after the downstream event, i.e.,
counter to the flow of data. More specifically, the pipeline
operates correctly only if a particular event in stage N oc-
curs before a particular event in stage N − 1. Typical ex-
amples of reverse contraints are hold time requirements of
many pipelines: once a data item is received in stage N ,
the latch in stage N must be disabled before new data is
generated by stage N − 1. Such reverse constraints typi-
cally prevent current data from being erroneously overwrit-
ten by new data. Therefore, violations of reverse timing
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Pipeline Style Timing Constraint

MOUSETRAP
tdataN−1 + tsetupN

<
treqN−1 + tLatchN + tXNORN↓

GasP
tdataN−1 + tsetupN

<
treqN−1 + tinvaN + tNANDN +
tresetN + tINVcN↓

HC
tdataN−1 + tsetupN

<
treqN−1 + taCN + tdelayN

+ tINVN

Table 1: Forward Constraint examples

datan

ack n

en n
req n−1

ack n−1

reqn
datan−1 datan

datan−1

datan−1 datan
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pc eval

delay

controller

p2

p1

p2

p1

(c)  HC
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invc
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invb

Figure 1: Examples of forward timing constraints.

constraints are likely to be exposed when one data item fol-
lows closely behind another.

In some pipeline styles, timing constraints exist that do
not fit into either of these categories. For example, GasP
has a timing constraint that relates two events within a sin-
gle pipeline stage. We have not yet devised a standard
method for testing for violations of these types of timing
constraints.

3.2. Test Strategy for Linear Pipelines

3.2.1. Forward Delay Faults.

Examples. Many pipeline styles have forward de-
lay constraints, most commonly in the form of the bundled
data constraint. Table 1 gives the forward timing con-
straints that we identified for MOUSETRAP, GasP, and
HC pipelines in Section 2.2. For clarity, Figure 1 repre-
sents these constraints graphically.

The constraints necessary for proper operation are actu-
ally less strict than the bundled data constraint since there is
some delay between the time the request arrives and when
the data is actually needed. In particular, strictly speak-
ing, the bundled data constraint requires that tdataN−1 <

d1

ack

req

data flow

(a)

d1

data flow

(b)

ga
rb

ag
e

data flow

(c)

Figure 2: a) Beginning state b) Correct end behav-
ior c) Behavior with forward delay fault

treqN−1
. However, the setup time constraints shown in the

table and the figure are somewhat more relaxed: in both
MOUSETRAP and GasP, the data must arrive at stage N one
setup time before the latch closes; in HC pipelines, the data
must arrive one setup time before the evaluation phase ends
(i.e., isolate phase begins). Thus, the constraints identified
are more properly referred to as setup time constraints.

Violations of these timing constraints actually manifest
themselves as pipeline malfunction only when there is a
bubble in stage N , i.e., stage N is ready to process the new
data from stage N − 1. This is so because the above setup
time constraints were derived assuming the worst-case sce-
nario that stage N is ready to capture the data arriving from
the previous stage. In each of the three pipeline styles, if
stage N is not ready to receive new data, then more time is
available for that data to arrive from stage N − 1 and stabi-
lize at stage N ’s inputs before it must be captured. In partic-
ular, in MOUSETRAP and GasP, if stage N is not empty, its
latch remains disabled. Similarly, in HC pipelines, if stage
N is not empty it will not commence its next precharge-
evaluate cycle.

Testing Approach. The observation that stage N must
be empty for a setup time violation to manifest itself helps
us construct a test for these forward delay faults. We first
present a scenario that exposes these faults, and then present
a functional test strategy to efficiently test an entire pipeline.

Figure 2 illustrates a scenario in which setup time vio-
lations are likely to be exposed. Assume the scenario be-
gins with the snapshot of the pipeline shown in Figure 2(a):
stage N is empty and stage N − 1 has data item d1. If
the pipeline operates correctly, the data item d1 flows to the
right, as shown in snapshot (b). However, if the setup time
constraint between the two stages is violated, the data item
d1 will not be properly captured (i.e., latched for MOUSE-

TRAP and GasP, or evaluated for HC) by stage N . In the
case of MOUSETRAP and GasP, the data item d1 will be
corrupted by any stale data that was previously in stage N ,
since some or all of the bits of d1 could not be properly
latched. For HC pipelines, the result in stage N could be all
zeros (i.e., the result of the previous precharge), or partial
evaluation of some of the bits before evaluation was prema-
turely interrupted.

In order to test the entire pipeline for setup time viola-
tions, the above scenario must be created at each stage in
the pipeline. Once again, the recent test approach of [9] ac-
complishes this goal by added circuitry to the pipeline for
greater controllability, but the intrusiveness of that approach
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Table 2: Examples of reverse timing constraints:
Analytical expressions.

Pipeline Style Timing constraint

MOUSETRAP
tXNORN↓ + tholdN <

tXNORN−1↑ + tLatchN−1 + tlogicN−1

GasP
tresetN + tINVcN↓ + tholdN <

tpull upN
+ tNANDN−1 + tINVcN−1↑+

tLatchN−1 + tlogicN−1

HC
tdelayN

+ tINVN + tholdN <
tNANDN−1 + taCN−1 + tdelayN−1+

tINVN−1 + tEvalN−1

causes loss of performance during actual operation.
Our strategy, once again, is to create this error-exposing

situation functionally, without the need for intrusive cir-
cuitry. We start with an empty pipeline. Next, we feed one
data item to the pipeline. As the data item travels forward,
it creates the condition shown in 2 for each stage. Specif-
ically, the setup time constraint between stages 1 and 2 is
tested first, between 2 and 3 next, and so on all the way to
the rightmost stages in the pipeline.

A setup time violation results in corruption of data, and
is easily checked functionally if the test data patterns are
carefully chosen so as to propagate this fault to the output
end of the pipeline. This topic is covered in detail in Sec-
tion 5.

3.2.2. Reverse Delay Faults.

Examples. Examples of reverse constraints can be found
in many pipeline styles. Table 2 gives the reverse timing
constraints that we identified for MOUSETRAP, GasP, and
HC pipelines in Section 2.2. For clarity, these constraints
are graphically shown in Figure 3.

Each of the constraints shown in Table 2 and Figure 3
are hold time constraints. In particular, the constraint for
MOUSETRAP states that, once a data item enters stage N ,
that stage’s latch must be disabled at least a hold time
(tholdN ) before the previous stage can perturb the data at
stage N ’s inputs. The constraint for GasP similarly ensures
that stage N ’s latch is disabled at least a hold time before
new data arrives from stage N . Finally, the constraint for
HC ensures that stage N , upon evaluating a data item, en-
ters its isolate phase (during which the dynamic logic in
that stage is neither precharging nor evaluating) before stage
N − 1 goes through a complete new cycle of precharge and
evaluation to generate a new data item.

Violations of these timing constraints actually manifest
themselves as pipeline malfunction only when a new data
item is readily available for processing by stage N−1. This
is so because the above hold time constraints were derived
assuming the worst-case scenario of a steady stream of in-
put data. For instance, in MOUSETRAP, a violation of the
above timing constraint causes an actual pipeline malfunc-
tion only if there is actually a new data value or request (or
both) on the input to stage N−1. Similarly in GasP and HC,

req nreq n−1
datan−1 datan

datan−1 datan

datan−1 datan

p1
p2

p1p2

pc eval pc eval

contoller

delay
aC aC

delay

contoller

p2

(b)  GasP

(a)  MOUSETRAP

(c)  HC

p1

inv invc c

invainva

invb
invb

ack n−1 ackn

en n−1 enn

Figure 3: Examples of reverse timing constraints

a timing violation causes an error only if there is new data
available on the input side of the datapath of stage N − 1.

Testing Approach. The observation that a new data item
must be waiting at the input side of stage N − 1 in order for
a hold time violation to manifest itself helps us construct
a test for these reverse delay faults. We first present a sce-
nario that exposes these faults, and then present a functional
test strategy to efficiently test an entire pipeline.

Figure 4 illustrates a scenario in which hold time vio-
lations are likely to be exposed. Assume the scenario be-
gins with the snapshot of the pipeline shown in Figure 4(a):
there are two data items, d1 and d2 in stages N − 1 and
N − 2, respectively, and there is a bubble in stage N . If the
pipeline operates correctly, the two data items remain dis-
tinct as they flow to the right, taking the pipeline through the
snapshots (b) and (c). However, if the hold time constraint
between the two rightmost stages is violated, the data item
d1 will be overwritten by the item d2, as shown in snap-
shot (d).1

In order to test the entire pipeline for hold time viola-
tions, the above scenario must be created at each stage in

1 For simplicity of presentation, we assume that when a hold time vio-
lation occurs, a data item is completely overwritten by the next data
item. Strictly speaking, it is possible that only some bits of a data item
are overwritten. Section 5 addresses this more general scenario.

5



bu
bb

le

data flow data flow

data flow data flow

(a)

d1d2
ack

req

(c)

d1d2

bu
bb

le

(d)

d2 d2

(b)

d2 d1

bu
bb

le

bu
bb

le

Figure 4: a) Beginning stage b) bubble propagates
backwards c) Correct end behavior d) Behavior
with reverse delay fault

the pipeline. The recent test approach proposed in [9] ac-
complishes this goal by adding circuitry to the pipeline to
provide adequate controllability. However, that approach is
intrusive and creates overheads to the normal functioning
of the pipeline, thereby resulting in a loss of performance.
Moreover, the intrusiveness of that approach also modifies
the timing constraint itself, thus perturbing the very con-
straint it is trying to verify.

Our strategy instead is to create this error-exposing sit-
uation functionally, without the need for intrusive circuitry.
We start with an empty pipeline. Next, we fill the entire
pipeline with data, while withholding acknowledgments to
the rightmost stage. We then add one bubble to the right end
of the pipeline by sending a single acknowledgement. As
this bubble propagates leftward through the pipeline, it se-
quentially creates the situation shown in Figure 4 for each
stage. Specifically, the hold time constraint between stages
N − 1 and N is tested first, followed by the constraint be-
tween stages N − 2 and N − 1, and so on all the way to the
leftmost stages in the pipeline.

A hold time violation results in loss or corruption of data,
and is easily checked functionally if the test data patterns
are carefully chosen so as to expose, and not mask, hold
time violations, and propagate them to the output end of the
pipeline. This topic is covered in detail in Section 5.

There are several key benefits of our approach. First, un-
like [9], our approach is non-intrusive, with no overhead
to steady-state performance. Second, our approach can test
hold time faults for an entire pipeline in a single sweep,
i.e., by propagating a single bubble backward through the
pipeline. In contrast, the approach of [9] must test for hold
time violations at each pipeline stage individually, thereby
requiring significantly greater test effort. Finally, much like
the approach of [9], our approach only requires low-speed
ATE, yet provides at-speed testing for delay faults.

4. Test Strategy for Non-Linear Pipelines:
Handling Forks and Joins

Thus far, we have only discussed testing strategies for faults
in straight pipeline paths. Here, we introduce extensions to

the test strategy to handle pipelines with forks and joins,
which is a first step toward handling systems with arbitrary
topologies.

4.1. Forward Delay Faults

Challenges. Testing forward delay faults offers some
challenges. Specifically, setup time violations between the
join element and all of its immediate predecessors are dif-
ficult to test. If data from one branch arrives at the join
much after data from the other, only the later-arriving data
will expose setup time violations. The earlier-arriving data
will have had sufficient time to stabilize before the join re-
acts, thereby masking any setup time violations between
that branch and the join stage.

Testing Approach. To ensure testing of setup time faults
between a join stage and each of the branches that feed into
it, we need to be able to control which branch provides
a data item first. Our strategy is to modify the pipeline
by inserting extra circuitry immediately before each join,
which allows the testing environment to directly provide
data items to the input side of the join, as shown in Fig-
ure 5.2 Specifically, we add multiplexors to both the con-
trol and the data input of each join stage, which allows data
to be fed into the join externally during testing. They key
idea is to provide data externally for each input interface of
a join stage, except for the input interface that is to be tested
for setup time violations.

Testing takes place as follows. Assume we are testing
the interface between the join stage and the upper branch
of the pipeline shown in Figure 5(a). First we initialize
the pipeline to be empty. Then we set the multiplexors in
the circuitry of Figure 5(b) on the lower branch of the join
so that data is read from the testing environment and suffi-
cient time is allowed for this data to be read and stabilized.
At this point, the setup time constraint between the lower
branch and the join stage is trivially satisfied because the
join will not latch this data until data also arrives from the
upper branch; therefore, a potential setup time violation be-
tween the upper branch and the join stage is now exposed
and testable. The test proceeds by sending a single data item
into the pipeline from its left interface, which flows right-
ward through the pipeline, effectively exposing setup time
faults throughout the upper branch, through the join and all
the way through the right end of the pipeline. Finally, we
read the output from the pipeline and examine it for errors.
The test is then repeated for the lower branch that feeds into
the join.

4.2. Reverse Delay Faults

Challenges. Testing reverse delays presents two chal-
lenges: (i) “unbalanced” branches, i.e., forked paths whose

2 In order to conserve the number of input pins used by the test environ-
ment, externally data is typically supplied bit-serially, and converted
to bit-parallel on chip before being supplied to the circuit under test.

6



externally supplied

(b)

(a)

d2
req2
ack2

req1

ack1

d1
d

req

ack

m
ux

m
ux

Jo
in

Fo
rk

Jo
in

Figure 5: a) Extra circuitry for forward delay. b)
Generic implementation

branches have unequal number of stages, are not fully
testable using only functional methods; and (ii) fork stages
themselves are difficult to test robustly for hold time vio-
lations. These challenges are briefly discussed before our
testing approach is introduced.

Unbalanced branches: It is challenging to function-
ally test pipelines with forked paths that reconverge if
the branches have unequal number of stages, i.e., if the
branched paths are not “slack matched” [4]. In par-
ticular, our reverse delay fault testing approach, pre-
sented above for linear pipelines, relies on filling the en-
tire pipeline with data items, and then propagating a
bubble backward through it. If unbalanced reconver-
gent forks exist in the pipeline, then not all branches can
be completely filled with data, and therefore our func-
tional test strategy cannot be directly applied to the longer
of the branches.

In more detail, assume that a fork creates two branches,
B1 and B2, which reconverge. Assume branch B1 has N1
stages and branch B2 has N2 stages. Then, if N1 > N2
then the first N1−N2 stages of branch B1 cannot be made
to hold data while our test is applied, rendering them func-
tionally untestable using our method. However, it is impor-
tant to note that the shorter of the two branches, B2, is still
fully testable for reverse delay faults, a fact that will be ex-
ploited by our test approach.

Fork stages: If all fork branches are balanced, then our
test approach for linear pipelines can be easily adapted
to test for hold time violations throughout the non-linear
pipeline, except to test for faults between the fork stage
and its immediate successors. This difficulty is because of
the unpredictability of the order of arrival of bubbles at the
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fork stage from each of its successors. In particular, if one
branch of a 2-way fork propagates a bubble towards stage
N faster than the other branch, then only the later-arriving
bubble can actually expose a delay fault upon reaching the
fork stage. The earlier arriving bubble will not be able to ex-
pose a hold time violation because the fork stage, which is
waiting for the other bubble to arrive as well, cannot imme-
diately generate a new data item. Therefore, to fully test for
hold time violations, greater controllability of pipeline op-
eration is required in order to control the order of arrival of
bubbles at a fork stage from different fork branches.

Testing Approach. We now present our test strategy,
which addresses both of the above challenges.

Unbalanced branches: Our approach avoids the problem
due to unbalanced branches by requiring that all reconver-
gent paths are balanced (i.e., slack matched). This is easily
done by either inserting buffer stages in the shorter branch,
or by pipelining the longer branch more coarsely using
fewer stages. Fortunately, slack matching is already con-
sidered good design practice for performance reasons [4],
so requiring it for ease of delay fault testability is not too
onerous a requirement.

Fork stages: If full testability is required for hold time vi-
olations between a fork stage and all of its immediate suc-
cessors, then we need to modify the circuit such that we can
control the order of arrival of bubbles at that fork stage. Our
strategy is to add a small amount of circuitry to the pipeline,
as shown in Figure 6. Specifically, on each of the branches,
we add an extra pipeline stage, which is externally config-
urable to act as either a regular pipeline stage (i.e., capable
of storing one data item or bubble) or as pass-though logic
with no storage capability.

Essentially, we are configuring one branch to have N
stages and configuring the other branch to have N + 1
stages. Thus, we have deliberately made the branches un-
balanced during testing, a technique that allows the shorter
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branch to be fully testable. This procedure is then repeated
to test the other branch.

For example, assume we are testing the for delay faults
between the fork stage and the stage U in Figure 6. First
we initialize the pipeline to be empty. Then, we set the ex-
ternal control signals such that the extra circuitry in the up-
per branch behaves as pass-through logic, but the extra cir-
cuitry on the lower branch behaves as a regular pipeline
stage. Thus, during this test, the upper branch is shorter
than the lower one.

Next, we load a test sequence of eight data elements
through the left interface of the pipeline, without provid-
ing acknowledgments at the right interface, and wait for a
sufficient time for the pipeline to stabilize. At this point the
upper branch is completely filled, whereas the lower branch
has one bubble in stage L.

Then, we remove one data item from the right end of
the pipeline, thereby creating a bubble that propagates left-
ward through the pipeline. Since there is already a bubble
in stage L, the fork will be ready to react quickly when the
bubble reaches stage U , thereby exposing any reverse de-
lay faults between stage U and the fork stage.

Errors are easily detected by reading out all of the data
from the pipeline and examine it for functional correctness.
This testing procedure is then repeated to similarly test for
reverse delay faults between stage L and the fork stage.

5. Test Example I: Linear MOUSETRAP

This section applies the testing strategies for linear pipelines
given in Section 3 to MOUSETRAP. For each of the possible
delay faults in a MOUSETRAP pipeline, either our forward
or reverse fault testing strategy is applied. A key contribu-
tion is a test pattern generation approach which can help ex-
pose these delay faults.

MOUSETRAP exhibits two distinct timing constraints that
must be satisfied for correct operation, one forward (setup
time) and one reverse (hold time), as was discussed earlier
in Sections 2.2. A violation of the first constraint can lead to
data corruption because the data fails to arrive a setup time
before the latch is disabled. A violation of the second con-
straint can lead to two distinct failure scenarios: “control
overrun” (reqN is overwritten by reqN+1) and “data over-
run” (dataN is overwritten by dataN+1). Test methods and
pattern generation for testing these delay faults for linear
MOUSETRAP are now presented.

5.1. Forward Delay Faults

Setup Time Fault. Violations of the setup time require-
ment are tested using our test approach introduced for test-
ing forward delay faults in Section 3.2.1. Specifically, we
initialize the pipeline to be empty, then feed test data to the
pipeline from the input side, and read the data from the out-
put side of the pipeline to determine if a delay fault exists.
Determining test data patterns to expose such faults, how-
ever, is not trivial.

Recent work [9] has introduced a method for test pattern
generation to expose this type of fault. Their method sep-
arately tests for setup time violations for each data bit for
each pipeline stage. Specifically, it suggests sending one
test pattern to initialize that bit to 0, and then sending a sec-
ond test pattern that checks for a stuck-at-0 fault on that bit.
If there is a setup time violation at that bit location, then the
bit value will remain at 0 and behave as if it were stuck at 0;
otherwise, the bit is correctly set to 1 by the second test pat-
tern. Thus, their work nicely leverages stuck-at ATPG tools
to help test for setup time violations.

There is, however, a significant limitation in the test pat-
tern approach of [9]: it relies on the assumption that the
setup time fault will affect a single bit in the stage being
tested. In practice, however, if one of the lines coming out
of a stage is corrupted due to a setup time violation, the
other lines coming out of it are likely to be corrupted as
well. The combination of multiple errors in one stage could
easily lead to the fault’s not propagating to the end of the
pipeline.

Our approach overcomes this limitation of [9] and can
correctly test for setup time faults that may affect multiple
bits simultaneously. In particular, our test pattern genera-
tion strategy exposes a setup time violation for a particu-
lar bit (say, bit k) in a given stage (say, stage N ) regardless
of whether or not other bits are also affected by that fault.
The key idea is to generate pairs of test data items (say, I1

and I2) which satisfy the following criteria: (i) they gener-
ate values (say, D1 and D2) at stage N which differ in only
the k-th bit, and (ii) they produce different outputs at the
right end of the pipeline.

Test approach. Our test method consists of two
steps: sending the first test data item (I1) through an
empty pipeline and removing it from the other end, fol-
lowed by sending the second test data item (I2). If cri-
teria (i) is met, a setup time violation can only cause
the bit k to change, since all other bits are the same be-
tween I1 and I2 If criteria (ii) is met, then a fault for bit k in
stage N is propagated to the output, and is therefore func-
tionally testable. This procedure is repeated for all bits in
all pipeline stages.

ATPG setup. Our approach to generating the test pattern
sequence (I1, I2) leverages existing ATPG tools for stuck-
at fault testing. Specifically, we map the problem of find-
ing the test patterns I1 and I2 that will expose a setup fault
at bit k in stage N in the pipeline into an equivalent problem
of testing for a stuck-at-0 fault at the output of the dual cir-
cuit shown in Figure 7. The block labeled “Hamming-1 k”
produces 1 if its inputs differ in only the k-th bit; other-
wise it generates 0.3 Therefore, any input pattern I1I2 that
tests for output stuck-at-0 fault also satisfies the conditions
required for the sequence (I1, I2) to be a test pattern for ex-
posing a setup time violation in bit k in stage N . In par-

3 The block tests if its inputs have a Hamming distance of 1, and the
only different bit is bit k.
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ticular, the inequality tester ensures that the two input pat-
terns will generate different pipeline outputs, and the Ham-
ming distance checker ensures that the intermediate values
in stage N differ in only bit k. Finally, a test for stuck-at-0
at the output of the AND gate effectively ensures that the
test patterns I1 and I2 that are generated satisfy the con-
junction of these conditions.

Example. Figure 8 shows a two-stage pipeline with one
level of combinational logic. To check setup time faults for
the bit o1, our ATPG method yields a test sequence consist-
ing of the following two data items: i1i2i3 = 011 followed
by i1i2i3 = 010. Table 3 shows the correct and faulty be-
haviors.

5.2. Reverse Delay Faults

The reverse delay fault in MOUSETRAP occurs due to a
violation of the hold time requirement. This faults can man-
ifest itself in two flavors: control overrun and data overrun.

Control Overrun. Control overrun occurs when the hold
time constraint for MOUSETRAP (see Table 2) is violated for
the incoming req signal. That is, once a stage receives a
data item along with a request, it fails to disable its latch
before a new request overwrites the current request. Since
this is a reverse delay fault, we use the testing strategy out-
lined in 3.2.2. Specifically, we fill the pipeline with data and
then insert one bubble at the right end of the pipeline, which
exposes faults as it propagates backwards.

The error behavior for control overrun is that two re-
quests, and therefore two pieces of data, are lost. This is
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Table 3: Test patterns for checking setup time fault
for line o1 in Figure 8.

because MOUSETRAP uses transition signaling. For exam-
ple, Figure 9 indicates how six requests will be interpreted
as only four requests in the presence of a fault.

We can test for this fault quite easily in a linear pipeline.
First we fill the pipeline with N data items, where N is
the length of the pipeline, while withholding acknowledg-
ments from the right end of the pipeline. Then we present
the N +1-th data item to the pipeline, although at this point
it will not be accepted by the pipeline. Now, every stage
in the pipeline has new data available to its left. Next, we
remove one item from the right end of the pipeline, effec-
tively introducing one bubble which flows leftward to ex-
pose any hold time faults. When this bubble reaches the
leftmost pipeline stage, the N + 1-th data item is accepted
by the pipeline. Thus, if there is no fault, the pipeline will
once again contain N data items at this point. If there were
any hold time violations, then two items will have been lost
for each violation, and therefore only N − 2 or fewer items
would remain in the pipeline. The correct and faulty behav-
iors are easily distinguished: the correct pipeline is full and
will not accept any new data, but the faulty pipeline will ac-
cept two or more data items.

As an example, Figure 9 shows the behavior of a 3-stage
linear pipeline that has a control overrun fault in stage2.
First we supply four data items along with their requests;
then we remove one data item to cause error behavior.
Specifically, req2 falls while en2 is still asserted, thereby
allowing an incorrect request through. This error is ex-
posed when two subsequent requests are acknowledged by
the pipeline. Table 4 shows the test pattern we used in ex-
posing this error. In general, the test sequence for a control
overrun fault on a linear N -stage pipeline contain N +3 test
patterns.

Data Overrun. Unlike control overrun, data over-
run does not result in the loss of requests. Instead, data
becomes corrupted. Specifically, this hold time viola-
tion causes data item DN to be overwritten partially or
entirely with data item DN+1. In MOUSETRAP, data over-
run occurs when the hold time constraint is violated only
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S.No. Test Pattern Correct Faulty Comment
Behavior Behavior

(req0,ack3) (ack0,req3) (ack0,req3)
1 (1,0) (1,1) (1,1) apply 1st req
2 (0,0) (0,1) (0,1) apply 2nd req
3 (1,0) (1,1) (1,1) apply 3rd req
4 (0,0) (1,1) (1,1) apply 4th req
5 (0,1) (0,0) (0,0) add one bubble
6 (1,1) (0,0) (1,0) apply 5th req,

observe ack1

Table 4: Test pattern for control overrun

for the latches that capture the data bits and not for the
tiny latch that captures the associated request; this sce-
nario is quite possible because data can arrive from
the previous stage much earlier than its associated re-
quest.

The test for data overrun is more complex than that for
control overrun because test patterns must be generated
carefully to expose data corruption, as opposed to simply
detecting loss of data items. As with setup time faults, if a
data overrun fault affects one data bit of a stage, it is likely
to affect other bits of the same stage as well. Therefore, test-
ing sequences must be generated for data overrun faults in
a manner similar to those generated for setup time faults in
Section 5.1.

Interestingly, the ATPG approach of Figure 7 also ap-
plies to generating tests for the reverse delay fault. Sup-
pose we are testing stage N for a data overrun fault. In or-
der to begin testing, we must fill the pipeline up to and in-
cluding stage N with some data; these values do not affect
the testing of stage N . The next two data items fed into the
pipeline are the same patterns generated by the method of
Figure 7: I1 followed by I2. Then, one item is removed
from the right end of the pipeline, and a bubble propagates
backward exposing the delay fault for bit k in stage N . If
the pipeline operates correctly, stage N will correctly latch
the value D1; otherwise it will latch the value D2. The cor-
rect and faulty scenario are therefore easily distinguished at
the output of the pipeline.

6. Test Example II: Non-Linear MOUSETRAP

This section describes how to test the delay faults in MOUSE-

TRAP in the presence of forks and joins. Setup time faults
and data overrun faults use the same test pattern generation
methods as their linear counterparts described in Section 5.
For control overrun faults, however, we must use a differ-
ent test pattern than the one given for linear pipelines.

6.1. Setup Time Fault

Since the setup time fault is a forward delay fault, we use
the testing strategy introduced for in Section 4.1. Specif-
ically, for full fault coverage we add logic that allows the
join stages to be tested. Test patterns for forked paths can
be generated in the same way as for straight paths, as de-
scribed in Section 5.1

6.2. Control Overrun

Since control overrun is based on a reverse timing con-
straint, testing forked paths faces the challenges given in
Section 4.2. Specifically, we must ensure that forked paths
are balanced and add logic to allow testing of the fork
stages.

The input patterns for testing control overrun faults for
straight pipelines given in Section 5.2 will not work in the
presence of forks. Recall the the linear pipeline test relied
on being able to detect if the pipeline has lost two (or more)
data items after being filled. However, if the fault occurs on
only one branch of a fork, the branch without the fault will
not lose any data items, and will thereby prevent the loss of
data in the other branch from being externally observable.
In particular, the correctly functioning branch will not allow
more data items from being accepted from the environment
even though the faulty branch contains bubbles.

For better fault coverage in pipelines with forks, we
propose a different strategy. Instead of determining if the
pipeline has lost any data items due to delay faults by try-
ing to feed it more items, we determine any losses by read-
ing out the entire contents of the pipeline and counting the
number of items read. If fewer than N items emerge from
an originally filled pipeline, then some data has been lost
due to control overrun.

Figure 10 shows an example of a forked pipeline to be
tested. Table 5 shows a test pattern that we use to test for
control overrun faults. In the correct scenario, all N of
the acknowledges (ack9) sent to the right interface of the
pipeline lead to further requests coming out of the pipeline
(req9). In the faulty scenario, only N − 2 of the acknowl-
edges lead to new requests being generated.

6.3. Data Overrun

Since data overrun is based on a reverse timing con-
straint, we use the test setup given in 4.2. Specifically, we
must ensure that forked paths are balanced and add logic
to allow testing of the fork stages. Test patterns for forked
paths can be generated in the same way as for straight paths,
as described in Section 5.2.
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S.No. Test Pattern Correct Behavior Faulty Behavior Comment
req0 ack9 d0 ack0 req9 d9 ack0 req9 d9

1 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 1st item,
recv 1st item

2 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 2nd item
3 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 3rd item
4 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 4th item
5 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) send 5th item
6 0 0 (0,0,0,0) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 6th item
7 1 0 (1,1,1,1) 0 1 (1,1,1,1) 1 1 (1,1,1,1) send 7th item
8 1 1 (1,1,1,1) 1 0 (0,0,0,0) 1 0 (0,0,0,0) recv 2nd item
9 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 1 (1,1,1,1) recv 3rd item
10 1 1 (1,1,1,1) 1 0 (0,0,0,0) 1 0 (0,0,0,0) recv 4th item
11 1 0 (1,1,1,1) 1 1 (1,1,1,1) 1 0 (1,1,1,1) recv 5th item
12 1 1 (1,1,1,1) 1 0 (0,0,0,0) empty: req9 same recv 6th item
13 1 0 (1,1,1,1) 1 1 (1,1,1,1) empty: req9 same recv 7th item

Table 5: Test pattern for control overrun on a forked path

d9

4 4 4 4

Fork
2

2 2

2

en1

en2

en3

en4 Join
2

2

en5

en6

en7

en9

req0

ack0

d0 d1

ack1

req1

req2

ack2

d2

req3

ack3

d3

req4

ack4

d4

req5

ack5

d5

req6

ack6

d6

req7

ack7

d7

req8

ack8

d8

req9

ack9

Figure 10: A non-linear MOUSETRAP pipeline

7. Conclusions and Future Work

This paper presented a strategy for testing delay faults
in high-speed asynchronous pipelines, including pipelines
with forks and joins. We showed that our testing strate-
gies are applicable by giving examples from three different
pipeline styles: GasP, MOUSETRAP, and HC. Our testing
strategy is non-intrusive for linear pipelines and minimally-
intrusive for pipelines containing forks and joins. In addi-
tion, all of our tests can be conducted using low-speed test-
ing equipment.

We also demonstrated one specific application of our
strategy. Using MOUSETRAP as an example, we showed
how our testing strategies work for straight paths and also
paths with forks and joins. We also showed how to gener-
ate test patterns for MOUSETRAP that are robust to the non-
deterministic nature of errors caused by delay faults. This
method leverages past ATPG tools.

There are several natural extensions to our work. Our
method applies to forward and reverse constraints; the next
step is to identify other kinds of timing constraints and de-
velop the corresponding test strategies. In testing pipelines
with forks and joins, this work took one step towards test-
ing pipelines with arbitrary topologies. We still need to in-
corporate testing of more complex pipeline stages, such as
data dependent conditional forks. In addition, we plan to
apply the testing strategies presented here to circuits with
some non-trivial combinational logic.
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