
DRAFT COPY

A Model for Automatically Repairing Execution Integrity∗

Michael E. Locasto, Gabriela F. Cretu, Angelos Stavrou, Angelos D. Keromytis
Department of Computer Science, Columbia University

{locasto,gcretu,angel,angelos}@cs.columbia.edu

Abstract

Many users value applications that continue execution in the face of attacks. Current software pro-
tection techniques typically abort a process after an intrusion attempt (e.g., a code injection attack). We
explore ways in which the security property of integrity can support availability. We extend the Clark-
Wilson Integrity Model to provide primitives and rules for specifying and enforcing repair mechanisms
and validation of those repairs. Users or administrators can use this model to write or automatically
synthesize repair policy. The policy can help customize an application’s response to attack. We describe
two prototype implementations for transparently applying these policies without modifying source code.

1 Introduction
Systems that sustain their availability in the face of attack are, in some sense, considered secure. This paper
explores the use of the security property of integrity to provide availability in cases where faults and attacks
can be accurately detected. Previous approaches to detecting attacks against applications typically terminate
the attacked process without considering how to repair the integrity of the execution and safely continue
processing. Few alternatives to crashing exist1. Crashing is a frustrating experience, and many users dislike
having their writing or browsing session abruptly terminated, with no opportunity to save work. Even if
software could somehow ignore the attack itself, the best sequence of actions leading back to a safe state is
an open question.

Automating such a response strategy is challenging, as it is often unclear exactly how a system should
recover from any particular attack. Furthermore, a system may require dynamic recovery; that is, the exact
response may vary depending on the state of the system as well as the nature of the attack. Therefore, a
strictly static response seems unsuitable. Although recent work has described methods for automatically
and transparently recovering from faults and attacks [23, 26, 24], these approaches propose automatic fixes
that are based on specific heuristics2 .

We articulate a way to augment these approaches with the notion of recovery policy. A recovery policy
(or a repair policy – we use the terms interchangeably) describes how execution integrity should be main-
tained after an attack is detected. Even if we cannot guarantee a completely automated recovery, we can
provide a way for a user to customize an application’s response to an intrusion attempt. For example, we

∗This research was supported by NSF grant NSF CCF-05-41093.
1In some environments, crashing is the best response, but we assume situation exist where a user desires continued execution.
2There is nothing inherently wrong with using heuristics. In fact, they may be the only valid methods for responding to faults

or vulnerabilities that are present because of unclear specifications in the tools and languages used to build systems.

1



DRAFT COPY

show how a user can specify and choose a number of recovery actions for Firefox, including saving all open
tabs, in response to the exploit of a real vulnerability.

In order to provide a theoretical framework for recovery policy, we extend the Clark-Wilson Integrity
Model (CW) [7] to include the concepts of (a) repair and (b) repair validation. CW is ideally suited to the
problem of detecting when constraints on a system’s behavior and information structures have been violated.
Our extension supplements the model with primitives and rules for recovering from a policy violation and
validating that the recovery was successful.

1.1 Motivation
Given the automated nature of attacks, synthesizing and executing a recovery sequence must also be auto-
mated. The very nature of automation, however, makes system owners understandably reluctant to adopt
these countermeasures, as the system may generate a semantically incorrect response. Therefore, any viable
response system must behave like a flexible behavior firewall for both anticipated and unanticipated errors
and attacks. We are motivated by this challenge.

1.1.1 Semantically Correct Healing

At least two systems have suggested ways to execute through a fault by effectively pretending it can be
handled by the program code or by some instrumentation to keep track of undefined memory accesses
[26, 24]. However, these and similar strategies give rise to semantically incorrect responses.

Figure 1 illustrates a specific example: an error may exist in a routine that determines the access control
rights for a client. If this fault is exploited, and the self-healing machinery glosses over the fault, it may
return a value that allows the authentication check to succeed. This situation occurs precisely because the
recovery mechanism is oblivious to the semantics of the code it protects. One solution to this problem relies
on annotating the source code to indicate which routines should not be “healed”, but we find this technique
unappealing. Instead, we propose the next logical step. Since source-level annotations serve as a vestigial
policy, we formalize the notion of a repair policy and create a system for specifying and enforcing it without
modifying source code.

int login(UCRED credentials)
{

int authenticated = check_credentials(credentials);
if(authenticated) return login_continue();
else return login_reject();

}
int check_credentials(UCRED credentials)
{

strcpy(uname, credentials.username);
cred_OK = checkpassword(lookup(uname), credentials);
return cred_OK;

}

Figure 1: Example of Semantically Incorrect Response. If an error arising from a vulnera-
bility in check credentials occurs, a self-healing mechanism may attempt to undo the effects of
check credentials and return a simulated error code. Any value other than 0 that gets stored in
authenticated will cause the login to succeed. What may have been a simple DoS vulnerability has been trans-
formed into a valid login session by virtue of our “security” measures. This paper explores a method for intelligently
constraining return values and other application data.



DRAFT COPY

1.1.2 Constraining Program Behavior

The rational behind our integrity-based approach to self-healing is most easily understood by sketching its
evolution from the initial idea. We began by thinking about the possibility of overloading a standard error
reporting mechanism in systems programming languages: the assert procedure. An assert procedure
evaluates the logical condition supplied as its argument. The semantics of this procedure typically make it
useful for fault detection and notification: if the condition evaluates to false, the routine reports an error and
subsequently aborts execution. Our initial approach was a thought experiment about changing the design
of assert routines to repair as well as detect and notify. A simple approach would attempt to adjust
the values of the relevant program state (i.e., state involved in the condition supplied to the routine) to
make the asserted expression true. Automatically converting existing assert macros (either via runtime
instrumentation or altering the compiler or preprocessor) to these Self-Correcting Assertions (SelCA) is one
possible way to provide a self-healing mechanism. Furthermore, it is simple to express constraints on return
values via this mechanism, and potentially handle the difficulty illustrated in Figure 1.

Unfortunately, this approach suffers from a number of deficiencies. First, assert routines most likely
exist as a last resort mechanism to forcibly crash the program if the asserted condition fails. Changing these
semantics by directly overloading them will interfere with that goal. Second, invocations of assertmacros
actually evaluate the supplied expression. These semantics are problematic if the evaluated condition has
side effects3 . Using assertions for self-healing is dangerous in this situation because the very mechanism
that provides security alters program state in an uncontrolled way. Another obstacle arises when legacy
systems lack assertions altogether (this is the case for at least one modern programming language, Java).
Finally, this form of SelCA is similar to other forms of self-healing in that it is effectively a system-level
hack without any supporting formal model.

1.2 Challenges
This three-part problem motivates our work. First, since the source-level placement of most assertions is
unlikely to prove useful for self-healing, more suitable instrumentation points must be identified. Implicit
in this challenge is the need to specify the constraints to be evaluated at each of these points. Second, it is
necessary to speculatively execute a constraint and undo any side effects if it fails. Third, the lack of a formal
model makes it difficult to compare various self-healing approaches and to reason about the properties of
these systems in general. We defer the second challenge to future work and note that many systems discuss
techniques to rollback and replay execution (see [12, 5] for overviews). Instead, this paper focuses on the
first and third challenges:

1. specifying a formal model of repair policy

2. generating the content of a policy (i.e., the constraints)

3. identifying places to instrument the application (i.e., insert calls to evaluate the policy).

Even though vanilla assertions are not suitable for addressing these challenges, the intuition is still sound:
assertions provide an opportunity to self-heal because the code’s author felt that a particular constraint was
critical to continued correct operation. Asserted constraints also compare favorably to normal mechanisms

3The assert manual page notes: “assert() is implemented as a macro; if the expression tested has side-effects, pro-
gram behaviour will be different depending on whether NDEBUG is defined. This may create Heisenbugs which go away when
debugging is turned on.”



DRAFT COPY

for dealing with system errors, such as structured exception handling. Finally, constraints also provide a
good indication of the complexity of the self-healing problem, and Section 4 presents a survey of assertion
use in a variety of popular applications.

1.3 Requirements for Recovery Policy
Our overall goal is to automate the recovery process by limiting the amount of human involvement during
repair. Once we understand the requirements, we can begin to design ways to automate parts of the model.
A recovery model requires explicit, measurable, and enforceable constraints on the integrity of program
execution. The model must contain primitives that describe basic data types as well as operations on data
items of those types. The model must describe mechanisms for measuring the integrity of these data items
as well as repairing that integrity by returning data and other execution artifacts to a valid state.

Recovery requires a measure of validity. The model should provide a mechanism for ensuring that the
repair operation was valid. Automatic repair attempts to anticipate the combined intent of both the system
designer and the user. In some cases, healing may not be possible, and the model should be able to express
a range for the quality of the repair.

Recovery requires context. Existing detection and exception-handling mechanisms often lack specific
information to diagnose and correct the core problem automatically. Analysis of the fault is often delegated
to a manually-driven forensics process, thus slowing the response rate of the system.

Recovery requires separation of duty (SoD). A recovery model should cleanly separate the processes of
policy specification and policy enforcement. Policy defines a particular arrangement of the model primitives,
creates an instance of the model, and ties it to a particular implementation. The notion of separation of duty
goes further than simply separating policy from mechanism. For example, an attack may have extensively
altered program state before being detected. If the integrity repair system is intertwined with the protected
system, the repair system itself may have been damaged or corrupted. In this sense, the term “self-healing”
is somewhat of a misnomer. Separate entities should implement and enforce the mechanisms in the repair
model in order to minimize conflicts of interest as well as attacks on the repair model itself.

1.4 Contributions
The main contributions of this work complement and enhance previous work in self-healing systems. First,
we construct a formal model of integrity repair by extending an established integrity model: Clark-Wilson.
Second, we show how this model is useful for providing a customizable response to intrusion attempts.
We also consider how to automatically generate policies for one complexity class of constraints as well
as demonstrate manual policy creation. Third, we sketch two prototypes (one for x86, one for Java byte-
code) that can transparently insert the enforcement of these policies into real software without modifying
the source code (although mapping constraints to source-level objects assists in maintaining application se-
mantics). We expect the repairs offered by this “behavior firewall” to be temporary constraints on program
behavior – emergency fixes that await a more comprehensive patch from the vendor.

Our contributions include a few that are philosophical in nature. First, we show how related systems and
previous work can be classified by our model, thus demonstrating its generality. Second, we briefly consider
the differences between a runtime repair system based on assertions and one based on exceptions. Systems
should include structured forensic information in order to assist attempts at recovering execution rather than
leave the programmar with little more than a notification and stacktrace.



DRAFT COPY

2 A Model for Integrity Repair
The Clark-Wilson integrity model [7] (CW) formalizes the notion of information integrity. A policy that
uses the model describes the relationships between principals, data items, and operations on those data
items. Clark and Wilson developed the model to illustrate that then-current integrity models were better
suited to the confidentiality requirements of multi-level security systems. Clark and Wilson use the running
example of business accounting principles (e.g., double-entry bookkeeping) throughout their analysis. Their
model provides enough formalism to describe how these longtime manual procedures can be implemented
in a computerized context. The CW model also fulfills the requirements in Section 1.3.

2.1 The Clark-Wilson Integrity Model
The basic data type in CW is a Constrained Data Item (CDI). A CDI has a logical relation constraining its
value range. There are two types of procedures that can operate on a CDI. A Transformation Procedure
(TP) is a well-formed transaction that transitions the system from one valid state to another. A TP processes
sets of CDIs on behalf of a particular authenticated user. An Integrity Validation Procedure (IVP) is used to
measure whether a CDI conforms to the integrity specification. In real software systems, TPs are analogous
to functions that operate on data structures. IVPs roughly correspond to mechanisms like double-entry
bookkeeping in financial systems. For software security, IVPs map to detection mechanisms like stack
canaries [9, 13], taint-tracking [8], program shepherding [17], address space randomization [4, 29] and
array bounds checking in languages like Java. In these cases, the CDIs in the system are data constructs
like stack-resident return addresses. CW applies equally well to these low-level data items as well as more
complex data structures. Of course, not all data in a system is constrained. In these cases, data (e.g., from
the user, adversary, or the environment), is represented by an Unconstrained Data Item (UDI). Any TP
taking a UDI as input must ensure that it transforms all possible values of a UDI to a CDI. Many system
vulnerabilities arise from the operation of an incorrect TP on a UDI, or data derived from a UDI.

The core of the model is a collection of nine rules that deal with enforcement (E) and certification (C)
of users, IVPs, TPs, CDIs, and UDIs. For reference, we reproduce the rules in Appendix A. Some rules are
annotated with shorthand names that sum up their purpose.

The heart of any specific policy expressed in CW terms is the list of the relations specified in rule E2.
The remainder of the rules simply ensure that the model works as expected. The basis of the model relies
on manual certification of TPs and IVPs. Of course, if all such procedures did not contain vulnerabilites
simply by virtue of certification, the security community would have little to worry about. Certification is
performed by humans on inherently complex constructs and is therefore susceptible to error. Furthermore,
the mechanisms proposed by the model must themselves be protected against tampering. Rule E4 helps to
ensure this, but it still depends on a manual process. Clark and Wilson note this and suggest minimizing
certification rules. They also note that many systems do not separate policy and mechanism: application-
specific policy is encoded in TPs (an observation especially true for error-handling code).

2.2 Integrity Repair
The CW model focuses on detecting and preventing unauthorized data modification. Although a TP should
move the system from one valid state to the next, it may fail for a number of reasons (incorrect specification,
vulnerability, hardware faults, etc.). The purpose of an IVP is to detect and record this failure. CW does
not address the task of returning the system to a valid state or formalize procedures that restore integrity. In
contrast, we concern ourselves with ways to recover after an unauthorized modification.



DRAFT COPY

The straightforward nature of the CW model does not require a great deal of added complexity to in-
crease its power to describe the repair of failed integrity constraints. Our extensions to the model include
two new types of procedures: Repair Procedures (RP) and Repair Validation Procedures (RVP). We use our
additions to create a recovery policy. This part of the integrity policy specifies how to return to a valid state;
that is, it describes what changes to the system must occur in order for a set of IVPs to measure some set of
CDIs and return “VALID.”

In the example of Figure 1, variables like authenticated, uname, and auth OK are CDIs. The
login, strcpy, and check credentials functions are TPs. Since manipulation of uname may
overwrite a stack return address, any standard detection mechanism for this type of exploit serves as an
IVP for uname. If the IVP indicates that the TP has failed to maintain the integrity of this CDI, then
a RP is needed that will set an appropriate value (presumably FALSE or reject) for the CDIs auth OK
and authenticated. Furthermore, a RVP should be invoked to test the results of this repair. The RP
helps ensure that the value of the CDIs aren’t simply set to a satisfying or legal value, but rather the most
appropriate value given the current system state.

Integrity Repair Model Rules Our additions to the CW model are based on four new rules that supply
repair and repair validation procedures, although the C7 rule can easily be combined with rule C3.

1. C6: All RPs and RVPs must be certified valid. For RPs, certification indicates that it returns a given set of
CDIs to a valid state. For RVPs, certificaion mirrors that of rule C1. For each RP and RVP and each set of CDI
that they may manipulate, the security officer must specify a “relation” which defines that execution. A relation
is of the form: (RPi ∨ RV Pi, (CDIa, CDIb, CDIc, . . . )), where the list of CDIs defines a particular set of
arguments for which the RP or RVP has been certified.

2. E5: The system must maintain a list of relations of the form: (USERID, RPi, (CDIa, CDIb, CDIc,. . . ) which
relates a user, a RP, and the CDIs that a RP may adjust back to a satisfactory value assignment.

3. E6: The system must maintain a list of relations of the form: (USERID, RV Pi, (CDIa, CDIb, CDIc,. . . )
which relates a user, a RVP, and the CDIs that a RVP may measure to make sure they have a satisfactory value
assignment.

4. C7: The list of relations in E5 and E6 must be certified to meet the separation of duty requirements. For
example, an RVP must be implemented and certified by a user other than the user that certified the corresponding
IVP and RP. This SoD is useful in case either of these procedure was maliciously or incorrectly certified.

reference_monitor(TP t, CDIList c) {
IVP ivp = lookupIVP(t,c);
boolean valid = ivp(c);
if(!valid)
RP rp = lookupRP(c);
RVP rvp = lookupRVP(c);
rp.execute(c);
boolean verified = rvp(c);
if(!verified)

abort();
return;

}

Figure 2: IVPs, RPs, and RVPs as an Inline Reference Monitor. The IRM can fall back to aborting execution
if the repair procedure does not succeed in restoring integrity to the CDI set.



DRAFT COPY

2.2.1 Model Implications

Note that our model does not constrain the relationship between RPs and TPs. Rather, there is an indirect
mapping through the CDIs that form the relations of E2 and E5. Consequently, we leave as an implemen-
tation choice which TPs an IVP should be invoked for, and this situation naturally reflects the choice of
protection/detection mechanism in use and where (i.e. how often) it is executed. Selecting which TPs to
monitor depends on the choice of defense instrumentation, and strategies range from random selection to full
coverage (invoking an IVP after each TP). Other interesting enforcement choices include selection based on
proximity of a TP to input handling routines or the error history of a TP. RVPs are also associated with a set
of CDIs and serve to to check the validity of the CDIs after the application of an RP. Figure 2.2 expresses
the arrangement of TP, IVP, RP, and RVP as a form of an Inline Reference Monitor. The model also frees us
from having to modify the source code; the invocation of the IRM can be inserted in a program binary.

2.2.2 Satisfying Requirements

We next explore the extent to which our model satisifies the requirements from Section 1.3. The model
serves our overall goal quite well: human involvement during repair is limited, as repair procedures are car-
ried out automatically, although their synthesis may have to be non-automatic in some cases. CW provides
concrete and measureable constraints that are certified to be enforceable (IVPs). CW provides separation of
duty as one of its core constructs: integrity is easier to maintain if trust is not vested wholly in one principal.
SoD breaks down the actions of a transaction so that prinicipals must conspire to subvert it. Simple ran-
domized schemes provide less onerous coordination and a probabilistic rate of failure for any collusion. Our
modifications satisfy the requirements for “repairing [the] integrity by returning data and other execution
artifacts to a valid state” through the use of RPs. Context for the repair actions is captured via the set of
CDIs that should be fixed, providing a precise snapshot of the relevant state. Finally, the RVP construct
provides a mechanism to measure the validity of the repair operation.

2.3 Constraint Repair
The heart of the CW model and our extensions to it are lists of relations that constrain the values of CDIs.
The constraining relation on a CDI may be arbitrarily complex. In this paper, we limit our focus to con-
straints (and the IVPs that implement them) that are expressable as boolean formulas. More complex expres-
sions exist (e.g., relations that are equivalent to a Turing Machine description) and we defer their study to
future work, partly because boolean formulas are powerful enough for the purpose of expressing data struc-
ture constraints, and partly because we suspect the automatic synthesis of correct RPs from TM-equivalent
IVPs is undecidable. The model supports manual synthesis and certification of these RPs.

For the class of IVPs that we do consider, each IVP provides a boolean condition that was violated.
At this level of complexity, self-healing may be accomplished by finding a satisfiable assignment for that
boolean condition in addition to any user-specified recovery actions. Therefore, synthesizing a list of RPs
from the list of constraints on each IVP is achievable. While the Satisfiability problem is NP-Hard, it is at
least decidable. We survey current software systems to get an idea of the complexity of typical assertion
constraint conditions. A large portion of these applications do not use complicated expressions, and so the
time for determining a satisfiable assignment of values to the expression atoms should be short. Finding
appropriate values is driven by the definition of the constraints on the relevant CDIs. Here, however, the
system must follow some heuristics (if completely automated) or human advice (if the RP is manually
specified).



DRAFT COPY

2.4 General Caveats
We summarize the challenges for our system here and address some more fully in Section 5.

1. Synthesizing Policy: Doesn’t the programmer have to write recovery policies ahead of time? Why
not write the software correctly in the first place? We consider automatic synthesis in Section 2.3.
In cases where repair policy is synthesized by a human, SoD implies that the programmer shouldn’t
specify the recovery policy; the end-user or system administrator may actually provide a better spec-
ification. Furthermore, the goal of a repair policy is not necessarily aimed at fixing the underlying
vulnerability. Instead, it should supply a configurable response that augments the wide variety of
protection mechanisms available to serve as a short-term “band-aid.”

2. Exception Handling: Exception handling can be considered a type of repair policy that is synthesized
before system deployment by a human. While exception handling is a valuable tool for handling
system errors, it lacks a number of properties that make it suitable as an automatic repair policy
mechanism.

3. Hiding Errors Doesn’t the process of self-healing “hide” errors? If so, security is decreased because
a broken system is being run without the knowledge of the administrator. Self-healing does not pre-
clude the system from reporting errors, alerts, or policy violations so that a human effort to address
the source of the vulnerability parallels the automatic process, and CW has strict audit requirements.

4. State Delegates: Boolean expressions form the basis of one class of recovery policy constraints.
However, such expressions may only represent a measurement of a high-level property of another
data structure or CDI. We term such a relationship a “state delegate.” For example, a CDI named
num sorted may be constrained to be less than the value 10. Repair likely involves not only
modifying the value of the CDI num sorted, but also the underlying CDI. We defer the investigation
of automatically synthesizing repair policies for these types of algorithmic relations.

5. Nondeterministic Effects: Attempts to sandbox an application’s execution must sooner or later al-
low the application to deal with global input and output sources and sinks that are beyond the control
of the sandbox. Repair attempts may fall short in situations where an exploit on one machine (e.g.,
an electronic funds transfer front-end) that is being “healed” have visible effects on another machine
(e.g., a database that clears the actual transfer). Such situations require additional coordination be-
tween the two systems – they must logically be considered the same, and our procedures must be
transactions that span both machines. Placing the machines in the same administrative domain some-
what amerliorates this challenge. In contrast, if a browser exploit caused a PayPal transaction to be
initiated, a self-healing system may be able to recover control on the local machine, but the user would
not have an automated recourse with the external PayPal system.

2.4.1 Model Limitations

Clark-Wilson (and our extension) rely on a number of assumptions. Perhaps the most significant is that each
user is only permitted to execute a specific set of programs (TPs). The system should ensure that it is not
possible for a user to augment their set of programs to bypass the SoD rules. The phenomena of emergent
properties makes this assumption notoriously difficult to guarantee, because future configurations of the
system may contain programs that can be combined in unexpected ways. Therefore, system reconfigurations
must be recertified. This requirement is somewhat unrealistic for current and foreseeable software systems,



DRAFT COPY

and complexity often makes the certification problem intractable, even though some utilities such as the
Unix sudo program seek to provide just this type of enforcement.

More to the point, this security model relies heavily on the notion of authenticated principals with non-
overlapping authorization roles. However, this requirement has the largest effect on security concerns, since,
as the authors note, it relies on certification rules. Translating the model to real software is a challenge,
especially since the complexity of modern systems threatens to violate many of the underlying security
expectations. In our implementations, we make a number of reasonable design choices to illustrate the
feasibility of the key concepts.

3 Implementation
We are constructing a prototype of our model for two different language systems: Java Virtual Machine
bytecode and x86 machine code. Our main reason for doing so was to demonstrate the general applicability
of the model, and choosing both a “managed runtime” platform and a pure binary platform helps. Also, the
application of the model to these systems shows that we are interested in enforcing higher-level constraints
than those typically associated with buffer overflows. Finally, the prototypes demonstrate our ability to insert
policy into program binaries and avoid cluttering the source code with calls to policy routines or having to
recompile the application. Our Java implementation leverages the BCEL4 Java bytecode parsing library and
the Java Instrumentation Framework introduced in Java 5. Our x86 prototype uses the PIN dynamic binary
rewriting platform [19].

Our implementation is similar to aspect oriented programming: we insert calls to an inline reference
monitor at well-defined boundaries (function exit). The IRM assess the state of the application with respect
to the policy, and reconciles that state (i.e., invoke the appropriate RP and RVP) if it violates policy (i.e., the
IVP returns “INVALID”). Figure 2.2 illustrates a psuedocode version of the IRM that we insert at appropriate
places in an application’s execution. The values of the IVP, RP, and RVP are dynamically determined by the
instrumentation engine from the policy. Policy is specified as an XML file or as flat file, depending on the
prototype, and contains CDI definitions and lists of relations as specified in Rules E2, E5, and E6. If the IVP,
RP, and RVP functions are not already part of the codebase, they are dynamically inserted. To demonstrate
the proof of concept, we leverage existing application code to provide the RPs rather than automatically
synthesize them from the corrosponding IVPs.

Like SELinux policies, default repair policies can be written and distributed by application vendors,
stakeholders, or competitors. Users can be presented with a menu option that presents recommended actions
(vendor-certified) along with other more risky repair behaviors (e.g., the repair choice may be the most
comprehensive, but if some memory areas have been corrupted, it may only succeed with a 45% chance).
Our model admits a repair quality scale as measured by an RVP.

4 Evaluation
The main purpose of our evaluation is to assess the hypothesis that automatic synthesis of RPs from boolean-
expression IVPs is a feasible undertaking. We also want to confirm that the insertion of policy into a real
software system is effective in providing the user with a customizable set of “repair” actions. For this latter
test, we use Firefox 1.5 and the memory corruption vulnerability described in Mozilla Foundation Security

4http://jakarta.apache.org/bcel/index.html



DRAFT COPY

Table 1: Assertion Statistics.
app ta tma eqa exa lga fna tfa tsa

cvs-1.11.22 245 194 133 86 53 10 4 0
gaim-1.5.0 5 81 1 4 0 0 0 0
httpd-1.3.36 248 53 153 30 74 57 11 0
james-2.2.0 115 129 84 54 17 54 1 0
mplayer-1.0pre8 849 166 500 95 409 107 40 0
openssh-4.3p2 7 69 0 0 7 0 0 0
qemu-0.8.1 120 35 81 3 33 5 34 0
sendmail-8.13.7 52 147 8 6 33 4 7 0

Table 2: Assertion Statistics (cont.).
app cmx 1a 2a 3a 4a 5a g5a

cvs-1.11.22 1.167 216 19 8 2 0 0
gaim-1.5.0 1 5 0 0 0 0 0
httpd-1.3.36 1.10 224 24 0 0 0 0
james-2.2.0 1.347 95 8 7 2 3 0
mplayer-1.0pre8 1.214 715 96 28 10 0 0
openssh-4.3p2 1 7 0 0 0 0 0
qemu-0.8.1 1.25 100 13 4 3 0 0
sendmail-8.13.7 1.038 50 2 0 0 0 0

Advisory 2006-04. After the vulnerability condition is triggered, we provide the user with the choice of
clearing private data from the browser or saving all tabs.

4.1 Complexity of Assertions
In order to analyze the complexity of the assert expressions we performed a survey on widely-used open
source applications written in both C/C++ and Java. The survey characterizes the complexity of assert
expressions encountered in each application by a number of properties summarized in Table 3.

The results agree with our initial intuition: assertion expressions do not have a high degree of complexity.
The average number of the atoms (an atom is defined as an operator and its arguments) per assert is less than
2. There are rare instances of expressions with 2 to 5 atoms. We found no higher grades in any of the
analyzed applications. This implies that the atoms are easily identifiable and easy to manipulate. If we look
at the structural detail of an atom, we can observe that the most common ones are based on the equality
operator: an atom that is relatively easy to satisfy. The same simple strategy can be adopted for existential
and logical expressions. The frequency of the assertions that include function calls is not high, as shown in
Table 1 and Table 2, which is encouraging, because this type of expression is more complex to fix. Some of
the applications show a number of assertions that are unequivocally meant to fail; they confirm our inituition
from Section 1 that directly leveraging assertions may be the wrong approach. We performed a brief analysis
of other applications, such as valgrind-3.2.0 and httpd-2.2.2, due to the high volume of assertion
expressions. Again we observed the same types of expressions, showing low complexity with the dominant



DRAFT COPY

Table 3: Key for Table 1 and 2
app the application under test
ta total number of assertion-like statements

tma total number of assertion-like statements in docs
eqa number of equivalence assertions
exa number of existential assertions (e.g., x != NULL)
lga number of logical assertions (e.g., x < 5)
fna number of assertions involving a function call
tfa number of assertions trivially meant to fail (e.g., 1!=1)
tsa number of assertions trivially meant to succeed (e.g., 0==0)

cmx average complexity of assertions, measured in # of atoms
1a total number of 1-atom assertions
2a total number of 2-atom assertions
3a total number of 3-atom assertions
4a total number of 4-atom assertions
5a total number of 5-atom assertions

g5a total number of 6-atom and greater assertions

expressions being 1-atom assertions. This result is encouraging since it confirms our intuition that the time
for determining a satisfiable assignment of values is small.

5 Discussion
This section considers some of the important challenges and related areas of work that we plan to consider
more fully in the future, including automatic identification of instrumentation points and comparing our
approach with exception handling.

5.1 Identifying Instrumentation Locations
Identifying locations in program code to insert calls to the reference monitor or policy evaluator is a chal-
lenging task. Many approaches to this problem exist, ranging from complete instrumentation to selective,
retroactive insertion of specific checks. This range reflects the tradeoff between the level of protection for
a system and the impact on system performance. Depending on the protection mechanism, IVP invocation
could occur after every machine instruction, after every basic block, or after some specific class of machine
instructions (e.g., control-flow transfer, arithmetic, logic, floating point, etc.). Locations at higher levels of
abstraction are also plausible places to insert policy checks. For example, the Java policy access control
mechanism relies on calls to the AccessController being interwoven throughout the standard classes
of the Java library. The approach we take in this paper is to remain flexible: only TPs specified in the policy
are instrumented with calls to their appropriate IVP.

This flexibility naturally raises the question of which TPs to include in the policy specification. Should
the TPs consist only of functions that have a known vulnerability? In this case, why not simply fix the
vulnerability in the source and redeploy the application? How does one even know to include a TP in the
policy if it contains an undiscovered vulnerability?

“Fixing” the source or waiting for a patch is beyond the scope of the problem we are considering. Pro-
tection mechanisms already exist that detect large classes of attacks. We focus on the complimentary issue



DRAFT COPY

of what should be done when any attack is detected. A policy should apply to TPs containing both known
and unknown vulnerabilities. The collection of TPs can be specified manually or automatically. Manual
specification (by program authors, system administrators, or end-users) of a repair policy likely provides
a high-quality, detailed response, but human time and error can influence its correctness. Automatically
identifying TPs can be orders of magnitude faster, especially if a TP is identified in response to an exploit
attempt. A completely automatic process needs some initial classification or training, but as with static
analysis that identifies vulnerabilities in the first place, still lacks completeness. Ganapathy et al. [14] sug-
gest an interesting approach. After a small collection of enforcement points are manually specified, their
system synthesizes “fingerprints” of these code sequences and automatically identifies other locations in
the program that match the fingerprint. These locations are candidates for instrumentation. In general, our
approach does not require that the author of a repair policy know that a TP has a vulnerability: likely candi-
dates may be selected according to heuristics or real evidence that a vulnerability exists, such as alerts from
an IDS. Another possible approach may be to have the enforcement mechanism remember a snapshot of
the application environment when attacks do occur: this state is useful as future evidence. Follow-on work
could build a system that learns when environment conditions are ripe for attack. The recreation of those
conditions could trigger the enforcement mechanism.

5.2 Exceptions Considered Unhelpful
We have elsewhere alluded to the relationship between our repair policy model and exception handling as it
is implemented in modern programming languages like C++, Java, and C#. Even when employed, its use as
a recovery mechanism is hampered by the programmer being unaware of the exact state of the system and
the condition that has been violated. She is thus unable to effectively enumerate the possible responses or
specify a decision module to choose among them.

Exception handling is a version of our policy where SoD is violated: the author and certifier of a RP is
most likely the author of the TP it cleans up after. Exceptions themselves are little more than a signal from
some IVP. As such, they often describe the symptom experienced, and not the root cause of the problem.
Consider a try...catch clause that surrounds a number of statements dealing with arrays. At best, an
exception due to an out-of-bounds array access may provide the programmer with a string and stacktrace
indicating the line where the violation occurred.

However, there is little programmatic support in the exception itself for discovering which array and
memory offset violated the constraint. Furthermore, if the handler were not in the same scope as the origin
of the exception, the exception would need to marshal and unmarshal this locally scoped data into and out
of the exception object instance. Without this type of information, responses can be nothing but manually
specified. Another issue is that the programmer’s (and thus the system’s) awareness of the error begins at
the moment that the exception is caught. This point in control flow may be in a completely different scope
and level of abstraction.
try{

int x = Integer.parseInt(s);
}catch(NumberFormatException n){

log("x was not expected value, setting to default");
x = DEFAULT_X_VALUE;
s = ""+x;

}

Figure 3: Handling a “Simple” Exception.



DRAFT COPY

Even for this basic of violations, it is not clear to a language designer what the best reaction should
be – nor is this ideal, as the language should be a general tool. The language designer should refrain
from injecting themselves into the application design process by forcing a one-size-fits-all approach onto
applications written in the language. It is also not clear to the programmer what the best strategy is. She
may not be sure how far the system has drifted off course after a number of functions and statements in the
same scope as the exception have already executed. Therefore, the programmer really doesn’t know about
how to go about designing, much less writing a robust response to handle any particular exception. There
are of course other “simple” cases, as in the example of Figure 5.2. Even this example requires a non-trivial
amount of planning.

A developer must know that parseInt() will actually throw an exception. She must know that
s’s content comes from an untrusted source (she might otherwise catch and ignore the compiler-mandated
placement of the handler). There must exist a well-known default value for x. Each of the three statements
in the handler reveals dependencies on the rest of the codebase. The syntax and semantics of the system’s
logging infrastructure must be known. The developer must create an informative error message. Finally, she
must consider whether or not to alter the original input or let other code handle the illegal value on its own.
As a result of these hurdles for even simple exception handling, we encourage efforts to augment exception
generation with data that allows the system to self-heal, or at least gives the code author programmatic
access to the state involved in the exception. Absent these capabilities, our repair model can provide a way
to self-heal without having to modify program code.

6 Related Work
Nearly twenty years have passed since the publication of Clark and Wilson’s description of a model for
information integrity. Since then, it has become clear that the model also applies to execution integrity. In
this section, we highlight the ways in which recent research reflects various portions of the Clark-Wilson
model. We cover the major points of the Clark Wilson model elsewhere (Section 2.1).

6.1 Intrusion Reaction
Intrusion defense mechanisms typically respond to an attack by terminating the attacked process5 . Even
though it is considered “safe”, this approach is unappealing for a variety of reasons. Crashing leaves systems
susceptible to the original fault upon restart and risks losing accumulated state.

Effective remediation strategies remain a challenge, but some first efforts include failure oblivious com-
puting [24], STEM’s error virtualization [26], DIRA’s rollback of memory updates [27], crash-only software
[6], and data structure repair [10, 11]. While most of these techniques can be implemented as part of a RP,
they all have shortcomings. The first two may cause a semantically incorrect continuation of execution
(although the Rx system [23] attempts to address this difficulty by exploring semantically safe alterations
of the program’s environment until execution succeeds). DIRA’s logging may be too expensive for certain
environments. Crash–only software is a unique approach to the problem, but requires that systems be re-
written to use the services advocated by that approach. The notion of data structure repair is closest in spirit
to our approach.

Oplinger and Lam propose [22] using hardware Thread-Level Speculation (TLS) to improve software
reliability. Their key idea is to execute an application’s monitoring code in parallel with the primary com-
putation and roll back the computation “transaction” depending on the results of the monitoring code. In an

5Some attempt to generate either vulnerability or exploit signatures as well. See [18, 27, 30].



DRAFT COPY

interesting twist on detection, the ReVirt system employs virtual machine logging to work backward from
vulnerability predicates to discover the point of infection [15].

6.2 Protecting Control Flow
Work in assuring that the execution of a process does not go astray has typically focused on protecting the
integrity of a process’s jump targets. For example, StackGuard [9, 13] and related approaches attempt to
detect changes to the return address (or surrounding data items) of a stack frame. If the integrity of this value
is violated, execution is halted. These approaches quite naturally fit the Clark-Wilson Integrity Model: the
CDI is the return address in the current frame, the TP is the procedure for popping a stack frame, and the
IVP is the procedure that these systems add to verify that the CDI is still valid. What these systems lack is
the notion of both a Repair Procedure and a Repair Validation Procedure. Instead, they can be considered to
have a vestigial RP: optionally logging the fault and then terminating the process.

Starting with the techinque of program shepherding [17], the idea of enforcing the integrity of a pro-
cess’s control flow has been increasingly researched. Program shepherding validates branch instructions in
IA-32 binaries to prevent transfer of control to injected code, and to make sure that calls into native libraries
originate from valid sources. Abadi et al. [1] propose formalizing the concept of Control Flow Integrity,
observing that high-level programming often assumes properties of control flow that are not enforced at
the machine language level. CFI provides a way to statically verify that execution proceeds within a given
control-flow graph (the CFG effectively serves as a policy). The use of CFI enables the efficient implemen-
tation of a software shadow call stack with strong protection guarantees. CFI complements our approach in
that it can enforce the invocation of the IVP, RP, and RVP procedures (rather than having malcode attempt
to skip past these checks). The integrity model we suggest encompasses both data and control flow.

Control flow is often corrupted because a UDI enters the system and is eventually incorporated into part
of an instruction’s opcode, set as a jump target, or forms part of an argument to a sensitive system call.
A great deal of work has focused on dataflow analysis of tainted data and ways to prevent such attacks
from succeeding [28, 21, 20, 8]. Bhatkar, Chaturvedi and Sekar’s [3] work on dataflow anomaly detection
examines the temporal properties of data flow through a sequence of system calls in order to detect intrusion
attempts. One benefit of this model of dataflow integrity is that temporal properties enable formal reasoning
about the security properties of a program.

6.3 Policy Enforcement
Since security is often delegated to a secondary concern in the production of software systems, many re-
searchers have undertaken work that attempts to retrofit the enforcement of security policies on these code-
bases. The work by Ganapathy et al. [14] is most closely related to ours, and it discusses ways to insert
authorization checks into the X server. They face many of the same issues that we do, including identifi-
cation and placement of calls to the policy evaluator or reference monitor and specifying the content of the
policy. Our work differs in two important aspects. First, we focus on integrity policy and how to automat-
ically repair violations of that policy. Second, our system works by dynamically instrumenting programs
binaries and does not require source code to operate (although more precise policies can be constructed with
knowledge of source-level names and objects).

Identifying appropriate program locations to instrument is an important consideration discussed in Sec-
tion 5.1. In the literature, examples of “complete” protection include the techniques advocated by Stack-
Guard. Similarly, array-bounds checking in Java ensures each array access falls within the limits of the
array. Complete process emulation is even more expensive and employed in approaches like Instruction Set



DRAFT COPY

Randomization [2, 16] and binary-level taint-tracking [8, 21]. Taint-based data flow analysis is equivalent
to tracking Unconstrained Data Items (UDI) through the system until they affect the control flow of a TP.

ASSURE [25] proposes the notion of error virtualization rescue points. A rescue point is a program
location that is known to successfully propagate errors and recover execution. The insight is that a program
will respond to malformed input differently than legal input; locations in the code that successfully handle
these sorts of anticipated input “faults” are good candidates for recovering to a safe execution flow. ASSURE
seeks the best location to which to “teleport” a failure that is detected elsewhere in the program.

7 Conclusions
The underlying thesis of this paper is that integrity can support availability. In many environments, users
value continued execution rather than the abrupt process termination that serves as the widely accepted
default response to an attempted intrusion. Even if a system has automatic response capabilities, system
security is often a matter of policy; systems need flexibility to remain useful in a variety of evolving envi-
ronments. In this paper, we extend the Clark-Wilson integrity model with mechanisms for specifying and
enforcing repair procedures and apply this updated model to the problem of execution integrity.

The goals of our future work are mainly technical in nature. We will address the challenge of applying
rollback and replay to our system. This capability would allow us to to speculate the policy constraints
(IVPs) and repairs (RPs and RVPs) to avoid altering the execution environment unless repair succeeds. In
addition, we will continue to assess how the system can best be scaled (e.g., applying policy updates and
resolving policy conflicts). One interesting area of study may be to have the system learn what the best
response is over time; that is, what sequence of RPs are “best” to fix a set of invalid CDIs.

Program designs will always lack a complete description of how to handle all errors. The opportunity
and motivation to take advantage of these errors will not disappear as long as computing systems are trusted
with the task of processing, transmitting, and storing important data. No system can be perfectly secure, but
we can provide well-formed recovery mechanisms and invoke them automatically. An integrity repair model
assists in bridging the gap between current systems and systems that are able to automatically self-heal.

A Clark-Wilson Model Rules
1. C1: All IVPs must properly ensure that all CDIs are in a valid state at the time the IVP is run.
2. C2: All TPs must be certified valid. For each TP and each set of CDI that it may manipulate, the security officer

must specify a “relation” which defines that execution. A relation is of the form: (TPi, (CDIa, CDIb, CDIc,
. . . )), where the list of CDIs defines a particular set of arguments for which the TP has been certified.

3. E1: The system must maintain the list of relations specified in rule C2, and must ensure that the only manipu-
lation of any CDI is by a TP, where the TP is operating on the CDI as specified in some relation.

4. E2: The system must maintain a list of relations of the form: (USERID, TPi, (CDIa, CDIb, CDIc,. . . )),
which relates a user, a TP, and the CDIs a TP may reference.

5. C3: The list of relations in E2 must be certified to meet the separation of duty requirement.
6. E3: (Authentication) The system must authenticate the identity of each user attempting to execute a TP.
7. C4: (Auditing) All TPs must be certified to write to an append-only CDI with all information necessary to

permit the nature of the operation to be reconstructed.
8. C5: (Taint) Any TP that takes a UDI as input must be certified to convert a UDI to a CDI, or reject the UDI,

for any possible value of the UDI.



DRAFT COPY

9. E4: (Separation of Duty) Only the agent permitted to certify entities may change the list of such entities
associated with other entities: specifically, that associated with a TP. An agent that can certify an entity may not
have any execute rights with respect to that entity.

References
[1] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-Flow Integrity: Principles, Implementations, and

Applications. In Proceedings of the ACM Conference on Computer and Communications Security (CCS), 2005.

[2] E. G. Barrantes, D. H. Ackley, S. Forrest, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Randomized Instruction
Set Emulation to Distrupt Binary Code Injection Attacks. In Proceedings of the 10th ACM Conference on
Computer and Communications Security (CCS), October 2003.

[3] S. Bhatkar, A. Chaturvedi, and R. Sekar. Improving Attack Detection in Host-Based IDS by Learning Properties
of System Call Arguments. In Proceedings of the IEEE Symposium on Security and Privacy, 2006.

[4] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address Obfuscation: an Efficient Approach to Combat a Broad
Range of Memory Error Exploits. In Proceedings of the 12th USENIX Security Symposium, pages 105–120,
August 2003.

[5] A. Brown and D. A. Patterson. Rewind, Repair, Replay: Three R’s to dependability. In 10th ACM SIGOPS
European Workshop, Saint-Emilion, France, Sept. 2002.

[6] G. Candea and A. Fox. Crash-Only Software. In Proceedings of the 9th Workshop on Hot Topics in Operating
Systems (HOTOS-IX), May 2003.

[7] D. D. Clark and D. R. Wilson. A Comparison of Commercial and Military Computer Security Policies. In
Proceedings of the IEEE Symposium on Security and Privacy, 1987.

[8] M. Costa, J. Crowcroft, M. Castro, and A. Rowstron. Vigilante: End-to-End Containment of Internet Worms. In
Proceedings of the Symposium on Systems and Operating Systems Principles (SOSP), 2005.

[9] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle, and Q. Zhang.
Stackguard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks. In Proceedings of the
USENIX Security Symposium, 1998.

[10] B. Demsky and M. C. Rinard. Automatic Data Structure Repair for Self-Healing Systems. In Proceedings of the
1st Workshop on Algorithms and Architectures for Self-Managing Systems, June 2003.

[11] B. Demsky and M. C. Rinard. Automatic Detection and Repair of Errors in Data Structures. In Proceedings
of the 18th Annual ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages, and
Applications, October 2003.

[12] G. W. Dunlap, S. King, S. Cinar, M. A. Basrai, and P. M. Chen. ReVirt: Enabling Intrusion Analysis Through
Virtual-Machine Logging and Replay. In Proceedings of the 2002 Symposium on Operating Systems Design and
Implementation (OSDI), February 2002.

[13] J. Etoh. GCC Extension for Protecting Applications From Stack-smashing Attacks. In
http://www.trl.ibm.com/projects/security/ssp, June 2000.

[14] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting Legacy Code for Authorization Policy Enforcement. In Pro-
ceedings of the IEEE Symposium on Security and Privacy, May 2006.

[15] A. Joshi, S. T. King, G. W. Dunlap, and P. M. Chen. Detecting Past and Present Intrusions through Vulnerability-
Specific Predicates. In Proceedings of the Symposium on Systems and Operating Systems Principles (SOSP),
2005.



DRAFT COPY

[16] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering Code-Injection Attacks With Instruction-Set Random-
ization. In Proceedings of the 10th ACM Conference on Computer and Communications Security (CCS), pages
272–280, October 2003.

[17] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure Execution Via Program Shepherding. In Proceedings of
the 11th USENIX Security Symposium, August 2002.

[18] Z. Liang and R. Sekar. Fast and Automated Generation of Attack Signatures: A Basis for Building Self-
Protecting Servers. In Proceedings of the 12th ACM Conference on Computer and Communications Security
(CCS), November 2005.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
Building Customized Program Analysis Tools with Dynamic Instrumentation. In Proceedings of Programming
Language Design and Implementation (PLDI), June 2005.

[20] J. Newsome, D. Brumley, and D. Song. Vulnerability–Specific Execution Filtering for Exploit Prevention on
Commodity Software. In Proceedings of the 13th Symposium on Network and Distributed System Security
(NDSS 2006), February 2006.

[21] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation
of Exploits on Commodity Software. In Proceedings of the 12th Symposium on Network and Distributed System
Security (NDSS), February 2005.

[22] J. Oplinger and M. S. Lam. Enhancing Software Reliability with Speculative Threads. In Proceedings of the
10th International Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS X), October 2002.

[23] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: Treating Bugs as Allergies – A Safe Method to Survive
Software Failures. In Proceedings of the Symposium on Systems and Operating Systems Principles (SOSP),
2005.

[24] M. Rinard, C. Cadar, D. Dumitran, D. Roy, T. Leu, and J. W Beebee. Enhancing Server Availability and Secu-
rity Through Failure-Oblivious Computing. In Proceedings 6th Symposium on Operating Systems Design and
Implementation (OSDI), December 2004.

[25] S. Sidiroglou, O. Laadan, J. Nieh, and A. Keromytis. ASSURE: Autonomic Software Self-Healing Using Error
Virtualization Rescue Points. Unpublished manuscript, 2006.

[26] S. Sidiroglou, M. E. Locasto, S. W. Boyd, and A. D. Keromytis. Building a Reactive Immune System for
Software Services. In Proceedings of the USENIX Annual Technical Conference, pages 149–161, April 2005.

[27] A. Smirnov and T. Chiueh. DIRA: Automatic Detection, Identification, and Repair of Control-Hijacking Attacks.
In Proceedings of the 12th Symposium on Network and Distributed System Security (NDSS), February 2005.

[28] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure Program Execution via Dynamic Information Flow
Tracking. In Proceedings of the 11th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS-XI), October 2004.

[29] J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent Runtime Randomization for Security. In Proceedings of the
22nd International Symposium on Reliable Distributed Systems (SRDS), 2003.

[30] J. Xu, P. Ning, C. Kil, Y. Zhai, and C. Bookholt. Automatic Diagnosis and Response to Memory Corruption
Vulnerabilities. In Proceedings of the 12th ACM Conference on Computer and Communications Security (CCS),
November 2005.


