
Physical Plan Instrumentation in Databases:
Mechanisms and Applications

Fotios Psallidas

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2019

©2019

Fotios Psallidas

All Rights Reserved

ABSTRACT

Physical Plan Instrumentation in Databases:
Mechanisms and Applications

Fotios Psallidas

Database management systems (DBMSs) are designed with the goal set to compile SQL

queries to physical plans that, when executed, provide results to the SQL queries. Building

on this functionality, an ever-increasing number of application domains (e.g., provenance

management, online query optimization, physical database design, interactive data profiling,

monitoring, and interactive data visualization) seek to operate on how queries are executed

by the DBMS for a wide variety of purposes ranging from debugging and data explanation

to optimization and monitoring. Unfortunately, DBMSs provide little, if any, support to

facilitate the development of this class of important application domains. The effect is

such that database application developers and database system architects either rewrite

the database internals in ad-hoc ways; work around the SQL interface, if possible, with

inevitable performance penalties; or even build new databases from scratch only to express

and optimize their domain-specific application logic over how queries are executed.

To address this problem in a principled manner in this dissertation, we introduce a

prototype DBMS, namely, SMOKE, that exposes instrumentation mechanisms in the form

of a framework to allow external applications to manipulate physical plans. Intuitively, a

physical plan is the underlying representation that DBMSs use to encode how a SQL query

will be executed, and providing instrumentation mechanisms at this representation level

allows applications to express and optimize their logic on how queries are executed.

Having such an instrumentation-enabled DBMS in-place, we then consider how to

express and optimize applications that rely their logic on how queries are executed. To best

demonstrate the expressive and optimization power of instrumentation-enabled DBMSs, we

express and optimize applications across several important domains including provenance

management, interactive data visualization, interactive data profiling, physical database

design, online query optimization, and query discovery. Expressivity-wise, we show that

SMOKE can express known techniques, introduce novel semantics on known techniques,

and introduce new techniques across domains. Performance-wise, we show case-by-case

that SMOKE is on par with or up-to several orders of magnitudes faster than state-of-the-art

imperative and declarative implementations of important applications across domains.

As such, we believe our contributions provide evidence and form the basis towards a class

of instrumentation-enabled DBMSs with the goal set to express and optimize applications

across important domains with core logic over how queries are executed by DBMSs.

Table of Contents

List of Figures x

List of Tables xxii

1 Introduction 1

1.1 Motivating Application Domains . 2

1.2 Current Approaches and Limitations . 6

1.3 Main Research Questions . 8

1.4 Mechanisms and SMOKE . 9

1.5 Applications . 11

1.6 Outline and Contributions . 12

I Provenance and Instrumentation 18

2 Background 19

2.1 Architecture of SMOKE . 19

2.1.1 SMOKE Under Normal Query Execution 20

2.1.2 SMOKE Under Instrumentation . 21

2.1.3 Instrumentation at Different IR Levels 23

2.2 Physical Plans . 25

2.3 Physical Plan Compilation in SMOKE . 29

2.4 History of Our Proposal and Part Outline 33

i

3 Fine-Grained Provenance Capture 35

3.1 Introduction . 35

3.2 Problem Definition . 39

3.3 Lineage Representations . 42

3.4 Lineage Capture on Single Operator Plans 43

3.4.1 Projection . 43

3.4.2 Selection . 44

3.4.3 Group-By Aggregation . 44

3.4.4 Hash-based Joins . 46

3.4.5 Set Union . 48

3.4.6 Bag Union . 51

3.4.7 Set Intersection . 52

3.4.8 Bag Intersection . 52

3.4.9 Set difference . 55

3.4.10 θ-joins and Nested Loops . 57

3.4.11 Cross product . 58

3.5 Lineage Capture on Multi-Operator Plans 59

3.6 Experimental Settings . 60

3.7 Experimental Results . 63

3.7.1 Single Operator Lineage Capture 63

3.7.2 Multi-Operator Lineage Capture 69

3.7.3 Lineage Query Performance . 71

3.8 Conclusions and Future Work . 73

4 Expressing and Evaluating Provenance Analytics 75

4.1 Introduction . 75

4.2 Background . 77

ii

4.3 Data Models . 77

4.3.1 Example Database . 78

4.3.2 Data Model of Logical Normalized Approaches 78

4.3.3 Data Model of Logical Denormalized Approaches 80

4.3.4 Data Models of Physical Approaches 82

4.4 Path Queries . 82

4.5 Provenance Consuming SQL queries . 84

4.6 Provenance Semantics . 85

4.6.1 Which-Provenance . 85

4.6.2 Why-provenance . 88

4.6.3 How-provenance . 89

4.6.4 Where-provenance . 92

4.7 Conclusions . 93

5 Optimization of Provenance Analytics 94

5.1 Introduction . 94

5.2 Setup . 96

5.3 Provenance Pruning . 97

5.3.1 Pruning Input Relations . 97

5.3.2 Pruning Provenance Directions . 97

5.4 Provenance Consuming SQL queries . 98

5.4.1 Selection Push-down . 98

5.4.2 Data Skipping Push-down . 98

5.4.3 Grouping and Aggregation push-down 99

5.5 Provenance semantics . 99

5.5.1 Which-provenance . 100

5.5.2 How-Provenance . 101

iii

5.6 Experiments . 102

5.6.1 Provenance Pruning . 102

5.6.2 Provenance Consuming SQL queries 106

5.6.3 Provenance Semantics . 110

5.7 Conclusions . 114

6 Physical Plan Instrumentation 115

6.1 Introduction . 116

6.2 Architecture of SMOKE and Examples . 123

6.2.1 Architecture . 123

6.2.2 Motivating Examples of Instrumentation Applications 127

6.3 Instrumentation Points . 128

6.3.1 Selection . 129

6.3.2 Hash-based Group-By Aggregation 131

6.3.3 Joins . 133

6.3.4 Other Operators . 136

6.4 Instrumentation Logic . 140

6.4.1 Instrumentors and Instrumentation Points 141

6.4.2 Imperative Specification . 142

6.4.3 Declarative Specification . 147

6.4.4 Instrumenting Instrumentors . 149

6.4.5 Registration Process . 150

6.5 Scheduler . 151

6.5.1 Automatic Defer . 152

6.5.2 Manual Defer . 155

6.5.3 Partial Inject-Partial Defer . 155

6.5.4 Execution Orders . 156

iv

6.6 Storage Manager . 157

6.6.1 Access to SMOKE’s Storage . 158

6.6.2 Operator State Access . 160

6.7 Announcer . 162

6.8 Actions . 164

6.8.1 Changing Input and Output Schemas 165

6.8.2 Changing Internal Logic . 173

6.8.3 Replacing Physical Operators . 175

6.8.4 Adding Physical Operators . 177

6.8.5 Removing Physical Operators . 178

6.9 Changes on Database Components . 179

6.9.1 Instrumentation-Aware Compiler 180

6.9.2 Physical Algebra . 181

6.9.3 Optimizer . 181

6.10 Discussion . 182

6.11 Conclusions . 187

II Applications 188

7 Expressing Interactive Visualizations 189

7.1 Introduction . 190

7.2 Setup . 193

7.3 iSQL: Data Model and Language Overview 194

7.3.1 Linked-Brushing Example . 194

7.3.2 Static Visualizations . 196

7.3.3 User Interactions . 198

7.3.4 Interactive Visualizations . 200

v

7.4 Expressiveness of iSQL . 202

7.5 Connections with Provenance and Instrumentation 206

7.5.1 Initial Static Visualization Extended 206

7.5.2 Multi-View Linking . 207

7.5.3 Interactive Selections . 215

7.5.4 Logic Over Selections . 218

7.6 Conclusions and Future Work . 220

8 Crossfiltering and Incremental Cube Exploration 221

8.1 Introduction . 221

8.2 Problem Definition . 223

8.3 Expressing Crossfilter with Provenance Queries 225

8.4 Techniques . 226

8.4.1 Lazy . 226

8.4.2 BT . 229

8.4.3 BT+FT . 230

8.4.4 Combining Provenance with Cubes 231

8.5 Memory Footprint . 233

8.6 Experimental Settings . 235

8.7 Experimental Results . 236

8.8 Conclusions . 240

9 Interactive Data Profiling 241

9.1 Introduction . 241

9.2 Evaluating Functional Dependencies . 243

9.3 Evaluating Uniqueness . 244

9.4 Evaluating Mismatches . 245

vi

9.5 Experiments . 245

9.6 Conclusions . 248

10 Physical Database Design 249

10.1 Database Cracking . 249

10.1.1 Database Cracking Breakdown . 252

10.1.2 Instrumentation-Based Cracking Frameworks 256

10.2 Denormalization . 261

10.2.1 Provenance for Denormalization 263

10.2.2 Querying . 265

10.3 Experimental Settings . 266

10.4 Experimental Results . 268

10.4.1 Database Cracking . 268

10.4.2 Denormalization . 271

10.5 Conclusions . 274

11 Query Discovery 275

11.1 Introduction . 276

11.2 System Task and Scoring Model . 282

11.2.1 Data Model . 283

11.2.2 Discovering Top-k PJ Queries by Example Spreadsheet 283

11.2.3 Scoring Model for PJ Queries . 286

11.3 System Architecture . 289

11.3.1 Offline Index Building . 290

11.3.2 Online Top-k Ranking . 291

11.4 Baseline Evaluation Strategy . 292

11.4.1 Basic Operators in Evaluation Strategy 292

vii

11.4.2 Minimal Evaluation Set . 296

11.4.3 Worst-Case Optimal Baseline Strategy 297

11.5 Optimizing Caching-Evaluation . 298

11.5.1 Cache-Aware Evaluation of PJ Queries 299

11.5.2 Caching-Evaluation Scheduling Problem 300

11.5.3 A Near-Optimal Strategy . 301

11.5.4 Incremental Computation . 308

11.6 Experimental Evaluation . 309

11.6.1 Settings of Experiments . 309

11.6.2 System Performance . 311

11.6.3 User Study . 316

11.7 Extension and Discussion . 317

11.7.1 Incremental Computation . 317

11.7.2 Generalizing Cell Similarity . 319

11.7.3 AND v.s. OR Semantics . 320

11.8 Computing Exact Scores . 322

11.8.1 Execution Plan for PJ Queries . 322

11.8.2 Speedup Execution using Cache 324

11.8.3 Cost Model for Computing Exact Scores 325

11.9 Proofs . 326

11.10Conclusion And Future Work . 330

11.11Retrospective Analysis . 331

12 Other Connections and the Road Ahead 333

12.1 Negative Provenance . 333

12.2 Online Query Optimization . 337

12.2.1 Probabilistic Predicates . 338

viii

12.2.2 Adaptive Joins . 341

12.2.3 Information Passing . 346

12.3 Interactive Applications . 350

12.3.1 Advanced Provenance Analysis 350

12.3.2 Multi-application Linking . 352

12.3.3 Provenance of Interactions . 355

12.3.4 Application Design Search . 357

12.3.5 Interaction-By-Example . 357

12.3.6 Deconstruction and Restyling . 358

12.4 Conclusions . 359

13 Related work 360

13.1 Instrumentation in Software Development 360

13.2 Instrumentation in Databases . 361

13.3 Provenance . 362

13.4 Interactive Data Visualization . 363

13.5 Physical Database Design . 365

13.6 Online Query Optimization . 368

13.7 Interactive Data Profiling . 368

14 Conclusions 370

15 Future Work 372

Bibliography 377

ix

List of Figures

1.1 Dissertation Outline. 12

2.1 SMOKE architecture: an in-memory query compilation database with in-

strumentation capabilities on different intermediate representations of SQL

queries (i.e., SQL query in textual form, parsed SQL query in abstract syntax

tree form, logical plan, physical plan, and source code). 20

2.2 TPC-H Q3 variant. 25

2.3 (a) Physical plan and (b) pseudo-code for the TPC-H Q3 variant. 26

2.4 (left) Interfaces for the description of physical plan opera-

tors (i.e., PhysicalOpPNodeDescription) and pipelines (i.e.,

PipelineDescription). (right) Interfaces of physical plan operators

(i.e., PhysicalOpPNode), pipelines (i.e., Pipeline), and physical plans

(i.e., PhysicalPlan). 28

2.5 Compilation stages of a physical plan in SMOKE. 30

2.6 Implementation of Selection and Scan in SMOKE. 31

3.1 Two workflows generate visualizations V1 and V2. A linked brushing

interaction highlights in red bars in V2 that share the same input records

with selected circles of V1. Logically, it is expressed as a backward query

from selected circles in V1 to input tuples followed by a forward query to

V2 to highlight bars. 36

x

3.2 Lineage index representations: rid index for 1-to-N (e.g., γ backward lin-

eage) and rid array for 1-to-1 (e.g., σ) relationships. 42

3.3 Plan (left) and corresponding source code (right) for DEFER fine-grained

provenance capture on group-by aggregation. 44

3.4 Plan (left) and corresponding source code (right) for INJECT fine-grained

provenance capture on group-by aggregation. 45

3.5 Plan (left) and corresponding source code (right) for INJECT fine-grained

provenance capture on hash-based join. 47

3.6 Plan (left) and corresponding source code (right) for DEFER fine-grained

provenance capture on hash-based join. 48

3.7 Plan (left) and corresponding source code (right) for INJECT fine-grained

provenance capture on set union. 50

3.8 Plan (left) and corresponding source code (right) for DEFER fine-grained

provenance capture on set union. 51

3.9 Plan (left) and corresponding source code (right) for INJECT fine-grained

provenance capture on set intersection. 53

3.10 Plan (left) and corresponding source code (right) for DEFER provenance

capture on set intersection. 54

3.11 Plan (left) and corresponding source code (right) for DEFER fine-grained

provenance capture on bag intersection. 55

3.12 INJECT and DEFER plans for set difference. 56

3.13 Plan (left) and corresponding source code (right) for INJECT fine-grained

provenance capture on nested loop joins. 57

3.14 Plan (left) and corresponding source code (right) for DEFER fine-grained

provenance capture on nested loop joins. 58

xi

3.15 Comparison of lineage capture costs for the group-by aggregation operator

for different relation cardinalities (columns) and number of distinct groups

(rows). SMOKE-I and SMOKE-D slow down the Baseline that does not

capture lineage (i.e., it performs only the group-by aggregation) the least as

compared to alternative logical and physical capture methods. 64

3.16 Base group-by aggregation query that we use in our lineage capture experi-

ments. 64

3.17 SMOKE-I reduces the instrumented pk-fk join latency from 1.4× (LOGIC-

IDX) to 0.41×. Knowing the join cardinalities further reduces the overhead

to 0.23× (SMOKE-I-TC). SMOKE-D is equivalent to SMOKE-I for pk-fk

joins. 66

3.18 Base pk-fk join query that we use in our lineage capture experiments. . . . 66

3.19 M:N join latency when all indexes are populated with SMOKE-I, only

forward indexes for the left table are deferred (SMOKE-D-DEFERFORW),

and when both lineage indexes are deferred for the left table (SMOKE-D). . 67

3.20 Base M:N join query that we use in our lineage capture experiments. 67

3.21 Latency of lineage capture techniques on selections with estimated selec-

tivity (SMOKE-I-EC) and without (SMOKE-I). We find that it is better to

overestimate than underestimate and incur resizing costs. 69

3.22 Relative overhead of SMOKE and logical lineage capture techniques for

TPC-H queries Q1, Q3, Q10, and Q12. (SF=1) 70

xii

3.23 Lineage query latency for varying data skew (θ). LAZY has a fixed cost to

scan the input relation and evaluates a selection on the group-by key o.z=?.

LOGIC-RID and LOGIC-TUP perform the same selection but on annotated

output relations. SMOKE-L is mainly around 1ms and outperforms LAZY,

LOGIC-RID, and LOGIC-TUP by up to five orders of magnitude for low

selectivity lineage queries. The crossover points at high selectivities are

due to the costs of SMOKE-L index scans. SMOKE-L is a lower bound

for PHYS-BDB that incurs extra costs for reading from inefficient lineage

indexes and communicating with external lineage subsystems. 72

4.1 Example database that we use in our discussion. Relations X,Y, Z in blue

boxes are base relations while V1, V2, V3 in green boxes are derivative

relations. 78

4.2 Data model generated by logical normalized approaches for our example

database. Base and derivative relations are in blue and green boxes, re-

spectively. Mapping relations connecting records between input and output

relations are in purple circles. 78

4.3 Data model generated by logical denormalized approaches for our example

database. Base and derivative relations are in blue and green boxes, re-

spectively. Mapping relations connecting records between input and output

relations are shown in purple and are part of derivative relations. 80

5.1 Provenance capture costs for different table pruning strategies. ALL refers

to provenance capture for all tables. {} refers to not capturing provenance

for any table. Lineitem, Orders, Customer, and Nation refer to cap-

turing provenance only for the corresponding table and omitting provenance

capture for all other tables. 103

xiii

5.2 Provenance capture overhead on Q1, Q3, Q10, and Q12 for different prove-

nance direction pruning strategies. B+F refers to capturing both backward

and forward provenance for all input tables (i.e., no pruning). B refers to cap-

turing only backward provenance for all input tables (i.e., omitting forward

provenance for every input table). Conversely, F refers to capturing only

forward provenance (i.e., omitting backward provenance for every input table).104

5.3 Provenance capture with selection push-down at varying selectivities of

l_tax < ?. The crossover point between with and without push down is

due to the additional cost of predicate evaluation before adding rids to the

provenance indexes. 106

5.4 Provenance consuming query latency for different instrumentation ap-

proaches as the provenance consuming query’s selectivity varies. Lazy

requires table scans, No Data Skipping performs more efficient secondary

index scans, and Data Skipping is ≤ 150ms because it only scans the

relevant partition of the provenance index. 108

5.5 SMOKE-I reduces the provenance consuming query latency by 72.9× on

average as compared to LAZY. With aggregation push-down, the latency is

≈ 0ms and we do not plot it. 109

5.6 The average relative instrumentation overhead increases from 2.9% without

to 9.15% with aggregation push-down. 110

5.7 Capturing which provenance with inject (SMOKE-W-I) and defer (SMOKE-

W-D) approaches in comparison to capturing transformational provenance

with SMOKE-I and not capturing provenance at all BASELINE on TPC-H

Q3 (with and without selections). 111

xiv

5.8 Latency of SMOKE-H-I and SMOKE-H-D on TPC-H Q3 with (left) and

without (right) selections for capturing weight/cost (up) and derivability/trust

(down) semirings. For comparison purposes, the latency of BASELINE

and SMOKE-I are depicted in Figure 5.7 and we omit them here to avoid

redundancy. 113

6.1 Physical plan (middle) and source code (right) for our example query

V=SELECT * FROM R,S WHERE P.pid=S.pid. Circled numbers (i.e.,

1 , 2 , 3 , and 4) in the source code denote some points in the logic

of the nested loop join that instrumentation applications (left) could use to

integrate their logic. 118

6.2 Architecture of SMOKE. 124

6.3 Example Instrumentation Applications. 126

6.4 Physical plan (left) and corresponding source code (right) for the selection

operator under instrumentation. 130

6.5 Physical plan (left) and corresponding source code (right) for the hash-based

groupby aggregation operator under instrumentation. 131

6.6 Source code for the nested loop join under instrumentation. 135

6.7 Instrumentor of selection for imperative specification of the instrumentation

logic. 141

6.8 Provenance capture on selections with interpretation-style specification of

the instrumentation logic (left) and corresponding source code generated

after compilation (right). 143

6.9 Provenance capture on selections with compilation-based specification of

the instrumentation logic (left) and corresponding source code generated

after compilation (right). 144

xv

6.10 Declarative specification of negative provenance capture on selections (left)

and source code generated by SMOKE after compilation (right). 148

6.11 Provenance capture on selection under INJECT and DEFER semantics. . . . 152

6.12 Deferred instrumentation on selections. 153

6.13 Inject (left) and defer (right) instrumentation on group-by aggregations. . . 154

6.14 Interface of physical operator description PhysicalOpPNodeDescription.166

6.15 Interface of relation definition RelationDefinition with functions for

adding and removing attributes from its schema. 166

6.16 Interface of hash table definition HashTableDefinition with functions

for adding and removing keys and payload attributes for its schema. 167

6.17 Example group by query and corresponding physical plan that we use in our

discussion. 168

6.18 Propagation of changes to parents upon removing a payload attribute (i.e.,

SUM(revenue)) from the hash table maintained by γht of our group-by

aggregation example. 169

6.19 Propagation of changes to parents upon removing a payload attribute (i.e.,

SUM(revenue)) and resolution of ambiguities by instrumentors. 170

6.20 Propagation of changes to parents upon adding a payload attribute (i.e.,

MIN(revenue)) to the hash table maintained by γht of our group-by ag-

gregation example. 171

6.21 Example of propagating changes to parents upon adding a payload attribute

in a hash table. 171

6.22 Interface of CNF with functions for adding, removing, and changing conditions.174

7.1 Example of an interactive visualization. 190

7.2 The flights database schema. 193

xvi

7.3 Average arrival (avg_adelay) and departure (avg_ddelay) delays per

carrier materialized in the relation Delays. 194

7.4 Brushing and linking example using the Delays relation. 195

7.5 Static visualization for the scatterplot of our example. 197

7.6 Event statement to generate a compound event stream. 199

7.7 Selection interaction for the example scatterplot. 201

7.8 Example of a static visualization. 207

7.9 Static visualizations broken into data processing, value range computation,

and mark rendering operators for our three example visualization views. . . 208

7.10 Expressing linked brushing declaratively using backward trace. 210

7.11 Linked brushing using both backward and forward tracing. 211

7.12 Linked brushing using backward and forward trace statements over compli-

cated views. 212

7.13 Crossfilter expressed using backward trace followed by selective refresh

provenance statements. 213

7.14 Selection interaction that shows the logical backward trace operation over

V1 to identify the subset of flights tuples that contribute to an interactive

range selection. 215

7.15 Logic over selections can be expressed as provenance consuming SQL

queries to show information to users related to selections. 217

7.16 Examples of tooltips, semantic zooming, details-on-demand 219

8.1 Crossfilter example. 222

8.2 Brushing (red rectangle) selects a subsets of states. 224

8.3 Expressing crossfilter interactions using provenance-based statements. . . . 225

8.4 Lazy approach for multi-output group selection. 226

8.5 Lazy approach for single output group selection. 227

xvii

8.6 Crossfilter evaluation techniques without using data cubes: (a) Lazy re-

evaluates the group-by aggregation queries with a shared selection scan

on the base table, (b) BT uses an index scan on the rids of the backward

provenance index of Q′brushed, (c) BT+FT performs updates using the

forward indexes that connect each tuple in the base table to each output of

aggregation query. 228

8.7 Crossfilter using BT+FT. 231

8.8 Partial cube materialization. 232

8.9 Cumulative latency of different crossfiltering techniques. BT+FT outper-

forms all approaches with the total time to perform the initial group-by

aggregates, track provenance, and evaluate all interactions being thirty sec-

onds. 236

8.10 Latency for each crossfilter interaction. Dashed lines correspond to 150ms

interaction layer. BT+FT performs under the 150ms interaction layer for all

8,100 but 5 interactions, with interactions on the spatiotemporal dimensions

to be <10ms. Data Cube has instantaneous response time and we do not plot it.237

9.1 Interactive data profiling interface. 242

9.2 Query for extracting violations on a FD A→B. By tracking provenance on

this query we can connect the violating A values with the records responsible

for the violation. 243

9.3 Latency of different approaches for FD violation evaluation and bipartite

graph construction. SMOKE-CD is the minimal overall. METANOME-UG

is affected by virtual function calls for provenance capture, the overheads of

JVM, and its data model. 246

9.4 Latency of different approaches for uniqueness checks. 247

10.1 Cracking example. 250

xviii

10.2 Code fragments in blue, green, and red denote code injected by the cracking

instrumentor. 256

10.3 Example of deferred cracking driven by statistics injected in the selection. . 259

10.4 The flights database schema. 262

10.5 A small instance of the flights database schema. 263

10.6 Example denormalization query for the flights database. 263

10.7 (a) The example denormalization query illustrated as a workflow. (b) De-

normalized representation generated as a result of provenance capture on

the example denormalization query. 264

10.8 Latency of different cracking techniques. 269

10.9 Latency of different denormalization techniques. 272

10.10Space required by different denormalization techniques. 273

11.1 A sample database . 277

11.2 (a) Example spreadsheet. (b) PJ queries and their outputs. 278

11.3 Common sub-expressions (sub-PJ queries) in Figure 11.2(b) 281

11.4 S4 System Architecture . 290

11.5 Average running time of “query enumeration + upper bound computation”

v.s. “query evaluation” per PJ query. 295

11.6 Comparison of FASTTOPK with NAIVE and BASELINE 312

11.7 Amount of queries evaluated by NAIVE (without using upper bound score),

BASELINE (using score), and FASTTOPK (using score) 313

11.8 Varying cache size B for ESs in “low”/“high” bucket 313

11.9 Varying α and k for ESs in “medium” bucket 314

11.10Varying scale factor in ADVW. 315

11.11Execution time for incremental input [row, column] 319

11.12AND-column mapping v.s. OR-column mapping 321

xix

11.13Amount of queries enumerated and evaluated in AND and OR semantics by NAIVE

(not using score) and FASTTOPK (using score) 322

11.14Execution plan for the PJ query in Figure 11.2(b)-(i) and its sub-PJ queries (opera-

tors executed in the order of 1, 3, 6, 2, 4, 5, 7, 8) 324

12.1 Flights per state. 334

12.2 A heatmap of delayed flights for our example. Zooming in reveals that the

Jack McNamara Field Aiport is not covered by the state polygons and not

included in our results of delayed flights per state. As a result, insights

extracted from the heatmap may be erroneous. 335

12.3 Capturing negative provenance for our example using instrumentation. . . . 336

12.4 Example query (top) and corresponding plan (bottom) we use in our discus-

sion. The query processes a corpus of videos to select the frames having

vehicles with color red and type SUV. (Example borrowed from the original

probabilistic predicates papers [LCKC18; LKC18].) 339

12.5 The physical plan of our example after the introduction of probabilistic

predicates PSUV, Pred before the expensive VehDetector. 339

12.6 Getting positive and negative labels and updating PPs by instrumenting

selections. 340

12.7 Changing NLJ to HJ using the physical plan instrumentation framework of

SMOKE. 344

12.8 SSB query Q4.1: (a) SQL specification, (b) logical plan without LIP opti-

mization, (c) logical plan with LIP optimization. Example borrowed from

[PDZ+18]. 347

12.9 Sketch for the construction of an LIP filter (i.e., bloom filter) during the se-

lection σc_region=AMERICA using instrumentation points of the selection

operator. 349

xx

12.10Sketch for the implementation of the prune operator and its addition to the

plan. 349

12.11Before and after of an advanced provenance analysis. (a) the user selects

outliers in the initial visualization (shown on the left), and (b) the results of

the predicate explanation update the visualization (shown on the right). In

practice, the visualization will update in place. 351

12.12Provenance can enable linking and crossfiltering across different applications.353

12.13Provenance of a crossfilter interaction can be modeled as the history of the

visualization’s interaction events. 355

12.14Query pseudocode to render history of interactions generated from the bar

chart. 356

xxi

List of Tables

3.1 Lineage capture techniques used in our evaluation. 61

6.1 Instrumentation points provided by SMOKE in the logic of individual physi-

cal operators, pipelines, and plans. 136

7.1 Contents of the event table C in our example after a potential sequence of

low-level events. 200

10.1 Cracking techniques that we use in our evaluation. 266

10.2 Denormalization techniques that we use in our evaluation. 267

11.1 Index sizes . 310

11.2 Parameters we vary in our experiments along with their description, value

ranges, and default values (underlined) . 311

xxii

Acknowledgments
Advisors at Columbia. Words fall short in helping me describe the positive influence

that my advisor, Eugene Wu, has had on my academic and personal life. One of the most

important presentation skills that Eugene helped me develop, however, is to always use

examples. So, his constant help on articulating my ideas, our endless discussions on research

and practice, the intellectual freedom he provided me with across projects, the curiosity

he sparked in me over research domains and technical problems, his efforts on making me

confident about my work and presentations, and his constant suggestions on balancing my

work with personal life, are just a few examples of how instrumental he has been on my

academic and personal life. Besides Eugene, Luis Gravano has also been an instrumental

advisor on my academic and personal life. Introducing me to the research process, helping

me appreciate the attention to detail, and providing me with all the options possible for

pursuing my goals, are only just a few examples of how Luis has helped me during my PhD

years. Finally, Kenneth Ross has also been instrumental on my work. Our many discussions

during the database group meetings at Columbia, his genuine questions on my techniques,

and his feedback on my dissertation helped strengthen my work in so many directions.

Thesis committee. Besides Eugene; Luis; and Kenneth, I would also like to thank Joseph

Hellerstein and Divesh Srivastava for participating in my thesis committee, providing

valuable feedback, and helping me better shape the final version of this dissertation.

CUDBG, WuLab, and peers. I would also like to thank current and former members of

both the Columbia Database Group (CUDBG) and the WuLab Group at Columbia: Orestis

Polychroniou, John Paparrizos, Pablo Barrio, Eva Sitaridi, Bingyi Cao, Wangda Zhang,

xxiii

Thibault Sellam, Giannis Karamanolakis, Lampros Flokas, Yiru Chen, Yiliang Shi, Haneen

Mohammed, and Yinqi (Bill) Sun. They have all been instrumental in my work through their

continuous feedback and our various sorts of discussions. Besides members of CUDBG

and WuLab, I would also like to thank Yifan Wu, Sanjay Krishnan, Michael Chess, Nigel

Schuster, and Christophe Rimann for their feedback on my work and our collaboration.

Microsoft. During my internships at Microsoft I had the chance to meet with great people,

researchers, and mentors. I would like to specially thank Bolin Ding, Kaushik Chakrabarti,

Surajit Chaudhuri, and Vivek Narasayya for our collaboration and their guidance during my

internships at Microsoft Research and the DMX group. I would also like to thank Carlo

Curino and the rest of the members of the Cloud and Information Services Lab (CISL) and

Gray Systems Lab (GSL) at Microsoft for their valuable feedback on my PhD work.

University of Athens. My academic journey started from the University of Athens at the

Department of Informatics and Telecommunications. I would like to specially thank Alex

Delis, Konstantinos Tzakalozos, and Alexandros Ntoulas for introducing me to research

domains and problems and advising me both on my academic and personal life.

Friends in Greece and NY. Throughout my PhD years, I was lucky enough to be surrounded

by remarkable people and friends both in Greece and in New York. I would like to specially

thank Michalis Giannopoulos, Dionysia Kalogeropoulou, Charalampos Chatzicharalampous,

Yvonni Nikolaou, Vasilis Stolakis, Maria Tzovara, Orestis Polychroniou, John Paparrizos,

and Pablo Barrio for always been a call away.

Family. This dissertation would not have been possible without the endless and uncondi-

tional support of my family members. I would like to devote a few sentences to specially

thank my parents, my sister, my wife, and my new newborn daughter. My parents have

always been there for me since day one. There are no words to describe how thankful I am

to them for making me the person I am today. My sister has been setting the bar higher

for me every single day, challenging me daily to be a better me. Finally, my wife and our

newborn daughter have been my everyday heroes and the reason why I smile every day.

xxiv

To my family.

xxv

CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

Traditional database management systems are composed out of modules (e.g., parser, logical

and physical plan optimizers, and compiler) that work in tandem with the goal set to

respond to SQL queries posed by external database clients. Building on this functionality,

an ever-increasing number of application domains (e.g., provenance management, online

and adaptive physical database design, data profiling, data explanation, auditing, debugging,

data visualization, self-regulating and self-tuning databases, and query optimization, to

name a few) seek to operate on how queries are executed by the database to serve their own

application logic. Unfortunately, while each domain is important in its own right, database

systems provide little, if any, support for expressing and optimizing applications across

such domains. This is primarily because database systems are designed with the goal set

to execute SQL queries as opposed to providing mechanisms for external applications to

operate on how queries are executed. As a result, expressing and optimizing such important

application domains remains challenging with current approaches leading to the development

of brittle and expensive techniques through unprincipled workarounds.

To this end, in this dissertation, we focus on a) designing the underlying mechanisms

and b) using these mechanisms to express and optimize applications whose core logic relies

CHAPTER 1. INTRODUCTION 2

on how queries are executed. To introduce our overall contributions and provide an outline

of the rest of this dissertation, in this introduction we start by providing an overview of key

application domains and discussing how the lack of mechanisms is hindering extensibility

and optimization per domain (Section 1.1). Then, we summarize how databases are actively

being extended in support of the application domains of our focus and outline their inherent

limitations (Section 1.2). The limitations of current approaches lead us to pose our main

research questions (Section 1.3) and provide an overview (Sections 1.4 and 1.5) of how we

aim to address them throughout this dissertation. We conclude our introduction with an

outline of the rest of this dissertation and our contributions per chapter (Section 1.6).

1.1 Motivating Application Domains

To illustrate how databases are currently being extended in support of application domains

that operate on how queries are executed, let us first overview a few motivating domains

including provenance management, physical database design, and online query optimization.

Positive Provenance

Positive provenance, or simply provenance, is a fundamental type of information that

describes the relationship between individual input and output data items of a compu-

tation. Any workflow-based application that relies on logic over the input-output re-

lationships can be expressed in provenance terms. As such, provenance is (or can

be) integral across many domains, including debugging [WMS13; KIT10; IST+15;

LDY13; CTV05]; data integration [CWW00]; auditing [EU 18]; security [CWH+17;

KIT10]; explaining query results [WM13; WMS12; ROS15; DFG17]; cleaning [CIOP14;

HKW+15]; and data visualizations [WS97; WPM+17]. In the context of relational queries,

such raw input-output connections are generated as part of data processing within operators

of a physical plan. Hence, provenance management systems could in principle capture and

analyze provenance information by tightly integrating their logic within the query execu-

CHAPTER 1. INTRODUCTION 3

tion logic, as we will see in Chapter 3. Under the absence of mechanisms for integration

of third-party logic within physical plan operators, however, state-of-the-art provenance

management systems capture and analyze provenance information by either working around

the SQL interface or by rewriting database internals in ad-hoc ways. This leads prove-

nance management systems to either incur high provenance capture costs, high provenance

analysis costs, or both, as we elaborate further in Chapter 3. In turn, developers resort to

manual implementation of data-intensive applications, such as interactive data visualizations,

data profiling, and data debugging, that in principle could be expressed declaratively in

provenance terms and optimized as such by provenance-enabled database systems.

Negative Provenance

Provenance is a type of information that we can use to explain why an output item came

into being. Equally important, however, is understanding why a data item is not present

in the output or, equivalently, why an input has not contributed to any output. This is a

type of information known as negative provenance [CWH+17; HCDN08; CJ09] (missing

answers [HCDN08] or why-not provenance [CJ09] are alternative names for negative

provenance). Applications of negative provenance include network analytics [CWH+17],

data debugging [AHS12], causality [MGS11], and integrity repairs [XZAT18; MGS11]

among others. In the context of relational queries, as we will see, negative provenance

can be captured and analyzed by rewriting physical operators to produce data flows that

are not generated during query execution. This is because, in the context of relational

queries, input records do not contribute to output records because of plan operators that

are filtering them out (e.g., selections, joins, and set differences). For instance, to get

negative provenance for a selection operator, we need to get the records that did not satisfy

the selection predicate as opposed to getting the records that satisfied the selection for

positive provenance. In other terms, whereas positive provenance can be captured and

analyzed by inspecting the data flows generated as part of query processing, negative

provenance can be captured and analyzed by inspecting the data flows that were not generated

CHAPTER 1. INTRODUCTION 4

by a physical plan. In the absence of mechanisms to generate such negative data flows

from within physical plans and integrate external logic to operate on them, provenance

management systems support negative provenance by working around the SQL interface.

They do so by rewriting queries to equivalent queries with negation [LLG18; MGMS10;

KLZ13] and track positive provenance over them on the way we outlined above. Besides

the inherent limitations for capturing and analyzing positive provenance by working around

the SQL interface, such systems also need to block the actual query execution even further

to wait for provenance capture on rewrites with negations to answer which intermediate

operator was responsible for stopping an input record from contributing to the output.

Online Physical Database Design

The performance of query execution heavily depends on the underlying physical database

design (i.e., the physical layout of tables and the choice of views and indexes to create).

Supporting an ever-changing query workload with a fixed physical database design may

result in poor performance. To account for this problem, online physical database techniques

detect changes in the query workload and automatically decide on new physical designs

to improve the performance on the workload. To do so, such techniques need monitoring

capabilities (e.g., to extract runtime statistics such as CPU consumption or memory pressure)

and the ability to piggyback computations in physical plans for “execution feedback” (i.e.,

to gain insights over the underlying data distribution such as cardinalities [SLMK01] and

histogram distributions [AC99; BCG01]). Furthermore, monitoring and gaining execution

feedback may add significant overhead to the query execution. Hence, online physical

database techniques are in need of scheduling mechanisms to balance between piggybacking

and overhead. In the absence of such mechanisms, however, the typical way to introduce

an online physical database designer within a database involves rewriting a significant

portion of the database engine to introduce the components responsible for managing the

online physical database design logic. (e.g., profilers [Pro], feedback caches [SLMK01;

BCK+11], and query progress estimators [CNR04; KDCN11]).

CHAPTER 1. INTRODUCTION 5

Adaptive Physical Database Design

Similarly to online physical database design, adaptive physical database design is also

concerned with restructuring the physical layout of the database. In contrast to online

techniques, however, adaptive techniques piggyback the physical design construction within

the query execution or defer it (entirely or partially) in-between queries. An illustrative

class of techniques in this domain is techniques for database cracking [SDL18; SJD13;

PPI+14; HIKY12; IKM07a; IKM07b; IMKG11; KM05] which are concerned with the

physical reorganization of columns during selection queries over them so that the execution

of future selections over them becomes faster. To avoid the time-consuming construction

of complete designs (e.g., sorting columns), that online approaches consider, adaptive

techniques are concerned with incremental designs (e.g., database cracking techniques sort

columns incrementally). To do so, adaptive physical database design techniques require

to integrate their logic for the reorganization of the physical database design logic within

physical operators. Furthermore, to implement this logic techniques need programmatic

access to the underlying storage for reorganization purposes. Under the absence of such

mechanisms, however, adaptive physical database design techniques are typically introduced

in a database by introducing new physical operators (e.g., MonetDB provides cracking

and sideways operators) that implement the logic of the initial operator (e.g., selection)

along with the reorganization logic. Furthermore, the introduction of such operators involves

a considerable rewriting of storage managers to account for physical reorganization during

query execution. Finally, while adaptive physical database design techniques are essential

for numerous user-facing applications, especially interactive ones which are of main focus

in this dissertation, the absence of mechanisms for their implementation in a database limits

their production, extension, and deployment considerably. In turn, user-facing applications

hinder interactivity, and user engagement in data exploration sessions remains subpar.

CHAPTER 1. INTRODUCTION 6

Online Query Optimization

Online query optimization is a domain where techniques recognize the fact that a database

optimizer may decide on suboptimal plans due to the absence of exact statistics at opti-

mization time and unawareness of conditions that may arise at run time. To address this

problem, techniques in this domain collect knowledge about a query (e.g., CPU and memory

consumption statistics, better selectivity and cardinality estimates, or even complete data

structures such as bloom filters and hash tables) during its execution and, based on this

knowledge, make decisions on how to change a physical plan at runtime. For instance,

SMOOTH SCAN [BGIA+18] collects statistics during a selection and decides to change

selections scans to index scans, and vice versa, at runtime; ADAPTIVE JOINS [SQL18;

Ora17] change nested loop joins to hash joins, and vice versa, at runtime; SIDEWAYS [IT08]

and LOOKAHEAD [ZPSP17; PDZ+18] information passing techniques collect information

from the execution of one operator to pass it over and optimize other operators in a plan, and

PROBABILISTIC PREDICATES [LCKC18; LKC18] change selections applied after expensive

machine learning operators to probabilistic ones before the machine learning operators. As

illustrated by the these examples, techniques in this domain require mechanisms for integra-

tion of their logic within operators to extract operator-specific knowledge, for fine-grained

control over the runtime of a physical plan to change their control flow, for access and

manipulation of internal state of operators, and for specifying and reacting to events at run

time. In the absence of such mechanisms, however, each technique has been implemented

in an ad-hoc, database-specific way that is also of little use for introducing new or building

on top of current query optimization techniques.

1.2 Current Approaches and Limitations

As illustrated by the application domains above, the absence of mechanisms leads developers

to implement applications whose logic depends on how queries are executed in two ways:

CHAPTER 1. INTRODUCTION 7

Rewriting Databases

The first, and most popular, class of approaches rewrite or even write from scratch, a

database engine only to support a domain-specific technique. For instance, we could

rewrite the physical operators of a database engine and hardcode techniques to perform

provenance capture and analysis. The result, however, is only a database engine that

supports provenance management that, while important due to the numerous applications

that provenance supports, does not provide any mechanisms to support the development

and optimization of other techniques that rely their logic on how queries are executed. In

turn, we could change over and over again the database engine to introduce such techniques.

Besides the complexities of changing a database engine for every new technique that we

need to introduce, this also leads to an important problem of reproducibility. As there

are many databases available without common mechanisms for operating on how queries

are executed, each technique ends up getting introduced in one database without any way

of introducing it in another database without having to rewrite the second database as

well. For instance, SmoothScan [BGIA+18] is implemented in PostgreSQL, adaptive

joins are implemented in two commercial database engines [SQL18; Ora17], sideways

information passing [IT08] was originally implemented in Tukwila [IHW04], lookahead

information passing is implemented in Quickstep [PDZ+18], and most database cracking

techniques [PPI+14; HIKY12; IKM07a; IKM07b] are implemented in MonetDB [BZN05;

Mon15a]. Overall, rewriting databases to support domains whose logic relies on how queries

are executed leads to an ever increasing landscape of database systems each supporting a

subset of possible techniques, without exposing a principled way for extensibility purposes.

Working Around The SQL Interface

The second class includes approaches that implement their application logic by working

around the SQL interface by rewriting a query to one or more other queries. For instance,

logical provenance management systems rewrite a relational query to one or more other

CHAPTER 1. INTRODUCTION 8

queries that produce the outputs of the first query as well as provenance information. As

another example, to connect this class of approaches to the previous one, consider having

data hosted in PostgresSQL and our application needs database cracking functionality. One

approach could be to use SQL to ship data from PostgreSQL to MonetDB because MonetDB

supports cracking whereas PostgreSQL does not. The major problem with this class is that

not every operation over how queries are executed can be expressed in SQL terms. For

instance, whereas provenance capture is possible by rewriting queries, performing database

cracking during selections or changing nested loop joins to hash joins during execution are

not operations expressible in SQL terms. Putting it differently, a SQL query is a specification

of what to be executed by a database engine and, by the design of SQL, does not expose

any information of how a query is executed. Hence, rewriting queries at a level that we

have no access on how it will be executed is of little use for the application domains of our

focus. Besides expressiveness, this class also comes with significant performance penalties.

For instance, as we will see in Chapter 3, provenance is by nature a graph that connects

inputs with outputs. Capturing provenance information through SQL queries imposes a

relational representation of the provenance graph that is expensive to construct. Furthermore,

transferring data from a database A to another database B, just because B supports a feature

that A does not, also comes with substantial shipping and data fragmentation costs.

1.3 Main Research Questions

Regardless of their inherent limitations, the two classes of approaches discussed above

highlight two main characteristics. The first class indicates that database systems need to be

extended in support of application domains that operate on how queries are executed. The

second class indicates that developers are in need of mechanisms to express their logic over

how queries are executed; since SQL is an already established programming API across

databases it is natural to attempt to work around it no matter its inherent limitations.

CHAPTER 1. INTRODUCTION 9

In other terms, these characteristics illustrate that databases need to provide extensibility

mechanisms to express and optimize applications domains that operate on how queries are

executed by a database. This observation leads us to the following two sets of research

questions that also provide a classification of technical challenges that we aim to address

throughout this dissertation:

• Mechanisms. What are the underlying mechanisms that databases need to provide to

facilitate the development of techniques whose core logic depends on how queries are

executed—a) without having to rewrite the internals of the database and b) avoiding

the limitations of working around the SQL interface (Q1)? Furthermore, how should

we change the underlying database components in support of such mechanisms (Q2)?

• Applications. Provided a database engine augmented with such mechanisms, what

is its overall expressive and optimization power (i.e., can we use it to express well-

known techniques across application domains (Q3)?, is it possible to introduce novel

semantics on known techniques as well as introduce new techniques across domains

(Q4)?, and what are the overall performance benefits compared to either hand-writing

and hand-tuning the application logic by rewriting the database or working around

the SQL interface (Q5)?). Furthermore, what are best practices for expressing and

optimizing techniques with core logic over how queries are executed (Q6)?

Having discussed the main research questions of focus in this dissertation, we next

provide an overview of how we aim to address these questions throughout this dissertation.

1.4 Mechanisms and SMOKE

To address the first set of questions Q1 and Q2, our main idea is to provide mechanisms for

physical plan instrumentation from within a database. Intuitively, whereas a SQL query is a

specification of what needs to be executed by a database and does not encode information of

how queries are executed, physical plans are the main underlying representations of SQL

CHAPTER 1. INTRODUCTION 10

queries that encode how queries will be executed. Furthermore, instrumentation is a general

software concept under which third-party code is allowed to manipulate a program in a given

language. In our case, the given language is the language for composing physical plans (i.e.,

the physical algebra of the database). Hence, by designing mechanisms for instrumenting

physical plans, we can provide principled ways for third-party applications to manipulate

how queries are executed without having to alter the underlying database and by avoiding

the limitations of manipulating queries at the level of SQL.

To realize our mechanisms and address Q1, we have built a prototype instrumentation-

enabled database engine, namely, SMOKE. SMOKE exposes a physical plan instrumentation

framework (Chapter 6) that overall provides mechanisms for expressing and optimizing

external applications with logic over how queries are executed—henceforth, instrumen-

tation applications. The underlying mechanisms allow instrumentation applications to a)

implement and integrate their logic within the query execution logic (e.g., injecting the

logic of positive or negative provenance capture, monitoring, or cracking within physical

operators), b) schedule the instrumentation logic, in full or partially, after the execution of

physical operators in a physical plan (e.g., deferring the provenance capture logic or the

online computation of a cardinality estimate) to avoid the overhead of the instrumentation

logic on (parts of) the query execution, c) access the underlying storage either to implement

their logic, to change the physical database design, or to change the state maintained by

operators in a plan, d) act on the control flow of plans by modifying, adding, removing, or

replacing physical operators during query execution (e.g., probabilistic predicates can add

their probabilistic selections in a plan or change predicates in a selection), and e) specify

and subscribe to events (e.g., the memory used by a hash join has a exceeded a threshold)

and react to these events in an application-specific way (e.g., replace hash joins with nested

loop joins or compress the underlying hash table to decrease the memory pressure).

Besides the instrumentation mechanisms, in Chapter 6 we also discuss how we changed

SMOKE in support of instrumentation with respect to how SMOKE operates under normal

query execution. This discussion aims to address Q2. The main changes involve the

CHAPTER 1. INTRODUCTION 11

underlying producer-consumer compiler that SMOKE uses to compile physical plans to

source code and changes in the underlying physical algebra to integrate third-party logic

within physical operators. Regarding the former, SMOKE needs to compile instrumented

physical plans which are different in nature from physical plans. Regarding the latter, we

denote places within physical operators that need to be changed to account for the integration

of instrumentation logic. Overall, while we need to make changes on the internals of a

database, our changes need to happen only once in support of the development of techniques

across numerous application domains. This is in contrast to the class of approaches discussed

above that rewrite databases for every new technique that needs to be introduced, and overall

highlights the extensibility that instrumentation-enabled database systems could provide.

Finally, note that instrumentation is not a concept unique to SMOKE. For instance,

PostgreSQL [Pos13], MySQL [Mys18a; Mys18b], MonetDB [Mal18; Mon15b], and

Spark [Spa18] already provide instrumentation capabilities. Unfortunately, these instru-

mentation capabilities are either coarse-grained (i.e., applications need to operate on plans

without any mechanisms to assist them) or domain-specific (e.g., for monitoring or query

profiling). In contrast, our goal is to provide domain-agnostic instrumentation mechanisms

so that applications can express and optimize their arbitrarily complex instrumentation logic.

1.5 Applications

To address the second set of questions Q3-Q6, we built on top of SMOKE several applications

on the intersection of instrumentation with several domains including (positive and negative)

provenance management, interactive data visualizations, interactive data profiling, online

query optimization, query discovery, and adaptive physical database design.

While our contributions per domain are briefly discussed next, here we note that, across

domains, we highlight how known techniques can be expressed in instrumentation terms—

hence, addressing Q3. Furthermore, we introduce new instrumentation-based techniques

as well as novel semantics on known techniques—hence, addressing Q4. Moreover, and

CHAPTER 1. INTRODUCTION 12

perhaps more interestingly, our experiments across domains show that the performance of

instrumentation-based techniques ranges from being on par with or improve by several orders

of magnitude on the performance of hand-tuned implementations or implementations that

work around the SQL interface—hence, addressing Q5. Finally, throughout our discussion,

we present design principles that we followed to express and optimize our instrumentation-

based techniques to demonstrate best practices—hence, addressing Q6.

Figure 1.1: Dissertation Outline.

1.6 Outline and Contributions

To introduce the instrumentation mechanisms of SMOKE and its applications as well as

present our overall technical contributions in a meaningful way this dissertation is split into

CHAPTER 1. INTRODUCTION 13

two parts. Figure 1.1 shows the outline of the dissertation graphically. Next, we provide a

brief description of the outline of the two parts and summarize our contributions per chapter.

(Outline of Part I.) In Part I, we introduce the physical plan instrumentation framework of

SMOKE. We do so gradually. First, we introduce the architecture of SMOKE; how it operates

under normal query execution and under instrumentation; why our focus is on physical plans

as opposed to other representations (e.g., logical plans or source code); and provide some

necessary background on physical plans, their compilation to source code in SMOKE, and

the history behind SMOKE (Chapter 2). Then, instead of directly presenting the physical plan

instrumentation framework, we first present the provenance management components that

we have built on top of SMOKE: provenance capture (Chapter 3), evaluation of analytical

provenance queries (Chapter 4), and workload-aware optimizations of provenance queries

(Chapter 5). Besides our overall contributions on the domain of provenance management,

Chapters 3 to 5 serve as an in-depth example of a major instrumentation application (i.e., a

provenance manager) that requires several of the components of the physical plan instrumen-

tation framework. Furthermore, as we elaborate in Chapter 2, the first version of SMOKE

did not include the instrumentation framework, and the provenance manager was introduced

essentially by rewriting the database internals. Hence, having presented our provenance

manager in depth and how we introduced it in SMOKE in an ad-hoc way, we introduce the

physical plan instrumentation framework in Chapter 6. In doing so, we also highlight its

connections with the provenance management techniques of Chapters 3 to 5 and how they

could be introduced in a principled way in SMOKE. Overall, Part I aims to address in detail

our first set of questions (i.e., Q1 and Q2) and to demonstrate the impact of SMOKE and

instrumentation on a major application domain (i.e., provenance management).

(Outline of Part II.) Having presented the instrumentation framework and how it can be

used in provenance management, in Part II we are concerned with the development of

instrumentation applications on top of SMOKE. In Chapter 7, we introduce a language,

namely, iSQL, for expressing interactive data visualizations and we draw the connections

among provenance (and instrumentation) with interaction classes. To illustrate the perfor-

CHAPTER 1. INTRODUCTION 14

mance benefits of SMOKE in the domain of interactive data visualization, in Chapter 8

we introduce instrumentation- and provenance-based techniques for the optimization of

crossfiltering [cro15], which is one of the most data-intensive and essential types of interac-

tions. In a similar vein, in Chapter 9, we introduce instrumentation- and provenance-based

techniques this time for the optimization of interactive profiling primitives. In Chapter 10,

we introduce instrumentation-based techniques and frameworks for deriving both well-

known and novel physical database designs. In Chapter 11, we show how we can use

an instrumentation-enabled database engine for the discovery of queries of interest based

on a novel search interface. Finally, in Chapter 12, we introduce instrumentation-based

techniques for expressing query optimization strategies, negative provenance management,

and interactive applications as well as propose future work for each technique and domain.

Overall, Part II aims to address in detail our second set of questions Q3-Q5.

In summary, our contributions and outline per chapter are as follows:

(Chapter 3.) Fine-Grained Provenance Capture. In Chapter 3, we introduce a physical

algebra that tightly integrates the provenance capture logic within the processing of single

and multi-operator plans, and stores provenance in write- and read-efficient indexes. Oper-

ators serve the dual purpose of executing the query logic and generating provenance. By

doing so, we address the long-standing problem of fine-grained provenance capture to show

experimentally orders of magnitude improvements compared to state-of-the-art alternatives.

Besides our major contributions on the provenance management domain, with regards to the

instrumentation framework, this duality of operators required by provenance capture already

highlights the connection between provenance and instrumentation because instrumentation

allows us to inject the provenance logic within plans. Whereas in Chapter 3 our discussion

does not involve the physical plan instrumentation framework (i.e., provenance capture is

introduced by rewriting the internals of the database), our discussion in Chapter 6 sketches

how we can induce the same physical algebra using the instrumentation framework.

(Chapter 4.) Provenance Analytics. In Chapter 4, we introduce techniques to evaluate

analytical provenance queries given the physical representation of provenance as induced

CHAPTER 1. INTRODUCTION 15

by our provenance capture physical algebra in Chapter 3. More specifically, we present

techniques for the evaluation of provenance path queries, provenance consuming SQL

queries, and provenance semantics (i.e., which-, why-, how- and, where-provenance queries).

With regards to instrumentation, this chapter illustrates how instrumentation applications

can use instrumentation products (i.e., provenance in this case) to serve their own clients.

(Chapter 5.) Optimization of Provenance Analytics. In Chapter 5, we introduce

workload-aware optimization techniques for the evaluation of provenance analytics. More

specifically, whereas in Chapter 4 we are concerned with the evaluation of provenance

queries given the physical representations of provenance from the capture phase of Chap-

ter 3, in Chapter 5 we introduce techniques that optimize the provenance capture phase

to induce physical representations targeted to streamlining the evaluation of known future

provenance queries. With regards to instrumentation, Chapter 5 builds on both Chapters 3

and 4 by showing how we can push the client logic down into the query execution, and

highlights that physical operators need to be instrumented in arbitrary ways.

(Chapter 6.) Physical Plan Instrumentation. In Chapter 6, we introduce the mechanisms,

in the form of a framework, that SMOKE provides for physical plan instrumentation. The

underlying mechanisms that the framework exposes can enable applications to implement

and integrate their instrumentation logic within the query execution logic; to schedule the

instrumentation logic relative to query execution as well as relative to individual operators

and pipelines of a physical plan; to modify, add, remove, and replace physical operators at

runtime; to specify and react to run time events; and to access and manipulate the underlying

storage of SMOKE. Beyond the mechanisms, we also discuss how we changed components

of SMOKE (i.e., compiler, physical algebra, and optimizer) in support of instrumentation.

(Chapter 7.) Expressing Interactive Visualizations. In Chapter 7, we present iSQL

which is our declarative approach towards expressing interactive visualizations. More

specifically, iSQL introduces relational data models and query constructs for the specification

of interactive visualizations. In this way, iSQL pushes the problem of optimizing interactive

data visualizations to the database engine. Unfortunately, even though expressing interactive

CHAPTER 1. INTRODUCTION 16

visualizations in a purely relational manner is sufficient for expressing popular classes of

interactive visualizations, optimizing such specifications for several data-intensive classes

of interactions (e.g., interactive selections, tooltips and details on demand, linked brushing,

and multi-view linking) is hard. To explain why and address this problem, we show how

to express these classes in provenance terms. By that, we also show that their relational

specification is equivalent to well-known relational specifications of provenance queries that

are inherently slow, as we will already have shown in Chapter 3. By expressing these classes

in provenance terms, however, allows us to optimize them using the provenance capabilities

of SMOKE that avoid the limitations of working around the SQL interface.

(Chapter 8.) Interactive Cube Exploration and Crossfiltering. To show experimentally

that the provenance mechanisms that SMOKE provides can optimize interactive visualiza-

tions, in Chapter 8 we introduce instrumentation- and provenance-based techniques for

the optimization of crossfiltering [cro15], which is one of the most data-intensive and es-

sential type of interaction. Our experimental analysis shows that our proposed techniques

outperform state-of-the-art approaches on this task all while introducing novel semantics

for addressing important problems associated with crossfiltering including the cold-start

problem [BCHS17] and the problem of crossfiltering over complicated visualization views.

(Chapter 9.) Interactive Data Profiling. In a vein similar to Chapter 8, in Chapter 9 we

introduce instrumentation-based techniques this time for the evaluation of data profiling

tasks and the interactive exploration of their results. Our techniques cover the evaluation

and exploration of functional dependency, uniqueness, and mismatch checks, and our

experimental analysis aims to show their performance benefits over state-of-the-art, hand-

written implementations for evaluating and exploring the results of data profiling tasks.

(Chapter 10.) Physical Database Design. In Chapter 9, we draw the connections between

instrumentation and adaptive physical database design. More specifically, we show how

instrumentation can assist in the specification of database cracking and adaptive denormaliza-

tion, which are concerned with performing physical database design during the execution of

selections and joins, respectively. Based on these connections, we introduce instrumentation-

CHAPTER 1. INTRODUCTION 17

based frameworks for the introduction of novel cracking techniques within the execution of

selection operators, as well as instrumentation-based techniques to adaptively denormalize

databases while performing joins. Our experimental analysis over both cracking and denor-

malization show that instrumentation-enabled engines can express well-known techniques

in each of the two domains all while introducing novel semantics and performance benefits

towards the robustness of such techniques on future workloads.

(Chapter 11.) Query discovery. In Chapter 11, we draw the connections between instru-

mentation and the space of query discovery from database systems through novel interfaces.

More specifically, we introduce a system, namely, S4, that provides a spreadsheet-style

keyword search interface that end-users can use to find queries of interests from a database.

S4 is a system that precedes SMOKE in its development. As such, besides the algorithmic

contributions which are the main focus of Chapter 11, S4 also provides an opportunity for

retrospective analysis on how systems could be rethought shall databases like SMOKE expose

instrumentation mechanisms. As we will see, most of the time spent in developing S4 and

several of its performance benefits come from tasks that could be expressed in SMOKE in

a few queries all while meeting the performance provided by S4. This overall highlights

the premise of instrumentation-enabled engines in allowing application developers to focus

on tasks that are inherent to their goals (e.g., query discovery in this case) as opposed to

writing a database from scratch only to embed their logic within physical operators.

(Chapter 12.) Other connections and the road ahead. Finally, in Chapter 12, we draw the

connections between instrumentation and the domains of online query optimization, negative

provenance, and interactive applications. Across domains, we discuss how well-known

techniques can be expressed in an instrumentation-based way—hence, further evaluating

the expressivity of our instrumentation framework—and we introduce novel extensions and

semantics that instrumentation-enabled engines could enable in a principled manner in these

domains—hence, covering interesting future directions.

We conclude with a discussion of related work (Chapter 13), implications and takeaways

from our current work (Chapter 14), and a summary of future directions (Chapter 15).

18

Part I

Provenance and Instrumentation

CHAPTER 2. BACKGROUND 19

Chapter 2

Background

In this chapter, we provide necessary background behind our prototype database engine,

namely, SMOKE. More specifically, we start by describing the architecture of SMOKE and

discuss how SMOKE operates under normal query execution as well as under instrumentation

(Section 2.1). Then, we provide necessary background on how SMOKE defines physical

plans (Section 2.2) and on the producer-consumer compilation model (Section 2.3). We

conclude this chapter with the history behind SMOKE and an outline of the rest of Part I.

2.1 Architecture of SMOKE

SMOKE is an in-memory query-compiled database engine augmented with instrumentation

capabilities in support of applications ranging from logging to provenance managers and

beyond. The main components of SMOKE are illustrated in Figure 2.1.

Next, we first provide an overview of how SMOKE operates under normal query execu-

tion. Then, we discuss how SMOKE operates under instrumentation at different intermediate

representation (IR) levels (i.e., SQL query, parsed SQL query, logical plan, physical plan,

and source code). Finally, we argue on our focus on physical plan instrumentation by

discussing limitations on instrumenting at other IR levels for our application domains of

focus (i.e., domains whose logic relies on how queries are executed by a database).

CHAPTER 2. BACKGROUND 20

Figure 2.1: SMOKE architecture: an in-memory query compilation database with instrumentation

capabilities on different intermediate representations of SQL queries (i.e., SQL query in textual form,

parsed SQL query in abstract syntax tree form, logical plan, physical plan, and source code).

2.1.1 SMOKE Under Normal Query Execution

When SMOKE is presented with a query Q from a Client it operates similarly to standard

query-compiled databases. First Q will be parsed through the Parser component. The

output of the Parser is an AST representation of the Q clauses (e.g., SELECT, FROM, and

WHERE). (SMOKE uses and extends the HYRISE parser [FS15] for this step.) The AST is

then fed into an in-house, rule-based Optimizer. The Optimizer first converts the AST into

a logical plan and then to a physical plan both of which are represented as trees. Logical

plans include nodes corresponding to relational operators while physical plans include nodes

corresponding to physical operators. The structure of physical plans is important for our

discussion throughout this dissertation and we provide background on it in Section 2.2.

The overall output of the Optimizer is a physical plan which is fed into the Compiler. The

CHAPTER 2. BACKGROUND 21

Compiler follows the producer-consumer compilation model [Neu11] to convert a physical

plan to source code. (We also provide background on the compilation model in Section 2.2.)

The source code is then sent to the Executor, which simply compiles it down to binary, links

the binary with SMOKE, and executes it to compute and send the Q results to the Client.

Throughout this process, a query along with its parsed tree, logical plan, physical plan,

source code, and binary representations are stored in the Cache, so that potential future

repetitions of it do not have to go through the compilation process again. Finally, note that a

Client can also submit a future workload W (i.e., a set of potential future queries; which

may be parametrized). In this case, SMOKE will follow the same process for each query in

W but it will only store their representations in Cache without executing them.

2.1.2 SMOKE Under Instrumentation

Under instrumentation the query processing logic changes. The main difference is that

SMOKE introduces points (i.e., 1 , 2 , 3 , 4 , and 5 in Figure 2.1) where intermediate

representations (i.e., queries in textual form, ASTs, logical plans, physical plans, and

source code) will be redirected to applications to instrument them. For the purposes of this

dissertation, the mechanisms that we provide are focused on instrumenting physical plans

through the Physical Plan Instrumentation Framework. However, it is important to provide

background on instrumenting at the level of queries, ASTs, logical plans, or source code

both to better explain their inherent limitations and because applications that operate on

physical plans may be initialized by instrumenting at other IR levels.

Next, we describe how SMOKE operates under instrumentation by explaining the seman-

tics behind the instrumentation points 1 , 2 , 3 , 4 , and 5 in Figure 2.1. Then, we

discuss applications per point and argue on the limitations of instrumenting intermediate

representations other than physical plans for our application domains of focus.

1 Query instrumentation. Whenever a query enters SMOKE, applications that have

subscribed to 1 will be notified with the SQL specification of the query in textual form, a

query id generated by SMOKE (unique for every query), and a timestamp of entrance in the

CHAPTER 2. BACKGROUND 22

system. The end result of instrumentation at this stage is a query QI that is either the same

with Q or a new query due to rewriting. QI is then fed to the Parser.

2 AST instrumentation. Whenever the Parser outputs an AST, denoted as QPAR in Fig-

ure 2.1, applications that have subscribed to 2 , will be notified with the AST, the query id

that corresponds to the query for this AST, and the timestamps of entrance and exit from

the Parser. The end result of instrumentation at this stage is an AST QI
PAR that is either the

same with QPAR or a new AST due to rewriting.

3 Logical plan instrumentation. When the Optimizer takes as input QI
PAR, it will first

optimize it to generate a logical plan, denoted as QL in Figure 2.1. Applications that have

registered to 3 , will be notified with the logical plan QL, the query id that corresponds to

the query for this logical plan, and the timestamps of entrance and exit from the logical plan

optimization sub-module of the Optimizer. The end result is a logical plan QI
L that is either

the same with QL or a new logical plan due to rewriting.

4 Physical plan instrumentation. Given a logical plan QI
L, the Optimizer generates a

physical plan QP. Applications registered to 4 , will be notified with the physical plan

QP, the query id that corresponds to the query for this logical plan, and the timestamps

of entrance and exit from the physical plan optimization sub-module of the Optimizer. In

contrast to the previous steps, SMOKE provides underlying mechanisms for applications to

operate on physical plans, which we cover in Chapter 6. The end result of this step is an

instrumented physical plan QI
P which, in contrast to the previous points where applications

could only produce the same representation with the ones they were given, is not a physical

plan. Intuitively, this is because SMOKE allows instrumented plans to carry the logic of

instrumentation applications that is not expressible in the physical algebra of SMOKE.

5 Source code instrumentation. Finally, given an instrumented physical plan QI
P, the

Compiler module will compile it to source code QS. Note that the query compilation

process for an instrumented physical plan is different from the compilation process for a

physical plan, since the instrumented physical plan is not a physical plan per se, as we

discussed above. Whether instrumented or not, however, the plan is compiled to source

CHAPTER 2. BACKGROUND 23

code and applications registered to 5 will be notified with the source code, the query id,

and the timestamps of entrance and exit from the Compiler. The end-result of source code

instrumentation QI
S is either the same source code as QS (i.e., applications only analyzed

QS) or another source code due to rewriting.

To conclude our discussion on how SMOKE operates under instrumentation, we finally

note that the different IRs (i.e., Q , QPAR, QL, QP, and QS) and their instrumented versions

(i.e., QI , QI
PAR, QI

L, QI
P, and QI

S) are stored in the Cache of SMOKE. This is particularly

important when instrumenting physical plans because instrumented physical plans can

end up generating new operators, as we will see throughout this dissertation. Essentially,

instrumenting physical plans allows us to create new physical operators without having to

implement and introduce them in the database ourselves, and Cache ends up extending the

codebase of the database.

2.1.3 Instrumentation at Different IR Levels

Now, as we noted in Chapter 1, our application domains of focus operate on how queries are

executed. Not all IRs can support such application domains, however. Having discussed

how SMOKE allows instrumentation at different IR levels, we next argue why we focus on

physical plan instrumentation by outlining inherent limitations of instrumenting other IRs.

First, SQL queries in textual form, parsed SQL queries in AST form, and logical plans

encode what needs to be executed by the database. While instrumentation at these IR levels

is mainly useful for logging and logical query rewriting, these IRs do not encode how queries

will be executed by the database. As a result, these IRs provide little information for our

application domains of focus (i.e., domains with logic over how queries are executed). For

instance, adaptive physical database techniques such as database cracking need to change

the physical reorganization at run time. Similarly, query optimization techniques such as

adaptive joins need to replace physical operators at run time. These operations cannot be

expressed by instrumenting these IRs because they are not expressible in relational terms.

CHAPTER 2. BACKGROUND 24

Second, source code encodes information of how queries are executed. Hence, instru-

menting at the level of source can express our application domain of focus. The problem,

however, is that source code is too low-level (e.g., code blocks with assignment statements)

and it is hard to express high-level operations at this level. For instance, applications such as

adaptive joins if they need to change a nested loop join to a hash-based join at runtime they

need to locate the corresponding loops and variables within the source code, remove them,

and replace them with the source code required for hash-join. Implementing such operations

is a tedious and error-prone process. This fact highlights that instrumenting at this level does

not provide the right level of abstraction for applications to operate on. Furthermore, note

that source code instrumentation is only possible in query-compiled engines that generate

source code. Source code instrumentation is not possible for interpretation-based engines

where the physical plan is what is actually interpreted to perform query execution.

This leaves us with only one option, that of instrumenting physical plans. A physical

plan is the first intermediate representation that databases use to encode how a query is

executed. Hence, by instrumenting it we can alter, analyze, and create side effects out

of how queries are executed which are the main requirements of our application space.

Furthermore, in contrast to source code and since we are working on a higher level of

abstraction, instrumentation is easier to express and optimize. For instance, to express

adaptive joins we can simply replace the nested loops node in the physical plan with an

equivalent hash-based one, as we will see in Chapter 6, and let the Compiler take care of the

burden of transforming to source code.

So far, we have covered how SMOKE operates under normal query execution and under

instrumentation. Next, we provide background on how physical plans are described within

SMOKE and how the producer-consumer compilation model operates. (Readers with such

background can skip to the end of this section for an overview of next chapters.)

CHAPTER 2. BACKGROUND 25

2.2 Physical Plans

As we discussed above, we want to provide applications with the ability to instrument

physical plans dynamically. This is the main focus of this dissertation. To ease our presenta-

tion in subsequent chapters, we now provide background on how physical plans and their

underlying physical operators and pipelines are defined within SMOKE.

Definition of physical plans, operators, and pipelines

We consider physical plans as trees where each node corresponds to a physical operator

(drawn from the physical algebra of SMOKE) while directed edges between nodes correspond

to data flow through the plan. Furthermore, paths in a physical plan between two blocking

operators with all operators in-between to be non-blocking are considered pipelines.

SELECT l_orderkey,
SUM(l_extendedprice*(1-l_discount)) as revenue,
o_orderdate,
o_shippriority

FROM customer, orders, lineitem
WHERE c_custkey = o_custkey AND

l_orderkey = o_orderkey AND
o_orderdate < date '1995-03-05' AND
l_shipdate > date '1995-03-05'

GROUP BY l_orderkey, o_orderdate, o_shippriority

Figure 2.2: TPC-H Q3 variant.

To illustrate these definitions, consider the physical plan in Figure 2.3(a) that is generated

by SMOKE for the evaluation of a variant of the TPC-H Q3 query shown in Figure 2.2.

Example 1 (Physical plan for a variant of TPC-H Q3) The physical plan is a tree with

each node corresponding to a physical operator (e.g., γht, ./probe, or scanlineitem).

The plan also contains four pipelines P1, P2, P3, and P4 that will be executed in this order.

First, P1 scans the customer table (scancustomer) and generates a hash table on the

CHAPTER 2. BACKGROUND 26

Figure 2.3: (a) Physical plan and (b) pseudo-code for the TPC-H Q3 variant.

customer.custkey (./ht). Then, P2 scans the orders table (scanorders); filters the

orders tuples that do not meet the constraint o_orderdate < date ‘1995-03-05’

(σo), probes the hash table constructed during P1 to perform the join on c_custkey

= o_custkey, and inserts into the hash table (./ht). P3 then scans the lineitem table

(scanlineitem); filters out the tuples that do not meet the constraint l_shipdate >

date ‘1995-03-05’ (σl); probes the hash table constructed at the end of P2 to per-

form the join l_orderkey = o_orderkey (./ht); and finally builds a hash table on

l_orderkey, o_orderdate, o_shippriority that will maintain for each key the

value of the sum for the query (γht). Finally, P4 scans the hash table to finalize the

aggregates (htscan) and outputs the result O.

CHAPTER 2. BACKGROUND 27

Description of operators in physical plans

A physical operator can be described by means of describing its inputs and output schema

and form, internal state, and whether it is blocking or non-blocking. To be more precise,

each physical operator has one or more inputs and one output datasets. (In general, physical

operators may have multiple inputs, such as 3-way joins, and multiple outputs, such as

partitioning operators. In this dissertation, we will focus only on operators with at most two

inputs and one output.) The types of inputs and output datasets can range from scalar values,

streams of records, whole tables, views, indexes, hash tables, or other data structures. For

instance, the output of γht in our example is a hash table whereas its input is a stream of

records (i.e., the output of ./probe in P3). Furthermore, a physical operator can be classified

as stateless or stateful depending on whether or not it creates and maintains state during

query execution. For instance, γht is stateful because it maintains and uses a hash table to

implement its logic, while σl in P3 is stateless because its logic only depends on an input

record. Finally, an operator can be blocking (i.e., it needs to consume all of its inputs before

producing any output) or non-blocking (i.e., it produces outputs before consuming all of its

inputs). For instance, γht is blocking because it can only produce its output (i.e., the hash

table) only after it has consumed its whole input, whereas σl is non-blocking because it can

emit a record that satisfies the selection without needing to consume any more input records.

Description of pipelines

As we noted above, pipelines are paths in the physical plan tree between two blocking

operators with all operators in-between to be non-blocking. Pipelines can be described by

a) their order relative to each other and b) the set of individual physical operators that are

involved in it. For our TPC-H Q3 example, Figure 2.3 shows that the query has 4 pipelines

(i.e., P1, P2, P3, and P4) that will be executed in this order, as we discussed in Example 1.

Furthermore, each pipeline involves a series of physical operators. For instance, P3 involves

CHAPTER 2. BACKGROUND 28

scanlineitem, followed by σl and ./probe, and concluding with γht. The last operator in

a pipeline is traditionally called a pipeline breaker.

Physical plan operator interface

Furthermore, each physical operator needs to implement an interface for query processing

purposes that essentially defines how an operator consumes inputs and produces outputs.

Popular interfaces include the open-next-close or iterator model (for tuple-at-a time or batch

query processing) which is followed by interpretation engines and the consumer-producer

model (for push-based query processing) which is followed by query compilation engines.

In the rest of the chapter, we fix the interface of focus to the producer-consumer one. It is

worth pointing, however, that the instrumentation semantics we introduce are irrespective of

the underlying interface, as we discuss in Section 6.10.

struct PhysicalOpPNodeDescription{

StateDescription state;

bit is_blocking;

DatasetDescription output;

DatasetDescription left;

DatasetDescription right;

};

struct PipelineDescription{

vec<PhysicalOpDescription> ops;

DatasetDescription output;

vec<InputDescription> descr;

};

struct PhysicalOpPNode{

PhysicalOpDescription descr;

PhysicalOpPNode left;

PhysicalOpPNode right;

virtual void produce(...);

virtual void consume(...);

};

struct Pipeline{

PipelineDescription descr;

vec<PhysicalOpPNode> ops;

};

struct PhysicalPlan{

PhysicalOpPNode root;

vec<Pipeline> pipelines;

};

Figure 2.4: (left) Interfaces for the description of physical plan operators (i.e.,

PhysicalOpPNodeDescription) and pipelines (i.e., PipelineDescription). (right)

Interfaces of physical plan operators (i.e., PhysicalOpPNode), pipelines (i.e., Pipeline), and

physical plans (i.e., PhysicalPlan).

CHAPTER 2. BACKGROUND 29

Implementation in SMOKE

To conclude our discussion on physical plans, Figure 2.4 shows the interfaces

that SMOKE uses for describing and implementing plans, pipelines, and physi-

cal operators: Figure 2.4(left) shows the interfaces for the description of operators

(i.e., PhysicalOpPNodeDescription) and pipelines (i.e., PipelineDescription),

while Figure 2.4(right) shows the interfaces for the definition of physical operators as

nodes in physical plans (i.e., PhysicalOpPNode), pipelines (i.e., Pipeline), and phys-

ical plans (i.e., PhysicalPlan). Furthermore, the physical algebra of SMOKE includes

physical operators in support of materialization, projection, selection, hash-based and nested

loop joins, hash-based group-by aggregations, set and bag unions, set and bag intersec-

tions, set difference, and cross product. Each individual physical operator is a subclass

of PhysicalOpPNode; produce and consume functions implementing the logic of the

operator. Next, we provide background on how the Compiler of SMOKE compiles such

physical plans to source code.

2.3 Physical Plan Compilation in SMOKE

The goal of the SMOKE Compiler is to take as input a physical plan, as specified above,

and compile it into source code. To do so, SMOKE follows the producer-consumer com-

pilation model [Neu11; NL14]. Next, we provide background on query compilation of

non-instrumented physical plans. (Compilation of instrumented physical plans is covered

in Section 6.9 after the introduction of our physical plan instrumentation framework.)

Example of focus. To ease our discussion, we consider as an example the compilation of

the selection σo_orderdate=date<‘1995–03–05′ over the scan of orders in pipeline P2 of the

physical plan for the TPC-H Q3 variant in Figure 2.3(a). For completeness, the result of

compiling the whole TPC-H Q3 variant to source code is shown sketched in Figure 2.3(b).

CHAPTER 2. BACKGROUND 30

Figure 2.5: Compilation stages of a physical plan in SMOKE.

Compilation Stages. SMOKE compiles a physical plan (QP) by first transforming it to our

in-house IR (QIR) and then to source code (QS). These stages are shown for our example

in Figure 2.5 and we discuss them in detail next.

Physical Plan (QP)→ Internal IR (QIR)

Similarly to other query compilation engines that are first compiling physical plans to other

IRs [NL14; Neu11; DBCK17; MMP17; KLK+18; TER18] (e.g., internal, LLVM [LA04] or

LMS [RO10] ones) before executing, SMOKE also compiles a physical plan to its internal

IR. The IR of SMOKE is similar to the ones of LLVM and LMS, but we chose to introduce

our own IR so that we can potentially compile to different target languages (e.g., python

or R). This is part of future work and we omit further discussion here. For our purposes,

SMOKE’s internal IR is an abstract syntax tree (AST) with nodes for control flow operations

(e.g., loops, conditions, and function blocks) or code blocks each containing a list of code

statements in the target IR of the source code.

Producer-consumer compilation model. Now, to compile a physical plan to our internal

IR, SMOKE uses the producer-consumer compilation model [Neu11; NL14]. Under this com-

pilation model, each physical operator implements its logic in a produce and a consume

function, as we discussed in Section 2.2. Intuitively, an operator asks its children to produce

their results by calling their corresponding produce functions and, in turn, its children

produce their results and call the consume function of the operator so that it can consume

CHAPTER 2. BACKGROUND 31

the produced results. Finally, each produce and consume function is implemented in

SMOKE using our internal IR. The overall result of this process is getting the logic of the

physical plan implemented in our internal IR.

1 class Selection : public PhysicalOpPNode{

2 CNF cnf;

3 Selection(CNF _cnf):cnf(_cnf){}

4 void produce(Context& ctx, Compiler& compiler){

5 Required required = make_required(cnf);

6 ctx.add(required, this);

7 left.produce(ctx, compiler);

8 }

9 void consume(Context& ctx, Compiler& compiler){

10 Required required = ctx.get(this);
11 Condition cond = compiler.make_cond(cnf); // creates condition

12 compiler.begin_if_statement(cond); // creates IF node

13 if(parent) parent.consume(ctx, compiler);

14 compiler.exit_if_statement();

15 }

16 };

17
18 class Scan : public PhysicalOpPNode{

19 Table tbl;

20 Scan(Table _tbl):tbl(_tbl);

21 void produce(Context& ctx, Compiler& compiler){

22 Variable i = 0;

23 Condition limit = compiler.make_condition(i < tbl.limit);

24 compiler.begin_loop(i, limit, i++); // creates Loop node

25 RecordVariable r = make_record(tbl, i); // current row

26 serve_required(ctx, tbl, r);

27 parent.consume(ctx, compiler);

28 compiler.end_loop();

29 }

30 };

Figure 2.6: Implementation of Selection and Scan in SMOKE.

To demonstrate the above compilation process, let us consider how SMOKE compiles

our selection example in Figure 2.5(left) to its internal IR in Figure 2.5(middle).

Example 2 (Compilation Example) Figure 2.6 sketches the implementation of the

produce and consume functions for the Selection and Scan operators in SMOKE

CHAPTER 2. BACKGROUND 32

using our internal IR. The parent operator of the Selection (i.e., ./probe in Figure 2.3)

calls the produce function of the Selection. The produce function of the Selection,

first makes some requirements that it will pass to its child operator (i.e., Scan operator).

More specifically, the function make_required(cnf) (in Line 5) is sugar code for a

function that takes as input the CNF of the Selection and identifies what attributes need

to be fetched by the child Scan operator. The required variable stores what needs to be

fetched by the Scan, and the Selection pushes required into the context variable

(i.e., context.add(required, this) in Line 6). The context variable maintains

what has been required by each node in the physical plan. Finally, the produce function of

the Selection asks its child Scan operator to produce (i.e., left.produce in Line 7). In

turn, the Scan operator produces by first generating a scan over the underlying table. It does

so by initializing a Loop expressed in the internal IR of SMOKE (Lines 22-24). Furthermore,

it produces a variable for the underlying record (Line 25) and based on this variable it sets

what is required by parent operators (i.e., by binding variables to attributes of the record)

within the serve_required function (Line 26). For our example, the Selection needs

the o_orderdate to perform the selection, and serve_required will bind a variable to

this attribute within the record. After having set what was required by parents, the Scan asks

its parent Selection to consume. Note at this point we are still in the Loop that performs

the scan. Hence, the logic of the parent will be placed within the Loop. Now, the consume

function of the Selection is executed (Lines 10-14). First, in Line 10 it gets the variable

bindings from required (i.e., the variable for the o_orderdate attribute that was set by

the Scan). Using this variable, it creates a condition for the selection. For our example, that

would be a condition o_orderdate < ’1995-03-05’ and it is expressed in the internal

IR of SMOKE as shown in Line 11. Using this condition, the Selection creates an IF

block, as shown in Line 12. Within the IF, the Selection asks its parent to consume.

Hence, records that pass the Selection will be consumed by the parent operator’s logic

within the IF block. Finally, the Selection closes the IF block, as shown in Line 14. Note,

however, that we have not still closed the Loop of the scan. After the consume function

CHAPTER 2. BACKGROUND 33

of the Selection has returned, the compilation goes back to the produce function of the

Scan, and executes Line 28, which finally closes the Loop. The end result of this process

for our example, is a Loop that scans over the records of the orders table with an IF block

selecting only the records with o_orderdate < ’1995-03-05’, and the overall program

is expressed in the internal IR of SMOKE, as shown in Figure 2.5(middle).

So far, we have discussed how SMOKE compiles a physical plan to its internal IR. Next,

we briefly discuss how the IR is compiled down to source code.

Internal IR (QIR)→ Source Code (QS)

Compilation in the second stage (i.e., QIR → QS) is straightforward. Recall that our IR is an

AST with loop, conditional, code, and function blocks. SMOKE takes the AST and compiles

it down to source code directly. For example, the IF block with condition o_orderdate <

’1995-03-05’ in our IR is compiled to if(o_orderdate < ’1995-03-05’) in source

code (for a suitable definition of the less than operator for dates). Finally, note that for the

purposes of this dissertation we only consider compilation to C++ that SMOKE supports in

full. Other target IRs as well as optimization steps for our IR are subject to future work.

To conclude our discussion on physical plan compilation, Figure 2.3(b) shows the end

result of compiling the plan for the whole TPC-H Q3 variant to source code using the

produce-consumer compilation model. Each pipeline corresponds to a for loop within which

selections are compiled into if statements (as we showed with our example above), hash

table builds have been compiled to their equivalent C++-like hash table builds, and so on.

After this compilation step, SMOKE will compile the generated code into machine code

(e.g., since the source code is C++, the compilation to machine code will happen using g++)

and finally execute the plan to return the result of the query to the Client.

2.4 History of Our Proposal and Part Outline

In this chapter, we described how SMOKE operates under normal query processing and

under instrumentation of different IRs as well as provided background on physical plans and

CHAPTER 2. BACKGROUND 34

the producer-consumer compilation model. Our overall discussion focused on the current

version of SMOKE. However, historically SMOKE has gone through two major versions with

regards to instrumentation, that also highlights main arguments of our discussion behind the

introduction of the physical plan instrumentation framework.

More specifically, the normal query execution of SMOKE was first extended to support

provenance management. We did so by hard-coding the provenance capture and querying

within the physical operators of SMOKE. While important, due to the numerous applications

of provenance, the end-result was a database that only supports provenance management.

Reflecting back to the two approaches that we discussed in the introduction, we essentially

rewrote the internals of a database only to support provenance management in an ad-hoc

way. While we were adding more provenance-related functionality (e.g., workload-aware

optimizations that we discuss in Chapter 5), it became evident that we had to “pollute” the

physical operators with external logic, to the point that the actual logic of the physical

operators was dwarfed, making the overall development hard to manage. Hence, to account

for a more principled approach towards both provenance as well as other domains whose

logic relies on how queries are executed, we introduced physical plan instrumentation.

We believe this historical reflection also highlights main arguments behind the intro-

duction of the physical plan instrumentation framework. In this direction, next we start by

describing how to capture provenance (Chapter 3), express and evaluate analytical prove-

nance queries (Chapter 4), and optimize the evaluation of analytical provenance queries in a

workload-aware manner (Chapter 5) without considering the physical plan instrumentation

mechanisms of SMOKE. Then, we conclude Part I by introducing the physical plan instru-

mentation (Chapter 6) and highlighting its connections with provenance as well as providing

simple instrumentation examples from other domains whose logic depends on how queries

are executed by a database. In Part II, we delve deeper into applications domains to show

further connections and evaluate our instrumentation framework and SMOKE in more detail.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 35

Chapter 3

Fine-Grained Provenance

Capture

3.1 Introduction

Fine-grained provenance, or lineage, describes the relationship between individual input

and output data items of a computation. For instance, given an erroneous result record

of a workflow, it is helpful to retrieve the intermediate or base records to investigate for

errors. Similarly, identifying output records that were affected by corrupted input records

can help prevent erroneous conclusions. These operations are expressed as lineage queries

over the workflow: backward queries return the subset of input records that contributed to a

given subset of output records while forward queries return the subset of output records that

depend on a given subset of input records.

Any workflow-based application that relies on logic over the input-output rela-

tionships can be expressed in lineage terms. As such, lineage is (or can be) inte-

gral across many domains, including debugging [WMS13; KIT10; IST+15; LDY13;

CTV05]; data integration [CWW00]; auditing [EU 18]; security [CWH+17; KIT10]; ex-

plaining query results [WM13; WMS12; ROS15; DFG17]; cleaning [CIOP14; HKW+15];

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 36

R
ev

en
ue

Profit

Pr
ic
e

Product

R
ev

en
ue

Profit

Pr
ic
e

Product

R
ev

en
ue

Profit

Pr
ic
e

Product

V1

V2

backward_trace(V’ ⊆	V1, X)

forward_trace(X’ ⊆ X, V2)

X
Y
Z

Figure 3.1: Two workflows generate visualizations V1 and V2. A linked brushing interaction

highlights in red bars in V2 that share the same input records with selected circles of V1. Logically,

it is expressed as a backward query from selected circles in V1 to input tuples followed by a forward

query to V2 to highlight bars.

and interactive visualizations as we will see in Chapter 7. This ubiquity highlights the

importance of lineage-enabled systems for both traditional as well as emergent domains. To

illustrate, consider the lined brushing interactive visualization in Figure 3.1:

Example 3 Figure 3.1 shows two views V1 and V2 generated from queries over a database.

Linked brushing is an interaction technique where users select a set of marks in one view and

marks derived from the same records are highlighted in the other views. This functionality

is typically implemented imperatively in ad-hoc ways, as we will see in Chapter 7. However,

it can be expressed declaratively as lineage queries (i.e., as a backward query from selected

circles in V1 to input records, followed by a forward query to highlight corresponding bars

in V2) and optimized as such by lineage-enabled systems.

Lineage-enabled systems answer lineage queries by automatically capturing record-level

relationships throughout a workflow. A naïve approach materializes pointers between input

and output records for each operator during workflow execution and follows these pointers to

answer lineage queries. Existing systems primarily differ based on when the relationships are

materialized (e.g., eagerly during workflow execution or lazily reconstructed when executing

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 37

a lineage query), and how they are represented (e.g., tuple annotations [ABS+06; BCTV04;

GA09; IPW11] or explicit pointers [WMS13; LDY13]). Each design trades off between the

time and storage overhead to capture lineage, and lineage query performance. For instance,

an engine may augment each operator to materialize a hash index that maps output to input

records in order to speed up backward lineage queries. However, the index construction

costs can dwarf the operator execution cost by 100× or more [WMS13]—particularly if the

operator is highly performant.

As data processing becomes faster, a crucial question—and the main focus of this

chapter—is whether it is possible to have both negligible lineage capture overhead and fast

lineage query execution. Unfortunately, current lineage systems incur either high lineage

capture overhead, or high lineage query processing costs, or both. Not satisfying these

requirements, however, leads developers to abandon declarativity and manually implement

lineage-related logic for many data-intensive applications, such as the one in our example.

To this end, we designed the first version of SMOKE (i.e., without any notion of instru-

mentation) as a fast lineage-enabled in-memory query engine designed to address the major

performance overheads in current lineage systems. More specifically, we designed SMOKE

based on the careful combination of five design principles that we believe are helpful when

incorporating lineage into fast, data-intensive workflow systems. Next, we present the first

three of our design principles because they aim to address the problem of fast lineage capture

in a workload-agnostic setting (i.e., without knowledge of future queries over lineage) which

is the focus of this chapter. The remaining two principles that aim to address the problem of

lineage capture in a workload-aware setting are presented in Chapter 5.

P1. Tight integration. In high throughput query processing systems, per-tuple overheads

incurred within a tight loop—even a single virtual function to store lineage on a separate

lineage subsystem [WMS13; IST+15; LDY13]—can slow down operator execution by more

than an order of magnitude. In response, SMOKE introduces a new physical algebra that

tightly integrates the lineage capture logic into query execution. In addition, SMOKE stores

lineage in write-efficient data structures to further reduce the lineage capture overheads.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 38

P2. Reuse. Lineage capture introduces significant overhead during query execution due to

generating and storing unnecessary amounts of lineage data (e.g., expensive annotations,

denormalized forms of lineage). Following the concept of reusing data structures [DBCK17],

SMOKE augments and reuses data structures (i.e., hash tables) constructed during normal

query execution to overlap capture and execution costs.

P3. Defer and Inject. Provenance applications need flexibility with regards to when they

could pay the lineage capture costs. For instance, interactive visualization applications may

be willing to pay the lineage capture overheads during execution as long as they do not

have a negative impact on the interactivity and engagement of end-users. If they have an

impact, however, they should be able to defer the lineage capture overheads after query

execution (i.e., in-between interactions) given the availability of user think time. In this

direction, SMOKE introduces two lineage capture paradigms per physical operator: INJECT

and DEFER. The former injects the lineage capture logic within operators by interleaving it

with the operator logic; hence the lineage capture overhead is paid during operator execution.

The latter defers lineage capture, in full or partially, after the operator execution—hence,

paying the lineage capture overhead, in full or partially, after the operator execution.

Contributions and Chapter Outline

In the rest of the chapter, we start with necessary background (Section 3.2). Then, we

present our contributions as follows:

• First, we introduce our write- and read-efficient lineage indexes that SMOKE uses to

physically represent fine-grained provenance information. (Section 3.3)

• Then, we introduce a physical algebra that tightly integrates the lineage capture logic

within the physical operators that SMOKE supports (i.e., physical operators for the

evaluation of the relational operators π, σ, γ, ./, ∪, ∩, –, /, ×, and ./θ) and stores

lineage in our lineage indexes. For each physical operator we introduce both INJECT

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 39

and DEFER semantics. Overall, operators serve the dual purpose of executing the

query logic and generating lineage in the form of our lineage indexes. (Section 3.4)

• Furthermore, we extend our support for lineage capture on multi-operator plans by

introducing techniques that propagate lineage information throughout plans all while

avoiding lineage capture on intermediate physical operators. (Section 3.5)

• Finally, we show experimentally that SMOKE reduces lineage capture overheads and

lineage query processing costs by up to multiple orders of magnitude compared to

state-of-the-art lineage capture and querying approaches. (Sections 3.6 and 3.7)

3.2 Problem Definition

Our lineage semantics adhere to the transformation provenance semantics of [CLMR16;

GA09; Ike12] over relational queries.

Base queries. Formally, let the base query Q (D) = O be a relational query over a

database of relations D = {R1, · · · , Rn} that generates an output relation O. An application

can initially execute multiple base queries Q = {Q 1, · · · , Q m}. For instance, Q in

Figure 3.1 consists of two base queries that generate the two visualization views.

Lineage queries. After a base query runs, the user may issue a backward lineage query

Lb(O′, Ri) that traces from a subset of an output relation O′ ⊆ O to a base table Ri, or a

forward lineage query Lf(R′i, O) that traces from a subset of an input relation R′ ⊆ Ri to the

query’s output relation O. The overall result of Lb(•) and Lf(•) lineage queries are subsets

of input and output relations, respectively.

Example 4 Let Q 1({X,Y}) = V1 and Q 2({X, Z}) = V2 be the base queries in Fig-

ure 3.1. The linked brushing interaction is expressed as a backward query Lb(V′1, X) from

the selected circles V′1 ⊆ V1 back to the input records in X that generated them. The

forward lineage query Lf(Lb(V′1, X), V2) retrieves the linked bars in V2. Since such inter-

actions can expressed in lineage terms, lineage-enabled systems can enable developers to

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 40

express their application logic declaratively in lineage terms and avoid manual, error-prone

implementations. In turn, optimizing lineage constructs from within a lineage-enabled

system essentially corresponds to optimizing such interactive data visualization applications.

Lazy and eager lineage query evaluation. How can we answer lineage queries quickly?

Lazy approaches rewrite lineage queries as relational queries over the input relations—

the base queries do not incur capture overhead at the cost of potentially slower lineage

query processing [Ike12; CWW00; CCT09]. In contrast, we might Eagerly materialize

data structures during base query execution to speed up future lineage queries [CCT09;

Ike12]. We refer to this problem as lineage capture, and we seek to reduce the capture

overhead on the base query execution all while speeding up future lineage queries.

Lineage capture overview. The eager approach incurs overhead to capture the base query’s

lineage graph. Logically, each edge a
op←→ b maps an operator op’s input record a to op’s

output record b that is derived from a. Backward lineage connects tuples in the query output

o ∈ O with tuples in each input base relation r ∈ Ri by identifying all end-to-end edges

o r for which a path exists between the two records. Forward lineage reverses these

arrows. Materializing such end-to-end forward and backward lineage indexes can essentially

help us streamline lineage queries (i.e., given subsets of inputs or output we can evaluate

lineage queries fast by following edges on the lineage graph).

To address the lineage capture problem, in this chapter we present techniques that

efficiently capture lineage by carefully changing implementations of physical operators to

both capture lineage as well as provide their regular results. Next, we review alternative

techniques that we classify as logical and physical, and we contrast them with our approach.

Logical lineage capture. This class of approaches stays within the relational model by

rewriting the base query into Q′ ({R1, · · · , Rn}) = O′, so that its output is annotated

with additional attributes of input tuples. Some systems [ABS+06; CTV05] generate a

normalized representation of the lineage graph such that a join query between O′ and

each base relation Ri can create the lineage edges between O′ and Ri. The correct output

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 41

relation O can be retrieved by projecting away the annotation attributes from O′. Alternative

approaches [GA09; CTV05] output a single denormalized representation that extends O′

with attributes of the input relations. Recent work has shown that the latter rewrite rules

(PERM [GA09]) and optimizations leveraging the database optimizer (GPROM [NKG+17])

incurs lower capture overheads than the former normalized approach.

Physical lineage capture. This class of approaches instruments physical operators to

write lineage edges to a lineage subsystem through an API provided by the subsystem; the

subsystem stores and indexes the edges, and answers lineage queries [LDY13; IST+15;

WMS13; IPW11; IW10]. This approach can support black-box operators and decouples

lineage capture from its physical representation. However, we found that virtual function

calls alone (ignoring cross-process overheads) can slow down data-intensive operators by

up to 2×. Furthermore, lineage capture with external lineage subsystems is not amenable to

co-optimization opportunities with the base query execution because the plans generated for

lineage capture and query execution are handled by different systems.

Our approach. To this end, we designed our lineage capture techniques in SMOKE in

ways that avoid the drawbacks of logical and physical approaches. SMOKE improves upon

logical approaches by physically representing the lineage edges as read- and write-efficient

indexes instead of relationally-encoded annotations. Furthermore, SMOKE improves upon

physical approaches by introducing a physical algebra that tightly integrates lineage capture

within the logic of physical operators to avoid expensive API calls and in a way amenable to

co-optimization with the base query execution due to the tight integration.

Next, we present our techniques by first introducing our read- and write-efficient lineage

indexes (Section 3.3), followed by the introduction of our lineage capture techniques on

single- and multi-operator physical plans (Sections 3.4 and 3.5, respectively).

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 42

R

r1
r2
r3

r1
r2
r3
…

input
O

r1
r2
r3
r4

o1

o2

o3

o4

output
1-to-N

r1
r4 r7
r5 r8 r9
r3

rid index
1-to-1

r2
r4
r2
r1

rid array

Figure 3.2: Lineage index representations: rid index for 1-to-N (e.g., γ backward lineage) and rid

array for 1-to-1 (e.g., σ) relationships.

3.3 Lineage Representations

SMOKE uses two main rid-based lineage representations. Figure 3.2 above illustrates input

and output relations R and O, respectively, and the two rid-based lineage representations for

1-to-N and 1-to-1 relationships between output and input records. We index rids because

the indexes are cheap to write (for fast lineage capture) and lookups, that simply index into

relations, are fast (for fast lineage query processing). In contrast, indexing full tuples incurs

high write costs while indexing primary keys is not beneficial if keys are wide. Furthermore,

in-memory engines [ABH+13; FKL+17] already create rid lists, as part of query processing,

that resemble our indexes and could be reused for the optimization of lineage capture.

Rid Index. 1-to-N relationships are represented as inverted indexes. Consider the backward

lineage of GROUPBY. The index’s ith entry corresponds to the ith output group, and points

to an rid array containing rids of the input records that belong to the group. The rid index

can also be used for 1-to-N forward lineage relationships, such as for the JOIN operator.

Following high-performance libraries [fol17], the index and rid arrays are initialized to

10 elements and grow by a factor of 1.5× on overflow. Our experiments show that array

resizing dominates lineage capture costs. Available statistics, however, that allow SMOKE to

allocate appropriately sized arrays can reduce lineage capture overheads by up to 60%.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 43

Rid Array. 1-to-1 relationships between output and input records are represented as a single

array. Each entry is an rid rather than a pointer to an rid array as in rid indexes.

3.4 Lineage Capture on Single Operator Plans

Having presented the main lineage index representations, in this section we introduce

lineage capture techniques to generate lineage indexes when executing individual relational

operators. (Section 3.5 extends support to multi-operator plans.) Our techniques are based

on two paradigms: INJECT and DEFER (principle P3 from Section 3.1). DEFER defers

portions of the lineage capture until after operator execution while INJECT incurs the full

cost during the base query execution. DEFER is preferable when the overhead on the base

query execution must be minimized or when it is possible to collect cardinality statistics

during base query execution to avoid resizing costs. In contrast, INJECT typically incurs

lower overall overhead, but the client needs to wait longer to retrieve the base query results.

Next, we describe both paradigms for core relational operators. Our discussion also

illustrates how both paradigms embody the tight integration and reuse principles (principles

P1 and P2 from Section 3.1). Our focus is on the mechanisms while Section 3.8 discusses

future work to choose between the two paradigms. In our discussion, we introduce DEFER

and INJECT provenance capture methods (for all the physical operators supported in SMOKE

for the implementation of logical operators including π, σ, γ, ./, ∪, ∩, –, /, ×, ./θ) along

with code snippets when necessary.

3.4.1 Projection

Projection under bag semantics does not need lineage capture because the input and output

orders and cardinalities are identical. More specifically, the rid of an output (input) record is

its backward (forward) lineage. Projection with set semantics is implemented using grouping

and we use the same mechanism as that for group-by aggregation (Section 3.4.3).

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 44

3.4.2 Selection

Selection is an if condition in a for loop over the input relation, and emits a record if the

predicate evaluates to true [Neu11]. Both forward and backward lineage use rid arrays; the

forward rid array can be preallocated based on the cardinality of the input relation. INJECT

adds two counters, ctri and ctro, to track the rids of the current input and output records,

respectively. If a record is emitted, we set the ctrthi element of the forward rid array to ctro,

and append ctri to the backward rid array. Selectivity estimates can be used to preallocate

the backward rid array and avoid reallocations during the append operation. DEFER is

equivalent to scheduling INJECT after the selection and requires re-scanning the input.

γ′ht

γ#agg

O

A

⋈'

idxrids

Input: A

Output: O,

fw[], bw[][] // forward, backward index

Hash Table ht, Hash Function hash

for i = 0 to A.size() // γht Build phase

h = hash(A[i].gbattr)

if(!ht[h]) ht[h]={init_agg_state(), oid : -1}

ht[h].state.update(A[i])

fw = int[A.size()]
bw = int[ht.size()][]
oid = -1;

for h in ht // γagg Scan phase

O[++oid] = create_output_record(h)

h.oid = oid

for i=0 to A.size()

h = hash(A[i].gbattr)

bw[ht[h].oid].insert(i)

fw[i] = ht[h].oid

Figure 3.3: Plan (left) and corresponding source code (right) for DEFER fine-grained provenance

capture on group-by aggregation.

3.4.3 Group-By Aggregation

Query compilers decompose group-by aggregations into two physical operators: γht builds

the hash table that maps group-by values to their group’s intermediate aggregation state;

γagg scans the hash table, finalizes aggregation results for each group, and emits output

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 45

records. Figures 3.3 and 3.4 show the plans and corresponding source code for the DEFER

and INJECT instrumentation paradigms, respectively. Our indexes for group-by aggregation

consist of a forward rid array and a backward rid index.

DEFER. Consider the DEFER plan and corresponding source code in Figure 3.3. γ′ht for

DEFER extends γht to store an oid number to each group’s intermediate aggregation state.

When γ′agg scans the hash table to construct the output records, it uses a counter to track the

output record’s rid and assign it to the group’s oid value (i.e., oid tracks the output rid of the

group in the result). SMOKE then pins the hash table in memory. At a later time, onγ can

scan each record in A, reuse the hash table to probe and retrieve the associated group’s oid,

and populate the backward rid index and forward rid array.

Although DEFER must scan A twice, the operator’s input and output cardinalities can

avoid resizing costs during onγ. Also, onγ can be freely scheduled (e.g., immediately after

γ
′
ht or during user think time when system resources are free).

γ"ht

γ"agg

O

A

idxrids

Input: A

Output: O,

fw[], bw[][] // forward, backward index

Hash Table ht, Hash Function hash

for i = 0 to A.size() // γht Build phase

h = hash(A[i].gbattr)

if(!ht[h]) ht[h]={init_agg_state(), rids=[]}

ht[h].state.update(A[i])

ht[h].rids.insert(i)

fw = int[A.size()]
bw = int[ht.size()][]
oid = -1;

for (state, rids) in ht // γagg Scan phase

O[++oid] = create_output_record(state)

bw[oid] = rids

for rid in rids

fw[rid] = oid

Figure 3.4: Plan (left) and corresponding source code (right) for INJECT fine-grained provenance

capture on group-by aggregation.

INJECT. Consider the INJECT plan and corresponding code snippet in Figure 3.4. γ′ht this

time augments each group’s intermediate state with an rid array, say, irids, which contains

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 46

the rids of the group’s input records (i.e., its backward lineage). γ′agg tracks the current

output record id oid to set the pointer in the backward index to the bucket’s rid array and the

values in the forward rid array. Since γ′agg knows the input and output cardinalities, it can

correctly allocate arrays for the backward and forward indexes. The primary overhead is due

to reallocations of irids during the build phase γ′ht. As an optimization, our experiments will

show that knowing group cardinalities can decrease the capture overhead by up to 60%.

3.4.4 Hash-based Joins

SMOKE instruments hash joins in a similar way to hash aggregations. A hash join is split

into two physical operators: onht builds the hash table on the left relation A and onprobe

uses each record of the right relation B to probe the hash table. Next, we introduce INJECT

and DEFER techniques for lineage capture on M:N joins and further optimizations mainly

targeting primary key-foreign key joins. For M:N joins, each input record can contribute

to multiple output records while each output record is generated from one record of each

relation. Hence, SMOKE generates one backward rid array and one forward rid index per

input relation.

INJECT. Consider the plan and corresponding source code in Figure 3.5 for INJECT

provenance capture on joins. The build phase on′ht augments each hash table entry with

an rid array irids that contains the input rids from A for that entry’s join key. The probe

phase on′probe tracks the rid for each output record and populates the forward and backward

indexes as expected. Note that output cardinalities are not yet known within the on′probe
phase and we cannot preallocate our lineage indexes. As a result, although the backward rid

arrays are cheap to resize, forward rid indexes can potentially trigger multiple reallocations

(i.e., if an input record has many matches) which penalize the capture performance.

DEFER. Our main observation is that exact cardinalities needed to preallocate the forward

rid indexes are known after the probe phase and can be used by DEFER. To this end,

DEFER partially defers index construction for the left input relation A (see Figure 3.6). The

build phase adds a second rid array, say, orids, to the hash table entry, in addition to irids

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 47

⋈’
ht

A B

⋈’
probe

O idxBridsidxArids

Input: relations A, B;

Output: R // A ./A.a=B.b B

a_fw[][], b_fw[][] // Forward indexes

a_bw[], b_bw[] // Backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // Build Phase

h = hash(A[i].a)

if(!ht[h]) ht[h]={records=[], i_rids=[]}

ht[h].records.insert(A[i])

ht[h].i_rids.insert(i)

o = 0;

for i = 0 to B.size() // Probe Phase

h = hash(B[i].b)

if(!(t = ht.probe(h))) continue;
for j = 0 to t.i_rids.size()

R[o] = (t.records[j], B[i])

a_bw[o] = t.i_rids[j]

b_bw[o] = i

a_fw[j].insert(o)

b_fw[i].insert(o++)

Figure 3.5: Plan (left) and corresponding source code (right) for INJECT fine-grained provenance

capture on hash-based join.

from INJECT. When B is scanned during the probe phase, its output records are emitted

contiguously, thus orids need only store the rid of the first output record for each match with

a B record. After the on′probe phase, the forward and backward indexes for the left relation A

can then be preallocated and populated in a final scan of the hash table (scanht in Figure 3.6).

Deferring for B is also possible. However, the benefits are minimal because we need to

partition the output records for each hash table entry by the B records that it matches, which

we found to be costly.

Further optimizations. If the hash table is constructed on a unique key, then the irids do not

need to be arrays and can be replaced with a single integer. Also, if the join is a primary-key

foreign-key join, the forward index of the foreign-key table is an rid array. This is because

each record of the foreign-key table contributes to exactly one output record. Furthermore,

the output cardinality is the same with the foreign-key table cardinality and we preallocate

the backward rid array. Finally, join selectivities can help preallocate forward rid indexes,

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 48

⋈’
ht

A B

⋈’
probe

O idxBridsidxArids
scan&'

... // Build Phase

if(!ht[h])ht[h]={records=[],i_rids=[],o_rids=[]}
...

o = 0;

for i = 0 to B.size() // Probe Phase

h = hash(B[i].b)

if(!(t = ht.probe(h))) continue;
t.o_rids.insert(o)

for j = 0 to t.i_rids.size()

R[o] = (t.records[j], B[i])

b_bw[o] = i

b_fw[i].insert(o++)

a_bw = int[o] // Build indexes for left relation

for h in ht

s = 0

for r in h.i_rids

a_fw[r] = int[h.o_rids.size()])

for o in h.o_rids

a_fw[r].insert(o + s)

a_bw[o+s] = r

s++

Figure 3.6: Plan (left) and corresponding source code (right) for DEFER fine-grained provenance

capture on hash-based join.

similarly to how group cardinalities help preallocate backward rid indexes for group-by

aggregations.

3.4.5 Set Union

Set union between two relations A and B (i.e., A
S⋃
uattrsB, where S denotes set union and

uattrs denotes the attributes from A and B to union on) are implemented in a hash-based

way with consecutive appends to a hash table: Initially, the operator ∪ht builds a hash table

using the relation A with the key being the attributes of the union (i.e., uattrs). Then,

∪p probes the hash table constructed by ∪ht on the union attributes using relation B. If an

entry does not already exist for the union attributes, ∪p appends a new entry in the hash

table with the union attributes. Essentially, ∪ht and ∪b are the same operator, that probe

and append tuples in a hash table. The only difference is that ∪ht takes as input an empty

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 49

hash table while ∪p takes as input a pre-built hash table. Finally, ∪scan scans the hash table

and constructs the output.

Regarding provenance on set union, note that each input record (from either A or B) can

contribute to exactly one output record. Furthermore, each output record can be derived

by multiple input records due to the semantics of set union. As such, SMOKE generates

two backward rid indexes and two forward rid arrays to encode backward and forward

provenance. (It is worth emphasizing that just keeping track of the connection between

each output and one of the input tuples that contribute to the output does not suffice for

provenance purposes. This is primarily because, while all input tuples that contribute

to a single output have the same union attributes uattrs, the rest of the attributes may

be different across these input tuples. Hence, provenance consuming applications may

want access to all the input records that contributed to an output to, say, understand their

differences.) Next, we discuss DEFER and INJECT approaches for set union; Figures 3.7

and 3.8 show corresponding physical plans and source code for the INJECT and DEFER

approaches on set union, respectively, and drive our discussion.

INJECT. Figure 3.7 illustrates the INJECT lineage capture of SMOKE for set union. Similarly

to group-by aggregation, INJECT rewrites ∪ht to append, besides the union attributes, two

arrays a_rids and b_rids that track which tuples from A and B, respectively, contribute to

the hash table entry. During ∪ht we populate a_rids and during ∪p we populate b_rids.

(SMOKE does so because even though only one copy of unioned tuples is required by the

semantics of set union, for provenance purposes we need to keep track of the input tuples

that contributed to each output tuple. This information is encoded in the arrays a_rids and

b_rids.) Finally, ∪scan outputs the result and the provenance indexes.

DEFER. Figure 3.8 illustrates the DEFER provenance capture of SMOKE for set union.

Similarly to group-by aggregation, DEFER rewrites ∪ht and ∪p to append an oid to each

hash table entry, initially set to –1, besides the union attributes. Then, ∪scan outputs the set

union result and assigns the correct oid to each hash table entry. To construct the lineage

indexes ./
′
∪ takes as input the relation A and probes the previously constructed hash table

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 50

Uht

U"

A B

O idxBridsidxArids

U#$%&

Input: A, B

Output: O,

a_fw[A.size()], // forward indexes

b_fw[B.size()]

a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // ∪ht: Build phase

h = hash(A[i].uattrs)

if(!ht[h]) ht[h]={init_state(A[i].uattrs),

a_rids=[], b_rids=[]}

ht[h].a_rids.insert(i)

for i = 0 to B.size() // ∪p: Probe/Append phase

h = hash(B[i].uattrs)

if(!ht[h]) ht[h]={init_state(B[i].uattrs),

a_rids=[], b_rids=[]}

ht[h].b_rids.insert(i)

oid = -1

a_bw = int[ht.size()][]

b_bw = int[ht.size()][]

for (state, a_rids, b_rids) in ht //∪scan: Scan phase

O[++oid] = create_output_record(state)

a_bw[oid] = a_rids

for rid in a_rids

a_fw[rid] = oid

b_bw[oid] = b_rids

for rid in b_rids

b_fw[rid] = oid

Figure 3.7: Plan (left) and corresponding source code (right) for INJECT fine-grained provenance

capture on set union.

to find the oid and properly construct the lineage indexes between the output and input

relation A. Similar is the process for ./
′
∪ for the input relation B.

Further optimizations. An optimization, for both INJECT and DEFER approaches, is that

there is no need to wait to append the right relation B to the hash table to construct the

lineage indexes for the relation A. This is because the intermediate hash table built for A

suffices for the lineage index construction for A. For DEFER, in particular, this also means

that the join ./U for A will not need to probe a hash table that keeps not all entries for A but

also B. However, this also means that DEFER needs to block the output construction until

after the ./U for A has been executed, which is a counter-argument to the DEFER paradigm

(i.e., lineage is constructed without blocking the query execution). To balance this effect

we could keep a copy of the intermediate hash table for A and use only that for lineage

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 51

Uht

U"

A B

O idxBridsidxArids

⋈$
%⋈$

%
U&'()

Input: A, B

Output: O,

a_fw[A.size()], // forward indexes

b_fw[B.size()]

a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // ∪ht: Build phase

h = hash(A[i].uattrs)

if(!ht[h]) ht[h]={init_state(A[i].uattrs), oid=-1}

for i = 0 to B.size() // ∪p: Probe/Append phase

h = hash(B[i].uattrs)

if(!ht[h]) ht[h]={init_state(B[i].uattrs),oid=-1}

oid = -1

a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for h in ht // ∪scan: Scan phase

O[++oid] = create_output_record(h.state)

h.oid = oid

for i=0 to A.size() // ./′∪: Provenance capture for A
h = hash(A[i].uattrs)

a_bw[ht[h].oid].insert(i)

a_fw[i] = ht[h].oid

for i=0 to B.size() // ./′∪: Provenance capture for B
h = hash(B[i].uattrs)

a_bw[ht[h].oid].insert(i)

a_fw[i] = ht[h].oid

Figure 3.8: Plan (left) and corresponding source code (right) for DEFER fine-grained provenance

capture on set union.

construction for the A relation at the cost of copying which could be substantial. SMOKE

does not yet support the copy construction, but it does support blocking the set union for the

lineage construction.

3.4.6 Bag Union

Lineage capture for bag union is simpler than lineage capture for set union. Since for bag

union we only concatenate the two input relations, what we only need to maintain is the rid

of where one relation ends and the other relation begins in the output of the union. More

generally, for bag union of k relations we need k – 1 such rids. Using these indexes it

is sufficient to answer both backward and forward lineage queries. Note, however, that

this lineage capture relies on the fact that the input relation is a base relation stored in the

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 52

database. For multi-operator plans, the input to the union could be an intermediate relation

for which we need to perform lineage capture. For instance, for a query σθ(A)
⋃

B, we

need to perform lineage capture for the selection on A.

3.4.7 Set Intersection

Set intersection in SMOKE is broken into three operators. First, ∩ht builds a hash table on

the outer relation A with the key being the attributes of the intersection. Each hash table

entry, beyond the intersection attributes, also maintains a bit to indicate whether or not it has

been matched with a tuple from the inner relation B. Then, ∩p probes the hash table and

sets the bit if a match was found. Finally, ∩scan scans the hash table and emits the entries to

form the output.

Linage capture for set intersection follows the logic of set union. An important difference

is that for the INJECT approach, a_rids that we have kept for non-matched tuples will be

discarded. If the fraction of tuples in the outer relation that appear in the intersection is

small that could result in the DEFER approach to be faster than INJECT because it avoids

the unnecessary writes in a_rids. Also, a slight difference from set intersection without

lineage capture, is that INJECT does not require a bit indicating whether a hash table entry

has been matched with tuples from the outer relation because we maintain b_rids that

provide this information. For completeness, Figures 3.9 and 3.10 show physical plans and

code snippets for INJECT and DEFER approaches on set intersection, respectively.

3.4.8 Bag Intersection

Bag intersection in SMOKE follows the same logic as the set intersection. The only dif-

ference is that the hash table needs to maintain two more attributes per entry: (a) the

number of tuples from the outer relation that are duplicates according to the intersection

attributes, and (b) the number of matches with the inner relation. ∩ht adds a hash entry

{A[i].iattrs, a_matches=1, b_matches=0} if there is no prior entry in the hash

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 53

∩ht

∩"

A B

O idxBridsidxArids

∩#$%&

Input: A, B

Output: O,

a_fw[A.size()], // forward indexes

b_fw[B.size()]

a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // ∩ht: Build phase

h = hash(A[i].iattrs)

if(!ht[h]) ht[h]={init_state(A[i].iattrs),

a_rids=[], b_rids=[]}

ht[h].a_rids.insert(i)

for i = 0 to B.size() // ∩p: Probe phase

h = hash(B[i].iattrs)

if(ht[h]) ht[h].b_rids.insert(i)

oid = -1

a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for (state, a_rids, b_rids) in ht //∩scan: Scan phase

if(b_rids.size()==0) continue;
O[++oid] = create_output_record(state)

a_bw[oid] = a_rids

for rid in a_rids

a_fw[rid] = oid

b_bw[oid] = b_rids

for rid in b_rids

b_fw[rid] = oid

Figure 3.9: Plan (left) and corresponding source code (right) for INJECT fine-grained provenance

capture on set intersection.

table for A[i].iattrs, or updates the matches of A (i.e., a_matches++) if there was an

entry for A[i].iattrs. Then, ∩p probes the hash tables with the tuples from the inner

relation B and updates the b_matches. Finally, ∩scan scans the hash table and outputs each

entry a_matches·b_matches times to provide an output with the correct bag semantics.

INJECT: Lineage capture for bag intersection under INJECT semantics is straightfor-

ward. Instead of keeping a_matches and b_matches we maintain two arrays of rids

(a_rids and b_rids) from where the matches have originated. As such, a_matches =

a_rids.size() and b_matches=b_rids.size(). Hence, ∩scan can still provide an

output with the correct bag intersection semantics. Moreover, ∩scan can provide backward

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 54

∩ht

∩"

A B

O idxBridsidxArids

⋈∩
$⋈∩

$
∩%&'(

Input: A, B

Output: O,

a_fw[A.size()], // forward indexes

b_fw[B.size()]

a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // ∩ht: Build phase

h = hash(A[i].iattrs)

if(!ht[h]) ht[h]={init_state(A[i].iattrs),

b_bit = 0, oid=-1}

for i = 0 to B.size() // ∩p: Probe/Append phase

h = hash(B[i].iattrs)

if(ht[h]) ht[h].b_bit=1

oid = -1

a_bw = int[ht.size()][]
b_bw = int[ht.size()][]
for h in ht // ∩scan: Scan phase

O[++oid] = create_output_record(h.state)

h.oid = oid

for i=0 to A.size() // ./′∩: Provenance capture for A
h = hash(A[i].iattrs)

if(!h.b_bit) continue

a_bw[ht[h].oid].insert(i)

a_fw[i] = ht[h].oid

for i=0 to B.size() // ./′∩: Provenance capture for B
h = hash(B[i].iattrs)

if(!h) continue

a_bw[ht[h].oid].insert(i)

a_fw[i] = ht[h].oid

Figure 3.10: Plan (left) and corresponding source code (right) for DEFER provenance capture on set

intersection.

and forward indexes using these rids. Note, however, that while set intersection has 1-to-N

backward lineage, bag intersection has 1-to-1.

DEFER: Lineage capture for bag intersection under DEFER follows the logic of DEFER

for set intersection. Besides a_matches and b_matches, each hash entry maintains an

output rid oid of the first tuple in the output for this hash entry. Note that the output will

contain tuples related to this hash entry at rids [oid, oid+a_matches·b_matches]. Now,

the trick is that ./′∩ need to happen in order first with the A relation and then with B, and

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 55

for every match we should increase the oid. For completeness, Figure 3.11 provides the

corresponding plan and code snippet for DEFER provenance capture on bag intersection.

∩ht

∩"

A B

O idxBridsidxArids

⋈∩
$⋈∩

$
∩%&'(

Input: A, B

Output: O,

a_fw[A.size()], // forward indexes

b_fw[B.size()]

a_bw[][], b_bw[][] // backward indexes

Hash Table ht, Hash Function hash

for i = 0 to A.size() // ∩ht: Build phase

h = hash(A[i].iattrs)

if(!ht[h]) ht[h]={init_state(A[i].iattrs),

a_matches=1, b_matches=0,

oid=-1}
else ht[h].a_matches++

cnt=0

for i = 0 to B.size() // ∩p: Probe/Append phase

h = hash(B[i].iattrs)

if(ht[h])
ht[h].b_matches++

cnt+= a_matches

oid = -1

a_bw = int[cnt][], b_bw = int[cnt][]
for h in ht // ∩scan: Scan phase

O[++oid] = create_output_record(h.state)

h.oid = oid

for i=0 to A.size() // ./′∩: Provenance capture for A
h = hash(A[i].iattrs)

if(!h.b_matches) continue

a_bw[ht[h].oid] = i

a_fw[i] = ht[h].oid++

for i=0 to B.size() // ./′∩: Provenance capture for B
h = hash(B[i].iattrs)

if(!h) continue

a_bw[ht[h].oid] =i

a_fw[i] = ht[h].oid++

Figure 3.11: Plan (left) and corresponding source code (right) for DEFER fine-grained provenance

capture on bag intersection.

3.4.9 Set difference

SMOKE implements set difference of two relations A and B (i.e., A
S

\dattrsB) in a hash-based

way similar to set intersection. The only differences are (a) we set the b_bit of each hash

entry to 1 instead of 0 during the initial build and (b) when we probe the hash table with

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 56

the inner relation we set the b_bit to 0 as opposed to 1. The final scan outputs only the

hash entries with b_bit=1 as these are the tuples that appear in the inner relation but do not

appear in the outer relation.

Efficient lineage capture for set difference is non-trivial. By definition, the lineage for a

tuple o ∈ A\B depends on (a) the set of tuples in A that it came from and (b) the whole inner

relation B. Capturing forward indexes for the A tuples follows the lineage capture logic of

set intersection and we omit further details. The problem with set difference is that each

output depends on the whole outer relation B. Our experimental results show that lineage

capture is meaningful when lineage has small cardinality. As such, if B is a base relation we

do not capture lineage and for backward queries that require access to B we simply scan B.

Now, if the input relation is an intermediate relation, then SMOKE performs lineage capture

during the execution of the operator whose output is the intermediate relation that is the

outer relation to the set difference. Hence, for a backward query on the set difference we

can access a base relation that is used to construct the intermediate relation through the

backward index of the intermediate relation. More interestingly, a forward query from a

tuple of a base relation, that is used in the construction of the intermediate relation that is

input to the set difference, is the whole output times the amount of tuples it contributes to

the intermediate relation. This is because each tuple in the intermediate relation contributes

to all the tuples in the output of the set difference.

(b) DEFER

∖ht

∖"

A

Set Difference

(a) INJECT

B

OidxArids

∖ht

∖"

A B

OidxArids

⋈∖
$

∖%&'(∖%&'(

Figure 3.12: INJECT and DEFER plans for set difference.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 57

As such, SMOKE captures lineage only for the A relation that follows the logic of lineage

capture for the inner relation of set intersection. For completeness, Figure 3.12 illustrates

the corresponding INJECT and DEFER physical plans.

3.4.10 θ-joins and Nested Loops

So far, we have proposed a physical algebra for hash-based implementations of equi-

joins, group-by aggregations, unions, intersections, and differences. Next, we give a brief

discussion for INJECT and DEFER lineage capture on nested-loop based implementations for

θ-joins. Lineage capture with merge-sort approaches and lineage capture based on nested

loops for the rest operators are obvious future work.

Input: A, B

Output: O,

a_fw[A.size()][], // forward indexes

b_fw[B.size()][]

a_bw[], b_bw[] // backward indexes

oid=-1

for i = 0 to A.size()

for j = 0 to B.size()

if(θ(A[i], B[j]))
O[++oid] = create_output_record(A[i], B[j])

a_bw[oid] = i

b_bw[oid] = j

a_fw[i].insert(oid)

b_fw[j].insert(oid)

Figure 3.13: Plan (left) and corresponding source code (right) for INJECT fine-grained provenance

capture on nested loop joins.

INJECT: Figure 3.13 illustrates the lineage capture of SMOKE for nested-loop θ-joins. For

each combination of tuples from A and B that satisfy the θ condition the algorithm emits the

record to construct the correct output. Since we write serially the output, we can also write

serially the lineage indexes and maintain the alignment between each output record and their

corresponding backward lineage index. As an optimization, note that the backward index

for the A relation can be condensed. All the output records due to A[i] will be consecutive

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 58

in the output. Hence, instead of keeping the rids for each output a_fw[i].insert(oid)

we can simply store the rid of only the first one.

Input: A, B

Output: O,

a_fw[A.size()][], // forward indexes

b_fw[B.size()][]

a_bw[], b_bw[] // backward indexes

oid=-1

for i = 0 to A.size()

for j = 0 to B.size()

if(θ(A[i], B[j]))
O[++oid] = create_output_record(A[i], B[j])

oid=-1 // ./defer

for i = 0 to A.size()

for j = 0 to B.size()

if(<θ(A[i], B[j]))><a_bw[++oid] = i><b_bw[oid] =
j><a_fw[i].insert(oid)><b_fw[j].insert(oid)>

Figure 3.14: Plan (left) and corresponding source code (right) for DEFER fine-grained provenance

capture on nested loop joins.

DEFER: Figure 3.14 show the physical plan and corresponding source code for DEFER

provenance capture on nested loop joins. The logic for DEFER is similar to the one of

INJECT. Instead of materializing our indexes within the nested loop however, we re-execute

the nested loop and materialize our indexes during re-execution. Finally, note that during

the re-execution we do not propagate results to parents.

3.4.11 Cross product

We conclude the introduction of our techniques for fine-grained provenance capture on

individual operators by briefly discussing cross products. Regarding cross products, SMOKE

does not perform lineage capture in the general case. Given an input tuple from the outer

relation A with rid a we know that its forward lineage is {a, a + |B|, . . . , a + (|A| – 1)|B|}

due to the semantics of cross product. Similar is the series for the inner relation. Hence,

whether we are given an input or output tuple we can directly infer the backward and lineage

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 59

rids at runtime without a cost. If the input to cross product is intermediate relations, SMOKE

first captures lineage for operators that produce them.

3.5 Lineage Capture on Multi-Operator Plans

The naïve way to support multi-operator plans is to individually change each operator to

generate its lineage indexes. Lineage queries can then use the indexes to trace backward

or forward through the plan. This approach is correct and can support any relational

workflow composed out of our physical operators. However, it unnecessarily materializes all

intermediate lineage indexes even though only the lineage between output and input records

is strictly required for evaluating backward and forward lineage queries.

We address this issue with a technique that a) propagates lineage information throughout

plan execution so that only lineage indexes connecting input and output relations are emitted

and b) reduces the number of lineage index materialization points in the query plan.

Lineage propagation. To propagate lineage throughout plan execution, consider a physical

plan with two operators opp and opc composed as follows: O = opp(opc(R)), with input

relation R and output relation O. When opp runs, it will use the backward lineage index of

opc to populate its own lineage index with rids that point to R rather than the intermediate

relation opc(R); lineage indexes of opc can be garbage collected when not further needed.

Reduction of materialization points. To reduce lineage index materialization points, recall

that database engines pipeline operators to reduce intermediate results by merging multiple

operators into a single pipeline [Neu11]. Operators such as building hash tables are pipeline

breakers because the input needs to be fully read before the parent operator can run. Within

a pipeline, there is no need for lineage capture, but pipeline breakers need to generate lineage

along with the intermediate result. In Section 3.4, we showed how pipeline breakers (e.g.,

hash table construction for the left-side of joins and group-by aggregations) can augment the

hash tables with lineage. Parent pipelines that use the same hash-tables for query evaluation

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 60

(e.g., cascading joins) can also use the lineage indexes embedded in the hash tables to

implement the lineage propagation technique above.

Implementation Details. Our engine supports naïve lineage capture for arbitrary relational

workflows, and we focused our optimizations for SPJA query blocks composed out of pk-fk

joins. This was to simplify our engineering and because fast capture for SPJA blocks can

be extended to nested blocks by using the propagation technique above. Optimizations for

lineage capture across SPJA blocks is interesting future work. We focus on pk-fk joins

due to their prevalence in benchmarks and real-world applications and because INJECT and

DEFER for pk-fk joins are identical due to our optimizations in Section 3.4.4. Thus, the

main distinction between INJECT and DEFER for SPJA blocks is how the final aggregation

operator in the block captures lineage; INJECT and DEFER lineage capture on pk-fk joins is

identical, while selections and projections are pipelined. Further details are in [PW18].

3.6 Experimental Settings

Our experiments in this chapter seek to show that SMOKE (1) incurs significantly lower

lineage capture overhead than logical and physical lineage capture approaches and (2) can

execute lineage queries faster than lazy, logical, and physical lineage query approaches. To

this end, we compare SMOKE to state-of-the-art logical and physical lineage capture and

query approaches using microbenchmarks on single operator plans as well as end-to-end

evaluations over a subset of TPC-H queries.

Data. The microbenchmarks use a synthetic dataset of tables zipfθ,n,g(id,z,v) contain-

ing zipfian distributions of varying skew. z is an integer that follows a zipfian distribution

and v is a double that follows a uniform distribution in [0, 100]. θ controls the zipfian skew,

n is the table size, and g specifies the number of distinct z values (i.e., groups). Tuple

sizes are small to emphasize worst-case lineage overheads. End-to-end experiments use the

TPC-H data generator and vary the scale factor.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 61

Table 3.1: Lineage capture techniques used in our evaluation.

Abbreviation Description
Smoke

BASELINE SMOKE without lineage capture
SMOKE-D SMOKE with defer lineage capture
SMOKE-I SMOKE with inject lineage capture

Logical
LOGIC-RID Rid-based annotation
LOGIC-TUP Tuple-based annotation
LOGIC-IDX Indexing input-output relations

Physical
PHYS-MEM Virtual emit function calls and no reuse
PHYS-BDB Lineage capture using BerkeleyDB

To ensure a fair comparison, we implement and optimize alternative, state-of-the-art

techniques in our query engine. Our implementation reduces the capture overheads (by

several orders of magnitude) as compared to their original implementations, and is detailed

in our technical report [PW18].

First, we describe the compared lineage capture techniques (see also Table 3.1 for a brief

description of the techniques):

SMOKE-based techniques. SMOKE-I and SMOKE-D instrument the plan using INJECT

and DEFER instrumentation (Section 3.4). Unless otherwise noted, SMOKE-I and SMOKE-D

do not use optimizations from Section 3.4. BASELINE evaluates base queries on SMOKE

without capturing lineage.

Baseline logical techniques. State-of-the-art logical approaches (PERM [GA09] and

GPROM [NKG+17]) use query rewrites to annotate the base query output with lineage.

However, they are built on production databases that incur overheads from transaction and

buffer managers, lack of hash-table reuse, and lack of query compilation. These factors

could confound results on a system-to-system comparison on the lineage capture prob-

lem and would not lead to meaningful results. For this reason, we implemented PERM’s

rewrite rules (and GPROM’s optimizations, whenever applicable) in SMOKE to generate

physical plans that annotate output records with either rids (LOGIC-RID) or full input

tuples (LOGIC-TUP). As we noted in Section 3.2, the output annotated relations need to

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 62

be indexed to support fast lineage lookups. To this end, LOGIC-IDX scans the annotated

output relation to construct the same end-to-end lineage indexes as those created by SMOKE.

For completeness, we also note that our implementation of logical approaches in SMOKE are

two orders of magnitude faster than with PERM and GPROM. (Details on how we optimized

logical techniques in SMOKE are in [PW18].)

Baseline physical techniques. To highlight the importance of tightly integrating lineage

capture and operator logic, we use two baseline physical techniques. PHYS-MEM instru-

ments each operator to make virtual function calls to store input-output rid pairs in SMOKE

lineage indexes from Section 3.3, which highlights the overhead of making a virtual function

call for each lineage edge. PHYS-BDB instead indexes lineage data in BerkeleyDB to

showcase the drawbacks of using a separate storage subsystem [WMS13].

Moreover, we compare lineage querying techniques based on data models and indexes

induced during lineage capture:

Lineage queries. SMOKE-I, SMOKE-D, LOGIC-IDX, and PHYS-MEM all capture the same

lineage indexes from Section 3.3, thus their lineage consuming query performance will be

identical. We call this group SMOKE-L. We compare with a baseline lazy approach, LAZY,

which uses standard rules [CWW00; Ike12] to rewrite lineage queries into relational queries

that scan the input relations. We also compare with the data model that LOGIC-RID and

LOGIC-TUP produce and the indexes that PHYS-BDB generate.

Measures. For lineage capture, we report the absolute base query latency and relative

overhead compared to not capturing lineage. For lineage queries, we report absolute latency

and speedup over baselines. All numbers are averaged over 15 runs, after 3 warm-up runs.

Platforms. We ran experiments on a MacBook Pro (macOS Sierra 10.12.3, 8GiB 1600MHz

DDR3, 2.9GHz Intel Core i7) and a server-class machine (Ubuntu 14.04, 64GiB 2133MHz

DDR4, 3.1GHz Intel Xeon E5-1607 v4). Both architectures have caches sizes 32KiB L1d,

32KiB L1i, and 256KiB L2—the MacBook has 4MiB L3 and the server-class has 10MiB

L3. Our overall findings are consistent across the two architectures. Since lineage capture is

write-intensive, we report results on the lower memory bandwidth setting (MacBook).

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 63

3.7 Experimental Results

In this section, we first compare lineage capture techniques on microbenchmarks (Sec-

tion 3.7.1) and TPC-H queries (Section 3.7.2). Then, we compare techniques on lineage

query evaluation (Section 3.7.3).

3.7.1 Single Operator Lineage Capture

We first evaluate lineage capture with a set of single operator microbenchmarks for group-by

(Section 3.7.1.1), pk-fk joins (Section 3.7.1.2), m:n joins (Section 3.7.1.3), and selections

(Section 3.7.1.4). We omit a discussion on other operators to avoid redundant takeaways.

Our observations on union, intersection, and set difference are covered by our observations

on group-by aggregation, and our observations over cross product and nested loop joins are

covered by m:n joins with large fan-out.

3.7.1.1 Group-by Aggregation

We use the base query Q in Figure 3.16, which groups by z drawn from a zipfian dis-

tribution so that cardinalities are skewed. Semantically, Q computes multiple statistics

following visualization systems that group multiple statistics in a single query [TXS+15].

Figure 3.15 reports the lineage capture latency (base query latency + capture overhead) for

each technique while varying the input size (columns) and number of groups (rows).

Smoke. SMOKE-I incurs the lowest overhead among techniques (0.7× on average). SMOKE-

D is slightly slower (1.2× on average) due to the cost of its join ./γ for lineage capture.

Comparison with logical techniques. LOGIC-RID and LOGIC-TUP use PERM’s aggrega-

tion rewrite rule, which computes Q onz zipf to derive the denormalized lineage graph

as a single relation. The cost of computing and writing the denormalized lineage graph is

costly, slows the base query by multiple orders of magnitude, and is one of the main reasons

why SMOKE outperforms alternative logical techniques. Furthermore, since zipf is narrow,

LOGIC-TUP performs similarly to LOGIC-RID. However, we expect LOGIC-TUP to perform

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 64

Figure 3.15: Comparison of lineage capture costs for the group-by aggregation operator for different

relation cardinalities (columns) and number of distinct groups (rows). SMOKE-I and SMOKE-D slow

down the Baseline that does not capture lineage (i.e., it performs only the group-by aggregation) the

least as compared to alternative logical and physical capture methods.

Q = SELECT z, COUNT(*), SUM(v), SUM(v*v),

SUM(sqrt(v)), MIN(v), MAX(v)

FROM zipfθ=1,n,g

GROUP BY z -- #groups follow a zipfian

Figure 3.16: Base group-by aggregation query that we use in our lineage capture experiments.

worse for wider input relations. LOGIC-IDX has extra indexing costs over LOGIC-RID and

is not plotted.

Comparison with physical techniques. The primary overhead for PHYS-MEM is the cost

of a virtual function call for each written lineage edge. The cost of building index data

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 65

structures is comparable to SMOKE’s write costs, however SMOKE can reuse the hash table

built by γ′ht and incur lower costs for building the backward lineage rid index. PHYS-

BDB incurs by far the highest overhead (up to 250× slowdown), due to the overhead of

communicating with BerkeleyDB. The same trends hold for the other operators and we

have not found physical approaches to be competitive. As such, we do not report physical

approaches in the rest of the experiments.

Varying dataset size, skew, and groups. In general, the lineage capture techniques all

incur a constant per input tuple overhead, and differ on the constant value. This is why

increasing the input relation size increases costs linearly for all techniques. Increasing the

number of groups increases the costs of building and scanning the group-by hash table as

well as the output cardinality, and affects all techniques including the baseline. We find that

the overhead is independent of the zipfian skew because it does not change the number of

lineage edges that need to be written. The skew does affect querying lineage, however, as

we will see in Section 3.7.3.

Complexity of group-by keys and aggregate functions. We find that the techniques differ

in their sensitivity to the size of the group-by keys and the number of aggregation functions

in the project clause of the query. SMOKE-I simply generates rid indexes and rid arrays,

and is not affected by these characteristics of the base query. In contrast, SMOKE-D and

both logical approaches are sensitive to the size of the group-by keys, since they are used

to join the output and input relations. Finally, the logical approaches are also affected by

the number of aggregation functions because they affect the cost of the final projection. In

short, we believe our setup is favorable to alternatives and conclude that SMOKE still shows

substantial lineage capture benefits.

Cardinality Statistics. SMOKE can also leverage group cardinalities (e.g., through his-

tograms) to allocate correctly sized lineage indexes (Section 3.3). This further reduces the

capture overhead by 52% on average and leads to overhead reduction from 0.7× to 0.3× for

SMOKE-I (not plotted).

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 66

100 Groups 10000 Groups

1M 5M 10M 1M 5M 10M
0

1

2

3

Tuples

Li
ne

ag
e

Ca
pt

ur
e

La
te

nc
y

(s
ec

)

Baseline Logical-IDX Smoke-I Smoke-I+TC

Figure 3.17: SMOKE-I reduces the instrumented pk-fk join latency from 1.4× (LOGIC-IDX) to 0.41×.

Knowing the join cardinalities further reduces the overhead to 0.23× (SMOKE-I-TC). SMOKE-D is

equivalent to SMOKE-I for pk-fk joins.

Q = SELECT * FROM gids, zipfθ=1,n,g

WHERE gids.id = zipfθ=1,n,g.z

Figure 3.18: Base pk-fk join query that we use in our lineage capture experiments.

3.7.1.2 Primary-Foreign Key (Pk-Fk) Joins

We evaluate lineage capture on pk-fk joins with the base query Q shown in Figure 3.18.

zipf.z is a foreign key that references gids.id and is drawn from a zipfian distribution

(θ = 1) so that some keys contribute to more join outputs than others. We vary the number

of join matches by varying the unique values for gids.id. In addition to BASELINE

and SMOKE-I, we evaluate SMOKE-I-TC which assumes that we know the number of

matches for each gids.id and highlights the costs of array resizing. Note that SMOKE-D

is equivalent to SMOKE-I due to the pk-fk optimizations in Section 3.4.4. We compare

against LOGIC-IDX because LOGIC-RID and LOGIC-TUP do not support forward queries

without additional indexes.

Comparison with logical techniques. LOGIC-IDX incurs 1.4× capture overhead on av-

erage due to the costs of computing and materializing the denormalized lineage graph in

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 67

10 Left Groups 100 Left Groups

10K 50K 100K 10K 50K 100K
0.0
0.1
0.2
0.3

Tuples

Li
ne

ag
e

Ca
pt

ur
e

La
te

nc
y

(s
ec

)

Smoke-D Smoke-D-DeferForw Smoke-I

Figure 3.19: M:N join latency when all indexes are populated with SMOKE-I, only forward indexes

for the left table are deferred (SMOKE-D-DEFERFORW), and when both lineage indexes are deferred

for the left table (SMOKE-D).

Q = SELECT *

FROM zipf1, zipf2

WHERE zipf1.z = zipf2.z

Figure 3.20: Base M:N join query that we use in our lineage capture experiments.

the form of the annotated output relation, and scanning the annotated table to build back-

ward and forward lineage indexes for both input relations. In contrast, SMOKE-I incurs

on average 0.41× overhead; knowing join cardinalities reduces the overhead to 0.23× on

average. Finally, note that SMOKE-I already knows the cardinalities for the backward

indexes and the forward index of the right table for pkfk joins (Section 3.4.4). Thus, the

lower overhead of SMOKE-I-TC is due to lower reallocation costs for the forward index of

the left table—which is the most expensive index to build due to the 1-to-N relation between

primary keys and join outputs.

3.7.1.3 Many-to-Many (M:N) Joins

We evaluate lineage capture on M:N joins with the base query Q shown in Figure 3.20.

Q here performs a join over the two z attributes drawn from zipfian distributions (θ = 1).

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 68

zipf1.z is within [1, 10] or [1, 100] while zipf2.z∈ [1, 100]. This means that tuples with

z = 1 have a disproportionately large number of matches compared to larger z values that

have fewer matches. For this experiment, we also fix the size of the left table zipf1 to 103

records and vary the right zipf2 from 103 to 105.

Section 3.4.4 described the INJECT approach for M:N joins, which populates the lin-

eage indexes within the probe phase (onprobe), and the DEFER approach, which computes

cardinality statistics during the probe phase to correctly allocate and populate the lineage

indexes for the left table after the probe phase to avoid array resizing costs. Finally, to show

the benefits of DEFER, we also evaluate SMOKE-D-DEFERFORW which still defers the

forward index construction for the left table but populates the backward index within the

probe phase. To simplify the presentation, we only report SMOKE-based techniques since

our comparisons with alternatives yields findings consistent with the ones presented so far.

Comparison of SMOKE techniques. M:N joins over the skewed inputs of our setup

are similar to cross-products and yield very large output relations. As a result, the join

output materialization dominates the base query execution and renders the lineage capture

overheads non-informative. For this reason, here we present results without accounting for

the materialization of the output. In this way, the M:N execution is ≈ 0ms and Figure 3.19

primarily reports lineage capture overhead for the three techniques that we compare. The

overheads for SMOKE-I and SMOKE-D-DEFERFORW is predominantly due to resizing.

SMOKE-D avoids resizing and reduces the capture overhead the most (up to 2.65×). Finally,

increasing the number of groups for zipf1.z reduces the costs of all techniques because

the output cardinality is smaller but the relative capture overheads are the same.

3.7.1.4 Selection

This experiment uses the following base query: SELECT * FROM zipf WHERE v < ?,

where the attribute v∈ [0, 100] is drawn from a uniform distribution. Varying the parameter

? allows us to vary the query selectivity. Figure 3.21 reports the lineage capture costs for

two relation sizes (1, 5 million), and varying the estimated query selectivity between 1% and

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 69

1M Tuples 5M Tuples

0 10 20 30 40 50 0 10 20 30 40 50
0

100
200
300
400

20
40
60
80

Selectivity %

Li
ne

ag
e

Ca
pt

ur
e

La
te

nc
y

(m
s)

Baseline Smoke-I Smoke-I+EC

Figure 3.21: Latency of lineage capture techniques on selections with estimated selectivity (SMOKE-

I-EC) and without (SMOKE-I). We find that it is better to overestimate than underestimate and incur

resizing costs.

50%. We evaluate SMOKE-I, as well as SMOKE-I-EC, which estimates the query selectivity

as v
100 and, in turn, uses the selectivity estimates to preallocate the lineage indexes.

Comparison of SMOKE techniques for selection. SMOKE-I introduces average overhead

of 0.38× and 0.46×, for one and five million records across the varying selectivities. This

is consistent with our finding that the techniques primarily vary by a constant per-tuple

overhead. When using selectivity estimates, SMOKE-I-EC reduces the average overhead to

0.14× and 0.15×, for the respective relation sizes. The reason that SMOKE-I-EC fluctuates

is that the selectivity estimates may be slightly incorrect. When estimates overestimate the

true selectivity, it is typically fine, however if they underestimate then they lead to array

resizing overheads.

3.7.2 Multi-Operator Lineage Capture

To evaluate lineage capture on multi-operator plans, we used four queries from TPC-H (i.e.,

Q1, Q3, Q10, and Q12). Their physical query plans contain group by aggregation as the

root operator, selections that vary in predicate complexity and selectivity, and up to three

pk-fk joins. (Our hash-based execution precludes sort operations.) Figure 3.22 summarizes

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 70

511%

 22%

103%

 22%

 67%

 9%

 41%

 5%

Q10 Q12

Q1 Q3

1% 10% 100% 1% 10% 100%

Logic-IDX
Smoke-I

Logic-IDX
Smoke-I

Lineage Capture Relative % Overhead (log)

Figure 3.22: Relative overhead of SMOKE and logical lineage capture techniques for TPC-H queries

Q1, Q3, Q10, and Q12. (SF=1)

the overhead of the best performing SMOKE (i.e., SMOKE-I) and logical (i.e., LOGIC-IDX)

techniques for the four queries.

Overall Results. SMOKE-I reduces the capture overhead as compared to LOGIC-IDX by

up to 22×. In addition, SMOKE-I incurs at most 22% overhead across the four queries.

To ensure that the reported overhead results are meaningful, we made sure that the query

engine of SMOKE has reasonable performance. Despite its row-oriented execution, SMOKE

is comparable to MonetDB (single-threaded, data cached in OS buffers): Q1 runs in 176ms

while the slowest query Q12 runs in 306ms.1 SMOKE-D (not shown) is slower than

SMOKE-I due to the cost of ./γ for lineage capture on the aggregation operator. However,

it is still faster than the logical approaches. (We refer interested readers to our technical

report [PW18] for a more detailed discussion.) Finally, although Q1 is simple (e.g., it has no

joins), its results are arguably the most informative because its selections have the highest

selectivity, which most stresses overheads as we discuss next.

Impact of selections in lineage capture. We found that the selectivity of the query predicate

has a large impact on the overhead of logical approaches. Q1 introduces a setting where

the predicate has a high selectivity. Thus, the input to the final aggregation operator has a

1The purpose is not to compare SMOKE with MonetDB, but to ensure that the reported overheads are over

a reasonable baseline.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 71

high cardinality. This leads output groups to depend on a large set of input records which,

in turn, results in a large amount of duplication in the denormalized representation of the

lineage graph. The other queries have low predicate selectivity which leads to lower (albeit

significant) data redundancy. Overall, SMOKE is not sensitive to this effect because the

lineage indexes represent the normalized lineage graph to avoid data duplication.

Lineage Capture Takeaways (Sections 3.7.1 and 3.7.2). SMOKE-based lineage capture

techniques outperform both logical and physical alternatives by up to two orders of mag-

nitude. Logical approaches that adhere to the relational model are affected by the denor-

malized lineage graph representation, extra indexing steps, and expensive joins. Physical

approaches are affected by virtual function calls and write-inefficient lineage indexes. Ar-

ray resizing contributes to a large portion of SMOKE overheads. However, accurate or

overestimated statistics can further reduce resizing costs (up to 60%).

3.7.3 Lineage Query Performance

We now evaluate the performance of different lineage query techniques. We evaluate the

query: SELECT * FROM Lb(o∈ Q (zipf), zipf), where Q (zipf) is the query used in

the group-by microbenchmark (Section 3.7.1.1) and o denotes an output group. For this

experiment, Q (zipf) contains 5000 groups while zipf contains 10M records and we vary

its skew θ. Varying θ highlights the query performance with respect to the cardinality of

the backward lineage query. Figure 3.23 reports the lineage query latency for all 5000 o

assignments and different θ values (i.e., θ ∈ {0, 0.4, 0.8, 1.6}).

Recall that when we capture lineage with SMOKE-I; SMOKE-D; LOGIC-IDX; or PHYS-

MEM, we evaluate lineage queries with SMOKE-L. SMOKE-L evaluates the lineage queries

of our setup above using secondary index scans (i.e., it uses the contributing input rids of an

output o from the backward index of Q to perform lookups into zipf). Next, we compare

SMOKE-L with lazy, logical, and physical alternatives.

Comparison with LAZY. In contrast to SMOKE-L, LAZY performs a table scan of the

input relation and evaluates an equality predicate on the integer group key. This is arguably

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 72

Figure 3.23: Lineage query latency for varying data skew (θ). LAZY has a fixed cost to scan the

input relation and evaluates a selection on the group-by key o.z=?. LOGIC-RID and LOGIC-TUP

perform the same selection but on annotated output relations. SMOKE-L is mainly around 1ms

and outperforms LAZY, LOGIC-RID, and LOGIC-TUP by up to five orders of magnitude for low

selectivity lineage queries. The crossover points at high selectivities are due to the costs of SMOKE-L

index scans. SMOKE-L is a lower bound for PHYS-BDB that incurs extra costs for reading from

inefficient lineage indexes and communicating with external lineage subsystems.

the cheapest predicate to evaluate and constitutes a strong comparison baseline. We find

that SMOKE-L outperforms LAZY up to five orders of magnitude, particularly when the

cardinality of the output group is small. We expect the performance differences to grow

when the base query uses more complex group-by keys, which increases the predicate

evaluation cost, or when the input relation is wide, which increases scan costs [JRSS08;

CGS03; KAI17]. Finally, there is a cross over point when the input relation is highly skewed

(θ ∈ {0.8, 1.6}) and the backward rid arrays of some groups have high cardinality. This

increases the secondary index scan cost of SMOKE-L in comparison to the serial scan costs

of LAZY, due to the multiple random memory accesses of the former.

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 73

Comparison with logical techniques. We also report the cost of scanning the annotated

relations generated by LOGIC-RID and LOGIC-TUP (highest two lines). Scanning these

relations to answer lineage queries is worse than LAZY because the annotated relation is

wider than the input relation, yet they have the same cardinality. This is the main reason why

we introduced extra indexing steps for the annotated output relations of logical approaches

with LOGIC-IDX. (Recall that LOGIC-IDX is represented here by SMOKE-L.)

Comparison with physical techniques. PHYS-MEM is included as part of SMOKE-L, so

we report PHYS-BDB. Using an external lineage subsystem to perform a lineage query, we

need to perform function calls to the external system to fetch the input rids for an output

group o. As long as we have the input rids, we can perform a secondary index scan to

evaluate the lineage query similarly to SMOKE-L. In our experiments, we compared both

fetching all input rids in a single function call as well as with consecutive function calls

in a cursor-like fashion. The cursor-like approach outperformed the bulk approach since it

avoids allocation costs for input rids. SMOKE-L provides a lower bound for PHYS-BDB:

both perform the same secondary index scan but PHYS-BDB pays the cost of function calls

to the external subsystem and it depends on indexes with worse read performance.

Lineage Query Takeaways: SMOKE outperforms logical and lazy lineage query evaluation

strategies by multiple orders of magnitude, especially for low-selectivity lineage queries. We

believe SMOKE is a lower bound for physical approaches by avoiding functions calls and

using read-efficient indexes.

3.8 Conclusions and Future Work

In this chapter, we showed how SMOKE performs efficient lineage capture on single- and

multi-operator plans, under both INJECT and DEFER semantics, in a way that future back-

ward and forward queries can be streamlined. Furthermore, we showed experimentally that

SMOKE reduces the overhead of fine-grained provenance capture by avoiding shortcomings

of logical and physical approaches in a principled manner. Moreover, on lineage query

CHAPTER 3. FINE-GRAINED PROVENANCE CAPTURE 74

performance we showed that SMOKE improves on logical and physical approaches especially

when backward (forward) queries have low selectivity on input (output) relations.

Going forth, there is ample space for future work primarily on reducing capture overheads

and devising capture techniques in databases with designs other than the one of SMOKE.

Reducing further capture overheads, both latency- and memory-wise, is important

provided that provenance is central to the optimization of many data-intensive applications,

as we will see in Part II. In this direction, we believe that compressing lineage indexes

following exact compression schemes (e.g., using roaring [CLKG16] or other well-known

compression schemes [WLPS17]) or lossy ones (e.g., rid arrays of lineage indexes can be

dropped or not materialized at all in cases when future provenance queries can be faster

with serial scans instead of lineage-based indexed scans) can provide significant benefits

both on memory consumption as well as latency overheads.

Injecting provenance capture within physical operators of engines that follow differ-

ent designs (e.g., interpretation-based engines and compilation-based engines that do not

follow the producer-consumer model); storage models (e.g., columnar representations and

disk-based storage); and support, loosely speaking, query optimization strategies (e.g.,

vectorization, parallelization, or distributed execution) is another important direction for

future work. While we expect the design principles that SMOKE embodies for provenance

capture purposes to be universal, how each engine can embody them remains an open

research question. For instance, introducing provenance capture techniques in an engine that

performs vectorization requires revisiting the reuse principle (e.g., a vectorized selection

typically generates a bitmap that maintains which records satisfy the selection—and such a

bitmap can be realized as a lineage index) and the tight integration principle (e.g., vectorized

engines need to perform lineage capture on a per batch and interleaved basis as opposed to

the per tuple basis of SMOKE). As such, we believe that our design principles can serve as a

guideline to reveal both optimization opportunities (e.g., bitmaps in vectorized selections)

and potential limitations of SMOKE (e.g., batch and interleaved appends in our lineage

indexes) when considering introducing provenance capture in alternative engines.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 75

Chapter 4

Expressing and Evaluating

Provenance Analytics

4.1 Introduction

In the previous chapter, we showed how to capture fine-grained provenance information over

base queries involving individual relational operators as well as multi-operator plans. The

end result of provenance capture is physical representations that map input to output records,

and vice versa, based on the transformational provenance semantics. We also considered a

simple provenance query model (i.e., backward and forward lineage queries) that allows

applications to navigate between input and output records based on the generated mappings.

The logic of provenance consuming applications, however, may be complicated enough

that exposing only this low-level query model could make application development a tedious

process. In fact, traditional provenance-enabled systems have long proposed sophisticated

provenance query models to either directly expose concrete provenance semantics (e.g.,

which [CWW00; GT17], why [BKT01], how [GKT07], and where [BKT01]) or more

general purpose provenance query languages (e.g., ProQL [KIT10] and the query constructs

of Ikeda et al. [Ike12]).

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 76

The introduction of sophisticated provenance query models overall highlight a class

of analytics, that we refer to here as provenance analytics. Our focus in this chapter is to

introduce techniques to express and evaluate provenance analytics based on the physical

representation of provenance that our provenance capture techniques of Chapter 3 induce.

(Performance-wise, we will show the benefits of our techniques in Chapter 5.)

To do so, we first revisit the data models induced by systems that follow the logical and

physical provenance capture approaches, that we discussed in Section 3.2, to show that the

representation that SMOKE provides for connections between input and output relations (i.e.,

rid indexes and rid arrays) are essentially physical representations of these data models. This

is an important connection because it means that provenance query models introduced over

these data models can also be directly expressed in SMOKE. The main difference is that the

evaluation of provenance queries is subject to the physical representation of each system.

Having this connection in place, we then introduce techniques for the evaluation of

several classes of provenance queries based on the induced physical representations by

SMOKE. Our techniques cover the evaluation of general path queries, the evaluation of

provenance consuming SQL queries which is a class that we first introduce here, and

the evaluation of provenance semantics (i.e., which [CWW00; GT17], why [BKT01],

how [GKT07], and where [BKT01] provenance).

Contributions and Chapter Outline

In the rest of the chapter, we start with a necessary background and setup (Section 4.2).

Then, we present our contributions as follows:

• We show that the provenance indexes that SMOKE provides as a product of provenance

capture can be used as the physical representation for the data models induced by

logical normalized, logical denormalized, and physical provenance capture approaches.

As such, query models induced over these data models can be equally expressed in

SMOKE, with the difference being that the evaluation of provenance queries is up to

the physical representation of provenance by each system. (Section 4.3)

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 77

• We introduce techniques for the evaluation of path queries over provenance graphs

that span multiple base queries by generalizing the notion of backward and forward

queries over single base queries. (Section 4.4)

• We define the class of provenance consuming SQL queries (i.e., SQL queries that

take as input the output of provenance path queries) and introduce techniques for their

evaluation. (Section 4.5)

• We provide background and introduce techniques for the evaluation of which, why,

how, and where provenance queries. (Section 4.6)

4.2 Background

For our discussion in this chapter, recall from Section 3.2 that a base query Q (D) = V

is a relational query over a database of relations D = {R1, · · · , Rn} that materializes

a relation V. An application can issue many base queries that we denoted as Q =

{Q 1, · · · , Q m}. The result of executing multiple base queries is a set of materialized

views V = {V1, . . . , Vm}. To account for a non-uniform naming of relations and views

we refer to relations that pre-existed in a database as base relations and to relations that

are products of base queries as derivative relations. Note that base queries and, in turn,

derivative relations can be constructed by taking as input both base relations {R1, · · · , Rn}

as well as other derivative relations V = {V1, . . . , Vm}. Finally, we consider every record of

a relation to be uniquely identifiable through a row id (rid), as we also discussed in Chapter 3.

4.3 Data Models

In this section, we revisit the data models induced by logical and physical approaches as a

result of provenance capture, to show that the physical representation that SMOKE provides

can be regarded as a physical encoding for these data models.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 78

4.3.1 Example Database

To illustrate the different definitions and ease our presentation, we consider a simple example

database as shown in Figure 4.1. Relations X,Y, Z are base relations that pre-exist in the

database. Relations V1, V2, V3 have been computed using the following base queries

V1 = Q1 (X,Y), V2 = Q2 (X, Z), V3 = Q3 (Y, Z,V1). The exact contents of each relation

and the exact base queries are of no use in our discussion and are not shown.

Figure 4.1: Example database that we use in our discussion. Relations X,Y, Z in blue boxes are base

relations while V1, V2, V3 in green boxes are derivative relations.

4.3.2 Data Model of Logical Normalized Approaches

Figure 4.2: Data model generated by logical normalized approaches for our example database. Base

and derivative relations are in blue and green boxes, respectively. Mapping relations connecting

records between input and output relations are in purple circles.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 79

In Chapter 3, we noted that systems, such as ProQL [KIT10] and Trio [ABS+06], that

follow logical normalized provenance capture approaches generate provenance relations

that map input to output records and vice versa. Another way to put it, input and output

relations are treated as dimensions while mapping relations are facts connecting tuples of

the input and output dimensions. Considering multiple base queries over a database, their

end data model is a graph P(G,E) over the database D which, for our example, is shown

in Figure 4.2. This graph is constructed in the following way:

Nodes G. Base and derivative relations, such as X,Y, Z,V1, V2, V3 of our example, are

considered to be nodes in G. Furthermore, for every pair of relations, say (X,V1) where

A is a base or derivative relation, B is a derivative relation, and B was constructed from a

base query that involved A, we create a mapping relation. A mapping relation mAB has a

conceptual schema (arid, brid) that maps which A record, indicated by its rid arid,

contributed to which B record, indicated by its rid brid. In our example, there are seven

such mapping relations shown in purple circles in Figure 4.2. As an example, m1 keeps

track of the rid connections between the records of X and V1 since X contributes to V1. We

refer to this rid-based schema of a mapping relation as a conceptual one because provenance

applications may extend it with more attributes for their own application logic. Finally, note

that mapping relations are also considered nodes in G.

Edges E. For every mapping relation mAB that connects two relations (A, B) we introduce

directed edges (A,mAB) and (mAB, B) in the graph P. The direction of the edges denotes

which relation was input to base queries and which relation was the derivative. A different

way to see this is that mapping relations annotate edges between relations with edges

denoting workflow. To conform with actual data models of logical normalized approaches,

however, we consider edges between relations to be split through mapping relations.

Connection with SMOKE. The end result of the provenance capture that we introduced

in Chapter 3 is a graph that connects inputs to output tuples with respect to the semantics of a

query. This graph is precisely the encoding of SMOKE for the mapping relations of the graph

P(G,E) that we defined above. Hence, the provenance graph P(G,E) is a generalization

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 80

of the fine-grained provenance graph, that we introduced in Section 3.2, to account for

provenance capture across many base queries and also introduces naming for mapping

relations so that they can be used by query models. Furthermore, it is important to note that

the definition of the mapping relations that we discussed above is only logical. The actual

physical representation in SMOKE of mapping relations is our fine-grained provenance

capture indexes (i.e., rid indexes and rid arrays) that we introduced in Chapter 3, and our

overall discussion in the previous chapter was on how to generate these mappings efficiently.

4.3.3 Data Model of Logical Denormalized Approaches

Figure 4.3: Data model generated by logical denormalized approaches for our example database.

Base and derivative relations are in blue and green boxes, respectively. Mapping relations connecting

records between input and output relations are shown in purple and are part of derivative relations.

In contrast to normalized approaches, denormalized provenance capture approaches,

such as Perm [GA09] and its ancestor GPROM [NKG+17], store the mappings within

output relations, as we noted in Chapter 3. Again considering multiple base queries, the

end result of provenance capture is a data model where all derivative relations are annotated

with mappings. For our example, the end result is shown in Figure 4.3. Mappings (shown in

purple) are part of the output relations. As such, in contrast to the normalized approaches,

the mapping information should only encode information from the input.

In general, denormalized approaches are more suited for ad-hoc provenance analyt-

ics where a user issues a base query and, as a result, retrieves the result of the query

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 81

annotated with provenance information. Provenance analysis, which is concerned with

the retrospective analysis of provenance graphs, can still be extracted from denormalized

representations. This is possible by either converting the mappings to their normalized

representation as a post-processing step or by expressing provenance queries as relational

queries over the derivative denormalized relations. The latter approach is considered heavy

due to the redundancy incurred by the derivative denormalized representations to encode the

graph-based provenance information, as we also showed experimentally in Chapter 3. As

such, provenance systems typically follow the former approach of converting to normalized

representations before performing provenance analytics. Hence, next we will show the con-

nection of SMOKE with the data model of logical denormalized approaches, to cover query

models that issue relational queries over denormalized representations, and in the remainder

of this chapter we will focus primarily on query models over normalized representations.

Connection with SMOKE. Consider again the way we physically store backward rid

indexes and rid arrays. For rid indexes, each entry maintains an rid array that stores the

input rids and this entry is aligned in memory with the output entry that the inputs contribute

to. Similar is the case for rid arrays. Putting it differently, consider relations stored as

column stores. SMOKE’s rid arrays and indexes can be considered individual columns

in this representation. Then, the end result is the same data model with the result of the

denormalized approaches modulo three differences at the physical representation: First, rid

indexes allow us to avoid the denormalization effect of output relations (i.e., each output

entry with k inputs contributing to it needs to be replicated k× in denormalized approaches.

SMOKE avoids the denormalization by appending all k rids in an array that is associated with

the output entry due to the construction of our rid indexes). In other words, SMOKE uses a

nested relational encoding for annotations of output records to avoid the denormalization

effect. Second, SMOKE can also annotate input relations with mappings to accelerate queries

involving forward tracing which is not possible by denormalization approaches. (This is

because an input relation cannot be annotated as a result of a base query.) Finally, no matter

whether the underlying representation of input and output relations, SMOKE introduces

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 82

mappings as separate columns. This means that even if an input or output relation is a

row-store, access to mappings is columnar. This is important to avoid the effect of scanning

wide tables that hurts the provenance query performance, as we showed in Section 3.7.

4.3.4 Data Models of Physical Approaches

Finally, we also briefly outline the connections of SMOKE with data models of physical

approaches. Recall that physical approaches store the connections between input and output

relations on a separate subsystem that is responsible for their physical representation. Since

provenance information is graph-based, physical approaches typically store provenance in

graph representations. The query models for such approaches follow the one of key-value

stores. That is, given one or more rids of output (input) records they return the input (output)

rids that contributed to the given output (input) rids. Since SMOKE is part of this class, the

evaluation of provenance queries that we discuss in this chapter can also be used by the

other systems. Our contribution is to show that queries expressed over the data models of

logical approaches can also be expressed by SMOKE. As such, we expect other proposed

physical approaches to follow similar evaluation techniques. Note, however, that some

physical approaches [IST+15; LDY13] encode provenance using relational representations

that we discussed above. Such approaches should instead follow the evaluation techniques

as proposed for logical approaches or change their representation to the one of SMOKE and

use the techniques that we propose here.

Having defined the provenance graph P(G,E) and its semantics as well as the connec-

tions of SMOKE with the data models of alternative provenance capture approaches, we next

proceed to discuss different query models and their evaluation in SMOKE.

4.4 Path Queries

In Chapter 3, we considered a simple query model of backward (forward) queries Lb (Lf)

that take as input a subset of output (input) tuples and return the subset of input (output)

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 83

tuples that contributed to (were contributed by) the given subset of output (input) tuples.

Since in this chapter we consider multiple base queries, it is natural to ask for backward and

forward traces that span multiple base queries.

Path queries. A path query over a database with base and derivative relations can be

composed in two ways. First, if there is no ambiguity in terms of what path connects two

relations Vi and Vj, then one can specify a path query trace(o ∈ Vj, Vi) that traces

the subset o ∈ Vj to Vj. If there are many paths connecting the two relations Vi and Vj,

however, then this trace query is ambiguous. In such cases, the full path specification should

be provided trace(o ∈ Vj, [mjl, Vl, . . . , Vk, mki, Vi]), where mxy refers to the mapping

relations that we introduced in Section 4.3. (Note that this ambiguity was not a problem

for Lb and Lf because Lb and Lf were specified with respect to a single base query and

input relations were referenced by instance and not by name as is the case here.) Finally, for

completeness, we note that the subset o ∈ Vj can be specified either by specifying the rids

of the records o ∈ Vj, by relational selections on Vj, or even by trace queries to Vj.

Evaluation of path queries in SMOKE. To evaluate the path queries that we introduced

above SMOKE exploits the transitivity property induced over the mappings. Consider our

example data model in Figure 4.2. V2 has been constructed from a base query Q1 (X, Z). In

turn, V3 has been constructed from a base query Q3 (Y,V2). A trace query can ask for the

records in X that contribute to a specific subset of records in V3, although V3 has not been

constructed by taking as input X. Backward indexes connecting V3 to V2 can help us get

from a subset of the output of V3 to the subset of V2 that contributed to the given subset

of V3. To do so, we use the backward indexes connecting V2 to X to get the subset of X

that contributed to the subset of V2 that, in turn, we got by backward tracing from V3 to

V2. Hence, SMOKE simply evaluates path queries by recursively evaluating backward and

forward queries based on the transitivity over provenance graphs of multiple base queries.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 84

4.5 Provenance Consuming SQL queries

Provenance consuming applications (e.g., interactive data visualizations or interactive data

profiling) rarely use provenance information in its raw form (i.e., the output of provenance

path queries). Rather they want to transform the provenance information in a way that is

meaningful for their own application logic.

To this end, provenance information can be consumed and processed using the full

analytical power of SQL. This is possible due to the main observation that the output of

path queries are subsets of relations. Hence, SQL queries can take as input and process

the output of provenance path queries and provide powerful analytical capabilities to end

users. Next, we show how SQL queries that take as input the output of provenance path

queries can be expressed and evaluated by SMOKE in an ad-hoc manner. Note, however, that

in Section 5.4 we will introduce optimizations to push the SQL consuming logic into the

provenance capture phase if such queries are known when we perform provenance capture.

This is typically the case for provenance applications with fixed (exact or parametrized)

logic such as interactive data visualizations or profiling.

Now, provenance consuming SQL queries can be naturally expressed by specifying

path queries in the FROM clauses of SQL queries. For instance, suppose that we want to

count the number of records of X that contributed to a given subset o ∈ V3 of our example

in Section 4.4. We can express that in the following way:

SELECT COUNT(*) FROM trace(o ∈ V3, X)

The output of the trace query is the subset of X that contributed to o ∈ V3, and the COUNT

aggregate just counts the number of records in this particular subset.

Evaluation in SMOKE. The evaluation strategy of provenance consuming SQL queries

in SMOKE is straightforward. Path queries result in index scans of relations that parent

physical operators can use to implement the logic of the specified SQL queries.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 85

4.6 Provenance Semantics

Provenance semantics, also referred to as provenance types, regard interpretations of the

ways an output record has come into existence. Major provenance semantics involve which-,

why-, how-, and where-provenance which are concerned with which minimal set of records

contributed an output result, why an output result has come into being, how an output result

has come into existence, and from where in the input has an attribute value of an output

record gotten its value from, respectively.

How-provenance has been one of the most major classes of provenance semantics since

it can encode several other provenance semantics, including which and why, as well as used

to annotate output results with semiring-based values. Where-provenance queries cannot

be directly answered based on how-provenance alone but they require how-provenance

information to be computed.

In this section, we will gradually show how SMOKE can evaluate which-, why-, and

how-provenance queries. Based on the evaluation of how queries we will also show how

we can perform annotation propagation by the evaluation of semirings and, in turn, how

to evaluate the general class of ProQL [KIT10] type of queries based on the annotation

propagation and the provenance path queries of Section 4.4. We conclude this section by

showing how SMOKE can evaluate where-provenance queries.

4.6.1 Which-Provenance

Which-provenance [GT17], first introduced by Cui et al. [CWW00] as data lineage, describes

the maximal set of records from each input relation that contributes to an output. The

definition of which-provenance, paraphrased from [CCT09; CWW00], is as follows:

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 86

Definition 1 (Which-provenance (or data lineage) for a relational operator) Let Op
be any relational operator over relations R1, . . . , Rn. The which-provenance of a record
t ∈ Op(R1, . . . , Rn) is a sequence 〈R′1, . . . , R′n〉 of subsets R′i ⊆ Ri s.t.:

[1] Op(R′1, . . . , R
′
n) = {t}

[2] ∀i ∈ [1, n] and ∀ri ∈ R′i we have Op(R′1, . . . , R
′
i–1, {ri}, R

′
i+1, . . . , R

′
n) 6= ∅

[3] 〈R′1, . . . , R′n〉 is maximal among subsets of R1, . . . , Rn satisfying [1] and [2].

Intuitively, as is also noted in [CCT09; CWW00], condition [1] ensures that which-

provenance is relevant to tuple t. Condition [2] ensures that no “irrelevant” records are

included in the which-provenance of t and that every record ri in every subset R′i in the

which-provenance of t contributes something to t. Finally, condition [3] ensures that

which-provenance contains exactly all the tuples that contribute to t.

Based on this general definition of which-provenance, Cui et al. [CWW00; Cui01]

proposed definitions of which-provenance queries over individual relational operators.

The definition of which-provenance for individual operators is exactly the same with the

result of backward provenance queries that we introduced in Chapter 3 for transformational

provenance semantics. The main difference between transformational and which-provenance

is on some types of multi-operator plans under which an input record r contributes multiple

times to an output record t. In such cases, which-provenance will return only one instance

of r, to ensure the conditions of Definition 1, as opposed to returning r as many times as it

contributed to t (that backward queries over transformational provenance would return).

To make this difference more clear, consider the following base query:

Q =SELECT COUNT(*), X.cname, Y.pname

FROM X.cid = Y.cid

GROUP BY X.cname, Y.pname

Furthermore, assume that we execute Q over the following database instance (tables X is

on the left side and table Y is on the right side):

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 87

cid cname
x1 1 Bob
x2 2 Alice

oid cid pname date
y1 1 1 iPhone 12/25
y2 2 1 iPhone 12/25
y3 3 2 XBox 12/25

The output of Q over the above database instance is the following:

COUNT(*) X.cname Y.pname
o1 2 Bob iPhone
o2 1 Alice xBox

According to the transformational provenance semantics, and their corresponding phys-

ical representation in SMOKE, the backward index for o1 with respect to table X contains

the rid x1 twice. As a result, a backward query from the output of Q to X will output the

record with rid x1 twice. In contrast, which-provenance semantics, as imposed by Defini-

tion 1, requires us to return x1 only once in response to which-provenance queries. This

can be important for applications that do not care on how many times an input record has

contributed to an output record but rather just which record contributed to a result.

Evaluation in SMOKE

To evaluate which-provenance queries SMOKE, instead of just returning the input rids for

a given output per relation, it first performs, if required by the structure of the query, a

de-duplication of rids per rid array in backward rid lists, as is required by Definition 1.

That is, a which-provenance query Which(o1) of our example will return the sequence

〈{x1}, {y1, y2}〉 instead of 〈{x1, x1}, {y1, y2}〉 which would be the result of backward

queries with transformational provenance. Note that in our discussion above we only

considered which-provenance queries with respect to a single base query. A generalization

for which queries that span across multiple base queries is straightforward since we can still

take the output of the which query over a single base query and then recursively perform

which queries over other base queries.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 88

4.6.2 Why-provenance

Which-provenance, as discussed above, returns the multiset of records for each input

relation that contributed to a given output result. This multiset however does not provide an

explanation of why the output record has come into existence by means of how the different

input records have been combined to provide this result.

To account for this lack of semantics, Buneman et al. [BKT01] introduced the notion

of why-provenance that encodes the connections between input records that an output

record depends on. To understand the main difference between which- and why-provenance,

consider again the example that we gave in Section 4.6.1. A why-provenance query Why(o1)

will return the multiset {(x1, y1), (x1, y2)} as opposed to 〈{x1}, {y1, y2}〉 that Which(o1)

would return. Intuitively, why-provenance tells us not just which records contributed to a

particular result but also what combinations of input records witness the output. Hence,

the results of why-provenance queries are also called witnesses of output. That is, for our

example, the connections (x1, y1) and (x2, y2) witness the existence of the output o1.

Evaluation in SMOKE

SMOKE answers why-provenance queries by exploiting the alignment property of backward

index rid lists with the output record and with each other. Consider again the output of Q

in our example this time with the backward index rids bwX and bwY:

COUNT(*) X.cname Y.pname bwX bwY
o1 1 Bob iPhone x1, x1 y1, y2
o2 2 Alice xBox x2 y3

To evaluate why-provenance queries in SMOKE we concatenate the rids based on their

positions. That is for a why- provenance query for o1 the first x1 of bwX will be concatenated

with y1 of bwY while the second x1 will be concatenated with x2. The reason why this

works is because when we perform provenance capture the records that contributed to a

specific output from different input relations will be appended at the same positions of the

different rid lists. To generalize on answering why-provenance queries across base queries

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 89

we can recursively apply why-provenance queries on the individual rids in the result of

previous why-provenance queries.

4.6.3 How-provenance

Both which- and why-provenance that we discussed above provide us with sets of input

records to explain the existence of a given output. However, they do not encode how an

output record has come into being. In other terms, they do not encode how input records

were processed due to the semantics of the base query to contribute to the output.

To this end, Green et al. [GKT07] introduced the notion of how-provenance that encodes

how input records where combined to provide a result due to the semantics of a query besides

only providing set of records that contributed to a result. Next, we provide the necessary

intuition behind how-provenance and its connections with polynomials and semirings. For

their theoretical grounds, interesting readers are referred to [GKT07; CCT09].

The main idea behind how-provenance is grounded on the fact that relational operators

can either combine records (e.g., join) or merge (e.g., set projection, grouping, or set union)

input records together. Whenever we combine input records together, how-provenance

encodes the connection as an abstract product, denoted with ?. When we merge them,

we encode the connection with an abstract sum, denoted with +. In our example, the

how-provenance for the record o1 is (x1 ? y1) + (x1 ? y2) because (x1, y1) and (x1, y2)

were combined and then merged as the result of the join and grouping operators. The end

result of how-provenance is that each output record is now associated with a polynomial,

due to combining ? and merging + input records. This provenance polynomial explains how

the output came into being with respect to the semantics of a base query.

Perhaps more interestingly, provenance polynomials do not only tell us how an output

record was derived, however. Rather they also allow us to annotate output records by

evaluating the polynomials under different definitions of the abstract sum, abstract product,

and base values. While above we provided some intuition behind the notions of abstract sum

and product, we also need to clarify the notion of base values. So far, we have considered

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 90

that input records are only associated with rids. In general, however, we can also consider

input records to be annotated with any value that follows the semantics of an application.

These are referred to as base values that annotate input records.

Now, if we assume that base values are drawn from a specific domain and we have

a definition of the abstract product and sum for values over this domain then evaluating

polynomials of how-provenance is equivalent to evaluating polynomials of a commutative

semiring. Recall that semirings are mathematical objects (K, 0, 1, +, ?) with + and ?

denoting the abstract sum and product operations over elements drawn from the domain K.

0 and 1 are drawn from K and correspond to identity elements for + and ?, respectively.

As a concrete example, consider the provenance polynomial (x1 ? y1) + (x1 ? y2) for

the output record o1 above. Instead of rids, consider that we have annotated input records

with false and true values, say, true for x1, false for y1, and true for y2. Such base

values could denote whether we trust a record or not. Furthermore, assume that the abstract

sum and product correspond to the logical and ∧ and logical or ∨ operations, respectively.

Then, the provenance polynomial becomes (x1 ∨ y1) ∧ (x1 ∨ y2) which evaluates to true

and could denote that we should trust the output record.

As a result of the semiring construction and the semantics it can expose to provenance

consuming applications, several semirings have been proposed each exposing different

semantics. In fact, our example above demonstrated the trust semiring that is typically used

in the context of collaborative systems (i.e., different peers annotate records with true or false

denoting whether they trust them or not and, based on these annotations, provenance systems

should infer if output records derived from the annotated records should be trusted or not).

Interested readers are referred to [KIT10; CCT09] for the definitions of other important

semirings, including derivability; confidentiality; lineage; and probability semirings among

others; and real-world use cases behind them.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 91

Evaluation in SMOKE

SMOKE evaluates how-provenance queries and semirings similarly to how ORCHESTRA

computes semirings in response to PROQL queries. In our discussion next, we first show

the equivalence between the two systems in terms of physical representations of mappings

and overall data models. This implies that SMOKE can directly borrow the evaluation

strategies of ORCHESTRA for PROQL queries. As such, we only briefly discuss how

SMOKE evaluates semirings and we refer interested readers to a discussion over evaluation

strategies in [KIT10].

PROQL is a provenance query language that allows end users to specify semiring com-

putations over the provenance graph captured within ORCHESTRA. ORCHESTRA captures

provenance with logical normalized approaches and its data model of the provenance graph

is the one we introduced in Section 4.3.2 (modulo that mappings in ORCHESTRA do not

store rids but records are identified with primary keys.) This data model has poor perfor-

mance when it comes to evaluating path queries since mappings need to be joined. Hence,

Karvounarakis et al. [KIT10] index the mappings generated by ORCHESTRA in access

support relation (ASR) indexes. Recall that we referred to this class of techniques (i.e.,

provenance capture in relational forms followed by indexing of provenance) as LOGIC-IDX

and showed its shortcomings for provenance capture in Section 3.7. Regardless of the

provenance capture, however, ORCHESTRA and SMOKE end up exposing the same data

models, as we showed in Section 4.3.2, and similar underlying physical representations

since SMOKE’s provenance indexes are equivalent to the ASR indexes of ORCHESTRA. As

such, SMOKE and ORCHESTRA respond in the same ways to PROQL queries.

To compute a semiring in SMOKE, one first needs to annotate records with base values.

This can be done by either introducing more attributes or with separate relations with one

to one connection with the relations to be annotated. Then, given the definition of the

abstract sum and product operations of the semiring, SMOKE computes the provenance

polynomials for output records by using knowledge of the query and the backward rids.

In our example, knowing that records are joined and then grouped provides us with the

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 92

necessary information to perform an inner product of the rids of the backward indexes and

derive the provenance polynomial (x1 ? y1) + (x1 ? y2). Knowing how to construct the

provenance polynomial for each output record, we can now propagate base values, compute

the semiring, and perform the annotation of the output records. Note that this construction is

for computing how-provenance only for a single base query. However, the same construction

follows in a bottom-up fashion when we perform semiring evaluations across base queries.

We can do so because evaluating a semiring over a single base query results in annotating its

outputs with values. In turn, these values are treated as base values for semiring evaluations

over base queries that take as input the so far semiring-based annotated outputs. For a more

detailed discussion on this bottom-up construction interested readers are referred to [KIT10].

Finally, note that this construction imposes that provenance graphs that both SMOKE and

ORCHESTRA account for are acyclic; otherwise this construction will fail. Accounting for

cyclic provenance graphs is an interesting problem for future work.

4.6.4 Where-provenance

So far, we have discussed how different provenance types encode input records to explain

outputs. These explanations, however, are at the whole record level. In contrast, a natural

question to ask is from where does a given attribute value in an output has “copied” its

value from. Similarly, we can ask to what output attribute value has a given input attribute

value contributed its value. Such types of questions are called where-provenance queries

and encoded through the notion of where-provenance [BKT01; CCT09].

A Where provenance query takes as input an attribute value and, instead of record

encodings that we show with the previous provenance types, returns sets of locations where

a location is a triple (relation, record, attribute name), to answer from what relation, which

record, and from what attribute has the attribute value been derived from.

CHAPTER 4. EXPRESSING AND EVALUATING PROVENANCE ANALYTICS 93

Evaluation in SMOKE

Evaluation of where queries in SMOKE is straightforward given that path queries can take

us back to the input that produced the particular output. Then, the only thing that remains is

to find what attribute(s) from the traced inputs has contributed to the given attribute. This

information is encoded in the base query that produced the output of interest. Hence, SMOKE

evaluates where-provenance queries by first analyzing the query plans of base queries to

identify what input attribute contributed to which output attribute and then using provenance

information to trace back from the given output to the inputs that contributed to the output.

In case the analysis of query plans shows that there are no input attributes that can contribute

to the given output attribute then SMOKE responds with undefined.

4.7 Conclusions

In this chapter, we showed how SMOKE expresses and evaluates analytical provenance

queries including path queries, provenance consuming SQL queries, and several of the

established provenance semantics. Furthermore, we showed that the physical representation

of provenance provided by SMOKE provides a physical representation of the data models

induced by alternative logical and physical provenance capture approaches. As such, our

main conclusion is that SMOKE is as expressive as other state-of-the-art provenance enabled

systems for the class of queries we considered here. The performance of our techniques in

comparison with state-of-the-art alternatives will be presented in Chapter 5. We conclude

our discussion by noting that several other classes of analytical provenance queries are not

currently handled by SMOKE including provenance semantics beyond SPJAU queries and

provenance propagation over acyclic graphs which are interesting future work.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 94

Chapter 5

Optimization of Provenance

Analytics

5.1 Introduction

In the previous chapter, we considered expressing and evaluating provenance analytics

over provenance data models as induced by the provenance capture phase. This enables

provenance consuming applications to evaluate provenance queries in an ad-hoc manner.

However, many provenance applications, such as those in interactive visualization; profiling;

or security, may have a pre-defined provenance consuming logic that amounts to a pre-

declared provenance consuming query workload W. Knowing this query workload at the

moment of the provenance capture phase enables several optimizations on the provenance

capture phase with the goal to streamline future provenance queries in W.

To this end, in this chapter, we introduce several simple yet effective optimizations

that exploit knowledge of W to avoid capturing provenance information and generate

physical representations that directly speed up queries in W. Overall, we have designed our

optimization techniques based on the following three design principles P4-P6. (Note that

our design principles here build on the principles P1-P3 that we described in Section 3.1.)

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 95

P4. Capture avoidance. Provenance applications such as debugging need to capture

provenance to answer ad-hoc provenance queries that can trace back or forth to any input,

intermediate, or output table. For applications such as interactive visualizations or profiling,

however, provenance queries may be known up-front. SMOKE uses this apriori knowledge

to avoid materializing provenance that will not be queried in the future.

P5. Pre-computing provenance consuming SQL results. Provenance applications rarely

require all results of a provenance query (e.g., all records that contributed to an aggregation

result) unless the results have low cardinality. Instead, the results are filtered, transformed,

and aggregated by additional SQL queries. We termed these queries provenance consuming

SQL queries in Chapter 4. If such queries are known up-front, as is typically the case for

applications with templated analysis capabilities (e.g., Tableau or Power BI), SMOKE pushes

physical design optimizations into the provenance capture phase. These optimizations are

used to speed up future provenance consuming queries, and can include provenance index

partitioning, materializing aggregates, or collecting statistics.

P6. Pre-computing provenance semantics. Similarly to the provenance consumption

using SQL, provenance applications may want to operate under only which, why, or how

provenance semantics as opposed to the transformational provenance semantics that SMOKE

provides from its provenance capture. As such, instead of capturing transformational

provenance and evaluate retrospectively other provenance semantics, we present techniques

that derive the desired provenance semantics directly at the provenance capture phase.

Contributions and Chapter Outline

In the rest of the chapter, we start by providing some necessary setup to ease our overall

discussion (Section 5.2). Then, we present our contributions as follows:

• We introduce techniques that avoid capturing provenance, either for individual rela-

tions or directions, that will not be used by future provenance queries. (Section 5.3)

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 96

• We introduce techniques that push down the logic of future provenance consuming

SQL queries down into the provenance capture phase. Our techniques generate novel

physical representations that streamline such future provenance queries. (Section 5.4)

• We introduce techniques that pre-compute provenance semantics. (Section 5.5).

• Experimentally, we compare our optimizations both with the techniques for ad-hoc

evaluation of provenance queries that we presented in Chapter 4 as well as with known,

state-of-the-art alternative techniques. Our experimental analysis includes results both

for the provenance capture and provenance query phases. (Section 5.6).

5.2 Setup

To ease our discussion throughout this chapter, we present optimizations on the provenance

capture phase for the following simple base query:

Q = σo_orderdate>‘2017-08-01’(orders ./ lineitem)

Q joins orders with lineitem records and selects only the join results having

o_orderdate>‘2017-08-01’. Furthermore, assume that the orders table has the fol-

lowing schema: orders(oid, o_orderdate, o_shipdate). The schema for the

lineitem is irrelevant to our discussion.

The optimization techniques that we introduce throughout this chapter are workload-

aware. Hence, we expect a given future workload W synthesized out of analytical prove-

nance queries. Each optimization technique targets different types of analytical provenance

queries that may reside in W. As such, we present examples of such provenance queries in-

line per optimization technique. To further motivate our techniques, we draw such examples

from the domain of interactive data visualizations.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 97

5.3 Provenance Pruning

Our pruning optimizations disable provenance capture for provenance indexes that will not

be used in W. We present two types of pruning that disable provenance capture for specific

input relations and provenance directions (i.e., backward or forward).

5.3.1 Pruning Input Relations

A simple visualization of Q could show a tooltip of lineitem information when a user

hovers over a visualized result of Q . As we will see in Chapter 7, this functionality can

be expressed as a backward query from an output of Q to lineitem to fetch the lineitem

record responsible for the hovered output. Assuming that there are no other interactions

involving provenance queries on the orders table, it is clear that the provenance indexes

for the orders table will not be used in any way. As such, SMOKE changes the provenance

capture techniques that we presented in Chapter 3, to avoid capturing provenance for orders

in Q . In general, SMOKE does not capture provenance for relations not referenced in the

future workload W, and this is possible by not integrating the provenance capture logic

within the physical plan of Q for tables not referenced in W.

5.3.2 Pruning Provenance Directions

Extending the previous example, it is clear that W will only execute a backward provenance

query to lineitem and not vice versa. Thus, SMOKE can also avoid generating the forward

provenance index from lineitem to the base query output because it will not be used in

any way from the analytical provenance queries in W. The provenance indexes that can be

pruned are evident from the provenance consuming queries in W. To do avoid capturing

provenance directions, SMOKE does not integrate the provenance capture logic within the

physical plan of Q that is responsible for their construction.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 98

5.4 Provenance Consuming SQL queries

User-facing applications rarely present a large set of query results to a user. Instead, they

reduce the result cardinality with further filter, transformation, and aggregation operations.

These reductions can be expressed as provenance consuming SQL queries, that we intro-

duced in Section 4.5. Here, we show how such consumption logic can be pushed into the

provenance capture logic if provenance consuming SQL queries are available in W. More

specifically, we next present three simple, yet effective, push-down optimizations for fixed

and parametrized predicates as well as group-by aggregations.

5.4.1 Selection Push-down

Visualizations often update metrics that summarize data based on user selections. For

instance, the following query retrieves Christmas shipment order information for parts of the

visualization that the user interacts with: C = σshipdate=‘xmas′(LB(O
′ ⊆ Q (D), orders)).

Our selection push-down optimization pushes down the predicate shipdate=‘xmas’ into

provenance capture, so that SMOKE will first check whether the input tuple satisfies the

predicate before adding it to the provenance indexes. If the predicate is on a group-by key,

SMOKE does not capture provenance for all other groups. This reduces provenance space

overheads and usually reduces capture overheads. If the predicate is expensive to evaluate

(e.g., slow UDF), it can increase capture overheads.

5.4.2 Data Skipping Push-down

Pushing down selections requires fixed predicates. However, interactive visualizations

also use parametrized predicates. For instance, a user may use a slider to dynamically

change the shipping date (:p1): C = σshipdate=:p1(LB(O′ ⊆ Q (D), orders)). This pattern

is ubiquitous in interactive visualizations and applies to faceted search, cross-filtering,

zooming, and panning. SMOKE pushes this down by partitioning the rid arrays (standalone,

or part of rid indexes) by the predicate attribute. For the example above, SMOKE would

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 99

partition the rid arrays in the backward index for orders by shipdate, so that C only reads

the rid partition matching the parameter :p1. This technique applies to categorical as well

as discretized continuous attributes. This makes it attractive for interactive visualizations

since outputs are ultimately discretized at pixel granularity [JJHM14].

5.4.3 Grouping and Aggregation push-down

Interactions, such as cross-filtering [cro15], let users select marks in one view, trace those

marks to the input records that generated them, and recompute the aggregation queries

in other views based on the selected subset of input records. This pattern is precisely an

aggregation query over the backward provenance of the user’s selection. SMOKE pushes the

group-by aggregation into provenance capture by partitioning the rid arrays on the group-by

attributes, and incrementally computing the intermediate aggregation state. This works

if the base and provenance consuming query primarily differ in terms of added grouping

attributes, and effectively generates data cubes to answer the linage consuming aggregation

queries. In contrast to building data cubes offline, which requires separate scans of the

database, this optimization piggy-backs on top of the base query’s table scans. As with prior

work [GCB+97; LJH13; HMT11], this optimization supports algebraic and distributive

functions (e.g., SUM, COUNT, and AVG). To illustrate its importance, we evaluate it extensively

in synthetic (Section 5.6) and real-world settings (Section 8.6).

5.5 Provenance semantics

In Section 4.6, we discussed how SMOKE can express and evaluate provenance semantics

only after it has created its version of the provenance graph. However, provenance consuming

applications may have a fixed logic that only requires a specific provenance semantics to

operate on. In this section, we show how SMOKE can also push the evaluation of which-

and how-provenance semantics into provenance capture. (Why- and where-provenance can

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 100

be derived from either fine-grained provenance, which-provenance, or how-provenance, as

we discussed in Chapter 4, and we omit further discussion.)

5.5.1 Which-provenance

SMOKE operates under which-provenance semantics for SPJAU queries using two simple

techniques: SMOKE-W-I and SMOKE-W-D.

SMOKE-W-I. Under the former, instead of appending an rid in the provenance rid arrays

or rid indexes, we first check if the rid is already present. If so, we do not append the rid;

otherwise the rid is appended in the provenance rid arrays or indexes.

SMOKE-W-D. Under the latter, we first perform provenance capture as in Chapter 3. Then,

to derive which-provenance, we remove duplicate rids from within the rid arrays. Note that

this technique is similar to the ad-hoc technique that we introduce for ad-hoc evaluation of

which-provenance queries in Section 4.6.1. However, there are two main differences between

SMOKE-W-D and the ad-hoc evaluation of which-provenance queries of Section 4.6.1. First,

note that SMOKE-W-D is essentially the pre-evaluation (and corresponding materialization)

of every ad-hoc which-provenance query. Second, SMOKE-W-D happens before the issuance

of which-provenance queries, whereas the ad-hoc evaluation of which-provenance queries

happens at the moment of issuance of which-provenance queries.

Finally, note that both approaches can operate under either the INJECT or DEFER

semantics of our transformational provenance capture that we introduced in Chapter 3. Also,

recall that which-provenance is different than the fine-grained provenance of Chapter 3 only

for specific types of queries, as we discussed in Section 4.6.1. To ease our discussion in our

experimental section, we will focus only on INJECT semantics for both approaches (given

that INJECT approaches have less overhead than their equivalent DEFER ones) and on queries

for which which-provenance is different than the fine-grained provenance of Chapter 3.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 101

5.5.2 How-Provenance

As we discussed in Section 4.6.3, how-provenance is grounded on the fact that relational

operators can either combine tuples together or merge them. Based on this combining and

merging, output tuples are associated with provenance polynomials that can both explain

how an output tuple came into being as well used for the computation of semirings.

In Section 4.6.3, however, we considered the case where SMOKE perform provenance

capture for transformational provenance semantics to only allow applications to compute

provenance polynomials and semirings retrospectively. In this section, we discuss in more

detail how SMOKE can derive provenance polynomials during the execution of the base

query so that outputs are directly annotated with semiring-based values.

In this direction, we first need to partition relational operators into the ones that combine

tuples together and operators that merge tuples together. Here we focus on relational

operators for which how-provenance is well-defined (i.e., positive relational algebra extended

with group-by aggregations). In this class, operators that combine tuples together include

cross-products, natural joins, and θ-joins. Operators that merge tuples together include

group-by aggregations, set union, and set projection. In SMOKE’s terms, operators that

combine tuples together are binary (i.e., with two input sources) and have 1-to-1 backward

semantics whereas operators that merge tuples have 1-to-N backward provenance semantics.

This leaves out unary operators that have 1-to-1 backward semantics with one input source

(i.e., bag projection and selection) which are treated specially.

Based on this classification, SMOKE can derive provenance polynomials in the following

way. First, whenever SMOKE evaluates an operator that combines tuples together it associates

the rids of the tuples, or other base values, with the abstract product operator. In other terms,

instead of storing rids in two backward rid arrays it stores the results of the abstract product

operator in a single array. Furthermore, whenever SMOKE evaluates an operator that merges

tuples together, it applies the abstract sum operator on the corresponding rids or potentially

other base values. Finally, note that for unary operators with 1-to-1 backward provenance

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 102

semantics the base value of each input tuple is simply passed through to the output tuple

that it contributes to.

5.6 Experiments

Our experiments in this chapter seek to show the performance of SMOKE on evaluating

analytical provenance queries with and without our optimizations. To this end, and following

our experiments in Chapter 3, we use the TPC-H database schema and focus our experiments

around a subset of TPC-H queries (i.e., Q1, Q3, Q10, and Q12).

Next, we structure our experiments per class of optimization: pruning (Section 5.6.1),

optimizations on provenance consuming SQL queries (Section 5.6.1), and optimizations on

provenance semantics (Section 5.6.3). Within each class, we compare the performance of

evaluating provenance queries in SMOKE with and (if applicable) without our optimizations.

When possible, we also compare our techniques with state-of-the-art alternative approaches.

Settings per experiment are inlined in our discussion.

5.6.1 Provenance Pruning

We start off our experiments by evaluating our optimizations on pruning input relations

(Section 5.6.1.1) and provenance directions (Section 5.6.1.2).

5.6.1.1 Pruning input relations

We start our discussion on provenance pruning from pruning input relations. Figure 5.1

compares the latency of Q3 and Q10, which read three and four relations, respectively, under

three sets of conditions: no provenance capture, provenance capture for all input relations

(non-optimized SMOKE-I), and SMOKE-I-based provenance capture for each individual

single input relation. Furthermore, we did not evaluate Q1 because it has a single input

relation. Finally, our findings on Q12 are the same as the ones we present here over Q3 and

Q10, and we omit them to avoid redundancy.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 103

Figure 5.1: Provenance capture costs for different table pruning strategies. ALL refers to provenance

capture for all tables. {} refers to not capturing provenance for any table. Lineitem, Orders,

Customer, and Nation refer to capturing provenance only for the corresponding table and

omitting provenance capture for all other tables.

As shown in Figure 5.1, pruning input relations from provenance capture reduces the

overall provenance capture overhead. One interesting observation from our experiments is

that the provenance capture cost for each individual relation is roughly the same. While this

is expected, due to the nature of provenance capture (i.e., we need to write the same amount

of rids for each table), there are two main differences worth pointing out.

First, Lineitem is the right-most table in the pk-fk joins of Q3 and Q10. This fact results

in lower capture costs for Lineitem in comparison to the capture costs for other tables.

This is due to the pk-fk optimization that we presented in Section 3.4.4. More specifically,

recall that due to our optimization the forward and backward indexes for Lineitem are

rid arrays. This is in contrast to the other tables for which we use rid indexes for both

backward and forward provenance. As a result, capturing provenance for Lineitem has

less provenance capture costs than for the other tables because rid arrays do not incur the

initialization and reallocation costs of rid indexes.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 104

Second, input relations that contribute multiple groups to the output are more likely to

have higher capture costs than the ones with fewer groups. This is because we need to pay

more initialization costs for the forward indexes. As a simple example, assume that we have

2 input tuples from the Customer table and 10 input tuples from Orders table (e.g., each

customer has made 5 orders). Recall that SMOKE initializes rid arrays within rid indexes

with an initial size of 10. This means that for the Customer table we would have to allocate

2 arrays (i.e., 20 bytes). In contrast, for the Orders table we would have to initialize 10

arrays (i.e., 100 bytes). Hence, although in total we have to write the same number of rids

(i.e., number of outputs) in both forward indexes, the initialization costs result in different

provenance capture costs. This observation is reflected in our experiments in Figure 5.1. For

Q10, Orders has higher capture costs than Customer and Customer has higher capture

cost than Nation. Similarly for Q3, Orders has higher cost than Customer.

Figure 5.2: Provenance capture overhead on Q1, Q3, Q10, and Q12 for different provenance direction

pruning strategies. B+F refers to capturing both backward and forward provenance for all input

tables (i.e., no pruning). B refers to capturing only backward provenance for all input tables (i.e.,

omitting forward provenance for every input table). Conversely, F refers to capturing only forward

provenance (i.e., omitting backward provenance for every input table).

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 105

5.6.1.2 Pruning provenance directions

We conclude our discussion over provenance pruning by evaluating our pruning techniques

for provenance directions. Figure 5.2 shows the overheads of tracking provenance on Q1,

Q3, Q10, and Q12 using the following three strategies: capturing 1) both backward and

forward provenance (i.e., B+F), 2) backward provenance but omitting forward provenance

(i.e., B), and 3) forward provenance but omitting backward provenance (i.e., F).

As shown in Figure 5.2, pruning provenance directions reduces the capture overhead.

The level of reduction, however, is subject to the type of the query and, consequently, the

type of provenance indexes. For instance, Q1 is a group-by aggregation query. As a result,

the backward provenance is stored in rid indexes which incur higher construction cost from

the rid arrays that we use to store forward provenance. For Q12 and Q3, although the

final operator to these queries is a group-by aggregation, the cost of capturing forward

provenance is higher because forward provenance is stored in rid indexes. This is because

the input to the group-by aggregation is a join for which forward provenance is captured in

rid indexes. (Refer to our discussion in Section 5.6.1.1 for more details on the impact of

forward indexes.) Note, however, that it is not always the case for such types of queries that

the forward indexes will always have higher construction costs than constructing backward

indexes. For instance, Q10 has the same query structure (i.e., join followed by group-by

aggregation). Yet the backward indexes have higher construction costs than the forward

ones, as is evident from our results in Figure 5.2.

Finally, note that for all experiments in Figure 5.2 we tracked provenance for every

input table. In SMOKE, we can also track provenance for a subset of tables and only

one provenance direction for each input table. Essentially, we can combine pruning of

provenance directions with pruning of input tables.

Takeaways: Our experiments highlight that our provenance pruning optimizations can

reduce the provenance capture overheads. The level of reduction is subject to which input

relations and which provenance directions are pruned.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 106

5.6.2 Provenance Consuming SQL queries

We now present our experimental analysis on our push down optimizations for provenance

consuming SQL queries. First, we present our results on the selection push down opti-

mization (Section 5.6.2.1). Then, we present our results on data skipping and group-by

aggregation push down optimizations (Section 5.6.2.2).

5.6.2.1 Selection Push Down

Pushdown −Optimization

Smoke − I

Baseline180

200

220

240

25 50 75
Selectivity

Li
ne

ag
e

Ca
pt

ur
e

La
te

nc
y

(m
s)

Figure 5.3: Provenance capture with selection push-down at varying selectivities of l_tax < ?.

The crossover point between with and without push down is due to the additional cost of predicate

evaluation before adding rids to the provenance indexes.

To evaluate the impact of the selection push down optimization, we used Q1 as the base

query, and ran the following provenance consuming query:

SELECT * FROM LB(Q1, Lineitem) WHERE l_tax < ?

Figure 5.3 plots the average and standard deviation base query latency when assigning ?

to 5 distinct l_tax values, along with the cost of SMOKE-I without selection push down,

and LAZY. We find that the effectiveness of selection push down depends on the selectivity

of the predicate. The overhead is linear with respect to the predicate selectivity, and there is

a crossover point with SMOKE-I at high selectivities (> 75%), where the overhead of evalu-

ating the predicate for every input record outweighs the benefits of building a provenance

index. We expect that increasing the predicate complexity (e.g., string comparisons, more

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 107

predicate clauses) will likely shift the crossover point towards lower selectivities. These

results suggest the value of cost-based methods to choose between the two.

5.6.2.2 Data Skipping and Group-By Push Down

We explore the effectiveness of the data skipping and group-by push-down optimizations

by incrementally building up an example motivated by the “Overview first, zoom and filter,

details on demand” [Shn96] interaction paradigm. We focus only on zoom and filter because

the base query generates the initial overview, while details on demand is the simple backward

provenance query evaluated in Section 3.7.3.

We use TPC-H Q1 as the initial “Overview” base query (SF=2), and we render its output

groups as a bar chart. There are four bars generated from 48%, 24%, 24%, and 0.06% of the

Lineitem relation. Subsequent interactions (e.g., zoom in by drilling down and filter by

adding predicates) will be expressed as provenance consuming queries that incrementally

modify their preceding provenance consuming queries.

No optimization. Before considering optimizations, we first assess the effectiveness of

provenance indexes on the evaluation of provenance consuming queries as compared to the

lazy approach. Suppose users are interested in drilling into a particular bar to see its statistics

grouped further by the month and year of the shipping date. This is expressed as a provenance

consuming query Q1a that changes Q1 in two ways: (1) replaces the input relation with the

backward provenance of the bar (i.e., Lb(oa ∈ Q1(Lineitem),Lineitem)) and (2) adds

Month,Year of the shipping date to the GROUP BY clause.

We evaluate Q1a for every value of oa (not plotted). LAZY runs Q1a as a table scan

followed by filtering on Q1’s group-by keys, grouping on year and month, and computing the

same aggregates as Q1. SMOKE-I executes the same steps but evaluates Q1a with secondary

index scans as opposed to table scans. SMOKE-I performs best when the group cardinality

is low (0.06% selectivity) and outperforms LAZY by 6.2×. For higher cardinality groups,

SMOKE-I incurs the overheads of secondary index scans, as we also noted in Section 3.7.3.

However, the performance of the two methods is similar because processing the high

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 108

provenance cardinality (to compute the group-by aggregations in this case) dominates the

execution of Q1a. A principled approach to avoid such high processing costs is using our

workload-aware optimizations.

Lazy No Data Skipping Data Skipping

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
0

100

200

300

Query Selectivity

Li
ne

ag
e

Co
ns

um
in

g
Q

ue
ry

 L
at

en
cy

 (m
s)

Figure 5.4: Provenance consuming query latency for different instrumentation approaches as the

provenance consuming query’s selectivity varies. Lazy requires table scans, No Data Skipping

performs more efficient secondary index scans, and Data Skipping is ≤ 150ms because it only scans

the relevant partition of the provenance index.

Data skipping. Suppose we know that the users want to filter the result of Q1 (e.g., based

on interactive filter widgets). Then we can push this logic into provenance capture using the

data skipping optimization. We evaluate Q1b, which extends Q1a with two parameterized

predicates: l_shipmode = :p1 AND l_shipinstruct = :p2. Q1 is the base query

for Q1b. To exercise push-down overheads, both are text attributes and thus more expensive

to evaluate than numeric attributes. The provenance capture overhead was 0.22× for SMOKE-

I and 1.65× with the data skipping optimization due to the additional cost of partitioning

the rid arrays on the text attributes, but still lower than logical approaches (Figure 3.22).

Figure 5.4 plots the provenance consuming query latency for the selectivities of ev-

ery possible combination of the predicate parameters. The LAZY baseline executes the

provenance consuming query as a filter-groupby query over a table scan of Lineitem.

Although provenance indexes substantially reduce query latency (No Data Skipping in Fig-

ure 5.4)—particularly for low predicate selectivities—it is bottlenecked by the secondary

scan costs of backward provenance for high cardinality groups. In contrast, Data Skipping

reduces even high selectivity queries by at least 2× compared to LAZY, and is consistently

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 109

below the interactive 150ms threshold [LH14]. This is because rid arrays are partitioned

by l_shipmode, l_shipinstruct and the provenance consuming query is evaluated

using indexed scans with only the rids needed to correctly answer the query.

10ms

100ms

1s

5s

0.00 0.02 0.04 0.06 0.08
Query Selectivity

Li
ne

ag
e

Co
ns

um
in

g
Q

ue
ry

 L
at

en
cy

Lazy No Agg Pushdown

Figure 5.5: SMOKE-I reduces the provenance consuming query latency by 72.9× on average as

compared to LAZY. With aggregation push-down, the latency is ≈ 0ms and we do not plot it.

Group-by aggregation push-down. After users filter and identify interesting statistics from

the filter interactions in Q1b, they may want to drill down further. If we know this upfront,

SMOKE can pre-compute aggregates for new dimensions with the group-by aggregation

push-down optimization. To evaluate this optimization, we compare LAZY against SMOKE-I

(with and without the optimization) on Q1c. Q1c changes Q1b by adding l_tax to the

GROUP BY clause and setting the input relation to Lb(oc ∈ Q1b(...),Lineitem). For this

experiment, we consider Q1b as the base query of Q1c.

Figure 5.5 compares the provenance query latency under LAZY (red dots) against

SMOKE-I without the optimization (blue triangles). The push-down optimization is not

plotted because it takes ≈ 0ms (i.e., just fetches the materialized aggregates). For com-

pleteness we vary the parameters of the backward provenance statement Lb() for Q1c

(Lb(oc ∈ Q1a, ...)) as well as for the base query Q1a (Lb(oa ∈ Q1, ...)) of Q1b and report

the provenance consuming query’s latency for all combinations. Overall, LAZY takes > 4

seconds per Q1c instance while SMOKE-I takes from 7ms to 100ms without the optimization

and ≈ 0ms with the optimization for all Q1c instances.

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 110

o_0 o_1 o_2 o_3

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15
No Pushdown

Pushdown

Lineage Capture Relative Overhead (%)

Figure 5.6: The average relative instrumentation overhead increases from 2.9% without to 9.15%

with aggregation push-down.

Pre-computing aggregation statistics is not free, however. Figure 5.6 plots the provenance

capture overhead for both SMOKE variants over to the non-instrumented lazy approach.

We report the result for all 4 parameters to the base query Q1a’s backward provenance

statement (Lb(oa ∈ Q1, ...)). The overhead of SMOKE-I is low compared to the overall cost

of partitioning the rid arrays on l_tax and computing aggregates.

Takeaways: Our experiments highlight that provenance indexes are sufficient whenever

the provenance cardinality is low for the complexity of future provenance consuming SQL

queries. For higher provenance cardinalities, our workload-aware optimizations provide

a principled way to push-down computation into provenance capture and optimize future

provenance consuming queries. They also highlight tradeoffs that future optimizers for

provenance-enabled database systems would need to consider.

5.6.3 Provenance Semantics

We conclude our experiments by showcasing the performance of our ad-hoc and workload-

aware techniques for evaluating and capturing which-provenance (Section 5.6.3.1) and

how-provenance (Section 5.6.3.2).

5.6.3.1 Which-Provenance

We evaluate the impact of our techniques on which-provenance capture using Q3. (Similar

are our results on Q10 and Q12. For Q1, which-provenance and fine-grained provenance

of Chapter 3 are the same).

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 111

Figure 5.7: Capturing which provenance with inject (SMOKE-W-I) and defer (SMOKE-W-D)

approaches in comparison to capturing transformational provenance with SMOKE-I and not capturing

provenance at all BASELINE on TPC-H Q3 (with and without selections).

Figure 5.7 shows the performance of SMOKE-W-I and SMOKE-W-D (i.e., our workload-

aware optimizations for materializing which-provenance at the time of the base query execu-

tion) in comparison to no provenance capture (i.e., BASELINE) and fine-grained provenance

capture with INJECT semantics (i.e., SMOKE-I) on Q3 with and without selections. For

Q3 with selections, the overheads of SMOKE-I, SMOKE-W-I, and SMOKE-W-D over the

BASELINE are .09×, .15×, .24×, respectively. For Q3 without selections, the overheads

of SMOKE-I, SMOKE-W-I, and SMOKE-W-D over the baseline are 1.2×, 2.4×, and 3×,

respectively. We make the following main observations over our results in Figure 5.7:

Comparison of SMOKE-W-I with SMOKE-W-D. Similar to the observations we made

over INJECT- and DEFER-based capture techniques for fine-grained provenance (or lineage)

capture in Section 3.7.1, SMOKE-W-I outperforms SMOKE-W-D because of the extra

costs of deferring, in this case, parts of which-provenance capture. Recall that SMOKE-

W-I de-duplicates rids at the moment we are appending them in rid indexes. In contrast,

SMOKE-W-D first appends duplicate rids in rid indexes to only after de-duplicate them.

Hence, SMOKE-W-D has to pay the extra cost of storing redundant rids. However, note

that storing duplicate rids (i.e., the first step of SMOKE-W-D) is essentially equivalent to

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 112

the SMOKE-I approach which has less overhead than SMOKE-W-I. As such, by deferring

the de-duplication, SMOKE-W-D can be used by applications that want to avoid blocking

on which-provenance capture on base query execution using SMOKE-W-I (for the time

latencySMOKE-W-I – latencySMOKE-I).

Comparison with SMOKE-I. As shown in Figure 5.7, SMOKE-W-I and SMOKE-W-D

always incur overheads higher than SMOKE-I. This is because SMOKE-W-I and SMOKE-

W-D have to perform the extra step of de-duplication that SMOKE-I does not perform.

Impact of selections. Similar to our results on fine-grained provenance capture (Sec-

tion 3.7.2), selections also play an important role on the overhead of our which-provenance

techniques. For instance, the overhead over the BASELINE of SMOKE-W-I on Q3 with selec-

tions is 0.15× whereas without selections is 2.4×. Similarly, the overhead of SMOKE-W-D

increases from .15× for Q3 with selections to 3× for Q3 without selections.

Ad-hoc evaluation. Finally, recall from our discussion in Section 5.5 that SMOKE-W-D

corresponds to the ad-hoc evaluation of all possible which-provenance queries. (The ad-

hoc evaluation of which-provenance queries is presented in Section 4.6.1.) As such, the

performance of ad-hoc evaluation of why-provenance queries (not shown in Figure 5.7) is as

follows: At the moment of provenance capture, we need to capture fine-grained provenance

provenance. This is the performance of SMOKE-I in Figure 5.7. Then, the latency of each

which-provenance query corresponds to a portion of latencySMOKE-W-D – latencySMOKE-I

for rid de-duplication. The worst de-duplication performance, and hence the worst case for

which-provenance queries, comes from cases where we need to de-duplicate large rid arrays.

5.6.3.2 How-Provenance

So far we have discussed how to capture and evaluate which-provenance semantics using

both our ad-hoc and workload-aware techniques. Here, we further evaluate SMOKE on cap-

turing and evaluating how-provenance semantics by focusing on two semirings: weight/cost

and derivability semirings [KIT10].

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 113

Figure 5.8: Latency of SMOKE-H-I and SMOKE-H-D on TPC-H Q3 with (left) and without (right)

selections for capturing weight/cost (up) and derivability/trust (down) semirings. For comparison

purposes, the latency of BASELINE and SMOKE-I are depicted in Figure 5.7 and we omit them here

to avoid redundancy.

Figure 5.8 shows the performance of SMOKE for capturing how-provenance under the

weight/cost and derivability/trust semirings. Following the notation for which-provenance,

SMOKE-H-I refers to materializing the result of semirings during base query execution

while SMOKE-H-D refers to materializing the result of semirings after we have first captured

fine-grained provenance on the base query (i.e., by evaluating how-provenance queries in

the ad-hoc way that we showed in Section 4.6.3 for every possible output of the base query).

Our observations over the results of Figure 5.8 follow the ones we made for which-

provenance. This is expected as which-provenance is also a semiring (often referred to as

lineage semiring [KIT10]). To this end, we omit further discussion and we refer readers to

our observations on the which-provenance results. One interesting note, however, is that the

actual latency results that one should expect during the evaluation of a semiring depends on

the complexity of the semiring. For instance, the latency of SMOKE-H-D for weight/cost

and derivability/trust in Figure 5.8 are ~6.8s and ~6.6s, respectively (i.e., a difference of

~200ms). While the semirings in our experiments belong in equivalent time complexity

CHAPTER 5. OPTIMIZATION OF PROVENANCE ANALYTICS 114

classes, we note that the complexity of the abstract sum and product operations of semirings

can result in different capture latencies.

Takeaways: Our experiments highlight that our workload-aware optimizations can signifi-

cantly improve the overall latency required for the evaluation of ad-hoc provenance queries.

However, the ad-hoc evaluation of each individual provenance query for different prove-

nance semantics can be fast enough due to the underlying captured fine-grained provenance

graph. Finally, the extent to how fast we can evaluate provenance semantics in an ad-hoc

way or materialize provenance semantics through workload-aware optimizations depends

on the complexity of the provenance semantics.

5.7 Conclusions

In this chapter, we presented our workload-aware optimizations on the evaluation of prove-

nance analytics and compared them with our techniques for ad-hoc evaluation. Overall,

our results show evidence that in many cases our ad-hoc evaluation techniques may be

sufficient given the end-latency objective of provenance applications. Furthermore, we

showed evidence that for data-intensive provenance applications that require several orders

of magnitude improvements over the ad-hoc evaluation (e.g., interactive visualization) our

optimizations (e.g., data skipping and group-by aggregation push down) provide principled

ways for provenance query latency reduction. Finally, we showed that provenance capture

overheads may increase or decrease depending on the optimization.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 115

Chapter 6

Physical Plan Instrumentation

In the previous chapters, we showed how we can change physical plans to piggyback

the provenance capture logic within the query execution logic (Chapter 3), how we can

query the captured provenance information to perform analytics (Chapter 4), and how we

can optimize provenance analytics by pushing them into the capture phase if analytical

provenance workloads are known at the moment of provenance capture (Chapter 5).

Now, consider implementing the provenance capture techniques and optimizations within

a database. At minimum, we would have to change the source code of the whole physical

algebra, possibly duplicating it to account for cases when we want to perform only normal

query execution, perform INJECT provenance capture, perform DEFER provenance capture,

and introduce our push-based workload-aware optimizations.

In fact, the first version of SMOKE was following a similar design: a database engine with

operators implementing both their logic and the provenance logic. The provenance logic

was activated through switches passed as directives to the optimizer which was responsible

for initializing physical operators with the switches on. While this was somewhat fine

for provenance capture given the minimal changes required, adding the workload-aware

optimizations ended up extending the logic of each physical operator. The overall result

was going from physical operators implementing their standard logic to having physical

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 116

operators augmented with external logic—dwarfing the standard logic and polluting the

overall physical algebra that SMOKE supports with an ever-increasing injected code.

Stepping up a level, however, even if we did so, the end-product is a custom database

with provenance capture and query capabilities which, while important due to the large

number of application domains that provenance supports, does not expose any extensibility

mechanisms to introduce other modules that operate similarly to the provenance manager.

To this end, this chapter introduces the current version of SMOKE that exposes principled

mechanisms for physical plan instrumentation to facilitate the development of applications

that operate on how queries are executed, similarly to how provenance managers operate.

6.1 Introduction

As we noted in Chapter 1, an ever increasing number of user-facing application domains

(e.g., data visualizations; data profiling; data explanation; and data debugging) and in-

database modules (e.g., provenance managers; online query optimizers; online and adaptive

database designers; or self-regulating managers) rely their logic on how queries are executed.

Unfortunately, extending a database engine to support the development of techniques in

these domains, while important, remains challenging.

The two predominant approaches to introduce such techniques is either by rewriting

databases or working around the SQL interface both of which come with shortcomings.

For instance, in the previous chapters, we showed how we rewrote the physical algebra of

SMOKE to perform query execution and provenance capture at the same time—which is an

instance of the former approach—as well as logical provenance capture approaches that

perform provenance capture by working around the SQL interfaces. The former approach,

while performant for the task of provenance capture, results in a database that provides

no mechanisms for other techniques that operate on how queries are executed. The latter

approach essentially treats SQL as a mechanism for provenance capture and comes with

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 117

significant performance penalties, rendering such provenance systems inapplicable for

data-intensive tasks, as we demonstrated experimentally in Chapters 3 and 5.

To address the problem of expressing and optimizing techniques that operate on how

queries are executed, without having to rewrite databases and finding workarounds, our

main idea is to enable physical plan instrumentation (i.e., allow third-party applications

to operate on physical plans), as we also noted in Chapter 2. A naive approach to follow

in this direction is to simply send the physical plan as generated by the query optimizer to

applications to apply their logic on. In fact, more recent designs of database systems already

provide this functionality [Pos13]. Manipulating physical plans, however, comes with many

challenges, as we will see in this chapter, that external applications have to deal with on

their own. In fact, some of these challenges involve operations that require changes of the

underlying database that applications have no control on by just operating on physical plans.

To this end, in this chapter, we introduce the underlying mechanisms for physical

plan instrumentation that SMOKE exposes to instrumentation applications as well as the

underlying changes that we made to SMOKE in support of such mechanisms.

Our mechanisms aim to introduce a core set of instrumentation capabilities that are of

common use across domains, yet involve multiple technical challenges that instrumentation

applications would have to otherwise address on their own. Next, we discuss several

desiderata by instrumentation applications that our mechanisms aim to provide.

Instrumentation Points

Across domains, instrumentation applications need to embed their logic within the

query execution logic. To illustrate, consider a query V=SELECT * FROM R,S WHERE

P.pid=S.pid and assume that SMOKE evaluates V with a nested loop (NL) join; Figure 6.1

shows the plan (middle) and source code (right). Furthermore, the source code in Fig-

ure 6.1(right) is annotated with circled numbers 1 , 2 , 3 , and 4 corresponding to

some points in the logic of the NL join. Such points could be used by instrumentation

applications to integrate their logic within the query execution. Let us consider four simple

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 118

Output V;

for(r in R){

for(s in S){

if(r.pid == s.pid){

1
V.append(merge(r,s))

2
}else{

3
}

}

4
}

Figure 6.1: Physical plan (middle) and source code (right) for our example query V=SELECT *

FROM R,S WHERE P.pid=S.pid. Circled numbers (i.e., 1 , 2 , 3 , and 4) in the source

code denote some points in the logic of the nested loop join that instrumentation applications (left)

could use to integrate their logic.

instrumentation applications including monitoring, online optimizer, negative provenance

manager, and positive provenance manager:

Monitoring. If a monitoring application wants to measure how much time is spent on

materializing join results, the implementation for 1 and 2 could be time_start =

NOW() and total_time += NOW() - time_start, respectively, with NOW() denoting

the current time. Such monitoring results could be used in a number of ways ranging from

self-regulating components to profiling dashboards.

Online Optimizer. Similarly, if online optimizers, such as adaptive join ones [SQL18;

Ora17], want to get online the join cardinality, the implementation of 1 could be as simple

as join_cardinality++. Based on this knowledge, such optimizers could decide to

change the nested loop join to hash join, among other operations, as we will see.

Negative Provenance Manager. Furthermore, if a negative provenance manager wants to

materialize tuples that did not satisfy the join it could use the points 3 and 4 . In 3

we could materialize the S tuples that did not join with a given R tuple, while in 4 we

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 119

could materialize R tuples that did not join with any S tuple if in 1 or 2 we keep track

if there was a match. Based on these results, negative provenance managers could provide

their common functionalities including data debugging or data profiling to name a few.

Positive Provenance Manager. Finally, if a positive provenance manager wants to perform

positive provenance capture, it can use 2 which is precisely the point where we know what

input records contributed to what output records. This also illustrates the main difference

from our initial approach with provenance capture on nested loop joins, that we showed

in Section 3.4.10. If a database was providing such points where we could integrate our

provenance logic in a principled manner within physical operators, we would not have to

hard code changes to the physical algebra, as we did with the first version of SMOKE.

Exposing instrumentation points is the most important and technically challenging

requirement of instrumentation applications—and hence the main focus of this chapter.

Besides instrumentation points, however, instrumentation applications are in need of several

other mechanisms to facilitate the implementation of their logic that we outline next.

Actions on Plans

Instrumentation applications may need to change physical plans by means of modifying,

replacing, removing, and adding operators in the plan either during or before query execution.

To illustrate, consider our NL join example again. The choice of the optimizer for an NL

join physical operator may be poor due to erroneous estimation of statistics involved in

cost-based decisions (e.g., estimated join cardinality). Online query optimization techniques,

such adaptive joins, update statistics at runtime, such as the join_cardinality that

we discussed above, and based on them may change the plan to a more efficient hash-

based join. Conversely, hash-based joins may change to nested loop joins, say, because

during execution there was a change on the memory budget available rendering maintaining

a hash-table expensive. Similarly, applications such as Smooth Scan [BGIA+18] may

want to change selection scans to indexed scans whereas applications such as probabilistic

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 120

predicates [LCKC18] may want to change predicates of a selection, add selections in a

query, or even remove selections from a query.

Operator State Access

Moreover, instrumentation applications may need to read and write the state maintained by

physical operators. For instance, consider again our example query this time implemented as

a hash-based join. In Section 3.4.4, we showed how we can augment hash tables maintained

by hash-based joins with rid arrays to optimize the provenance capture on hash-based joins.

Similarly, online query optimization techniques in the presence of events such as exceeding

memory may want to read hash tables or intermediate relations to perform compression.

Finally, actions on plans that we presented above may also need to be followed by accessing

the state of operators. For instance, if in our example we change the projection clause to

include some of the attributes of R, then the hash table maintained by the hash-based join

may need to change accordingly.

Access to Storage

Additionally, besides only reading and writing the state of physical operators, instrumenta-

tion applications may need to a) create and maintain their own storage either to implement

their instrumentation logic or to create a state that will be used post-instrumentation and

b) read and write the storage maintained by the database. For instance, in our discussion

on instrumentation points on monitoring, time_start is a variable used to implement the

instrumentation logic while total_time is a variable that will be used post-instrumentation

by clients of the monitoring module. Furthermore, adaptive physical database designers,

such as database cracking, need access to the internal storage to reorganize it during query

execution. Similarly, our positive provenance manager, as introduced in Chapters 3 to 5,

needs access to storage to materialize physical representations of provenance that it can later

use to answer analytical provenance queries.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 121

Scheduling

Also, instrumentation applications may need to schedule their instrumentation logic relative

to the execution of individual operators, pipelines, or whole physical plans. For instance,

in our example of provenance tracking on our toy example, paying the whole cost of

provenance tracking during query execution by embedding the tracking logic in 2 may

result in overhead that some applications (e.g., interactive visualizations) may not tolerate.

In this direction, instrumentation applications need both automated and manual ways to

either defer their whole logic after execution or partially inject some logic and defer the rest.

Notifications

Finally, instrumentation applications may also need to specify runtime events, get notified

when these arise, and act upon them in an application-specific way. For instance, the decision

on what to defer and what to inject for provenance capture may be either hard-coded pre-

execution but, in the general case, it is driven by events raised during query execution (e.g.,

the CPU cycles spent on tracking provenance). To enable such functionality, instrumentation

applications should be able to specify events in the form of conditions (e.g., CPU cycles

spent on an operation is above some threshold), take the control when conditions are met,

and perform actions based on them—which is a typical design for reactive systems.

To account for the desiderata discussed above, SMOKE introduces a physical plan in-

strumentation framework with several components (i.e., Points and Instrumentors, Actions,

Scheduler, Storage Manager, and Announcer) exposing the desired mechanisms (i.e., in-

strumentation points, actions on plans, operator state access and storage access, scheduling,

and notifications, respectively). Throughout this chapter, we outline and address the tech-

nical challenges behind each component as well as present our techniques for changing

components of SMOKE (i.e., compiler and physical algebra) in support of such mechanisms.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 122

Contributions and Chapter Roadmap

In the rest of this chapter, we start by introducing the architecture of SMOKE extended

with the physical plan instrumentation framework as well as examples of instrumentation

applications within SMOKE (Chapter 2). Then, we present our contributions as follows:

• We introduce a specification of instrumentation points (Points) on individual physical

operators (i.e., selection, hash-based group-by aggregations, hash-based joins, nested-

loop joins, cross products, projection, and materialization) as well as on pipelines and

plans. Furthermore, we associate each point with data flows (i.e., streams of records

or data structures) that applications can operate on at these points (Section 6.3).

• The specification of points and their associated data flows provide logical instrumenta-

tion semantics. For applications to actually use this semantics they need to implement

programmatic interfaces, termed Instrumentors. Each instrumentor exposes instru-

mentation functions that correspond to instrumentation points and take as input the

associated data flows. To account for flexibility in the implementation of the instru-

mentation logic, we introduce different types of instrumentors (i.e., interpretation-

and compilation-based) each with unique properties. (Section 6.4).

• We introduce our Scheduler that allows applications to defer or inject instrumentation

logic and impose execution orders of instrumentors. (Section 6.5).

• We introduce our Storage Manager that allows applications to create, read, and write

their state within the storage of SMOKE; access the internal state of operators and

pipelines (i.e., hash tables as well as intermediate and output relations); as well as

access the internal storage of SMOKE. (Section 6.6)

• We introduce our Announcer component that allows applications to specify run time

conditions as well as functions to-be-executed when conditions are met. (Section 6.7)

• We introduce our Actions component that allows applications to modify, replace, add,

or remove physical operators. (Section 6.8)

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 123

• We introduce our instrumentation-aware compiler that, given an instrumented physical

plan, generates the source code. Furthermore, we outline the changes in the physical

algebra that we made in support of the instrumentation mechanisms. (Section 6.9).

Expressiveness- and performance-wise, we evaluate our framework throughout Part II.

We finish this chapter with a discussion on potential concerns around physical plan instru-

mentation and conclusions based on instrumentation applications outlined in this chapter

and the provenance techniques that we have already introduced in Chapters 3 to 5.

6.2 Architecture of SMOKE and Examples

Given a physical plan, the problem of focus in this chapter is to provide the necessary mech-

anisms to instrumentation applications to generate and execute an instrumented physical

plan that extends, alters, or analyzes the initial physical plan. To this end, SMOKE provides a

physical plan instrumentation framework and the necessary underlying database architecture

to expose instrumentation APIs and management capabilities to instrumentation applications.

Next, we first present an overview of the architecture of SMOKE for instrumenting physical

plans (Section 6.2.1). Then, we present motivating examples of instrumentation applications

to illustrate the instrumentation process (Section 6.2.2).

6.2.1 Architecture

The architectural design of SMOKE is composed out of three major components relevant to

instrumenting physical plans (i.e., Instrumentation-Aware Query Processor, Physical Plan

Instrumentation Framework, and In-Memory Storage) as depicted in Figure 6.2.

Instrumentation-Aware Query Processor. Given a query from a client, the query proces-

sor first parses and optimizes it by passing it through the Parser and Optimizer modules. The

end result of the Optimizer is a physical plan. At this point, if there are no instrumentation

applications that need to instrument a plan, the Compiler module compiles the physical plan

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 124

Figure 6.2: Architecture of SMOKE.

to source code. It does so by first compiling the physical plan to its internal IR that it then

compiles into source code. Note that the compilation from physical plan to the internal IR

of SMOKE follows the well-known producer-consumer query compilation model [Neu11],

as we discussed in Chapter 2. The end result is passed to the Executor which compiles

the source code to binary, links it with SMOKE, and executes it as such to provide the

results back to the client. If there are instrumentation applications that need to instrument

the plan, then they are handed over the physical plan. Instrumentation applications instru-

ment the plan using the Physical Plan Instrumentation Framework and return back to the

Instrumentation-Aware Query Processor an instrumented physical plan. Then, the Compiler

module performs the same operation as before (i.e., compilation to its internal IR and then

to source code). This time, however, it compiles an instrumented physical plan which is

different as a task from compiling a physical plan, as we will see in Section 6.9.

Physical Plan Instrumentation Framework. To allow instrumentation applications to

instrument physical plans SMOKE exposes a Physical Plan Instrumentation Framework.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 125

The framework consists of several modules each exposing a set of APIs and associated

interfaces to allow applications to push their logic within physical plans (i.e., Points and

Instrumentors); change, replace, remove, and add physical operators included in a physical

plan (i.e., Actions); schedule their instrumentation logic relative to the query execution

logic (i.e., Scheduler); get notified when events arise during query execution and react to

such events in an application-specific way (i.e., Announcer); and read, write, and modify

the physical database design of the database and the state of physical operators as well as

create, read, write, and modify their internal storage (i.e., Storage Manager). Instrumentation

applications can implement their logic using the Physical Plan Instrumentation Framework

by implementing interfaces and using API functions exposed from each component of the

framework, as we will see throughout this chapter.

In-Memory Storage. Finally, the underlying In-Memory Storage of SMOKE is composed

out of scalars, arrays, relations, graphs, and hash tables that both physical plans and in-

strumented physical plans can create, read, write, and modify. Note that instrumentation

applications also have access to storage maintained by physical plans so that they can access

the state of operators. We provide more technical details on the storage of SMOKE and how

applications can use it in Section 6.6 when we present the Storage Manager of the Physical

Plan Instrumentation Framework.

Having described the main components relevant to physical plan instrumentation, we

next discuss how SMOKE processes queries under no instrumentation to contrast it with how

queries are processed under instrumentation.

Query execution under no instrumentation. Consider our toy join example and the

architecture of SMOKE in Figure 6.2. During normal query execution, SMOKE takes as

input V, parses and optimizes it, to get a corresponding physical plan Qp. At this point

assume that there are no instrumentation applications that need to instrument it. SMOKE

then compiles the physical plan into source code and executes it as such.

Query execution under instrumentation. If there are applications that need to instrument

the physical plan of V, SMOKE’s compilation and execution logic changes. Given our query

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 126

V, SMOKE will parse and optimize it to get a physical plan QP. (This phase is the same

with the normal query execution.) At this point, SMOKE sends the physical plan to instru-

mentation applications that want to instrument QP. To illustrate, Figure 6.2(right) shows

three applications (i.e., Online Optimizer, Monitoring, and Provenance Manager)

that are handed over the physical plan. In turn, each instrumentation application instruments

a physical plan by using functions and implementing interfaces of the Physical Plan In-

strumentation Framework. (We describe how these example instrumentation applications

instrument physical plans in Section 6.2.2.) The overall result of this phase is an instru-

mented physical plan QI
P that is returned by the Physical Plan Instrumentation Framework

when instrumentation applications have finished subscribing their instrumentation logic.

Then, the Compiler of SMOKE’s Instrumentation-Aware Query Processor takes as input

the instrumented physical plan QI
P and compiles it into source code QI

S. At runtime, the

instrumented physical plan executes the logic of the instrumentation applications along with

the logic of the initial physical plan (if this has not changed due to instrumentation).

To illustrate the instrumentation process, we next present motivating examples of instru-

mentation applications.

Figure 6.3: Example Instrumentation Applications.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 127

6.2.2 Motivating Examples of Instrumentation Applications

Consider the instrumentation applications depicted in Figure 6.3 (i.e., Online Optimizer,

Monitoring, and Provenance Manager). Next, we outline how they can be imple-

mented within SMOKE. Whenever we use functionality provided by a component of the

Physical Plan Instrumentation Framework, we also provide forward pointers to relevant

sections that describe in more detail the functionality that we used.

Example 5 (Online Optimizer) The Online Optimizer in Figure 6.3 tracks the

join_cardinality by implementing the after_parent instrumentation point of the

NL join operator (Section 6.3). To do so, it needs to implement an instrumentor which

is an interface associated with an NL join operator and exposes functions associated with

its instrumentation points (Section 6.4). Furthermore, it implements an on(Condition)

function which is part of the Announcer component (Section 6.7) and its purpose is to

be called when the Condition is met. A typical Condition for our example could be

that the join selectivity obtained at runtime using the tracked join_cardinality has

surpassed a limit. If this condition is met, then the Online Optimizer uses the replace

function to replace the nested loops join with an equivalent hash-based join implementation

(Section 6.8). Finally, note that the join_cardinality and other variables used in the

calculation of the Condition can be maintained by the storage of SMOKE (Section 6.6).

Example 6 (Monitoring) As another example, the Monitoring application tracks the time

spent on materializing the results of the join. To do so, it can register an array time[]

and a scalar start into the storage of SMOKE using the Storage Manager (Section 6.6).

The array time[] maintains the time taken to materialize each join result, and the scalar

start tracks the current time right before the materializer consumes a join result. Then, it

implements the before_parent and after_parent functions (Section 6.3) of the NL

join instrumentor (Section 6.4): before_parent assigns the current time to the scalar

start, and after_parent computes the time taken on materializing a result (using the

start time and the current time NOW()) and appends it to the array time.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 128

Example 7 (Provenance Manager) Finally, the Provenance Manager tracks negative

provenance from the left side (i.e., the records from the left side that did not contribute

to the join result). To do so, it implements the after_parent, before_right, and

after_right instrumentation points (Section 6.3), which are part of the NL join instru-

mentor (Section 6.4), with relevant logic. While not shown in Figure 6.3, the logic pushed on

these instrumentation points can also be deferred by our Scheduler component (Section 6.5).

Furthermore, note that the Scheduler component is also responsible for ordering the instru-

mentors. For instance, here all three applications push their logic within the after_parent

point. Since there is no ambiguity between them, the Scheduler decides to execute them

based on the order that they register on the after_parent, as we will see in Section 6.5.

In this section, we presented the architecture of SMOKE, described on a high-level the

components of the Physical Plan Instrumentation Framework of SMOKE, and presented

motivating examples of the overall instrumentation process. Next, we dive deeper into each

component of the Physical Plan Instrumentation Framework to describe and address its

challenges. We start our discussion from the instrumentation Points.

6.3 Instrumentation Points

To allow instrumentation applications to integrate their logic within the query execution

logic the first step is to introduce the points where instrumentation logic can be integrated

which is the focus of this section. Based on these points, we can define instrumentors which

are the programmatic interfaces that applications can use to implement their instrumentation

logic, as we will see in Section 6.4.

Challenges. There are two technical challenges behind introducing instrumentation points.

The first challenge is to break down the logic of physical operators into meaningful fragments

so that we can expose a complete and semantically meaningful set of points available for

instrumentation. The second challenge is grounded on the fact that each point in the logic

of a physical operator is associated with information that applications could operate on.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 129

For instance, in the logic of a nested loop join the point following the satisfaction of the

predicate is logically associated with the tuples that satisfy the join predicate that provenance

managers could use for provenance capture purposes. Then, our second challenge is how to

associate each instrumentation point with information that can be processed at these points.

Solution Overview. To address these challenges, in this section we break down the logic of

each physical operator (in the physical algebra of SMOKE) into code fragments to which we

assign instrumentation points. Then, we review each point and associate it with information

that applications could process on these points. Overall, the main design principles behind

the introduction of instrumentation points are three: 1) every semantically meaningful code

fragment is associated with before and after instrumentation points (e.g., for monitoring

applications that need to wrap the logic of the fragment with start and end clock ticks), 2)

every code fragment associated with data flows (i.e., stream of records) or data structures

(e.g., hash tables) due to query processing is also associated with instrumentation points so

that instrumentation applications can operate on them (e.g., for provenance capture), and 3)

for operators that filter data flows (e.g., the selection operator filters out records that did not

satisfy the selection predicate) we introduce new code fragments so that applications can

have access to filtered out data flows (e.g., for negative provenance capture purposes).

Next, we introduce the instrumentation points of selections, hash-based group-by aggre-

gations, and (hash-based and nested loop) joins to illustrate the main concepts behind our

approach. For completeness, the full set of instrumentation points that SMOKE supports in

its physical algebra is in Table 6.1 at the very end of this section.

6.3.1 Selection

Consider the plan and corresponding source code for the selection operator under instrumen-

tation in Figure 6.4. SMOKE’s instrumentation framework exposes three instrumentation

points on selection (i.e., σbeforeP , σafterP , and σN). σbeforeP corresponds to the code

fragment that will be executed for records that satisfy the selection predicate but before

the parent operator of the selection in the physical plan has consumed a record. Similarly,

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 130

for(t in T.records){

if(pred(t)){

// σbeforeP
parent.consume(t);

// σafterP
}else{

// σN
}

}

Figure 6.4: Physical plan (left) and corresponding source code (right) for the selection operator under

instrumentation.

σ
after
P corresponds to the code fragment that will be executed for records that satisfy

the selection but only after the parent operator has consumed each record. Finally, σN

corresponds to the code fragment that would be executed for records that did not satisfy the

selection. (Note that σN does not exist under normal query execution. Rather SMOKE will

introduce it if applications need to integrate their logic in this fragment.)

Now, SMOKE further associates each instrumentation point with data flows that applica-

tions can use in their instrumentation logic. For the case of selection, σbeforeP and σafterP

are associated with the stream of records that satisfy the predicate, while σN is associated

with the stream of records that do not satisfy the predicate. To enable this functionality,

as we will see in Section 6.4 in more detail, such data flows can be passed as parameters

to functions corresponding to instrumentation points so that applications can devise their

instrumentation logic based on them. For instance, a negative provenance manager can

capture the records that did not satisfy the selection by operating on the underlying data flow

of σN. It is important to note, however, that applications may not consider the underlying

data flows in their logic. For instance, a monitoring application, similar to the one that

we introduced in Section 6.2.2, can take time statistics on the parent consumption of the

selection operator by pushing its logic in σbeforeP and σafterP without processing the

stream of records that satisfy the selection.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 131

Figure 6.5: Physical plan (left) and corresponding source code (right) for the hash-based groupby

aggregation operator under instrumentation.

6.3.2 Hash-based Group-By Aggregation

Similarly to selections, we can break the logic of hash-based group-by aggregations in

code fragments and associate them with instrumentation points. The hash-based group-by

aggregation is split into two operators: γht and γscan. γht constructs the hash table that

keeps for every group in the input a payload that keeps track of (the partial state of) aggrega-

tions. γscan scans the hash table, finalizes the aggregations, and emits results to its parent

for consumption. Hence, each operator can be further decomposed in code fragments that

implement the logic of the group-by aggregation. In turn, SMOKE provides instrumentation

points on the underlying code fragments. For completeness, the instrumentation points for

the hash-based group-by aggregations are described in Table 6.1; Figure 6.5 shows these

points on the physical plan for group-by aggregation and as annotations in the corresponding

source code. The design principles behind them are similar to the ones of selections (i.e.,

each key operation in the logic of group-by aggregation is wrapped with before and after

instrumentation points and associated with data flows).

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 132

One important difference from selections, however, is that selections are stateless opera-

tors while hash-based group-by aggregations maintain state (i.e., hash tables) that instru-

mentors need to access. For instance, INJECT provenance capture on group-by aggregations

needs to access state to append rid arrays in the intermediate state maintained for each

group in the hash table, as we showed in Section 3.4.3. To enable this functionality, SMOKE

allows applications to operate on hash tables, similar to how SMOKE allows applications

instrumenting selections to operate on underlying data flows. More specifically, SMOKE

exposes instrumentation points in the logic of group-by aggregation and associates them

with information related to the hash table (as opposed to data flow in the case of selection).

Consider the source code of the group-by aggregation in Figure 6.5(right). Operations on

hash tables include their definition, insertion of a new (key, payload), update of the payload,

probing, and finalizing. In turn, as illustrated in Figure 6.5(right), SMOKE introduces

instrumentation points before and after the definition of hash tables, insertion of new (key,

payload) entries, initialization of keys, initialization of payloads, update, and finalizing of

payloads. Using these points, applications can alter the underlying hash table by adding,

deleting, or altering keys, payloads, and the overall structure of the hash tables. To do

so, SMOKE associates each point with hash table related information, similarly to how we

associated data flows with instrumentation points of selection operators.

More precisely, definition[before|after] are associated with the hash table

definition to allow applications to add; remove; or modify keys and payload definition.

(We discuss these operations in more detail in Section 6.8). keys_initbefore and

keys_initafter are associated with the record used to construct the key and the initial-

ized keys, respectively. probeafter is associated with whether the probe failed or not while

probebefore is associated with the keys to probe the hash table. payload_initbefore

and payload_initafter are associated with the record used to initialize the payload and

the initialized payload. insert[before|after] are associated with keys and payload

that are inserted in the hash table. update[before|after] are associated with the pay-

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 133

load to update and the updated payload, respectively. Finally, finalize[before|after]

are associated with the hash table entry before and after the finalize step.

To illustrate these points, lets us consider the complicated scenario of provenance capture

with the INJECT approach that we presented in Section 3.4.3.

Example 8 (INJECT Provenance Capture on Group-By Aggregation) The INJECT ap-

proach for provenance capture adds an rid array to the payload of each group where it stores

the rids of the record that contributed to the group. After building, during the scan phase. To

implement this functionality using the instrumentation points above we can do the follow-

ing: First, we need to alter the definition of the hash table to add the rid array as another

attribute of the payload. We can do so either before or after the hash table has been defined

(definition[before|after]). Then, whenever we insert a new (key, payload) to the

hash table we need to create a new rid array and add it in the payload. We can do so right

after the initialization of the payload by the group-by aggregation (payload_initafter).

On update of the payload, we also need to append the rid of the current input record to the rid

array that we added to the payload during insertion. We can do so, before or after the group-

by aggregation updates the payload (update[before|after]). Finally, during the scan

phase of the group-by aggregation, we need to get each rid arrays to add it to the backward

rid list. We can do so before or after the finalize step (finalize[before|after]).

6.3.3 Joins

Instrumentation points in the logic of hash-based and nested loop joins follow the design

principles that we discussed so far. The complete list of instrumentation points along with

their description for both join operators is in Table 6.1. Here, we focus on the problem of

associating instrumentation points in the logic of joins with records that did not contribute to

any join result. Essentially, similarly to how σN provides access on the data flow of records

that did not satisfy the selection predicate, here we seek to gain access on data flows for

records that did not satisfy the join predicate.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 134

A straightforward way to accomplish this functionality is by using the instrumentation

points of the join operators. In fact, in Section 6.2.2, where we described the negative prove-

nance manager we did precisely that. However, instead of shifting the burden to applications

for gaining access to such data flows, SMOKE provides direct access to them by implement-

ing the underlying logic on its own. This highlights the powerful concept of compositionality

behind instrumentation: common-place instrumentation logic and instrumentation practices

can be encapsulated into the database and exposed as new instrumentation primitives.

Next, we discuss how SMOKE implements the underlying logic and exposes instrumen-

tation points so that applications can gain access on negative data flows of joins.

Hash-based Joins

We first discuss how to gain access to the records from the left side that did not contribute to

any join result and then to the ones from the right side.

Left side. Records from the build (left) side that did not contribute to any join results

are only known after the join has been executed. This is because we can only be certain

whether a record from the build (left) side of the join has contributed to a join result only

after we have probed the underlying hash table with every record from the right (probe)

side. To provide access to records from the probe (right) side that did not satisfy the join

predicate, SMOKE instruments the hash table of the join to add a bit in the payload of each

key. (Recall from our discussion on instrumentation points on group-by aggregation how

we can alter hash tables in such a way.) When the build has finished, the bit is set to 0 for all

keys. Whenever a probe from the right side succeeds the bit is turned to 1. After the join

execution, SMOKE scans the hash table and emits the records that did not satisfy the join on

the instrumentation point not_joined_from_build. It does so by checking which keys

have the bit set to 1. Finally, note that if the hash table join does not contain the full record,

SMOKE will also append the corresponding rids during building the hash table, so that they

can be accessed from not_joined_from_build.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 135

Right side. Records from the probe side (right) that did not contribute to any join result are

easier to access. This is because after we probe a hash table we know whether the record from

the right side matches or not. Hence, SMOKE introduces a not_joined_from_probe

point that corresponds to the code fragment where the probe fails.

Figure 6.6: Source code for the nested loop join under instrumentation.

Nested Loop Joins

Left side. For a record from the left side of a nested loop join, we know if it does not

contribute to any join result when we finish searching for matches for that record on the right

side. SMOKE keeps track whether a match was found and if not it exposes the left record

on the not_joined_from_left instrumentation point (see Figure 6.6) that corresponds

to the point right after finishing a loop on the right side. (Note that this case is exactly the

example on negative provenance capture that we discussed in Section 6.2.2.) SMOKE keeps

tracks whether a match was found for each left record by updating a flag after the parent of

the join has consumed the join result (see parentafter in Figure 6.6).

Right side. With regards to records from the right side, we can only be sure about which

ones have not contributed to a join result after we have finished the nested loop join execution.

SMOKE provides access to these records similarly to how it provides access to records from

the left side of a hash-based join that did not contribute to a join result. More specifically,

we keep a bit per record of the right side indicating whether or not it has contributed to a

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 136

join result. After the execution of the nested loops, we check the bit per record of the right

side and emit the ones that have not contributed to the join on the instrumentation point

not_joined_from_right (see Figure 6.6).

6.3.4 Other Operators

So far we have introduced the main design principles behind the introduction of instru-

mentation points on selections, group-by aggregations, and joins that SMOKE supports.

Other operators in SMOKE’s physical algebra have been introduced following the same

principles. To avoid redundancy and to ease our presentation we omit further discussion

on other operators. For completeness, the instrumentation points for every operator as

currently supported in SMOKE are described in Table 6.1. Finally, an important note is

that the same principles are also applicable for pipelines and plans (i.e., SMOKE introduces

instrumentation points before and after pipelines and plans and associates them with data

flows such as intermediate, input, and output relations).

Next, we introduce how SMOKE allows applications to implement Instrumentors to push

their instrumentation logic in the instrumentation points that we discussed in this section.

Table 6.1: Instrumentation points provided by SMOKE in the logic of individual physical operators,

pipelines, and plans.

Abbr. Instrumentation Point Short description

SELECTION

σ
before
P before_parent Before the parent of the selection

consumes a record that satisfied the

selection.

σ
after
P after_parent After the parent of the selection has

consumed a record that satisfied the

selection

σN not_satisfied Whenever a record does not satisfy

the selection.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 137

HASH-BASED GROUP-BY AGGREGATION

γht
before
probe before_probe Before probing a hash table on

grouping keys.

γht
after
probe after_probe After probing a hash table on group-

ing keys.

γht
before
insert before_insert Before inserting (group keys, pay-

load) which happens in case probing

fails

γht
after
insert after_insert After inserting (group keys, pay-

load) which happens in case probing

fails

γht
before
def after_definition After the definition of the hash table.

γht
after
def before_definition Before the definition of the hash ta-

ble.

γht
before
keys_init before_keys_init Before the initialization of the

grouping keys.

γht
after
keys_init after_keys_init After the initialization of the group-

ing keys.

γht
before
payload_init before_payload_init Before the initialization of the pay-

load for a new hash table entry.

γht
after
payload_init after_payload_init After the initialization of the pay-

load for a new hash table entry.

γht
before
payload_update before_payload_update Before updating the payload for a

hash table entry.

γht
after
payload_update after_payload_update After updating the payload for a

hash table entry.

γht
after
build after_ht_build After finishing building the hash ta-

ble but before scanning for finalizing

aggregations.

γscanbeforefinalize before_finalize Before finalizing the aggregations

on a hash table entry.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 138

γscanafterparent after_finalize After finalizing the aggregations on

a hash table entry but before sending

to the parent.

γscanafterparent after_ht_parent After sending to parent.

HASH-BASED JOIN

∗ ∗ Hash-based joins share similar in-

strumentation points with the hash-

based group-by aggregation for

defining, probing, and updating a

hash table.

./aftermerge after_merge Right after merging two joined tu-

ples from the two sides but before

the parent consumes the merged re-

sult.

./beforeparent before_join_parent Before the parent has consumed a

join result.

./afterparent after_join_parent After the parent has consumed a join

result.

./
probe
N not_joined_from_probe Whenever a probe fails to find a

match. Used to find the records from

the probe (right) side that did not sat-

isfy a join predicate.

./buildN not_joined_from_build Point introduced by SMOKE for con-

sumption of all records from the

build (left) side that did not satisfy a

join predicate.

NESTED-LOOP JOIN

./before
θ

before_join_predicate Right before the join predicate.

./beforemerge after_merge Right before merging two joined tu-

ples from the two sides but before

the parent consumes the merged re-

sult.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 139

./aftermerge after_merge Right after merging two joined tu-

ples from the two sides but before

the parent consumes the merged re-

sult.

./beforeparent before_parent Before the parent has consumed a

join result.

./afterparent after_parent After the parent has consumed a join

result.

./
right
N not_joined_from_right Point introduced by SMOKE for con-

sumption of all records from the

right side of the join that did not

satisfy a join predicate. In contrast,

to the hash-based join instrumentor,

records from the right side (or probe

side for hash-based joins) are known

only after the nested loop join has

finished.

./leftN not_joined_from_left Point introduced by SMOKE for con-

sumption of all records from the

build side that did not satisfy a join

predicate. In contrast to the hash-

based joined instrumentors, records

from the build side that did not con-

tribute to a join result are available

when we finish the loop on the right

(probe) side

./
rightbefore
N before_right Point right before the inner loop

./
rightafter
N after_right Point right after the in-

ner loop. Same as

not_joined_from_right

but not associated with the negative

data flow.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 140

CROSS PRODUCT

×beforemerge after_merge Right before merging two joined tu-

ples from the two sides but before

the parent consumes the merged re-

sult.

×aftermerge after_merge Right after merging two joined tu-

ples from the two sides but before

the parent consumes the merged re-

sult.

×beforeparent before_parent Before the parent has consumed a

join result.

×afterparent after_parent After the parent has consumed a join

result.

Pafterend after_plan_end Right after a plan ends executing.

MATERIALIZATION

Mbeforematerialization before_materialization Before the materialization of a

record.

Maftermaterialization after_materialization After the materialization of a record.

PIPELINE

`beforestart before_pipeline_start Right before a pipeline starts.

`afterend after_pipeline_end Right after a pipeline ends.

PLAN

Pbeforestart before_plan_start Right before a plan starts executing.

Pafterend after_plan_end Right after a plan ends executing.

6.4 Instrumentation Logic

In the previous section, we introduced points in the logic of physical operators that overall

comprise the instrumentation semantics that SMOKE exposes to applications for integrating

their logic within operators. Building on this semantics, the actual implementation of the in-

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 141

strumentation logic happens within instrumentors (i.e., interfaces that expose programmatic

access to instrumentation points)—which are the focus of this section.

More specifically, next we start by explaining what are instrumentors in SMOKE, their

connections with instrumentation points, and their main types (Section 6.4.1). Then, we

introduce in detail the different types of instrumentors that allow the specification of the

instrumentation logic either imperatively (Section 6.4.2) or, in some cases, declaratively

(Section 6.4.3). Finally, to close our discussion on instrumentors and the instrumentation

process, we present capabilities that SMOKE provides for instrumenting instrumentors

(Section 6.4.4) as well as how applications register instrumentors to physical operators so that

physical operators can execute the instrumentation logic during execution (Section 6.4.5).

class SelectionInstrumentor{

virtual void on_before_parent(...);

virtual void on_after_parent(...);

virtual void on_not_satisfied(...);

};

Figure 6.7: Instrumentor of selection for imperative specification of the instrumentation logic.

6.4.1 Instrumentors and Instrumentation Points

An instrumentor of a physical operator is an interface that exposes functions that applications

implement to push their logic within a physical plan. An important distinction between

instrumentors in SMOKE is on how applications implement their logic within instrumentors.

SMOKE provides two such modes and corresponding instrumentation: imperative and in

some cases declarative. Sections 6.4.2 and 6.4.3 provide more details on them. Here, we

discuss their connections with instrumentation points.

Imperative. For imperative specification, functions exposed by instrumentors correspond to

the instrumentation points of the physical operator, and we refer to them as instrumentation

functions. For instance, consider the SelectionInstrumentor in Figure 6.7 which is an

instrumentor that allows imperative specification of the instrumentation logic on the selection

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 142

operator. The instrumentation functions on_before_parent, on_after_parent, and

on_not_satisfied correspond to the points σbeforeP , σafterP , and σN.

Declarative. For declarative specification, recall that some instrumentation points are

associated with data flows. Each data flow can be treated as a streams of tuples and, as such,

points can be treated as sources of tuples from where instrumentors can consume from. This

allows applications to express their instrumentation logic by using SQL, if this is possible,

and instrumentors only expose functions for registering SQL queries. Finally, we note that

SMOKE under the cover compiles the SQL specification into imperative instrumentors.

Next, we describe in more detail the two types of instrumentors (and their subtypes).

6.4.2 Imperative Specification

We start by describing instrumentors that allow applications to specify their logic impera-

tively. Imperative instrumentors are further subdivided into interpretation- and compilation-

based ones, following similar semantics with interpretation and compilation-based implemen-

tation of physical operators in databases. Recall that databases perform either interpretation-

or compilation-style plan execution each with unique performance characteristics, target-

ing different workload types [KLK+18]. Similarly, SMOKE provides interpretation- and

compilation-based instrumentors that result in interpretation- and compilation-style execu-

tion of the instrumentation logic to account for different instrumentation workload types.

The main difference between interpretation and compilation-based instrumentors lies in

how applications implement their instrumentation functions. Next, we discuss both types of

instrumentors. As an example to drive our discussion, we will consider the implementation

of provenance capture on the selection operator.

6.4.2.1 Interpretation-based Instrumentors

Consider the interpretation-based instrumentor for provenance capture on the selection oper-

ator in Figure 6.8. Interpretation-based instrumentors are C++ objects that implement the

interface of interpretation-based instrumentors of individual operators, pipelines, and plans.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 143

class ProvenanceCapture :

public InterpretedSelectionInstrumentor{

RID[] bw;

RID coid=0, csize=10;

Smoke& db;

ProvenanceCapture(Smoke& d, Selection& op)

:db(d),InterpretedSelectionInstrumentor(op){

bw = db.storage.newRIDArray(csize, "bw_sel");

}

void on_after_parent(Record t){

if(coid+1 == csize) realloc(...);

bw[coid++] = t.rid;

}

};

ProvenanceCapture instr;

for(t in T.records){

if(pred(t)){

parent.consume(t);

instr.on_after_parent(t); // σafterP
}

}

Figure 6.8: Provenance capture on selections with interpretation-style specification of the instrumen-

tation logic (left) and corresponding source code generated after compilation (right).

For instance, ProvenanceCapture in our example extends the interpretation-based instru-

mentation interface of the selection operator InterpretedSelectionInstrumentor by

implementing the on_after_parent(Record) function. Given an instrumented physical plan

with physical operators instrumented as in our example, SMOKE will compile it into source

code such as the one shown in Figure 6.8(right).

Interpretation-based instrumentors will first be initialized and the implemented instru-

mentation functions will be called (e.g., as shown in the source code in Figure 6.8) during

execution to pass the control flow from the plan execution to instrumentors. SMOKE initial-

izes instrumentors by calling their corresponding constructor with a reference to Smoke and

the operator that they instrument. It does so to enable instrumentors to use the underlying

components of SMOKE as well as guide their logic based on the operator they instrument.

In our example in Figure 6.8, ProvenanceCapture during initialization uses SMOKE’s

storage to create a new array of rids and set its name as “bw_sel”. Then, at runtime, the

function on_after_parent(Record) of the initialized ProvenanceCapture object instr

will be called every time the parent returns from its consumption. (Note that the call

parent.consume in Figure 6.8 is syntactic sugar. In practice, SMOKE will inline the

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 144

whole consumption logic of the parent within the source code. In contrast, the code for

instr.on_after_parent(t); will not be inlined within the source code by SMOKE.)

The problem with interpretation-based instrumentors lies on the fact that each call to

the instrumentation function is a virtual function call which impacts performance. (Recall

that we showed experimentally the impact of virtual function calls on provenance capture

in Section 3.7.1.) To avoid this problem, an alternative that allows the instrumentation logic

to be tightly integrated with the query execution is through compilation-based instrumentors.

class ProvenanceCapture :

public CompiledSelectionInstrumentor{

RidArrayVariable bw;

RidVariable coid, csize;

Smoke& db;

ProvenanceCapture(Smoke& d, Selection& op)

:db(d),CompiledSelectionInstrumentor(op){

Compiler& c = smoke.compiler;

coid = c.newRIDVariable();

csize = c.newRIDVariable(10);

bw = c.newRidArrayInStorage(csize,

"bw_sel");

}

void on_after_parent(RecordVariable t){

Compiler& c = smoke.compiler;

Condition cond; CodeBlock b;

cond = c.newCondition(coid+1==csize);

b = c.newCodeBlock("realloc(...)");

c.newIFBLock(cond, b);

c.makeAssignment(bw[coid++], t.rid);

}

};

RID coid=0,csize=10;

RID[] bw = db.storage.newRIDArray(csize,

"bw_sel");

for(t in T.records){

if(pred(t)){

parent.consume(t);

if(coid+1 == csize) realloc(...);

bw[coid++] = t.rid;

}

}

Figure 6.9: Provenance capture on selections with compilation-based specification of the instrumen-

tation logic (left) and corresponding source code generated after compilation (right).

6.4.2.2 Compilation-based Instrumentors

Consider the compilation-based instrumentor for provenance capture on the selection op-

erator in Figure 6.9. Similarly to interpetation-based instrumentors, compilation-based

instrumentors are also C++ objects. This time, however, they implement the compilation-

based instrumentor interface. While both types of instrumentors share the same interface,

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 145

the compilation-based interface differs in terms of what each instrumentation point takes as

input and how applications can express their instrumentation logic.

Compilation-based instrumentors express their instrumentation logic in the internal IR

of SMOKE that we discussed in Chapter 2. Recall, that the IR corresponds to an AST with

nodes defining function, conditional, loop, and code blocks. For expressing logic within

blocks, SMOKE provides a type system involving compilation-based interfaces to primitives

(e.g., int, double precision, string) and data structures such as hash tables, vectors, arrays,

scalars, records, and tables. Logic expressed in this intermediate representation is compiled

to C++ source code by SMOKE’s compiler and to binary using g++. Hence, instrumentors

can also inline their C++-specific code within blocks. We anticipate future work on SMOKE

to compile its internal IR into targets either than C++ (e.g., to LLVM or python) so that

instrumentors can use in their logic the runtimes and capabilities of other target IRs.

To illustrate how SMOKE compiles the instrumentation logic within query plans, con-

sider the provenance capture selection instrumentor and corresponding source code post-

compilation by SMOKE in Figure 6.9. During initialization, the provenance capture instru-

mentor defines its state. To do so, it constructs the RID variables csize and coid as well as

the RID array bw by calling newRIDVariable and newRidArrayInStorage(csize, "bw_sel"),

respectively. SMOKE compilation of the resulting IR for the initialization results in the

first two lines of the source in Figure 6.9 that will initialize at runtime the RID and RID

array variables. Similarly, ProvenanceCapture defined the logic of on_after_parent in

SMOKE’s IR. The result of the compilation of on_after_parent essentially inlines the logic

of provenance capture, that we showed with the interpretation-based instrumentor, into the

physical plan to avoid the virtual function calls of the interpretation-based instrumentors.

Finally, note the difference between the two types of instrumentors in terms of input param-

eters of on_after_parent. The interpretation-based was getting as input a Record whereas

the compilation one takes as input a RecordVariable. Similarly to database management

systems, interpretation-based instrumentors will have to pay the cost of interpreting records

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 146

at runtime whereas with the compilation-based way the logic over records is defined at

compile time and inlined to avoid further interpretation costs.

6.4.2.3 Advanced Compilation-based Instrumentors

The instrumentors we have presented so far, while adequate for simple instrumentation

tasks, they are limited in two ways. First, they are strongly tied to the parameters that

instrumentation functions take as input. Second, for complicated logic where we want to

connect instrumentors or introduce our own instrumentation operators (e.g., similarly to

how we did with provenance capture in Chapter 3), the types of instrumentors presented so

far provide little flexibility (i.e., instrumentation applications need to implement their own

operators and connect them in their own ways).

To address these issues, SMOKE also introduces an advanced compilation-based instru-

mentor that, while it requires a more sophisticated development of the instrumentation logic,

it is more flexible than the previous types of instrumentors. The main idea behind this

type of instrumentor is that each instrumentation point can be considered as a source from

where instrumentors can consume from. This idea forms the basis for introducing physical

instrumentation operators similarly to how databases implement physical operators under

the producer-consumer model, as we discussed in Chapter 2.

Consider our example on provenance capture on selection again. Instead of having the

on_after_parent as a function, the advanced compilation-based instrumentor considers it

as an operator. Similar, to other physical operators under the producer-consumer model,

on_after_parent has a consume and a produce function associated with it. By calling the

produce function on on_after_parent we can request from the physical plan to produce

a piece of information at the instrumentation point σafterP . Note that this information

may not be a record but rather whatever is requested that either physical operators or other

instrumentation operators of the physical plan can produce. In the producer-consumer

compilation model this can be accomplished by asking an operator (e.g., on_after_parent)

to produce whatever is specified in a Required variable. In our example, the Required

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 147

variable could specify that we only want the rid of the input record without caring about

the record itself. (This decouples us from the fixed parameters of the other types of

instrumentors). Then, when the compilation reaches the instrumentation point it can produce

the Required information and let the parent of on_after_parent to consume it.

A more intuitive way to understand the notion of Required in contrast to the fixed

parameters of other operators is through the semantics of a point in a source code. So

far, we have tied each point to particular information that it can be processed at that point.

However, from a source code perspective, the information available at a point is whatever

is in the stack during the execution at this point. As a result, Required can be anything

that could appear in the stack. For more background on how Required works under the

producer-consumer compilation model refer to our background in Chapter 2.

Now, by exposing a unifying producer-consumer framework both for instrumentors

and physical operators we can construct sophisticated plans where each node has the

same compilation and execution interface. This has a nice side-effect that it simplifies the

compilation process. Note that for compilation purposes, the other types of operators are also

treated as being compliant with producer-consumer interfaces. This is because the fixed input

parameters are essentially an instance of what Required can be, instrumentation functions

are essentially consumers of this instance of Required information, and constructors of

either interpretation or compilation-based interfaces serve as produce functions.

6.4.3 Declarative Specification

Whether instrumentation applications implement their logic in an interpreted or compilation

style, they still need to implement their logic imperatively which is time-consuming, error-

prone, and may lack optimizations. In this direction, SMOKE allows instrumentation

applications to express their logic declaratively in SQL terms.

The main idea is that instrumentation functions, in most cases, take us input records from

instrumentation points of a query plan. To this end, if the instrumentation logic involves

processing of records then, in many cases, this logic may be expressible in SQL terms. To

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 148

enable this functionality, SMOKE allows instrumentors to consume instrumentation points

with SQL by registering SQL queries with the function consume_with_SQL which is part

of the interface of instrumentors.

class ProvenanceCapture :

public CompiledSelectionInstrumentor{

...

void consume_with_SQL(){

register("V1 = SELECT * "

" FROM on_not_satisfied");

}

};

RID coid=0,csize=10;

RID[] bw = db.storage.newRIDArray(csize,

"bw_sel");

View V1;

for(t in T.records){

if(pred(t)){

parent.consume(t);

if(coid+1 == csize) realloc(...);

bw[coid++] = t.rid;

}else{

V1.append(t);

}

Figure 6.10: Declarative specification of negative provenance capture on selections (left) and source

code generated by SMOKE after compilation (right).

For instance, consider the ProvenanceCapture instrumentor of a selection operator

in Figure 6.10. This ProvenanceCapture instrumentor extends the compilation-based

ProvenanceCapture instrumentor that we presented in Figure 6.9 by implementing the

function consume_with_SQL. The function consume_with_SQL registers the query V1

= SELECT * FROM on_not_satisfied which will materialize all the tuples that did

not satisfy the selection in view V1. When SMOKE’s compiler is presented with such

registrations, it will first convert them into equivalent compilation-based instrumentation

functions. In turn, the resulting instrumentation functions will be compiled to source code

similarly to how instrumentation- and compilation-based instrumentors are compiled to

source code. (Section 6.9 discusses in more detail the overall compilation process.) The

resulting source code for our example is shown in Figure 6.10(right) with red lines corre-

sponding to the instrumentation logic for the materialization of V1. blue lines correspond

to positive provenance capture, and we include them in the source code to highlight that

applications can implement both imperative and declarative instrumentors at the same time.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 149

Finally, it should be noted that not every instrumentation logic is expressible in SQL

terms. For one, not every function exposed by the instrumentation framework of SMOKE

takes as input records (e.g., instrumentation points on hash tables). Furthermore, even

functions that take as input records may not be able to express their logic in SQL. For

instance, as we will see with physical database designers in Chapter 10, instrumentors take as

input records in order to induce new or restructure the current physical database design. Yet,

we believe that there is ample space for future work so that declarative specifications of the

instrumentation logic can be compiled down into optimized instrumentors. In this direction,

in Part II we present several instrumentation techniques to expose best instrumentation

practices across domains that future declarative specifications could be compiled into.

6.4.4 Instrumenting Instrumentors

Our discussion above on declarative specification of instrumentors introduces us to a central

principle of SMOKE. That of recursive instrumentation or instrumentation of instrumentors.

Consider again view V1 in our example above. This is a SQL query and, as such, we can

instrument it similarly to how we can instrument every query that enters the SMOKE. In

other terms, and besides only instrumentors expressed in SQL terms, an instrumentor can

be instrumented as well by other instrumentors. This is a powerful construction because

it enables several instrumentation capabilities. For instance, as we will see in Section 6.5,

SMOKE internally instruments instrumentors to get runtime statistics (e.g., memory pressure

and CPU consumption) in order to notify the same or other instrumentors about events (e.g.,

the memory pressure or CPU consumption exceeded a limit).

To enable this functionality, SMOKE’s framework follows the logic of instrumentation of

physical plans. This time, instead of instrumenting a physical plan, however, instrumentors

instrument instrumented physical plans. The main idea behind this functionality is that

instrumentation functions can be treated as operators that can expose their own instrumen-

tation points or, in cases when the instrumentation logic uses the underlying constructs of

SMOKE (e.g., hash tables), they can use the instrumentation points provided by SMOKE.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 150

Currently, SMOKE supports only the latter. How instrumentors can introduce their own

instrumentation points is beyond the scope of this work.

6.4.5 Registration Process

So far we have covered how an application can implement the instrumentor of a physical

operator. This is the first step of the instrumentation process. What is left is that the

application needs to register the instrumentor to the physical operator so that the physical

operator can execute the instrumentation logic during execution.

We illustrate the registration process of imperative selection instrumentors. (For other

operators the process is similar). Recall that, given a selection operator, applications

can implement their logic for σbeforeP , σafterP , and σN by implementing the functions

on_before_parent, on_after_parent, and on_not_satisfied, respectively.

To register the selection instrumentor, the selection operator exposes three

function calls (i.e., register_before_parent, register_after_parent, and

register_not_satisfied). Each of these function calls take as input a selection in-

strumentor which is appended on a corresponding array of instrumentors in the selection

operator (i.e., before_parent[], after_parent[], and not_satisfied[]) to ac-

count for cases when multiple applications register their logic. Finally, during execution

of the instrumented physical plan, the selection operator will execute the corresponding

functions of the instrumentors based on what instrumentation points they have registered on.

Note that if the instrumentation logic has been specified declaratively, SMOKE will

compile it into imperative instrumentors. Hence, the registration process is the same but

handled by SMOKE. Also, if the instrumentor is a compilation-based one, note that the

physical operator will not execute in practice the instrumentation functions because these

functions will be inlined in the source code of the physical operator due to instrumentation-

aware compilation process of SMOKE.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 151

So far we have covered the first component of the Physical Plan Instrumentation Frame-

work of SMOKE (i.e., Instrumentors and their instrumentation Points). Next, we continue

with the introduction of the remaining components the framework, starting from Scheduler.

6.5 Scheduler

The Scheduler component of the instrumentation framework is responsible for scheduling the

instrumentation logic relative to operators as well as instrumentors relative to one another.

Challenges. There are two main challenges regarding the scheduling of instrumentation

logic. First, instrumentation points allow instrumentation logic to be injected into query

plans. This results in overheads that some application domains (e.g., interactive applications)

may not tolerate. If that’s the case, then instrumentors should be able to either defer their

whole logic after execution or partially inject and partially defer parts of their logic if they

can tolerate some overhead on query execution. Second, note that multiple instrumentors

can instrument a single instrumentation point. In such cases, SMOKE needs to identify an

execution order of the different instrumentors.

Solutions Overview. To address the first challenge, the Scheduler provides automatic

ways to defer the instrumentation logic after the query execution in many cases. The main

idea behind automatic defer is that (positive or negative) data flows that instrumentation

points correspond to can be regenerated after query execution for instrumentation purposes.

Besides automatic ways, the Scheduler also provides functions that applications can use

for scheduling the instrumentation logic on their own. To address the second challenge,

SMOKE automatically detects if there is any internal dependency between instrumentors and

automatically picks an order for instrumentors per instrumentation point. If dependencies

are found, however, applications are responsible for providing an ordering of instrumentors.

In this direction, the Scheduler exposes ordering functions that applications can use to

provide an order of the instrumentors.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 152

6.5.1 Automatic Defer

The main idea behind automatically deferring instrumentation logic is that the same instru-

mentors that one can define for injection in many cases can also be used under deferred

application of the instrumentation logic. This is possible by first executing an operator

without instrumentation. After finishing its execution we can re-execute the operator, or parts

of its, this time applying the instrumentor functions. Next, we first discuss on an example

to better illustrate this logic. Then, we discuss how SMOKE re-executes operators, in an

efficient manner, if possible, to apply the instrumentation logic. (Finally, note that SMOKE

currently provides automatic defer functionality only for compilation-based instrumentors

because SMOKE needs to detect dependencies and guarantee semantics of operators, which

are simple operations if the logic is expressed in the IR of SMOKE. Automatic defer for

interpretation-based instrumentors is left for future work.)

for(t in T.records)

if(pred(t))

parent.consume(t);

coid=0;

for(t in T.records){

if(pred(t)){

if(coid+1 == csize)

realloc(...);

bw[coid++] = t.rid;

}

}

for(t in T.records){

if(pred(t)){

parent.consume(t);

if(coid+1 == csize)

realloc(...);

bw[coid++] = t.rid;

}

}

Figure 6.11: Provenance capture on selection under INJECT and DEFER semantics.

Consider the examples in Figure 6.11 that perform provenance capture on the selection

operator under DEFER (left) and INJECT (right) scheduling of the instrumentation logic.

The source code for the inject provenance capture in Figure 6.11(right) is the same with the

one we generated in Section 6.4.2 by implementing the on_after_parent function of the

selection instrumentor (modulo the initialization steps for better presentation). The defer

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 153

approach in Figure 6.11(left) first executes the selection. Then, it re-executes the selection,

this time without calling the parent, and applying the logic of on_after_parent.

The way that SMOKE defers the instrumentation logic for instrumentors share many

similarities across operators. In fact, a natural classification for the purposes of deferring

instrumentation logic is whether an operator is stateful or stateless. If the operation is stateful,

SMOKE will attempt to reuse the state for the purposes of deferring the instrumentation

logic. If the operator is stateless SMOKE will re-execute the operator. In both cases, SMOKE

needs to guarantee several invariants so that the deferred instrumentation logic is guaranteed

to result in the same outcome as the injected one. Next, we discuss how SMOKE defers the

instrumentation on selections and hash-based group-by aggregations to illustrate differences

between deferring instrumentation logic on stateless and stateful operators.

Figure 6.12: Deferred instrumentation on selections.

Selection. In the general case, SMOKE defers the instrumentation logic on a selection by

simply re-executing the selection and applying the instrumentors σbeforeP ; σafterP ; and

σN without calling the parent of the selection. The problem with this approach is that if

the instrumentors depend their logic on the selection’s parent consumption, then the parent

needs to be re-executed as well. To account for this semantics, SMOKE will execute the

parents of the selection as long as the parents do not change the state of the database and the

state of the clients that consume the results of a query (i.e., the parent consumption is pure).

For instance, if the query performs an update and the selection instrumentor depends on this

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 154

update, then SMOKE will not perform the instrumentation on a deferred fashion. However,

since SMOKE targets analytical workloads, our focus is on queries that only perform reads

or creates views. As such, there are two cases where re-executing parents is problematic:

when the final operator performs a projection to send tuples to the client or when the final

operator performs a view materialization. In both cases, SMOKE re-executes the parent of

the selection but alters the final projection and materialization operators with dummy ones

(i.e., a projection that sends the results to a dummy client and a materialization operator that

creates a temporary view that will be purged upon completion of the deferred logic).

Figure 6.13: Inject (left) and defer (right) instrumentation on group-by aggregations.

Hash-based group-by aggregations. Similarly to selections, instrumentors on hash-based

group aggregations can be deferred by re-execution. The main problem with this naive ap-

proach is that the hash table constructed for grouping purposes will need to be reconstructed—

which is an expensive operation. To account for this problem, SMOKE pins the hash table

constructed during normal query execution. Then, it reuses it for regenerating the data flows

for instrumentation points. This is accomplished by the operator ./ht (see Figure 6.13(right))

that probes the pinned hash table with the input of the group-by aggregation. As an ex-

ample, this is exactly how we implemented the DEFER provenance capture of group-by

aggregations in Section 3.4.3. Note, however, that this technique does not support deferring

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 155

the logic of every instrumentation point of the group-by aggregation. In particular, defer-

ring the instrumentation points on hash table definition is meaningless since altering the

hash table definition cannot happen in deferred execution (i.e., the hash table is already

used by the group-by aggregation). Furthermore, deferring the initialization of keys and

insertions of entries in the hash tables are also meaningless since the hash table is already

built post-execution. Now, as shown in Figure 6.13(right), what SMOKE supports is the

automatic defer of the payload initializations and payload updates but only for attributes

that are calculated by instrumentors (e.g., the backward rid arrays for provenance capture).

SMOKE also supports deferring the probing points. However, it should be noted that probing

at defer mode is different from probing during the group-by aggregation. This is because in

defer mode the hash table is already constructed. This is an important note for monitoring

applications that may want timing statistics of the hash table probing phase.

6.5.2 Manual Defer

So far, we have introduced cases when SMOKE defers the instrumentation logic automatically.

However, instrumentors can also defer their instrumentation logic on their own. Recall

from our discussion in Section 6.3 and our descriptions in Table 6.1 that plans and pipelines

provide the instrumentation points Pafter
end and `afterend on their end of their execution. These

points are essentially the spots where the defer logic for an operator can be inserted. Hence,

by implementing the instrumentation functions associated with these points, applications can

provide a manual implementation of their deferred logic. In fact, this is also how SMOKE

implements the automatic defer functionality that we discussed above.

6.5.3 Partial Inject-Partial Defer

Both manual and automatic defer are considered with the case where the whole instrumenta-

tion logic is deferred. In practice, as we showed with provenance capture (Chapter 3) and

provenance analytics (Chapter 4), applications typically inject some parts of the logic and

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 156

defer the rest. In this direction, applications can use the defer in connection with the inject

scheduling capabilities of SMOKE to implement partial inject-partial defer schemes.

The main design principle behind how to develop such partial inject and partial defer

techniques is the following. First, injected instrumentation logic creates some state either by

piggybacking it into data structures created during query execution or by maintaining it in

storage handled by instrumentors. Then, the deferred instrumentation logic reads the state

generated by the injected instrumentation logic, the state generated by the plan, and the state

generated by previous pipelines to implement the remaining instrumentation logic.

This is a very important design principle for the implementation of instrumentors

that we believe contributes to best practices when designing applications. Furthermore, it

demonstrates optimizations opportunities that future optimizers of instrumented plans should

consider. For instance, recall the declarative specification of instrumentors. If a query that

expresses the implementation logic is complex enough future optimizers of instrumented

plans should automatically decide which portions of the query to inject and which to defer.

6.5.4 Execution Orders

Instrumentors that implement the same instrumentation function should be ordered with

regards to whose instrumentation function will be executed first. As we discussed in Sec-

tion 6.4.5, instrumentors need to register themselves to operators so that they can be called

when instrumentation points are reached. A natural way to order instrumentors of the same

instrumentation points is by the order they register themselves in the operator. In the general

case, this ordering works unless an instrumentor A depends its instrumentation logic on the

outcome of an instrumentor B that is ordered after A. For such cases, instrumentors can

also provide the order that SMOKE should execute the registered instrumentors. This can be

accomplished by specifying an order number in the register functions of Section 6.4.5.

In this section, we introduced the Scheduler component of the Physical Plan Instrumen-

tation Framework of SMOKE. Next, we continue with our description of the components of

the Physical Plan Instrumentation Framework by introducing the Storage Manager.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 157

6.6 Storage Manager

Instrumentation applications across domains need access to storage for three purposes. First,

to manipulate the state of operators (e.g., the hash table of a hash join) based on their

instrumentation logic. Second, to implement their instrumentation logic or to keep a state

post-instrumentation to allow their clients to query over it. Third, to access and alter the

physical database design of the database during query execution (e.g., as is the case for

adaptive physical database design techniques such as database cracking).

To account for this functionality, the Storage Manager of the Physical Plan Instrumenta-

tion Framework provides applications with functions to read, write, and modify the state

of physical operators as well as create, read, write, and modify their internal storage or the

storage of the database within the implementation of instrumentation functions.

Challenges. There are two main technical challenges related to the Storage Manager that

we address in Sections 6.6.1 and 6.6.2. The first one regards the programmatic interface for

creating, reading, writing, and modifying either the internal storage of SMOKE, the state of

operators, or the internal state of instrumentors. The second challenge regards the operator

state access. Modification of the internal state of an operator means that the semantics of

the initial physical plan may be violated and applications may need a guarantee that the

instrumented physical plan will produce the same results with the initial physical plan. For

instance, a common case, as we showed in provenance capture, is to augment hash tables

of hash joins or hash-based group-by aggregations with rid arrays so that instrumentors of

parent operators can use this information for provenance capture purposes. In such cases,

the instrumented physical plan still has to produce the same output with the initial plan no

matter the changes in the state of intermediate operators.

Solutions overview. To address the first challenge, SMOKE exposes its internal type system

out of which instrumentors can define complicated data structures. To operate on data

structures, SMOKE exposes programmatic APIs over them. To address the second challenge,

SMOKE introduces techniques that guarantee the semantics of initial plans when applications

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 158

access the internal state of operators. In SMOKE, such states can be either hash tables or

relations, and our discussion focuses on them.

Next, we first provide an overview of the type system and data structures of SMOKE that

applications can use for accessing the storage of SMOKE (Section 6.6.1)—to address the

first challenge. Then, we discuss how SMOKE guarantees the semantics of initial plans when

instrumentors change the operators’ state (Section 6.6.2)—to address the second challenge.

6.6.1 Access to SMOKE’s Storage

As we noted in Section 6.4, instrumentors can be treated as new operators that applications

introduce in a plan. Hence, similarly to how physical operators in SMOKE use its underlying

type system and data structures to implement their logic so is the case for instrumentors.

Next, we provide an overview of the type system and data structures that SMOKE provides.

6.6.1.1 Type system

The primitive types that SMOKE provides follow the ones exposed by every major database.

More specifically, SMOKE provides INTEGER (32-bit signed), BIGINT/LONG (64-bit

signed), REAL/FLOAT (IEEE 754 binary32), fixedpoint DECIMAL types, fixed-length

CHAR strings, variable-length VARCHAR strings, DATETIME/TIMESTAMP (ms resolution),

BOOLEAN (1 byte; or 1 bit if NULLs are not allowed), and CBLOB/BLOB types. Furthermore,

SMOKE provides RID types for row identifiers (rids) at different resolutions (i.e., 4, 8, 32,

and 64-bit unsigned). Note that types can be used by both interpretation- and compilation-

based instrumentors that we discussed. In interpretation-based instrumentors they can be

used directly as C++ types. In compilation-based ones, SMOKE’s compiler exposes these

primitive types and associated operations on them (e.g., addition, subtraction, multiplication,

and division) in its internal IR and compiles them into their equivalent C++ types. As an

example, consider the RID coid that we introduced for provenance capture purposes in the

interpretation-based instrumentor. In the compilation-based one, we used RIDVariable

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 159

instead, which is the RID type as provided in the internal IR of SMOKE. At compilation time,

the RIDVariable coid will be compiled into RID coid by the Compiler of SMOKE.

6.6.1.2 Data structures

Out of primitive types now, instrumentors can compose complex data structures. SMOKE

exposes records (each corresponding to a struct with fields typed based on primitive

types or other data stuctures), arrays (single or multidimensional), hash tables, relations

(implemented as arrays of records), and (dense or sparse) graphs. Note that SMOKE is an

in-memory database engine. Hence, all data structures have in-memory representations.

The important thing with SMOKE is that all data structures can be defined in its internal

IRs. Hence, compilation-based instrumentors can use them to express their logic and, in

turn, SMOKE will compile them into specialized data structures. This is important for both

performance optimization as well as for ease of expressing the instrumentation logic.

As an example, consider again the specialized provenance indexes that we introduced

in Chapter 3. These indexes are constructed by specializing the graph data structure (i.e., an

inverted list) that SMOKE provides so that each entry maintains an RID list. Similarly, using

the graph data structure of SMOKE we can use it to maintain lists of records (each record is

a struct with typed fields) instead of RIDs. This is how we constructed the representation

for the group-by aggregation push down optimization in Chapter 5. Hence, out of a single

data structure specified in the internal IR we can devise highly-performant data structures

specialized for our scenario at hand. This demonstrates the power of compilation of data

structures that instrumentors can also use for their specialized instrumentation logic.

Furthermore, on top of data structures SMOKE also provides programmatic APIs for

writing and reading them. Since the data structures that SMOKE provides (i.e., hash tables,

arrays, relations, and graphs) have well-known APIs we omit further discussion.

On a final note, our discussion above focuses only on how instrumentors can define

and use data structures for their own logic. However, the same data structures are used by

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 160

SMOKE to store relations, views, and indexes. As such, instrumentors can use the same

APIs to read and write the underlying physical database design.

6.6.2 Operator State Access

In this section, we discuss how SMOKE enables instrumentors to write intermediate relations

and hash tables, which are the two basic forms of state maintained in plans, all while guaran-

teeing the semantics of initial physical plans before instrumentation. More specifically, we

discuss how SMOKE guarantees semantics if instrumentors add or remove keys and payload

attributes in hash tables. In our discussion, we focus on guaranteeing the semantics of the

hash-based group-by aggregation to highlight the main concepts behind our approaches.

(Similar are our approaches for other operators that maintain hash tables).

6.6.2.1 Adding keys

An instrumentor may add more attributes to keys of the hash-table maintained by a group-by

aggregation typically because it needs to piggyback computation in the current hash table

construction while the parent operators do not change and still require to consume the initial

result. As an example, an instrumentor may add keys in the hash table because it needs to

pre-compute drill down aggregates. SMOKE guarantees the semantics of the initial group-by

aggregation with the following approach:

Recall that a group-by aggregation is implemented by building the hash table (γht) and

then scanning it (i.e., γscan) to finalize aggregates. To guarantee the semantics of the initial

group-by aggregation, γht performs grouping on the union of the initial keys with the keys

of the instrumentors. At this stage, instrumentors can consume the result of grouping on

the union of the keys. Before calling γscan, γht is followed by another operator γROLLUPht

that rolls up the aggregates based on the initial keys. The result of the roll-up is essentially

the result of γht without instrumentation that γscan can consume. Note that to perform the

grouping on the union of the initial keys with the keys of the instrumentors, instrumentors

can either provide a new hash function (in Section 6.8.1 we discuss how to introduce hash

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 161

functions in SMOKE) or default on the behavior of SMOKE that uses multiplicative hashing.

Finally, note that if instrumentors have completely changed the plan (i.e., using the Actions

component that we introduce in Section 6.8) and guaranteeing the semantics of the initial

plan is not required, then γROLLUPht need not be called. Here, however, our discussion

focuses on guaranteeing the semantics of the initial plan.

6.6.2.2 Removing keys

Similarly to adding keys, removing keys may happen as a result of plan change (e.g., an

online optimizer has determined a functional dependency between group-by attributes in

which case dependent attributes can be removed from keys) or because the instrumentor

wants to piggyback a computation in the current query (e.g., a roll-up computation). Again if

the instrumentor does not remove keys due to plan changes we need to guarantee that parent

operators consume the result of the initial γht. To guarantee the semantics of the initial

group-by aggregation, we first perform γht as requested by the initial plan. The result of

γht is consumed can be consumed directly by γscan per normal execution. This guarantees

the semantics of the initial plan. To support instrumentors, however, γht is also followed

by another operator γROLLUPht that performs a rollup to group together on keys after the

removal of the requested keys and combine together aggregates.

6.6.2.3 Adding and Removing Payload Attributes

Similarly to adding or removing keys we can also add and remove attributes from payloads

of a hash table. Adding attributes to payloads follows the logic of user-defined aggregates

(UDAs). Instrumentors need to initialize, update, and finalize payload attributes. These

operations can be defined by instrumentors by implementing the instrumentation points

that correspond to init_payload, update_payload, and finalize_payload that we introduced

in Section 6.3. In contrast to UDAs, however, note that SMOKE allows instrumentors to add

any type of data element (i.e., from simple scalars to data structures such as graphs) as a

payload attribute. For instance, in Chapter 5, we introduced a group-by aggregation push

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 162

down optimization that pushes a hash table within each group computed by the group-by

aggregation. This construction led us to derive a data cube.

To conclude, we note that techniques to handle the addition and removal of payload

attributes are simpler than adding or removing keys because now we do not need to re-group

or un-group due to key additions or removals, respectively. Payload attributes are simply

propagated to instrumentors and not considered by parent operators.

6.6.2.4 Access to intermediate relations

Finally, access to intermediate relations follows the logic of adding and removing payload

attributes in hash tables. More specifically, instrumentors can add or remove attributes in

relations that can be propagated to instrumentors and not considered by parent operators.

In this section, we introduced the Storage Manager component of the Physical Plan

Instrumentation Framework of SMOKE. Next, we continue with our description of the

components of the Physical Plan Instrumentation Framework by introducing the Announcer.

6.7 Announcer

The Announcer component of the Physical Plan Instrumentation Framework provides

applications with the ability to specify runtime events (e.g., a hash table uses memory above

a specified threshold, or the execution of an operator has exceeded a time threshold), get

notified when such events take place, and react on these events in application-specific ways.

To enable this functionality in a principled manner, the Announcer component provides

a function on(Condition, Resolve, RequiredParemeters) that applications can

use to register a Condition, the function Resolve that will be executed when the condition

is met, and the parameters RequiredParemeters to be passed to the Resolve function.

We illustrate the functionality provided with the on function with two examples: com-

pression on provenance capture and online optimizer.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 163

Example 9 (Compression on Provenance Capture) In our example of provenance capture

on the selection operator in Section 6.4.2, we created an RID array RIDArrayVariable

bw. A condition on the size of this array could be bw.size > 30. The RID array starts

with 10 elements and is increased by a factor of 1.5 on reallocation. Hence, the condition

bw.size > 30 will be meet on the third reallocation call which will trigger a Resolve

function. An interesting Resolve function, in this case, could be a compressor of the RID

array. Finally, the RequiredParameters include the rid array variable bw and, possibly,

the variables coid and csize in case compression decreases the size of the RID array.

(This is because the variables coid and csize that keep where to place the next element

and the current size, respectively, may need to be updated.) Hence, the on function can be

specified as on(bw.size > 30, compressor, {bw, coid, csize}).

Example 10 (Online Optimizer) Similarly, the Online Optimizer example that we

showed in Section 6.2.2 tracks the join cardinality online. The condition that the optimizer

specifies is if the join cardinality goes above a threshold. We can express this condition as

join_cardinality > thr. When this condition is met the Resolve function replaces

the nested loop join with a hash-based one. (This replace operation is provided by the

Actions component that we discuss in Section 6.8). Finally, the RequiredParameters

include the nested loop and hash-based join physical operators. Hence, the on function can

be specified as on(join_cardinality > thr, replace, {NL,HJ}).

Now, there are two main technical challenges behind the evaluation of on functions:

how to decide when to evaluate a condition and how often to evaluate a condition. The first

regards the fact that conditions need to be re-evaluated when variables involved in their

specification (e.g., bw and join_cardinality in our examples) are updated during query

execution. To actually trigger a re-evaluation, however, SMOKE needs to track when these

variables are updated. The second regards the fact that evaluating a condition every time a

variable involved in a condition is updated may add substantial overhead to query execution.

Hence, applications need to specify how often conditions should be evaluated.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 164

To address the first challenge, SMOKE performs static analysis of the instrumentation

logic to derive what variables are involved in a condition. Then, during execution, updates on

such variables trigger the re-evaluation of conditions. Currently, SMOKE supports only static

analysis of its internal IR. Hence, this functionality is only supported for compilation-based

instrumentors. To address the second challenge, SMOKE allows applications to specify

how often a condition is evaluated in the on function. More specifically, the on function

is extended to include an optional parameter, namely, every, that applications can set to a

time interval passed which a condition needs to be evaluated. We believe more complicated

schemes (e.g., trigger re-evaluation only after variables in the specification of a condition

have been updated a certain number of times) are interesting future work.

In this section, we described the mechanisms provides by the Announcer component

of the Physical Plan Instrumentation Framework so that applications can specify runtime

events, get notified when such events arise at runtime, and react to these events in application-

specific ways. Next, we conclude our introduction of the components of the Physical Plan

Instrumentation Framework by introducing the Actions component.

6.8 Actions

We conclude our introduction of the components of the Physical Plan Instrumentation

Framework of SMOKE by introducing the operations provided by the Actions component

for changing plans structurally. More precisely, the operations that Actions provide include

replacing, adding new, or removing physical operators from a plan as well as modifying op-

erators by means of either changing their internal logic (e.g., adding or removing predicates

from a selection) or their input and output schemas (i.e., by adding or removing attributes).

Providing these operations to applications, however, comes with multiple technical

challenges that we address in this section. Next, we describe and address challenges behind

changing schemas (Section 6.8.1), changing the logic of operators (Section 6.8.2) as well as

replacing (Section 6.8.3), adding (Section 6.8.4), and removing (Section 6.8.5) operators.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 165

6.8.1 Changing Input and Output Schemas

Each physical operator in a physical plan can have one or more inputs and an output that are

defined from the optimizer as part of the generation of the physical plan. Instrumentation

applications such as provenance managers or interactive data profiling frontends need to

change these schemas to produce more or fewer attributes or piggyback computations within

inputs and outputs to implement their instrumentation logic.

Challenges. There are two challenges involving changing input and output schemas of an

operator. The first challenge is that applications need APIs to express what attributes to add

to or remove from such schemas. The second challenge regards the fact that changing the

output schema of an operator (i.e., to add or remove attributes) has an effect both on parents

of the operator, because they now need to account for their changed input schema, as well

as on its children, because they may need to produce more or fewer attributes.

Solutions Overview. To address the first challenge, SMOKE provides applications with

APIs that alter the definition of input and output schemas (i.e., add or remove attributes from

relations or keys and payloads from hash tables). To address the second challenge, SMOKE

provides both automated methods to propagate schema changes to parent (i.e., to consume

other inputs than the initial ones) and children operators (i.e., to produce more or fewer

attributes for their parents) as well as disambiguation APIs for cases when propagating

changes to parent and children is ambiguous and cannot be automated.

6.8.1.1 Schema Changing APIs

To better understand how instrumentors can alter input and output schemas, recall

from Chapter 2 that each operator in SMOKE maintains a description of its inputs and

output. For convenience, we replicate the interface of physical operator description

PhysicalOpPNodeDescription from Chapter 2 in Figure 6.14.

A dataset description DatasetDescription is an object that defines the schema of

inputs and outputs of physical operators. In SMOKE, there are two such types of

DatasetDescription depending on the physical representation of the dataset: 1) a

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 166

struct PhysicalOpPNodeDescription{

StateDescription state;

bit is_blocking;

DatasetDescription output;

DatasetDescription left;

DatasetDescription right;

};

Figure 6.14: Interface of physical operator description PhysicalOpPNodeDescription.

RelationDefinition and 2) a HashTableDefinition corresponding to cases where

inputs or outputs are relations and hash tables, respectively. SMOKE extends the inter-

faces of RelationDefinition and HashTableDefinition to include functions that

instrumentors can use to alter the schema of the corresponding relation and hash table.

Next, we first describe the APIs exposed from RelationDefinition and

HashTableDefinition. Then, we discuss how SMOKE propagates changes on input

and output schemas to parent and child physical operators.

Relation Definition

struct RelationDefinition{

Schema s;

void add_attribute(Attribute);

void remove_attribute(string);

};

Figure 6.15: Interface of relation definition RelationDefinition with functions for adding

and removing attributes from its schema.

Consider the RelationDefinition interface in Figure 6.15. The interface maintains

the schema Schema of the relation (i.e., attributes and their order in the relation) and

exposes two low-level functions: add_attribute and remove_attribute that allow

applications to append and remove attributes in and from the schema.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 167

Hash Table Definition

struct HashTableDefinition{

KeysDefinition keys;

PayloadDefinition payload;

void add_key(KeyDefinition);

void add_payload_attribute(Attribute);

void remove_key(KeyDefinition);

void remove_payload_attribute(Attribute);

void set_hash_func(HashFuncDefinition);

void set_equals(EqualsDefinition);

};

Figure 6.16: Interface of hash table definition HashTableDefinition with functions for adding

and removing keys and payload attributes for its schema.

Consider the HashTableDefinition interface in Figure 6.16. The interface

maintains they key and payload definitions and exposes 6 low-level functions (i.e.,

add_key, remove_key, add_payload_attribute, remove_payload_attribute,

set_hash_func, and set_equals) that allow applications to alter the definition of keys,

payload attributes, and internal hash and equals functions of the hash table. While each

function name in HashTableDefinition is self-explanatory, we next provide their expla-

nation for completeness and to introduce terminology that we use in subsequent sections.

Adding and removing keys. add_key and remove_key take as input a KeyDefinition

and add it in or remove it from the KeysDefinition keys, respectively. A

KeyDefinition is defined as a struct with a name, a type, and possibly an associ-

ated hash functionc hfunc. Finally, KeysDefinition maintains a map from the name of

a key definition to the corresponding KeyDefinition object and the order of keys.

Adding and removing payload attributes. Similarly, add_payload_attribute and

remove_payload_attribute take as input an Attribute and add it in or remove

it from the PayloadDefinition payload. An Attribute is defined as a struct

with a name and a type. (This is the same with attributes of a relation). Finally,

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 168

PayloadDefinition payload maintains a map from attribute names to attributes and

their order within the payload.

Setting hash and equals functions. Adding or removing keys results in a new key type

for the hash table. Unless the resulting key type has a standard hash and equals function

that SMOKE will pick automatically, application need to register a new hash and equals

functions that SMOKE will use to hash keys and check for equality among them, respec-

tively. This can be done through the function set_hash_func(HashFuncDefinition)

and set_equals(EqualsDefinition) function of the HashTableDefinition in-

terface. For interpretation-based instrumentors both HashFuncDefinition and

EqualsDefinition are pointers to functions that perform the hash computation and

check for equality among keys, respectively. For compilation-based instrumentors,

HashFuncDefinition and EqualsDefinition are pointers to functions that define

the hash and equals function in SMOKE’s internal IR.

Having described the two main forms of datasets, we next discuss how changing schemas

forces SMOKE to automatically propagate changes to parent and child operators and cases

when applications need to introduce their own logic for changing parent and child operators.

O = SELECT year, product,

COUNT(*) AS cnt,

SUM(revenue) AS total_revenue

FROM SALES

GROUP BY year, product;

Figure 6.17: Example group by query and corresponding physical plan that we use in our discussion.

To better explain the different techniques, we use a group by aggregation example

and corresponding physical plan (see Figure 6.17) that computes the number of sales and

overall revenue per year and product over a sales table SALES(revenue,year,product).

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 169

Furthermore, we limit the discussion around changing keys and payload attributes of hash

tables. (Similar are our techniques for changing relations and we omit a discussion on them.)

6.8.1.2 Notifying Parents

If an instrumentor decides on altering the keys and payload attributes of a hash table

maintained by an operator, then parent operators may no longer be able to operate given

that their initial input schema (i.e., the schema of the hash table or relation) has changed.

In Section 6.6.2, we covered cases when parent operators need to continue to operate on

the outputs of the initial operators. Here, we discuss how to propagate changes (i.e., parent

operators change as an effect of changing the schemas of their children).

Figure 6.18: Propagation of changes to parents upon removing a payload attribute (i.e.,

SUM(revenue)) from the hash table maintained by γht of our group-by aggregation example.

Removing keys or payload attributes

Upon removal of a key or payload attribute, SMOKE will propagate the removals to parent

operators, if necessary. Consider again our example in Figure 6.17. If an instrumentor of

γht removes the payload attribute that corresponds to SUM(revenue), SMOKE will remove

from the result O the attribute SUM(revenue). To do so, SMOKE removes the corresponding

SUM(revenue) attribute from the schema definitions of the operators γscan and π. For

completeness, the overall process is illustrated in Figure 6.18.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 170

Figure 6.19: Propagation of changes to parents upon removing a payload attribute (i.e.,

SUM(revenue)) and resolution of ambiguities by instrumentors.

Now, if removed keys or payload attributes are involved in the logic of parent operators,

then SMOKE will not provide a resolution on its own but rather expects the application

to introduce further instrumentors to provide a resolution. SMOKE does so because the

resolution logic depends on the application logic. To illustrate, consider a variant of the

query O that also has a having clause HAVING SUM(revenue)>20000 AND COUNT(*)

< 15000. Removing SUM(revenue) from γht invalidates the HAVING clause. For its

resolution, the instrumentation application could remove the HAVING clause altogether or

only remove the clause SUM(revenue)>20000. Both operations are provided by actions on

plans that we introduce in Section 6.8. However, deciding how to resolve the inconsistency

is application-dependent. For completeness, the process is illustrated in Figure 6.19.

Finally, note that the removal techniques that we have shown so far can be applied

both at compile time as well as during execution. The difference is that during execution

SMOKE will also purge potential materialization of removed attributes. Furthermore, while

our discussion focuses on removing keys and payload attributes from hash tables the same

propagation techniques apply for removing attributes from relations.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 171

Figure 6.20: Propagation of changes to parents upon adding a payload attribute (i.e.,

MIN(revenue)) to the hash table maintained by γht of our group-by aggregation example.

Adding keys or payload attributes

Upon addition of a key or payload attribute, SMOKE will propagate the additions to parent

operators similarly to how it propagates changes upon their removal. For instance, suppose

that we want to compute the MIN(revenue) along with the other aggregates of O. In this

case, an instrumentor should add another attribute to the hash table maintained by γht. In

turn, SMOKE will propagate the addition to parent operators as shown in Figure 6.20.

Figure 6.21: Example of propagating changes to parents upon adding a payload attribute in a hash

table.

Instrumentors, however, may also want to add keys and payload attributes so that

only instrumentors of parent operators can consume the added keys or payload attributes.

For instance, consider again our example with the added HAVING clause and adding

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 172

min_revenue in the payload attributes. Now, suppose that we do not want min_revenue

to be propagated to the output. Rather, we want to make an instrumentor of the HAVING

clause that stores the min_revenue for every year, product group that was filtered out

(e.g., for data explanation purposes). Figure 6.21 shows this process. To stop the propaga-

tion of the min_revenue to the parent of HAVING, instrumentors simply need to remove

the attribute from the output schema of the HAVING operator. In turn, SMOKE will stop

propagating the addition to parent operators.

Now, note that in contrast to removing keys and payload attributes, adding keys or

payload attributes does not conflict with logic introduced in parent operators. Hence,

instrumentors do not need to resolve ambiguities. Furthermore, similarly to removing keys

and payload attributes, the techniques are similar for propagating changes upon adding

attributes to relations, and we omit further discussion. Also, the propagation techniques

upon adding keys or payload attributes can be applied at either compile or run time. In case

the addition happens at runtime, SMOKE needs to extend relations and hash tables with more

space to keep the new attributes. Finally, adding keys complicates the logic of the operator

that maintains the hash table, and SMOKE provides automated ways for its resolution that

we presented in Section 6.6.2.

6.8.1.3 Notifying Children

Similarly to how we notified parent operators for changing the schema of a hash table, we

also need to update children to a) propagate more attributes, if needed, due to the addition of

payloads attributes and b) do not propagate attributes if these are only involved in keys and

payload attributes that are removed. Both operations are handled by SMOKE automatically.

In the case of adding keys and payload attributes, instrumentors should request more

attributes from base relations involved in the computation. In turn, SMOKE propagates down

to scans of base or intermediate relations the request to produce more attributes as well as

changes the input and output schemas of intermediate operations to include potential new

attributes. Note that at the stage of adding new keys and payload attributes, however, the

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 173

way an instrumentor wants to compute their value is not known yet (i.e., the values of keys

and payload attributes are computed based on the instrumentation logic). Hence, SMOKE

will propagate the request for attributes to children only when instrumentors specify the

logic on how to compute a new value and associate it with a new key or payload attribute.

This happens within instrumentation functions that we discussed in Section 6.4.

Similarly, when instrumentors remove keys and payload attributes, SMOKE will ask

child operators to produce fewer attributes. Note that in contrast to adding keys, SMOKE

will stop asking children not to produce attributes if these are involved in the logic of some

child operation. To illustrate, consider that a modification to our example query O to include

a selection on revenue (e.g., revenue > 100) before performing the group-by aggregation

and an instrumentor requires that we remove SUM(revenue). In this case, SMOKE will

still require the initial scan operation to provide the revenue attribute so that the selection is

still valid, the input schema to the selection will stay the same, but the output schema of

the selection and the input to γht will not include the revenue. In contrast, if the selection

on revenue was not present, as in our initial query O, then SMOKE asks the scan to not

produce revenue and will change the input schema to γht to not consider it.

So far, we have described how SMOKE enables instrumentors to alter the definitions

of input and output schemas of physical operators as well as how the new definitions

can be propagated in parent and child operators. Next, we present techniques that allow

instrumentation application to change the internal logic of operators.

6.8.2 Changing Internal Logic

Changing the input and output schemas of an operator is one way to change the internal

logic of an operator. Another way involves changing how operators compute their internal

logic. Next, we address how to change the internal logic of two important operators (i.e.,

selections and joins) through changing selection and join predicates.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 174

struct CNF{

Tree and_or;

void remove_condition(Condition);

void add_condition(Condition);

void change_condition(Condition old_condition,

Condition new_condition);

virtual void navigate();

};

Figure 6.22: Interface of CNF with functions for adding, removing, and changing conditions.

Selection

The internal logic of a selection operator is defined by the selection predicates that it

evaluates. In SMOKE a selection predicate is an AND-OR tree that encodes the CNF

condition of the selection. SMOKE allows instrumentors to alter the AND-OR tree by either

adding, removing, or changing conditions. To enable this functionality, the interface of CNF

(see Figure 6.22) includes four functions (i.e., add_condition, remove_condition,

replace_condition, and navigate) that instrumentors can use to add new conditions,

remove current conditions, replace conditions, and navigate the AND-OR tree to add

conditions in specific sub-conditions. Finally, note that SMOKE also accounts for cases

where conditions repeat in a CNF. (For such cases, the AND-OR representation is a graph

rather than a tree.) If applications want to remove or replace a condition that repeats in a

CNF, they need to navigate the graph to remove or replace repeated conditions explicitly.

Joins

Similarly to selections, joins are also defined based on join conditions that are represented as

AND-OR CNFs. Hence, applications can alter the join predicate similarly to how they alter

the selection predicate. An important distinction on joins is that applications are not allowed

to violate the semantics of the operator. For instance, if the join operator is a hash-based

one, applications are not allowed to add conditions that involve inequalities among the join

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 175

keys. If an instrumentor wants to perform such an operation, it has to replace the hash-based

join with an equivalent under replacement nested loop join, as we discuss next.

6.8.3 Replacing Physical Operators

Challenges. Replacing operators comes with two challenges: First, we need to guarantee

the correctness of the initial plan under replacement. For instance, if we replace a nested

loop join with a hash join during execution, the hash join needs to be set in such a way so that

it does not produce the results that the nested loop join has already produced. Note, however,

that this correctness is not always required. For instance, an application may want to replace

the nested loop join with ripple [HH99] or wander [LWYZ16] join and applications should

be able to specify if the semantics of the initial plan should be guaranteed. Second, replacing

operators that are already instrumented means that instrumentors of the old operator will

become invalidated and new instrumentors need to be introduced for the new operator.

Solutions overview. To address the first challenge, SMOKE introduces classes of operator

equivalences under replacement (e.g., by introducing implementations of nested loop joins

that can replace hash join implementations during execution) as well as allows instrumenta-

tion applications to replace physical operators with operators that define on their own. To

address the second challenge, SMOKE allows applications to assign instrumentors of old

operators to new ones. Furthermore, SMOKE can also assign old instrumentors to new ones

automatically, but applications need to request such functionality. For instance, consider

the Monitoring application in Figure 6.2 that we discussed in Section 6.2.2. Whether

we change the nested loop join to a hash join, the logic of how to compute the time spent

on parents does not change. As such, instrumentation applications can either assign the

logic of the before_parent and after_parent of the nested loop join to the ones of

the hash join or ask SMOKE to perform such assignments automatically. Note that in case

that such assignments are not possible then instrumentation applications need to introduce

new instrumentors for the new operator.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 176

6.8.3.1 Equivalence Under Replacement

To address the first challenge, we introduce the notion of equivalence under replacement as

a property of two operators, say, A and B, as follows:

Property 1 Two operators A and B are equivalent under replacement iff:

1. B does not produce any tuples that have already been produced by A

2. B generates all tuples that would be generated by A, if A was not replaced by B.

If two operators share this property then the following holds:

Theorem 1 Consider a physical plan P and a physical operator A in P. Furthermore,

consider that we want to replace A with an operator B in the plan. If A and B are equivalent

under replacement then the new plan P′ that has B in the place of A guarantees the

semantics of the initial plan P.

Proof 1 The proof is straightforward. We show that by contradiction. Assume that replacing

A with B does not guarantee the semantics for the query. Consider R(A) to denote the results

of A. Also, consider the execution of A up to a specific point. Denote this partial execution as

R(A′). Then the execution of B guarantees that it generates R(B) s.t. R(A′)∪R(B) = R(A).

Producing R(A), however, guarantees the semantics of the query which leads us to a

contradiction. Hence, replacing A with B guarantees the semantics of the physical plan. �

Hence, to address the first challenge our goal is to introduce techniques that given an

operator A can generate an operator B that guarantees the two conditions of Property 1. For

instance, if we are given a nested loop join at some point during its execution, our goal is to

provide a hash join implementation that guarantees the two conditions of Property 1. For

optimization purposes, however, we should also avoid introducing new operators and plans

that perform again work already performed by the initial plan. For instance, if the nested

loop join has computed some join results then the hash join should build on this work.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 177

In Section 12.2, we will introduce operator implementations in such equivalence classes.

Here, we note that SMOKE allows applications to replace operators by picking other operators

from their equivalent under replacement classes or by introducing their own operators.

6.8.3.2 Assigning Instrumentors

The address the second challenge, SMOKE allows applications to assign instrumentors

of the old operator to the new ones. This can happen based on the assignment opera-

tor of instrumentation functions. For instance, a statement NL.on_before_parent =

HJ.on_before_parent when an application replaces the nested loop (NL) join with a

hash-based (HJ) one, forces SMOKE to execute the on_before_parent of the NL join

when it executes the HJ one. SMOKE also maps semantically equivalent instrumentations

points, such as before_parent of a nested loop join with the before_parent of a hash

join. Applications can then ask SMOKE to map the instrumentation functions of the old

operator to the new one automatically. We omit a description of these mappings since they

are evident from our discussion in Section 6.3.

So far, we have covered how Actions enable applications to modify the schemas of

operators, change their internal logic, and how to replace operators. Next, we conclude our

discussion on Actions by briefly discussing how applications can add and remove operators.

6.8.4 Adding Physical Operators

Instumentation applications such as probabilistic predicates [LCKC18], looka-

head [PDZ+18] and sideways [IT08] information passing, or techniques that introduce

vectorization in compilation-based engines [MMP17] need to add operators within plans.

To accommodate this functionality, SMOKE’s instrumentation framework allows the

addition of a new operator in a plan with the function add_operator(Operator new_op,

Operator parent_op). This operation will add the operator new_op as a child of the

parent parent_op in the plan. (Note that to add an operator as the new root operator of the

plan, applications can specify the parent as NULL.) Furthermore, every operator added in a

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 178

plan should be defined under the producer-consumer prototype. Based on the definition of

added operators, SMOKE identifies what new attributes may be needed by child operators

and propagates these requests as we discussed in Section 6.8.1.3. Finally, note that besides

the add_operator function, applications are also allowed to directly add operators by

manipulating the physical plan tree, as defined in Chapter 2.

There are two important notes concerning additions of operators; one on performance

and another on correctness. We address them below:

First, when new operators are added at execution time, a compilation cost needs to

be paid for generating the source code of the new plan. SMOKE can mitigate this cost at

compile time if instrumentors specify their logic for adding operators before execution. In

this case, SMOKE pre-compiles the plans with the added operators and switches between

binaries (i.e., from the plan without the addition to the plan with the addition) at run time.

Second, adding operators should conform to the way the processing was happening

before the addition. For instance, if we introduce an operator that takes as input records

and batches them (e.g., as is performed by query-compiled engines to perform vectoriza-

tion [MMP17]) then it is not just sufficient to add a batch operator. Parent operators should

be changed as well. Essentially, this means that the input schema and its physical repre-

sentation of the added operator should conform with the input schema of its parent while

the output schema and physical representation of the output of the added operator should

conform with the input of the parent operator. In any other case, a) other new operators

should be added, so that parent operators can continue consuming and children can continue

producing on the same way as before or b) operators of the initial plan should be changed

(using other actions described so far) to account for the newly added operators.

6.8.5 Removing Physical Operators

Similarly to adding operators, SMOKE also allows applications to remove operators from a

plan. There are two types of removal: removing a single operator and removing the whole

subplan rooted at a specific operator. SMOKE handles both cases by exposing a function

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 179

remove_operator(Operator, [SINGLE|WHOLE]) that either removes the operator

from the plan or removes the whole plan rooted at the operator.

There are four concerns regarding removing operators. First, removing individual

operators in SMOKE results in connecting the child of the operator with its parent. Under

this semantics, not every removal is possible. For instance, consider removing a join whose

inputs were two base relations and its output is passed to a group-by aggregation. There

is no semantically meaningful way of connecting two base relations with the group-by

aggregation. For such cases, applications should follow up by removing other operators of

the plan to make it valid. Second, removing the whole subplan rooted at an operator when

the operator is not the root of a pipeline, results in the pipeline being left hanging. In such

cases, SMOKE will remove all operators up to the root of the pipeline. If this operation is

performed at runtime and the pipeline has produced some results, then next pipelines will

proceed with the partial result as created by the so-far execution of the removed pipeline.

The third and fourth concerns are the same with the concerns of adding operators in a

pipeline (i.e., the compilation cost at runtime that can be mitigated to compile time if the

removal logic is fixed at compile time and that the removal should preserve the invariant that

the output of the child of the removed operator with the input of the parent of the removed

operator should have matching schemas and physical representations).

With the introduction of the Actions component, we have concluded with the overall

description of the Physical Plan Instrumentation Framework. Next, we discuss how we

changed database components (i.e., compiler, physical algebra, and optimizer) in support of

the Physical Plan Instrumentation Framework.

6.9 Changes on Database Components

We conclude our discussion on physical plan instrumentation by discussing changes that we

had to make in underlying database components in support of instrumentation.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 180

6.9.1 Instrumentation-Aware Compiler

SMOKE under normal query execution compiles physical plans to source code following

the producer-consumer compilation model [NL14], as we discussed in Chapter 2. Under

instrumentation, however, SMOKE needs to compile instrumented physical plans. To compile

an instrumented physical plan, SMOKE also follows the producer-consumer compilation

model [NL14]. The main idea is that instrumentation points can be considered as points

in plans from where instrumentors consume from. Intuitively then, under the producer-

consumer compilation model, instrumentors should ask the physical plan to produce the

information they require in their logic and, in turn, physical plans need produce what was

requested by instrumentors, and instrumentors should finally consume from it.

Now, compilation under instrumentation involves two challenges not addressed by the

traditional producer-consumer compilation model for normal query compilation.

First, recall that normal physical plans are trees. As such, the producer-consumer

compilation operates by calling the producer of the root of the tree. In turn, each physical

operator node in a physical plan will call the produce functions of its children. Finally,

leaf nodes will start producing and will call their parents to consume what they produced

for them. In turn, intermediate nodes that consume from their children will also produce

for their parents. The process stops when the root operator consumes. Of course, during

compilation, data is neither produced nor consumed. Rather, operators generate source

code that implements the logic for producing and consuming data. For more details on

compilation under normal query execution refer to Chapter 2.

The problem with compilation under instrumentation is that an instrumented physical

plan is not a tree but rather a graph where each physical node of the base query has multiple

consumers (i.e., consumers of the physical plan and consumers due to instrumentation). To

perform compilation of an instrumented physical plan, we have changed the compiler of

SMOKE to compile instrumented physical plans with the following strategy:

Before calling the produce function of the root operator, it calls the root of every

instrumentor. As soon as an instrumentor calls the produce functions of physical nodes of

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 181

the base query their compilation stops. When compilation has stopped for all instrumentors,

then the compilation of the base query begins. When the physical operator of the base

query, from which instrumentors has requested to consume from, can start producing the

information requested by instrumentors, then these physical nodes will call the consume

functions of the instrumentors (i.e., the ones that we showed in Section 6.3).

Finally, note that in practice the above strategy operates on pipelines of the physical

plans. We do so because instrumentors may want information from the execution of previous

pipelines in their initialization and overall logic and because there is no point in having an

instrumentor initialized at the beginning if it is only going to be used in later pipelines.

6.9.2 Physical Algebra

Throughout our discussion in this chapter, we also discussed changes that we made to the

underlying physical algebra of SMOKE. More specifically, each instrumentation point, that

we introduced in Section 6.3, corresponds directly to a fragment in the implemented logic

of each operator. As such, we changed the physical operators to introduce these points in

physical operators as points from where instrumentors can consume data flows and integrate

their logic. Examples of such minimal changes on the implementation of physical operators

are included in Sections 6.3 and 6.4. Finally, instrumentors need to introduce their logic

within operators by first registering to instrumentation points. Hence, we extended physical

operators with registration functions, as we discussed in Section 6.4.5. We believe these

changes are minimal in comparison to rewriting physical algebras every time we need to

introduce a technique within a database.

6.9.3 Optimizer

Finally, we discuss on a change that we made to the optimizer to account for the declarative

(in SQL terms) specification of the instrumentation logic, as we discussed in Section 6.4.3.

When the instrumentation logic is expressed as SQL queries, we need to process it as

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 182

such by the database. These SQL queries, however, involve “sources” that correspond to

instrumentation points rather than actual tables. To account for such queries, the optimizer

needs to know that an instrumentation point is a source, has a schema, and associated

statistics with it. To do so, SMOKE introduces special entries for instrumentation points in

its catalog that further associates with statistics (e.g., estimated cardinalities of data flows).

6.10 Discussion

Having discussed in detail the components of the Physical Plan Instrumentation Framework,

in this section we discuss potential concerns around physical plan instrumentation. More

specifically, we first elaborate on potential issues and advantages of alternative database

designs (i.e., interpretation and compilation engines) on the implementation of our instru-

mentation mechanisms on such engines. Then, we discuss security concerns associated with

physical plan instrumentation. Finally, we discuss the target audience for our Physical Plan

Instrumentation Framework and expected user experiences.

Interpretation-based query engines

SMOKE is a query-compiled database engine and uses the benefits of compilation for the

introduction of instrumentation logic within a physical plan. In contrast, interpretation based

engines that do not compile a physical plan, but rather interpret the physical plan, may be

limited in their ability to support Instrumentors. To be more precise, for an engine to allow

instrumentation of a physical plan, it needs to be capable to change the underlying physical

operators at runtime. Based on this observation, we can divide interpretation-based engines

into how their underlying runtime allows code modification.

Engines implemented in languages that provide instrumentation features are more

naturally amenable to physical plan instrumentation. For instance, physical operators

supported by engines that are implemented in Python or Javascript can be easily instrumented.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 183

This is because such languages provide instrumentation mechanisms (e.g., monkey-patching)

that allow us to modify code (and by extension physical operators) at runtime.

Engines that have physical operators pre-compiled to machine code (e.g., implemented

in C or C++) are harder to instrument. This is because the ways to introduce instrumentation

of physical plans in these engines involve low-level operations (e.g., binary instrumentation

and changing virtual table entries) that besides being low-level are also specific to the

compiler of the language.

Finally, note that a recent trend is to have interpretation engines that deploy just-in-time

(JIT) compilation for parts of physical operators. For instance, PostgreSQL 11 uses JIT

compilation for expression evaluation and tuple deforming. In this direction, we believe

that JIT compilation of the instrumentation logic could follow the mechanisms that we

proposed in this chapter for the introduction of compiled and interpreted Instrumentors all

while avoiding the difficulties of instrumenting physical operators of pre-compiled engines.

Note that in our discussion above, our focus is on pointing out advantages and disad-

vantages when considering injection of instrumentation logic within physical operators of

interpretation-based engines. This discussion is related to Points, Instrumentors, and the

mechanisms we proposed behind them. Other instrumentation operations that we proposed

in this chapter (i.e., Actions, Scheduler, Storage Manager, and Announcer) have similar

advantages and disadvantages. A main exception regards the Actions component. Actions

that modify physical plans at runtime are more efficient and easier to design in interpretation-

based engines. This is because in compilation-based engines every modification of a plan

needs to be followed by recompilation. This recompilation may incur a significant compila-

tion cost. To mitigate this cost, SMOKE performs ahead-of-time (AOT) compilation of the

modified plan (i.e., the plan after Actions will take place). AOT compilation is hard to design,

however, because we need to make a decision on when to mitigate the cost (e.g., overlapped

with the initial plan execution or along with the compilation of the initial plan that SMOKE

currently deploys). In contrast, modifying a physical plan in an interpretation-based engine

does not incur such a cost because a modified plan will be interpreted.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 184

Compilation-based engines

In contrast to interpretation engines, compilation engines can in principle follow the tech-

niques that we discussed in this chapter since SMOKE is a compilation engine itself. However,

compilation engines may differ in their design and each such design may have an effect on

the actual implementation of an instrumentation framework. Here we highlight how some

of such designs can affect such an implementation.

First, multiple compilation engine leverage LLVM [LA04] and LMS [RO10] for compila-

tion of physical plans. This design entails that compilation-based instrumentors (introduced

in Section 6.4.2.2) should also be implemented using low-level LLVM or LMS IRs. While

there are multiple benefits provided by such IRs and their corresponding compilation frame-

works, one potential shortcoming is the lack of easy to use debugging tools. In contrast,

SMOKE’s internal IR essentially mirrors and gets compiled directly to C++ to provide

readability and debugging capabilities (e.g., through gdb or valgrind) of the compiled instru-

mented physical plans. This is an important difference because, in contrast to implementing

physical operators that have fixed and well-defined logic, instrumentation logic can be

arbitrarily complicated—rendering readability and debugging mechanisms essential for the

development of instrumentation applications.

Furthermore, compilation-based engines may not follow the producer-consumer compi-

lation model in which case compilation of the instrumentation logic needs to be revisited.

For instance, recently Tahboub et al. [TER18] proposed a query compilation model under

which each physical operator takes as input callbacks. Then, each operator is responsible to

produce its results and apply the callbacks on the produced result (which in turn produce

their own results). From an instrumentation perspective, this means that instrumentors will

need to push their logic within callbacks and the underlying compiler needs to account for

the fact that callbacks do not just generate streams of tuples but also the result of the instru-

mentation. As such, we believe there is ample of space for future work to better understand

the design principles of compilation engines that do not only account for compiling queries

but also their instrumentation.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 185

Security

Physical plan instrumentation allows external applications to modify physical plans. As

such, it can raise several security concerns. Consider the following examples:

First, consider an instrumentor that wants to read an attribute from a database table, and

this instrumentor is run by a user that does not have read privilege on this attribute. As

another example, consider the case where an instrumentor has bugs and crushes. Finally,

consider an adversarial user that creates an instrumentor to instrument and change the logic

of queries posed by other users in adversarial ways.

These examples are just three out of potentially many security concerns that can arise

in the context of physical plan instrumentation. Currently, SMOKE does not provide any

mechanisms to ensure the resolution of such security concerns. However, SMOKE and its

instrumentation mechanisms have been built in such a way to account for future introduction

of security. Next, we discuss points in our design specifically targeting the security concerns

of the above examples to better propose future work on instrumentation security.

Considering our first example, the underlying storage of SMOKE is only accessible

through our Storage Manager. Hence, when a user runs an instrumentor that asks to

read portions of the database that the user has no read privilege on, SMOKE can detect

this problem through the Storage Manager and internal catalogs holding user privileges.

Considering our second example, currently SMOKE executes a compiled instrumented plan

as a separate process of the database server process. Hence, if the instrumented physical

plan crashes the server remains functioning. This approach is often limited because if the

instrumentation logic crashes that should not necessarily mean that the query should also

stop its execution (e.g., if provenance capture on a group-by aggregation crushes there is no

reason why the group-by aggregation should stop executing). In this direction, we believe

future work on continuing executing the query when the instrumentation logic crashes (e.g.,

through recovering the execution of the query and discarding the instrumentation logic) is

also important. Finally, considering our third example, SMOKE supports catalogs hosting

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 186

user privileges. Extending such catalogs to maintain security rules on instrumentors (e.g., a

user cannot instrument the queries of a different user or group) is important future work.

Target audience and user experiences

The primary target audience of the Physical Plan Instrumentation Framework of SMOKE is

database engineers that want to modify physical plans without having to rewrite the database

internals. As such, the Physical Plan Instrumentation Framework is by design low-level to

account for flexibility and, as such, may be considered as having a steep learning curve. For

such an audience, however, a steep learning curve is sensible considering that the alternative

is to rewrite the database internals or to find workarounds, as we discussed in Chapter 1.

Furthermore, end users of databases are highly unlikely to use such instrumentation frame-

works directly. Rather, we believe end users want to use the applications that can be built on

top of such frameworks. For instance, it is up to a database engineer to inject provenance

capture and analysis within a database (and this is possible through our Physical Plan Instru-

mentation Framework). End users can then use logical provenance query constructs without

worrying on how the capture logic is implemented within the database. In this direction,

we believe that understanding the connections between instrumentation applications (e.g.,

monitoring can be used by online physical database designers, provenance can be used by

interactive visualization applications, and logging can be used for lifecycle management and

data debugging) and defining the target audience and associated user experiences around

each instrumentation application is an important future work to better define the scope and

mechanisms that instrumentation-enabled engines need to support.

CHAPTER 6. PHYSICAL PLAN INSTRUMENTATION 187

6.11 Conclusions

In this chapter, we introduced a physical plan instrumentation framework that exposes

mechanisms that applications can use to implement their instrumentation logic. Throughout

our discussion, we outlined several simple techniques across domains (e.g., monitoring,

online optimizers, negative provenance managers, and online query optimizers, and physical

database designers) and how they can use the provided mechanisms. Connections with

other techniques across such domains will be outlined in Part II which evaluates further

our mechanisms. In connection with our previous chapters, we noted how provenance

capture techniques can push their logic within physical operators through Instrumentors,

how to use the Scheduler for injecting and deferring the provenance capture logic, and how

to use the Storage Manager for materializing provenance information. Also, combining

the mechanisms of the Scheduler with the Announcer provides functionality that future

optimizers for provenance capture purposes can consider including online compression of

provenance indexes and deciding between INJECT and DEFER semantics at runtime.

188

Part II

Applications

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 189

Chapter 7

Expressing Interactive

Visualizations

In Part I, we described the mechanisms that SMOKE exposes for instrumentation purposes,

and we discussed how to express and optimize a provenance manager based on them. The

end result is an instrumentation-(and by extension provenance-)enabled database. In this

part, we aim to delve deeper into instrumentation-driven application domains to show how

to express and optimize their core logic using the mechanisms of our database engine.

In this chapter, we start our discussion over application domains by expressing interactive

visualizations within the context of our instrumentation-enabled database engine. More

specifically, we first introduce iSQL which is our relational query and data models for the

declarative specification of interactive visualizations. Then, we show how iSQL can express

several classes of interactive visualizations in a purely relational manner. While iSQL is

expressive enough to support the specification of well-known interaction classes, we show

why a purely relational approach leads to specifications that are hard to express and optimize.

To address this problem, we show how to express data-intensive interaction classes (i.e.,

multi-view linking, interactive selections, and logic over selections) using our provenance-

and instrumentation-related capabilities. As a result, we can cast their optimization into

optimizing provenance and instrumentation constructs in our database engine.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 190

7.1 Introduction

Interactive data visualizations enable users to rapidly recognize important patterns within the

data, by leveraging the powerful capabilities of the human perceptual system, and to identify

and explore salient relationships that are not readily evident from a static visualization. As

such, they constitute a cornerstone in many human-in-the-loop data analysis and management

systems across domains including data exploration and decision-support [Ora14; Pow18],

knowledge exploration [TSW11; ADM+15], debugging and analysis of machine learn-

ing and statistical models [Ten16; RSt16; SGB+18], interactive data cleaning [KPHH11;

KPP+12; WM13; WMS12] and profiling [EEI+13; PBF+15], to name a few.

The increasing importance and ubiquity of interactive visualization tools, along with

the massively increasing scale of modern datasets, has seen a convergence between the

visualization and database communities. Visualization systems [SRHH15; SMWH17;

BOH11] incorporate data processing capabilities such as filtering, grouping, aggregation,

ordering, and scaling in order to compute data summaries that are further rendered on the

screen. However, increasing dataset sizes has caused data processing to become a core

bottleneck that impedes interaction responsiveness. To illustrate, consider the multi-view

interactive visualization in Figure 7.1:

Figure 7.1: Example of an interactive visualization.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 191

Example 11 (Exploring Flight Delays) Figure 7.1 visualizes a breakdown of delayed

flights [Ont] coupled with a crossfilter interaction technique [cro15]. Each chart renders the

output of a count aggregation of delayed flights grouped by different attributes: by state A ,

airline B , departure delay C , date D , month E , and year F . Thus, the visualization

may be modeled as a large relational workflow composed of these aggregations, along with

visualization workflows to map the results to visual marks (e.g., rectangles and polygons)

which, in turn, are mapped to pixels on the screen. Crossfilter interactions let users select

data in any of the views and see the other views update to show the statistics represented by

the selected subsets. For instance, an interactive range selection on the years (F) triggers the

re-execution of the aggregations, this time considering only records in the selected range

[2005, 2008], and the update of charts to reflect only the aggregations in this time range.

The main characteristic of interactions is that humans are on the critical path of data

analysis and non-interactive response latency (e.g., >150ms) to their interactions has a

detrimental effect on their overall data analysis [Shn84; Han12; HS12]. For instance,

consider that the response to the interactive selection of years [2005-2008] in our example

takes more than a second to update the charts. Also, assume that throughout this time users

observe the interface that still reflects the initial group-by aggregations (i.e., the visual pane

has not been updated to reflect there is a process going on). As soon as the response time

exceeds interactive latencies (e.g., 150ms), users will start inferring that either all flights

lie between the years [2005-2008], or more generally that flights from other years have no

impact on the overall trends, or that the application has crashed. All three scenarios have a

negative effect on the overall analysis and highlight the importance of interactivity.

Drawing the connection between relational workflow processing and interactive vi-

sualization not only improves the productivity of developers by introducing higher level

languages to express visualizations, but has led to a rich area of performance-oriented

database research with the goal to increase the interactivity and user engagement with

front-ends. For instance, recent research efforts adapt query optimization techniques to

the visualization domain and develop novel techniques inspired by unique characteristics

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 192

of visualizations. These include adapting columnar execution [KPP+12], perception- and

visualization-aware online aggregation [PSWC17; AW16; KBP+14; RAK+17], speculative

exploration sampling [KJTN14], and visualization prefetching [BCS16], to name a few. No-

tably, most of this work has been focused on speeding up specific visualization interactions

or specific classes of database queries.

In this chapter, we build on this convergence in two-folds: First, we introduce iSQL

which is our relational approach towards the specification of interactive visualizations.

By expressing interactive visualizations in relational terms (i.e., with SQL-like constructs

and relational data models) we can bring the optimization technology of databases to the

interactive visualization domain, which is dominated by manual implementations with

ad-hoc and error-prone optimizations. Having described iSQL, then we highlight the

connection between provenance and instrumentation with visualization interactions. More

specifically, we show that specifying interaction classes in purely relational terms leads to

specifications that are hard to express and optimize. To address this problem, we extend

iSQL with provenance constructs and accounting for the provenance- and instrumentation-

aware capabilities of SMOKE to show that common interactions that are hard to express and

optimize in purely relational terms, can be naturally expressed and optimized in a blend of

relational, provenance, and instrumentation terms within our database engine.

Contributions and Chapter Outline

In the rest of this chapter, we start with the necessary setup (Section 7.2). Then, we present

our contributions as follows:

• We introduce iSQL, a relational data model and language for expressing interactive

data visualizations (Section 7.3).

• We evaluate the expressiveness of iSQL along several classes of interactions from

well-known interaction taxonomies. (Section 7.4)

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 193

• We explain why classes of data-intensive interactive visualizations are hard to express

and optimize in relational terms. To address this problem, we draw the connections

between interactive data visualizations with provenance and instrumentation per class.

Based on these connections, we show how we can express these classes in a blend of

relational, provenance, and instrumentation terms. (Section 7.5)

7.2 Setup

To ease our discussion throughout this chapter, we use the following database of delayed

flights to build static and interactive data visualizations and explain our overall techniques.

flights(fid,y,m,d,h,adelay,ddelay,origin,dest,carrier)

airlines(carrier,name,iata,active)

airports(apid,name,iata,lat,lon,elevation,city,state)

states(state,name,polygons[])

Figure 7.2: The flights database schema.

The flights table records delayed flights: for each flight with id fid, flights records

its arrival and departure delays (i.e., adelay and ddelay, respectively) from a source

airport with id origin to a destination airport with id dest along with the departure time

of the flight (i.e., year, month, day, and hour) and the airline that operated the flight

carrier. The airports table records the id of each airport (apid) along with its name,

iata, latitude (lat), longitude (lon), elevation, city, and state. The airlines

table stores the id of an airline (carrier) along with its name, iata, and whether or not

the airline is still active. Finally, the states table records the state code, the name of

the state, and a multidimensional array of polygons that corresponds to the geographical

bounds of states in the US. Colored attributes correspond to pk-fk relations.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 194

7.3 iSQL: Data Model and Language Overview

In this section, we present iSQL, our relational approach towards the specification of interac-

tive data visualizations. More specifically, we first express static visualizations in a relational

manner (Section 7.3.2). Then, we introduce user interactions as event streams (Section 7.3.3).

Finally, we use these concepts to express interactive data visualizations as database queries

involving joins between event streams and static visualizations (Section 7.3.4). To ease our

discussion in this section, we start by presenting a linked-brushing example. (Section 7.3.1).

7.3.1 Linked-Brushing Example

To better illustrate key points of our data model and language we use a simple linked brush-

ing [BC87] example that most visualization toolkits and systems implement imperatively.

Delays = SELECT AVG(adelay) AS avg_adelay,

AVG(ddelay) AS avg_ddelay,

AL.carrier AS carrier

FROM flights AS F, airlines AS AL

WHERE F.carrier = AL.carrier

GROUP BY AL.carrier

Figure 7.3: Average arrival (avg_adelay) and departure (avg_ddelay) delays per carrier

materialized in the relation Delays.

Example 12 (Linked Brushing) Consider the SQL query in Figure 7.3 and the linked

brushing example in Figure 7.4. The query in Figure 7.3 materializes the the average arrival

(avg_adelay) and departure (avg_ddelay) delays per carrier. Figure 7.4 visualizes the

Delays data and shows step-by-step an application of linked brushing: initially, a static

visualization is composed of a scatterplot that correlates the average arrival and departure

delay of each carrier, and a histogram that shows the number of flights for each carrier.

(Step 1) shows a mouse drag interaction that selects a rectangular region in the scatterplot,

alongside all marks (i.e., circles) inside the selection. The subset of carriers that correspond

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 195

Figure 7.4: Brushing and linking example using the Delays relation.

to the highlighted circles is “selected” by turning red, as are the histogram bars corresponding

to selected states. Post-selection, the user may reset the visualization (Step 2), keep the

points highlighted, or perform another selection.

The goal of this section is to show how such data interactive visualizations can be

composed in a purely relational manner to avoid imperative implementations and to optimize

them from within a database. Next, we introduce the data model and language overview of

iSQL for the specification of static data visualizations, that follows prior work, and how we

extended them for the support of interactive data visualizations.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 196

7.3.2 Static Visualizations

In line with prior work [Wic09; SMWH17; WBM14], we model a static visualization as

a mapping from a set of database relations R = {R1, . . . , R|R|} in the data domain to

relations in the visual domain. Furthermore, we model the visual domain using two types of

relations: Marks and Pixels relations. Next, we give a brief description of the two relation

types as well as the notion of the mappings in iSQL.

Marks. The former type of relations (i.e., Marks) describe shapes (e.g., lines, circles, and

polygons) to be rendered in the visualization. Each such relation type corresponds to a

specific mark type (e.g., line, circle, or rectangle), with attributes including the geometry and

visual encoding of the corresponding marks. Furthermore, visual representations that have a

graph-like structure (e.g., dendrograms or trees) can be encoded as facts over Marks relations

that constitute dimensions. For instance, a tree can be modeled by a Marks relation involving

circles (i.e., to encode the nodes of the tree) whereas the connections between nodes can be

materialized in a separate (fact) relation. Finally, visualizations that are composed out of

multiple visualizations (e.g., widgets or even complicated dashboards) follow a similar data

model with primitive marks encoded in (base) Marks types of relations and connections

between them are encoded in fact relations.

Pixels. The latter type of relations (i.e., Pixels) models the rasterized pixels shown to the

user. More specifically, Pixels is a special relation P(x,y,R,G,B,A) that models the color

(R,G,B) and transparency (A) encodings at every pixel coordinate (x,y) of a given screen.

Mappings. Finally, the mapping of the static visualization encapsulates the data transfor-

mations (e.g., aggregation and scaling) that encode data summaries as geometry and visual

encodings (e.g., height and color of a circle). Since, both the data and visual elements are

represented under the relational model, the mapping is expressed using relational queries.

However, note that while Marks and Pixels are declared in the relational model, their con-

tents may not be persisted in the database, if not needed. Instead, they can be projected and

maintained by the underlying rendering devices.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 197

SPLOT_POINTS =

SELECT 8 AS radius,

'gray' AS stroke,

'gray' AS fill,

linear_scale(Delays.avg_adelay, scale_x) AS center_x,

linear_scale(Delays.avg_ddelay, scale_y) AS center_y,

carrier

FROM Delays, scale_x, scale_y;

scale_x = SELECT MIN(avg_adelay), MAX(avg_adelay) FROM Delays;

scale_y = SELECT MIN(avg_ddelay), MAX(avg_ddelay) FROM Delays;

P = render(SELECT * FROM SPLOT_POINTS);

Figure 7.5: Static visualization for the scatterplot of our example.

,

To illustrate our formalism of static visualizations, consider the iSQL code snip-

pet in Figure 7.5. It shows a query that maps the flight delays data from the relation

Delays(carrier, avg_adelay, avg_ddelay) of Figure 7.3 to a Marks relation

SPLOT_POINTS that represents the circles of the scatterplot in Figure 7.4. Each pro-

jection clause defines an attribute of the circle mark, such as the radius as well as stroke

and fill colors. The linear_scale UDFs linearly transform the departure and ar-

rival delays to their corresponding pixel coordinates—the UDF uses the scale_x and

scale_y relations, which include the minimum and maximum values of the avg_adelay

and avg_ddelay attributes, to compute the transformation. The last attribute, namely,

carrier, is typically used in visualizations as a way to ensure a correspondence between

the rendered mark and the input record. This is required to support responses to user inter-

actions, as we will see in Section 7.3.3. (In Section 7.5, we explain why these annotations

introduce problems and present provenance extensions that enable this correspondence in

a declarative manner.) Furthermore, Marks relations are rendered using the render table

UDF. (Note that iSQL supports both table and record UDFs. However, they are restricted to

pure functions without side effects except rendering functions that may produce visual side

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 198

effects.) Finally, note that similar queries and rendering functions can be used to define the

static visualizations of the histogram and axes in Figure 7.4.

The above follows the procedures described in [WBM14] and illustrates how static

visualizations can be expressed as database views. Next, we describe our extensions towards

the specification of interactive data visualizations.

7.3.3 User Interactions

Interactive visualizations enable exploration capabilities by executing queries in response

to user interactions. To encode this process, iSQL models user interactions as streams of

low-level events (e.g., mouse down, move, and up) out of which we can extract compound

events (e.g., mouse drag) as patterns over the streams of low-level events. Besides the

decoupling of the logical event representation from its physical (e.g., in browsers and GUI

frameworks), this representation has two important properties. First, it allows us to model

responses to user interactions as queries involving event streams, visual elements (encoded

as relations in Section 7.3.2), and base relations. Second, it allows us to draw a direct

analogy between an interaction and a database transaction: each compound event, that

defines a complex interaction, may either transition the database to a new version or rollback

to the version right before the beginning of an interaction. This functionality is important

for the specification of complicated interaction techniques (e.g., undo and redo).

To capture event streams of low-level events, we adopt the data model of CQL [ABW03]:

given an alphabet of low-level events Σ (e.g., Σ = {mouse_down, key_press, . . .}), we can

model a stream of them as an (unbounded) set of ordered pairs 〈s, t〉, where s ∈ Σ and t

is the time when a user performed s. Each symbol in the alphabet (e.g., mouse down) is

defined as a relation with a meaningful schema (e.g., mouse_down can have attributes x and

y to encode where the mouse_down event took place). The schema of the stream is the set

union of the schemas of individual events.

To extract compound events from low-level event streams, we could leverage a number

of automata-based approaches that identify complex patterns in event streams [CCD+03;

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 199

C = EVENT MOUSE_DOWN AS D, MOUSE_MOVE* AS M*, MOUSE_UP AS U

WHERE FORALL m IN M m.y > 5

RETURN (D.t, D.x, D.y, 0 AS dx, 0 AS dy),

(M.t, D.x, D.y, (M.x - D.x) AS dx, (M.y - D.y) AS dy)

Figure 7.6: Event statement to generate a compound event stream.

ABW03; WDR06; SRHH15; KHDA12; JMS+08]. For instance, regular expression-based

languages such as Proton [KHDA12] are used in the user interface literature to recognize user

gestures. We borrow these ideas in a sequence matching language similar to SASE [WDR06],

which compiles patterns into non-deterministic finite automata (NFA).

The iSQL code snippet in Figure 7.6 shows the event statement that specifies the user

drag interaction of our example in Figure 7.4. It does so by defining a compound event

stream C as a sequence of mouse down, repeated mouse move, and mouse up events. This

sequence is compiled into an NFA. Non-matching event types (e.g., a key press), as well

as events that fail predicates in the WHERE clause, are filtered from the input stream and

not processed by the NFA (e.g., a D.y > 1 predicate could remove mouse down events

below 1 pixels from the input stream). Existential and universal quantifiers transition the

underlying NFA to a reject state upon failure (e.g., a mouse move event with M.y=4 would

transition the NFA to a reject state due to the universal quantifier FORALL in Figure 7.6).

Finally, the RETURN clause defines a sequence of union-compatible projection statements,

and concatenates all statements that can be evaluated by the matching events. For instance,

the iSQL code snippet in Figure 7.6 first emits the mouse down event, followed by each

move event along with its distance from the down event.

As a concrete example, Table 7.1 illustrates the state of the relation C during a user’s

drag movement. The mouse down at t=0 inserts the first record, based on the first projection

statement of the RETURN clause. Note, that no record is inserted in C at t=0 due the second

projection statement of the RETURN clause. This involves mouse move events that have not

happened yet. Subsequent mouse move events insert corresponding records into C based on

the second projection statement of the RETURN clause. For every mouse move, no record is

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 200

inserted in C due to the first projection statement because it does not involve mouse move

events. Finally, the mouse up event transitions the NFA to an accept state and terminates

insertions into the relation C. (Note that no record is inserted in C due to the mouse up event

because it is not involved in any projection statement.)

Under this model, an EVENT statement defines the boundaries of an atomic user inter-

action in a direct analogy to “transaction” boundaries. A start state of the EVENT NFA

begins the transaction while accept states commit possible changes to the database triggered

by insertions into event tables. To prevent never-ending transactions, we constrain EVENT

statements to sequences that end with a non-repeating event, and the underlying NFA can

transition only once to an accept state and commit a transaction. Reject states of the NFA

lead to aborting the transaction. By default, whether we commit or abort, the event stream

will be cleared to initiate new user interactions. Finally, note that the main difference from

traditional transactions is that the “uncommitted” state, such as the state of Marks relations

throughout the mouse move events in our example, can be exposed to the user in the form of

visualization updates, as we will see with interactive visualizations next.

7.3.4 Interactive Visualizations

Interactive visualizations can respond to user interactions by expressing their logic as

queries involving event streams, base data, and visual elements (encoded as relations

t x y dx dy Input event

0 5 15 0 0 MOUSE_DOWN(0,5,15)

1 5 15 1 2 MOUSE_MOVE(1,6,17)

. . . more MOUSE_MOVE events . . .

40 5 15 5 -5 MOUSE_MOVE(40,10,10)

MOUSE_UP(41,10,10) terminates the query

Table 7.1: Contents of the event table C in our example after a potential sequence of low-level events.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 201

selected = SELECT SP.carrier

FROM C, SPLOT_POINTS@vnow-1 AS SP

WHERE in_rectangle(bbox(C), SP);

SPLOT_POINTS = SELECT ..., 'gray' AS fill

FROM Delays, scale_x, scale_y

WHERE carrier NOT IN selected

UNION

SELECT ..., 'red' AS fill

FROM Delays, scale_x, scale_y

WHERE carrier IN selected;

Figure 7.7: Selection interaction for the example scatterplot.

in Section 7.3.2). To illustrate, the iSQL code snippet in Figure 7.7 shows how iSQL can

declaratively specify our linked brushing example.

To start off, we specify the set of selected marks using a join between C and the

scatterplot Marks relation SPLOT_POINTS, as shown Figure 7.7: bbox is shorthand for a

query that computes the selection box of the mouse drag events in C, and in_rectangle

is shorthand for a predicate that checks whether a mark SP intersects with the selection box.

As the event query populates C, the selected relation updates accordingly. By defining

the Marks relation for the scatterplot to perform different projections for selected and non-

selected records, we can express brushing. Similarly, we can define a Marks relation for the

histogram of our example. This is possible because both Marks relations coordinate on the

selected relation we have the desired effect of linked brushing.

The main challenge in expressing interactive visualizations is that the underlying

workflows typically contains cycles. The selected view, for instance, depends on the

SPLOT_POINTS view and vice versa. To address this issue, iSQL allows referencing past

versions of relations in queries. Specifically, developers can specify the committed state of a

relation i interactions (or transactions) ago by adding the suffix @{vnow-i} to a relation

name. The syntax @{tnow-j} specifies the state of a relation j events ago within the

current interaction (or transaction). For example, Figure 7.7 computes the selected marks

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 202

by performing hit testing on the Marks SPLOT_POINTS@{vnow-1}, which is the version

of SPLOT_POINTS at the beginning of the current interaction as expressed by the event

statement in Figure 7.6. This approach highlights the relationships between transactions and

interactions and simplifies support for popular techniques such as undo or mouse trails.

7.4 Expressiveness of iSQL

So far we have introduced the fundamental concepts of iSQL, and now we seek to evaluate

its expressiveness. iSQL is an extension to SQL, and any data processing required during

initial workflows, workflows initiated due to user interactions, or visualization workflows

can make use of the full expressiveness of SQL. This leaves us with the question of what

interactive visualization techniques are expressible in iSQL. Similarly to previous interaction

grammars [SMWH17], we show that iSQL can express interactions as classified in current

interaction taxonomies. More specifically, next we discuss how iSQL expresses interaction

techniques under each category of the Yi et al. [YKSJ07] taxonomy (i.e., select, explore,

encode, abstract/elaborate, filter, reconfigure, and connect).

Select

The first category, namely, select, includes interaction techniques that can mark something

as interesting. As we showed in our linked brushing example, iSQL introduces interactive

selections and direct manipulation of circles (e.g., change the color of selected marks) to

differentiate the selected from the non-selected circles. Such interactive selections constitute

fundamental building blocks of interactive applications because they initiate and drive the

post-interaction exploration logic [SMWH17; NS00; Wil03].

Explore

The second category, namely, explore, indicates the ability to explore different subsets of

data. In this direction, recall the semantics of the EVENT statement and the updates of the

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 203

visualization states. When a user interacts with a mouse down, mouse move, mouse up

sequence of events, a subset of the data is selected. When the user starts issuing another

sequence of mouse down, mouse move, mouse up the selection changes and the user can

explore another subset of the data. As another important example in the explore category,

consider a panning interaction for our example (i.e., moving the camera across a scene or

change the scene while keeping the camera still). Previously, we updated the fill attribute

of the circles to visually indicate the selection. Instead, consider an update of the center_x

and center_y attributes based on the mouse move events of the EVENT statement. Since

the scatterplot lies within a fixed viewport of the visual space graphically translating the

circles (i.e., updating their positions) would result in moving some circles out of the scene

while some others could enter the scene. This results in the intended panning effect which

allows the user to explore subsets of data hidden due to the constrained visual space.

Abstract/Elaborate

The third category, namely, abstract/elaborate, includes techniques that adjust the level of

abstraction of data representation. An important technique in this category is the generation

of tooltips. In our example, when we select a circle in a scatterplot we may need to show a

tooltip that contains the actual arrival and departure delays for the carrier. In this direction,

recall how we annotated each circle with the carrier and used this information to trace

back the selected marks and identify this piece of information. Using this information, we

can then create a tooltip as a Marks relations. As another example in this category consider

semantic zooming. To support semantic zooming we need to change between views during

a zoom-in interaction. In our example, consider a zoom in on the bar chart that breaks down

the number of flights of the carrier to the number of flights of the carrier grouped by state

by changing the histogram to a stacked histogram (i.e., each stack reveals the number of

flights per state). One way to accomplish this functionality is to union the histogram (initial

view) with the stacked histogram (zoomed-in) and change between them based on user

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 204

interactions. (Note that both the histogram and the stacked histogram are Marks relations

specifying rectangles. Hence, they can be unioned).

Filter

The fourth category, namely, filter, includes interaction techniques that change the data being

presented based on some condition. Specifying these conditions (e.g., range and equality)

in SQL is straightforward as parameterized selection predicates. Visually, users instantiate

conditions using dynamic query controls or widgets. Widgets are graphical elements such

as sliders, radio buttons, drop down selections lists, or textboxes that users can interact with

(e.g., adjust the pins on a slider) to specify a condition. For instance, consider the barchart in

our example that shows the number of flights of each carrier and a contiguous slider where

users can select a range of number of flights by moving the slider pins. The intended effect

is to hide the bars that correspond to carriers with number of flights not in the selected range.

As sliders are graphical elements, they can be specified using iSQL as database queries.

Interactions with the pins of the sliders result in the change of the positions of the pins. The

problem is that for every position of the pins we want to invert them so that from the position

of the pin to identify the underlying number of flights. These inversions, typically called

scale inversions [SRHH15], are supported in iSQL using inverse mappings [WS97]. Based

on the results of the inversion (i.e., a range of number of flights) we can update the Marks

for the histogram by projecting the bars for carriers with number of flights above the range,

similarly to what we did with color changes for our linked brushing example.

Connect

The fifth category, namely, connect, consists of interaction techniques that are used to

(1) highlight associations and relationships between data items and (2) show hidden data

items that are relevant to a specified item. In Section 7.3, we showed how to accomplish

a brushing and linking effect that associates the selected data items in the scatterplot with

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 205

their corresponding data items in the histogram. Furthermore, we also discussed how using

lineage operators we can identify hidden data items related to a specified item (e.g., for

tooltips generation).

Reconfigure

The sixth category, namely, reconfigure, includes interaction techniques that change the

arrangement of a data visualization (e.g., sorting or rearranging columns in a table view, the

baseline adjustment feature in a stacked histogram, or normalization of data points in a line

chart). Here, we discuss the normalization of data points as an interesting example. Consider

again the scatterplot SPLOT_POINTS of our example and a normalization interaction that

changes the positions of selected data points based on a normalization function. The nor-

malization function can be registered in iSQL as a pure UDF. To enable the reconfiguration,

we can change the position of the scatterplot circles by applying the normalization on the

attributes avg_adelay and avg_ddelay; the scales sx and sy; or directly on the circle

positions, depending on the normalization semantics.

Encode

The seventh and final category, namely, encode, consists of techniques that can alter the

visual representation of the data. A subset of these techniques changes the geometry and the

visual encoding of visual elements. In our data model, we have introduced Marks relations

whose attributes include the geometry and the visual encoding of the corresponding marks.

As we showed in our example, we changed the color of a circle by changing the fill

attribute of the SPLOT_POINTS based on user interactions. Furthermore, to update a color

of the scatteplot from a palette of colors, which is an important technique in this category, we

can first define the palette as Marks (e.g. a set of rectangles with a different color attribute).

Then, we can define a selection on these marks and update the fill attribute. Similarly, we

can update the size, orientation, or font of Marks.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 206

7.5 Connections with Provenance and Instrumentation

Having shown the expressiveness capabilities of iSQL without provenance and instrumen-

tation. Now we turn, to show what classes of interactions can be expressed with iSQL,

provenance, and instrumentation. More specifically, we start by extending our initial linked

brushing example to account for a more complicated visualization scenario (Section 7.5.1).

Then, we introduce the connections between instrumentation and provenance with three

classes of interactions: multi-view linking (Section 7.5.2), interactive selections (Sec-

tion 7.5.3), and logic over selections (Section 7.5.4). In our discussion, we discuss how these

classes are related with the classes of the Yi et al. taxonomy, we a) show difficulties on both

expressing and optimizing these classes in pure relational terms, b) address them through the

connections with instrumentation and provenance, and c) make notes on performance and

semantics that we believe developers need to be aware of when implementing visualizations

in instrumentation-(and by extension provenance)-enabled database systems.

7.5.1 Initial Static Visualization Extended

Let us start by extending our initial static visualization Figure 7.4 to also create a visualization

that depicts the number of flights for active airlines per state as a heatmap. In iSQL terms,

we can specify this visualization as shown in the iSQL code snippet in Figure 7.8.

SC specifies the data processing part of the visualization and consists of a join between

the flights, airlines filtered to only active ones, and airports relations followed by

a group by state count aggregation. (SC also computes the average departure and arrival

delays per state that we use later in interactions.) M constitutes part of the visualization

workflow that transforms the output of SC into attributes of polygon marks (i.e., geometry

and color of each polygon). color() is syntactic sugar for an equation that maps each

count value to an output range of green hues, where the input range is computed by S as the

minimum and maximum counts from SC. Finally, the polygons are rendered on the screen

using a mark-specific render_map() shim, as we discussed in Section 7.3.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 207

-- Data Processing

SC = SELECT COUNT(*) AS cnt,

AP.state AS state,

AVG(adelay) as avg_adelay,

AVG(ddelay) as avg_ddelay

FROM flights AS F, airports AS AP,

airlines AS AL

WHERE F.carrier = AL.carrier AND

F.origin = AP.apid AND

AL.active = 'Y'

GROUP BY S.state

-- Visualization

S = SELECT MIN(cnt) AS mi, MAX(cnt) AS mx FROM SC

M = SELECT states.polygons, -- geometry

color(SC.cnt,S.mi,S.mx) -- color

FROM SC, S, states

WHERE states.state = SC.state

P = render_map(M)

Figure 7.8: Example of a static visualization.

Under this model, the overall static visualization (depicted in Figure 7.14) is a complex

relational view that maps the input database in data space to rendered marks in pixel space.

More specifically, the first relational workflow maps the input data to a heatmap, the second

maps data to a histogram, and the last one maps data to a scatterplot. For convenience,

we will also refer to these relational workflows as V1, V2, and V3, respectively. Next, we

elaborate on the connections of common interactive capabilities with instrumentation and

provenance concepts by building on this static visualization example.

7.5.2 Multi-View Linking

Linking is a common class of interactions where selections in one view update other views.

Prominent examples, as we have already discussed, include linked brushing and cross-

filtering. In terms of the Yi et al. taxonomy, linked brushing corresponds to the Connect

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 208

Figure 7.9: Static visualizations broken into data processing, value range computation, and mark

rendering operators for our three example visualization views.

class whereas cross-filtering is a technique that spans multiple classes including Connect,

Filter, and Abstract/Elaborate. Furthermore, all linking interactions are connected with the

Select class since linking is triggered post-selections.

Linked brushing

Consider again our linked brushing example between the scatterplot and the histogram that

we discussed in Figure 7.4. More specifically, recall that we annotated each mark in the

scatterplot with each corresponding carrier to encode the input-output relationships, so

that we can support the linked brushing effect in response to user interactions. Another

way could have been to annotate marks with ids and materialize the connections between

circles and delays (circles → delays) as well as histogram bars and delays (delays

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 209

→ bars) in separate tables. Given a selection of circles, we could use the mapping table

circles → delays to find the subset of delays corresponding to selected circles and

then use the identified delays to go to histogram bars using delays → bars. Both ways,

while they can express linked brushing, are problematic.

To explain why, let us first note that linked brushing, as an operation, is expressible in

provenance terms. First, we want to go back from the selected circles to the input delays.

This is a backward trace query from the circles SPLOT_POINTS to the input Delays. Then,

we want to go forward from the subset of backward traced delays to the bars to highlight

them. This is a forward trace query from the subset of delays to the bars. Highlighting of

bars by changing their color from green to red can be expressed as a provenance consuming

SQL query that updates the color of the forward traced subset of bars.

Now, to see why both approaches above are problematic, recall from our discussion

in Chapter 3, the logical provenance capture approaches. The first approach that we discussed

above and used in Section 7.3 is the logical denormalized approach for provenance capture

that annotates output relations with input ids. The second approach with the mapping tables

is exactly the logical normalized approach that stores provenance in provenance relations.

As we discussed and showed experimentally in Chapter 3 , both approaches slowdown both

the provenance capture and the provenance querying phases. In interactive visualizations

this is translated to slowdown of the initial static visualizations (query execution + logical

provenance capture) and interaction (provenance querying). Furthermore, recall from our

discussion in Chapter 3 that the first approach (i.e., logical denormalized) does not even

have a simple way to perform forward tracing besides residing to lazy provenance query

evaluation or spending extra time for indexing purposes.

The discussion above leaves us with the question, how can we express linked brushing

in a provenance-enabled system such as SMOKE. We start by showing how to express linked

brushing using only backward trace, leaving the forward trace and the update to purely SQL

terms. Then, we discuss how to express the forward trace and update. We conclude by

discussing a general model for expressing linked brushing in complicated views.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 210

B =

BACKWARD TRACE

FROM SPLOT_POINTS@vnow-1 AS SP, C

WHERE in_rectangle(bbox(C), SP)

TO Delays;

SPLOT_POINTS =

SELECT ..., 'red' AS fill

FROM B

UNION

SELECT ..., 'gray' AS fill

FROM (Delays MINUS B);

HIST_BARS =

SELECT ..., 'red' AS fill

FROM B

UNION

SELECT ..., 'green' AS fill

FROM (Delays MINUS B);

Figure 7.10: Expressing linked brushing declaratively using backward trace.

Consider the iSQL code snippet in Figure 7.10. The BACKWARD TRACE query is a

provenance statement that traces backward a subset of the output to the subset of its

contributing inputs. (This is the same with backward provenance query that we discussed

in Chapter 3. Here we give it a structure so that we can express the selection of the output

subset.) Its structure resembles the structure of a SELECT query. More specifically, the

FROM clause along with the WHERE clause denote a join among the event stream C and

the scatterplot that determines the selected circles. The TO clause denotes the relation

to trace backwards from the result of the join (i.e., Delays). The interactive histogram

and scatterplot are defined based on the partition {Delays\B, B}: circles and bars for the

backward traced subset B are colored red; the unselected marks in Delays\B are colored

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 211

gray (circles) and green (bars). Hence, events on the stream C change the backward traced

subset that, in turn, changes the bars and circles with the desired linked brushing effect.

B =

BACKWARD TRACE

FROM SPLOT_POINTS@vnow-1 AS SP, C

WHERE in_rectangle(bbox(C), SP)

TO Delays;

SPLOT_POINTS =

FORWARD TRACE B TO SPLOT_POINTS@vnow-1

SET color='red'

HIST_BARS =

FORWARD TRACE B TO HIST_BARS@vnow-1

SET color='red'

Figure 7.11: Linked brushing using both backward and forward tracing.

In the specification above we expressed linked brushing using only the backward trace

provenance statement. The forward trace, however, has been implemented in relational

terms by recomputing each output visualization view. We can also express this functionality

using a forward provenance statement followed by an update, as shown in Figure 7.11. The

FORWARD TRACE statement traces forward the backward tracked subset of delays to circles

and bars, and updates the forward traced subset by updating their color to red.

Finally, note that our discussion above is limited to going back from selected scatterplot

points to the Delays. This is a fairly simple scenario with data pre-materialized in the

Delays relation and the static visualization involved no data processing. As we showed

with our example in Figure 7.8, however, static visualizations can be arbitrarily complex.

In such cases, implementing linked brushing interactions in SQL terms is even harder to

express and optimize because we need to account for all the complexities of the underlying

visualization workflow. However, in provenance terms we only need to express what to trace

back and what to trace forward. For instance, Figure 7.12 shows brushing and linking by

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 212

Figure 7.12: Linked brushing using backward and forward trace statements over complicated views.

going all the way back to the airlines table through V3 followed by forward tracing to the

histogram through V2. Hence, expressing this interaction in provenance terms has the same

structure (i.e., we backward trace and then forward trace) with the one we showed for linked

brushing over Delays—even though V2 and V3 are more complicated than visualizing over

the pre-materialized Delays. Finally, note that performance-wise SMOKE will perform

provenance capture over the underlying joins which enables linked brushing to have similar

performance with the one when tracing to materialized relations (e.g., Delays)—without

having to explicitly pre-materialize relations, however, as we will see in Chapter 10.

Cross-filtering

Cross-filtering is another interaction technique, in the multi-view linking class of inter-

actions, and is typically used to explore correlated statistics across multiple visualization

views [cro15]. In the common setup, each view is the result of an aggregation query over

different combinations of input attributes (e.g., each view in Figure 7.1). Selecting marks in

one view recomputes the aggregation queries over the subset of input records represented by

the selection, and updates the views accordingly. Figure 7.13 illustrates a simple example

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 213

Figure 7.13: Crossfilter expressed using backward trace followed by selective refresh provenance

statements.

where selecting a set of states updates the counts of flights per carrier. In Chapter 8, we will

dive deeper into how to express and optimize such ubiquitous, data-intensive interactions.

Here, we note that this interaction can be expressed in provenance terms by backward tracing

the selected subset of states followed by a selective refresh provenance statement.

Connection with Provenance

To summarize our findings, linked brushing can be expressed by backward tracing selected

output marks to input records that contributed to the selected marks, followed by forward

tracing to highlight marks in others (or even the same) views. Cross-filtering is expressed as

backward tracing followed by selectively refreshing the other views (e.g., V1 in Figure 7.13)

over the provenance. The main difference is based on the forward tracing operation. In

our examples, linked brushing traces the subset to the output marks, whereas cross-filtering

recomputes the views for the output marks. Finally, by showing that these linking interactions

are expressible in provenance terms, we showed that expressing such interactions in purely

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 214

relational terms results in using logical provenance capture and query alternatives that have

performance penalties and limited expressiveness.

A Note On Semantics

To further highlight the importance of the provenance literature in the domain of interactive

visualizations, we note that selective refresh, that we used to express crossfiltering, is a well-

known and thoroughly studied provenance query construct. Selective refresh may not always

update the same target outputs if the workflow contains a one-to-many operator followed by

two non-monotonic aggregation operators [Ike12], in which case the refresh is unsafe. The

notion of unsafe selective refresh, and recent techniques to address it [CLMR16], highlight

the value of leveraging provenance to ensure correctness of interactive visualizations.

A Note On Performance

Crossfilter is an important yet computationally expensive interaction technique. The visual-

ization community has begun adopting dense [LJH13] and sparse [LKS13] data cubes to

support cross-filtering at interactive speeds. Unfortunately, building such data structures

requires considerable offline time–from minutes to hours on the ontime [Ont] flights dataset.

This “cold-start” problem [BCHS17] makes it challenging for developers to rapidly build

and test complex interactive visualizations, and makes it difficult to load a dataset in a

visualization engine and immediately start cross-filtering. We will address this problem

in Chapter 10. More specifically, we will show that it is possible to construct whole or partial

data cubes for cross-filter provenance queries in interactive time. In addition, provenance

metadata can be represented in efficient index data structures that accelerate backward and

forward provenance tracing lookups. These forward and backward indexes are precisely the

indexes to support incremental view updates on deletion.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 215

Figure 7.14: Selection interaction that shows the logical backward trace operation over V1 to identify

the subset of flights tuples that contribute to an interactive range selection.

7.5.3 Interactive Selections

One of the fundamental building blocks of visualization management systems is the ability

to interactively reference visual marks by clicking, lassoing, or other types of selection

operations [Tuk77; SMWH17; Wil03], which are techniques in the Select class in the Yi et

al. taxonomy that we discussed in Section 7.4. Although users interact with visual marks,

the intention is typically to manipulate the underlying data represented by the visual marks

rather than the marks themselves. To this end, visualization research has developed many

techniques to invert selections in pixel space to declarative selection queries in the input

data space [SMWH17; HAW08; DKR97; LRB+97; NS00].

The predominant forms of selection are item/group selection and range selection. Con-

sider the map in Figure 7.14. Item and group selection may correspond to clicking on one or

more states with the overall selection corresponding to a set of states. The primary intention

of such item/group selections is to identify the input records associated with the selected

states. Range selection may correspond to drawing a bounding box (e.g., dashed red box

in Figure 7.14). This may be interpreted as group selection, where the set of states corre-

sponds to the state polygons that intersect with the box. However, the intention may also

be to translate the bounding box into a predicate over lat,lon attributes over the shapes

polygons. The latter representation can be attractive because the selection can be further ma-

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 216

nipulated and relaxed to, say, add additional predicates (e.g., adelay > 5min), modify the

predicate clauses (e.g., increase the lon range), or remove unnecessary clauses [HAW08].

Connection With Provenance and Instrumentation

All of the above selection types are variants of backward tracing provenance operations,

which identify input records that contribute to specified output records. Different backward

tracing semantics and implementations correspond to the above selection semantics.

Range Selection. Visualization systems typically support range selection when the visu-

alization workflow consists of rescaling data attributes to visual variables (e.g., COUNT

to y pixel position). Since the scaling operations are typically invertible, it is simple to,

say, rescale the coordinates of the bounding box from ymin to ymax to be in terms of

COUNT. Provenance research generalizes this by computing the workflow’s inverse function

V–1
i (). This can be done through weak inverse functions [WS97] or deriving provenance

predicates from relational workflows [Ike12]. Note that inverse functions are a form of

lazy provenance capture that we discussed in Chapter 3. Here the focus, however, is not

on inverting relational operators but rather user-defined functions (e.g., inverting linear

scaling and anti-aliasing). Fine-grained provenance capture over user-defined functions

is not currently supported in SMOKE. Yet our instrumentation framework accounts both

for extending support to user-defined functions as well as helps on the synthesis of inverse

functions (e.g., by allowing access and manipulations of predicates in selections, access

state internal to SMOKE that UDFs may be using, and accessing the description of individual

operators in a plan). Overall, expressing range selections as backward trace helps extend

our support to visualizations that perform complex data processing as well as rendering.

Item and group selection. Item and group selections aim to identify the specific input

records that correspond to the user’s selection in pixel space. Visualization systems typically

implement this by annotating records as they flow through the visualization workflow so that

the output is annotated with the input records [BOH11]. However, annotations [BCTV04;

NKG+17] are only one mechanism to answer fine-grained provenance queries. They

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 217

can also be computed by evaluating the provenance predicates above, or by explicitly

materializing input-to-output record dependency information as explicit index data structures

when executing the visualization workflow, as we showed in Chapter 3. In fact, similarly to

how we argued on linked brushing in Section 7.5.2, evaluating using provenance predicates

is a form of lazy provenance capture (this time on relational operations) while annotations

are a form of logical provenance capture, and both approaches come with performance

penalties on backward tracing evaluation, as we showed experimentally in Chapter 3.

A Note On Semantics

One subtle point is that provenance systems may support different types of provenance

semantics, and visualization developers should be aware of this semantics. For instance,

assume we select outputs of SC and want the corresponding airlines from the airlines

relation. We typically only want the set of airlines, rather than the bag of every copy of

the airlines that were used to derive the selection. In this case, visualization toolkits should

demand “which-provenance” semantics, that we showed how to evaluate and optimize

in Chapters 4 and 5, as opposed to general transformation provenance semantics, that we

showed how to derive in Chapter 3, that return each airline record as many times as it

contributes to the selected outputs.

Figure 7.15: Logic over selections can be expressed as provenance consuming SQL queries to show

information to users related to selections.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 218

7.5.4 Logic Over Selections

A common use case once a user has performed a selection is to apply some logic over the

selected data subsets (e.g., to show details, provide summarizations, drill down, or roll up).

In fact, this logic over selection paradigm involves many techniques across classes in the Yi

et al. taxonomy discussed in Section 7.4 because techniques in different classes are driven

by selections. What changes, across techniques, is what logic is applied to the selection.

To illustrate the logic over selection as a superclass of interaction classes, we will focus

on tooltips, semantic zooming, and the more general class of details-on-demand which are

popular examples of this paradigm.

Tooltips can render information (say, in a modal pop-up) that contains information about

the provenance of the selected marks. For instance, when users select states in Figure 7.9,

they may want to see additional attributes per state such as the average arrival and departure

delays (i.e., avg_adelay and avg_ddelay, respectively). Furthermore, semantic zooming

allows users to drill down into selections. For instance, if a user select states with a range

selection on the map, the visualization may update to zoom into the range and show, say,

detailed city-level breakdowns of counts of delayed flights. Finally, details-on-demand

retrieve and further process user selections. For instance, when hovering over a state, the

visualization may update to show a detailed list of airports operating in the state.

Connection With Provenance

These functionalities are often implemented as standalone features in visualization systems.

However, they can be easily expressed as queries that take the backward trace of the user’s

selection as input. We illustrate this in Figure 7.15. The user selection in the visualization is

traced back to input records. Then, a second visualization workflow V4 computes statistics

about the provenance and renders them as details. The primary distinction between the

different examples above is the definition of V4, which we illustrate in Figure 7.16.

Examples. The tooltip query Z traces the provenance of the user’s selected states to the

output of SC (i.e., backward_trace(selected, SC)), and returns the average departure

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 219

-- Tooltips

Z = SELECT avg_adelay, avg_delay, state

FROM backward_trace(selected, SC);

Y = SELECT SUM(cnt)

FROM backward_trace(selected, SC);

-- Details-on-demand

X = SELECT * FROM backward_trace(selected, airports);

-- Semantic zooming

W = SELECT COUNT(*), city

FROM backward_trace(selected, flights) A1,

backward_trace(selected, airports) A2

WHER A1.alid = A2.alid

GROUP BY city;

Figure 7.16: Examples of tooltips, semantic zooming, details-on-demand

and arrival delay for each traced state. Another tooltip query Y again traces selected states

to SC, yet this time computes a gross sum of all the delayed flights for the selection (i.e.,

in database terminology, it performs a roll-up). The details-on-demand shows two queries.

D retrieves the list of airports within the selected states. Finally, the query Z performs the

drill-down from state to city-level statistics, for the selected states. It does this by joining

flights records and airports for the selected states, and re-computes the number of delays

for each city. As a final note, all queries (i.e., Z, Y, X, and W) can be rendered to the user

using visualization mappings on the way we have discussed in Section 7.3, and we omit

their specification to avoid redundancy.

A Note On Performance

Joins, such as the one in the query Z above, are common in visualizations. To avoid

potentially expensive join execution costs, it is common practice for visualization systems

and developers to denormalize relations ahead of visualization time. Static and interactive

data visualizations are then implemented over the denormalized database.

CHAPTER 7. EXPRESSING INTERACTIVE VISUALIZATIONS 220

However, denormalization is only one possible join optimization and comes with several

costs. It introduces redundancy, is time- and space-consuming to construct, and in many

cases not even required. Furthermore, this focus on denormalization is an example of

violating physical data independence [Cod70] and impedes rapid visualization development.

For instance, developers may spend considerable time writing application code to essentially

denormalize flights./airports and compute the per-city count. Later, they may want

to iterate on the visualization design and try showing, say, other statistics or grouping by

elevation. However, they may be reluctant to incur the same engineering cost to try

another design. This is because each design change implies the time- and space-consuming

process of reconstructing the denormalized relation.

In contrast, expressing this logic in instrumentation, provenance, and relational terms

enables rapid design iteration by offloading implementation and optimizations to the database

engine. In fact, as we will see in Chapters 8 and 10, workflows composed in instrumentation,

provenance, and relational terms can be optimized to ensure interactive response times by

materializing efficient join indexes adaptively, partially denormalizing the database, and

pre-computing statistics, among other optimizations.

7.6 Conclusions and Future Work

In this chapter, we introduced the core visualization and interaction constructs of iSQL.

Furthermore, we showed that a purely relational approach, while adequate in expressing well-

known interactions, leads to specifications that are hard to express and optimize. To address

this problem, we showed how to express data-intensive interactions in simple provenance

and instrumentation terms and push their optimization in our instrumentation-enabled engine.

Given the low-level abstraction of iSQL augmented with provenance and instrumentation

constructs, we believe the implementation of a compiler that transpiles existing high-level

interaction grammars (e.g., Vega-lite [SMWH17]) to iSQL is an interesting problem with

the goal to provide out-of-the-box optimizations to Web-scale applications.

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 221

Chapter 8

Crossfiltering and Incremental

Cube Exploration

In the previous chapter, we discussed how to express common interactive visualization

techniques in a blend of relational, provenance, and instrumentation terms. In this chapter,

we show the performance benefits of expressing interactive visualizations in such terms, by

optimizing one of the most data-intensive interaction techniques (i.e., crossfiltering).

8.1 Introduction

Crossfilter is an important interaction technique to help end users explore correlated statistics

across multiple visualization views [cro15]. In the common setup, multiple group-by queries

along different attributes of a dataset are each rendered as, say, bar charts. (Each bar chart

corresponds to a visualization view.) When a user highlights a bar (or set of bars) in one view,

the other views update to show the group-by results over only the subset that contributed

to the highlighted bar (or bars). Consider the crossfilter interactive visualization example

from Section 7.1 that we replicate here for convenience:

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 222

Figure 8.1: Crossfilter example.

Example 13 (Flight delays exploration with crossfilter) Figure 8.1 visualizes a break-

down of delayed flights [Ont] coupled with a crossfilter interaction technique [cro15]. Each

chart corresponds to a count aggregation of delayed flights group by state A , by airline

B , by hours of delay C , and by day D . The month E and year F sliders correspond

to group by queries on year and month, respectively. An interactive range selection on the

years triggers the re-execution of the aggregations, this time considering only records in

the selected range [2005, 2008], and the update of charts to reflect only the aggregations in

this time range. Beyond interactive selections of ranges, crossfilter can also be triggered by

interactive selection of subsets of visual marks (e.g., bars in barcharts or regions in the map).

Since the views are fundamentally aggregation queries, recent research proposals con-

struct variations of data cubes to accelerate the crossfilter interactions [LJH13; LKS13;

PSSC17]. However, it can take minutes or hours to construct these data cubes. Such offline

time is not available if a user has loaded a new dataset (e.g., into Tableau) and wants to

explore using cross-filter as soon as possible. This has recently been referred to as the

cold-start problem for interactive visualizations [BCHS17].

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 223

To address this problem, in this chapter we present provenance-based techniques that

evaluate crossfilter interactions using provenance indexes built during the execution of initial

group-by aggregations. As we will see experimentally, using provenance-based techniques

allow us to respond, in most cases, interactively to crossfilter interactions without blocking

users on offline construction of data cubes. For the few cases when crossfilter interactions

will not be interactive, we introduce a technique that partially materializes a cube in-between

crossfilter interactions without blocking users on their exploration.

Next, we first formalize the problem of crossfiltering (Section 8.2) and show in detail

how it can be expressed using provenance queries (Section 8.3). Then, we present our

provenance-based techniques as follows: In Section 8.4.1, we present a technique that

responds to crossfilter interactions using lazy provenance query evaluation (i.e., using only

SQL queries). In Section 8.4.2, we present a technique that evaluates crossfilter interactions

using only backward indexes while in Section 8.4.3 we extend it to use both backward and

forward indexes. In Section 8.4.4, we present our technique for partial cube materialization.

Finally, we perform a cost analysis by means of memory that the different techniques utilize

(Section 8.5) and present our experimental results (Section 8.6) to show that provenance-

based techniques can perform on par with or better than data cubes on crossfilter interactions

without blocking users on offline construction.

8.2 Problem Definition

Consider a relation R having attributes A = {a1, . . . , an}. Furthermore, consider a set

of group-by aggregation queries Q = {Qx| Qx = SELECT Dx, Fx(Mx) FROM T GROUP

BY Dx} where Dx is a subset of the attributes A (often referred to as dimensions), Mx is

another subset of attributes A (often referred to as measures), and Fx is a set of aggregate

functions (e.g., SUM, COUNT, and AVG) to be computed for every group in Dx over the

measures Mx. The set Q constitutes the set of initial views for which we seek to support

crossfiltering functionality.

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 224

A crossfilter interaction can be triggered by the interactive selection of output groups

of Q. Such interactive selections can happen in many ways in a visualization. Here, we

discuss these selections based on single and multi-view brushes: a single-view brush selects

a subset of output groups in a single view while a multi-view brush is the set of single-view

brushes across views. More precisely:

Single View Brush. Let Qx(D) denote the result of Qx when applied in database D.

Without loss of generality, we will denote Qx(D) as Qx (i.e., D remains fixed, updates are

not allowed). We denote the selection effect of a single view brush on a view Qx ∈ Q as

the subset Qselected
x ∈ Qx. Essentially, Qselected

x is the subset of groups in the output Qx

selected by the brush. For instance, consider the map from our example:

Figure 8.2: Brushing (red rectangle) selects a subsets of states.

The brush, in this case the red rectangle, selects a subset of states (which are groups in

the output of the group-by state view in our example). This subset selection will then trigger

the crossfiltering. In our example, we will need to update all the other views based only on

the records that contributed to the selected states.

Multi-View Brush. Similarly to a single view brush we can also have multi-view brushes.

These are constructed as the collection of single-view brushes. We denote this set as

{Qselected
x ∈ Qx}. To account for a uniform representation of both single- and multi-view

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 225

brushes note that a single-view brush Qselected
x is essentially a singleton set of a multi-view

brush. Hence, we can refer to the selected groups as {Qselected
x ∈ Qx} for both brush types.

Crossfilter. Given a single-view or multi-view brush {Qselected
x ∈ Qx} and the set Q of

views defined as group-by aggregation queries, our goal set is to update all views inQ based

only on the records that contributed to the selected groups. Depending on the interpretation

of the selected outputs the crossfilter task at hand may differ. For instance, consider a

multi-view brush that has selected a subset of states and another subset of carriers in our

example dashboard. The interpretation of this brush may be that we want to update the

other views based on the records that contributed both on the subset of states and the subset

of carriers. Alternatively, we may want to update the other views based on the subset that

contributed to states or carriers.

Figure 8.3: Expressing crossfilter interactions using provenance-based statements.

8.3 Expressing Crossfilter with Provenance Queries

As illustrated in the problem definition, evaluation of crossfilter interactions require us to

a) identify the records that contributed to a selected set of output groups and b) refresh the

other views based on these records. Our main idea, as we also discussed in Section 7.5.2, is

that these two steps are directly expressible in provenance terms by a) backward tracing the

selected outputs and b) selectively refreshing the other views based on the backward traced

input partition of records.

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 226

To illustrate, consider our example as shown in Figure 8.3: A backward_trace

statement identifies the partition of records in the input tables flights that contributed to

the selected states. Then, a selective_refresh statement updates the distribution of the

number of delayed flights per carrier based only the backward traced partition of the input.

Note that the selective refresh statement is a forward_trace statement, that identifies

the output groups in Q2 that each tuple in the input contributes to, followed by an update

statement, that updates the counts of the forward traced output group.

8.4 Techniques

Having formalized the crossfilter problem and revisited how it can be expressed in prove-

nance terms, we now proceed to show provenance-based techniques for its optimization.

8.4.1 Lazy

During the execution of each Qx, LAZY executes the group-by aggregations without cap-

turing provenance. Then, given a selection of a subset of outputs of Qselected
x ∈ Qx from

a single-view selection, LAZY supports crossfiltering by updating each Qy ∈ Q \ {Qx}

through evaluating the group-by aggregation on the selected input records. In SQL terms,

this can be expressed as shown in Section 8.4.1.

Q′y = SELECT Dy, Fy(My)

FROM R

WHERE T.Dx IN {o.Dx|o ∈ Qx
selected}

GROUP BY Dy

Figure 8.4: Lazy approach for multi-output group selection.

Essentially, LAZY supports crossfiltering by performing lazy provenance capture to

identify the partitions of the base relation that contributed to the selected outputs. Hence,

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 227

for this particular case, LAZY reduces to first selecting the records that have the same

group-by keys with the ones in Qselected
x and then executing the initial group-by queries

only for the selected records. Since there may be multiple output groups selected in

Qselected
x , the selection of records that contributed to the selected output groups is a dis-

junction expressed with an IN statement, as shown in Figure 8.4. In our example, we

can express the selection of input records based on the of selection of output states

in the map as state IN {‘Montana’, ‘Wyoming’, ‘North Dakota’, ‘South

Dakota’, ‘Nebraska’}. Alternatively, we can express the selection with multiple

OR statements (e.g., state = ‘Montana’ OR state = ‘Wyoming’ OR state =

‘North Dakota’ OR state = ‘South Dakota’ OR state= ‘Nebraska’). Fi-

nally, note that the degenerate case, yet most typical case across crossfilter benchmarks,

where only one output group has been selected (e.g., by clicking an individual output group),

can be expressed with a single selection as shown in Figure 8.5.

Q′y = SELECT Dy, Fy(My)

FROM R

WHERE T.Dx = o.Dx

GROUP BY Dy

Figure 8.5: Lazy approach for single output group selection.

As we showed above, the semantics for single view selections are rather straightforward

and typically result in disjunctive selections over input tables. The semantics for multi-view

selections are open to interpretation. For instance, along with the selection of the states

consider another selection of a carrier (e.g., ‘AA’). Even for this single carrier, there can

be multiple interpretations for this multi-view selection. For instance, one may want to

consider the input records with the state being one of the selected states ‘Montana’,

‘Wyoming’, ‘North Dakota’, ‘South Dakota’, ‘Nebraska’ and carrier being

the selected carrier ‘AA’. Yet another one, may want the records that have (state IN

{‘Montana’ OR ‘Wyoming’} AND carrier = ’AA’) OR (state IN {‘North

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 228

γft

Q#

γftγft ...

Q$ Q%...

shared	indexed	scan(T, bt)

BT+FT

γht

γagg

Q#

γhtγht
...

Q$ Q%...

shared	indexed	scan(T, bt)

BT

γht

γagg

Q#

γhtγht
...

Q$ Q%...

shared	sequential	scan(T, 𝜎<)

Lazy

Figure 8.6: Crossfilter evaluation techniques without using data cubes: (a) Lazy re-evaluates the

group-by aggregation queries with a shared selection scan on the base table, (b) BT uses an index

scan on the rids of the backward provenance index of Q′
brushed, (c) BT+FT performs updates using

the forward indexes that connect each tuple in the base table to each output of aggregation query.

Dakota’, ‘South Dakota’, ‘Nebraska’}). Overall the actual SQL query for

the LAZY in case of multi-view selections follows AND-OR semantics with the exact

interpretation being application-dependent.

Optimization. Finally, to evaluate the updates on all Qx, LAZY does not execute each

update separately. Rather it uses a shared selection scan of the input relation to avoid

multiple, expensive selection scans of the base relation.

As we noted in Chapter 3, LAZY approaches evaluate backward statements by typi-

cally rewriting them into equivalent selections over input tables. The problem with these

approaches is that not every backward statement has an equivalent rewrite. For instance,

consider in our setup for crossfilter the case where for each output Qx we do not store

the group-by keys. In such cases, there is no way of rewriting the backward statements as

selections. Furthermore, selections can be really expensive. In interactive visualizations

benchmarks, for instance, in many common cases grouping happens on post-processed

attributes. For instance, grouping by years or months which are extracted from timestamp

attributes, by binned numerical attributes on various bin resolutions, or even by expensive

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 229

UDFs (e.g., classification algorithms) when turned into selections, as we described above,

are very expensive to evaluate. Furthermore, the general AND-OR semantics may result in

complicated selections that are also hard to evaluate during crossfiltering.

In such scenarios, instead of evaluating the selections, it is preferable to evaluate the

selections using indexed scans that bypass the costs of selections. How to introduce indexed

scans, however, if there are no indexes in the first place? This is the very essence behind the

fine-grained provenance capture that we introduced in Chapter 3. Provenance capture on the

group-by aggregation queries in our setup will generate the indexes required to evaluate the

backward statements using indexed scans instead of expensive selections.

Next, we introduce two techniques (i.e., BT and BT+FT) that avoid the problems of

LAZY by performing provenance capture during the execution of initial views to generate

provenance indexes that speedup crossfilter interactions.

8.4.2 BT

During the execution of initial group-by aggregations, BT performs fine-grained provenance

capture and associates each output group with a backward rid array. This rid array is a

secondary index that can be used to identify the input records that contributed to this group

during crossfiltering. This can be done by performing secondary indexed scans. In the case

of a single-view selection of multiple groups, we can identify the input records by unioning

backward rid arrays. Similarly, if we perform crossfiltering with AND semantics we can

identify the input records by intersecting backward rid arrays. Also, in the case of AND-OR

semantics, we can identify the input records by unioning and intersecting the rid arrays.

Finally, note that, similarly to LAZY, BT also uses a shared scan, yet this time a shared

indexed scan based on the rid arrays of the selected output groups, to perform crossfiltering.

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 230

8.4.3 BT+FT

Both LAZY and BT after they have identified the input records for the selected output groups

they both need to perform group-by aggregations to evaluate the selective refresh

statement, that we discussed in Section 8.3. In SMOKE, these are evaluated with hash-

based group-by aggregations. However, building and probing hash tables are expensive

operations for the interactive response time requirements of crossfilter applications. (Even

if we implemented this functionality with sort-based group-by aggregations, again sorting

partitions and grouping on them are expensive operations.) How can we avoid building and

probing hash tables (or sorting and grouping) at crossfilter interaction time?

Consider the forward trace indexes for group-by aggregations. These indexes provide an

important piece of information: what output group has each input tuple contributed to. This

information provides exactly a perfect hashing between the input records and output groups

and we can use it in place of hash tables to evaluate the selective refresh statements.

Since they provide perfect hashing, there is no need to build or probe hash tables (or sort

and group) but rather we can evaluate group-by aggregations by looking up outputs with

array lookups provided through the forward rid arrays.

To this end, we introduce BT+FT as a technique that extends BT by using the

forward indexes as perfect hashes and performs crossfiltering as shown in Figure 8.7:

agg_update() updates the aggregation using our backward and forward indexes (e.g.,

for COUNT(*), agg_update is Q′z[fw[Qz][bw[i][j]]]++). Furthermore, note the

remove_non_affected_groups function at the end of the BT+FT algorithm in Fig-

ure 8.7. This function loops over the groups of each updated group-by and removes the

groups that were not affected. In the case of COUNT(*) this is simply the groups that have a

zero count. For other aggregates, like SUM, we need to track which groups were updated

within the agg_update functions. However, in many interactive visualizations it is impor-

tant to maintain the groups even if they have a zero count (or a zero sum). In such cases,

the remove_non_affected_groups can simply be ignored and the agg_update can

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 231

Input: bw[][] // backward index for Qselected
x

fw[][] // forward indexes from each tuple

// to groups of each initial

// group-by aggregation

Q1, . . . , Qn // outputs of initial views

Output: Q′1, . . . , Q
′
n // crossfiltered views

Init Q′1, . . . , Q
′
n using Q1, . . . , Qn

for i = 0 to bw.size()

for j = 0 to bw[i].size()

for z = 0 to n

agg_update(Q′z[fw[Qz][bw[i][j]]])

remove_non_affected_groups(Q′1, . . . , Q
′
n)

Figure 8.7: Crossfilter using BT+FT.

perform the update without updating a state of what groups were updated. Our experiments

in Section 8.6 report the latency of BT+FT including the time for this operation.

8.4.4 Combining Provenance with Cubes

The main problem with BT and BT+FT is that when the backward traced subset is large,

then their performance can become non-interactive due to the many aggregations that they

have to compute online. To address this problem, we can combine data cubes with our

provenance-based approaches. Figure 8.8 shows our proposed algorithm.

Since the main problem is on output groups that depend on large input subsets, our main

idea is to pre-materialize the results for these groups. To do so, our algorithm in Figure 8.8

first orders the output groups based on their group cardinality in descending order by placing

them in a min-heap. (Note that the group cardinality is known either through the query if the

group-by aggregates compute counts or simply by looking at the cardinality of backward rid

arrays.) After sorting, we materialize aggregates starting from the groups with the largest

group cardinalities. To do so, we use the BT+FT approach, but note that we could have also

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 232

Input: Q // executed group-by aggregations

bt // backward indexes ∀q ∈ Q
thr // threshold on storage consumption

// Sort groups on bt size

bt_sorted = sort(Q, bt)

// push the largest bt from each each query in heap

// heap is sorted on the size of the list for this group

H = min_heap();

for(i = 0; i < bt_sorted.size(); ++i)

H.push({bt_sorted[i][0], i, 0});

while(1){
{d, i, s} = H.top()

H.pop()

res = btft(d)

storage.store(res)

if(bt_stored[i].size()!=s+1)
H.push({bt_sorted[i][s+1], i, s+1})

if(storage.used > thr || H.size()==0)

break
}

Figure 8.8: Partial cube materialization.

used either LAZY or BT. The algorithm stops materializing when either a memory budget is

about to get exceeded or we have materialized the aggregates for all groups. Also, note that

the materialization is for individual group selection on single-view brushes. To respond to

multi-group selections for either single or multi-view brushes we can use the same idea with

the pre-materialization in Figure 8.8. However, this results in large materialization costs.

Essentially, if we compute the aggregates for all possible combinations of individual groups

the end result is a full data cube which, as we argued in Section 8.1, takes a lot of time to

construct. However, since the aggregates that we typically need to compute for crossfiltering

are algebraic or distributed and not holistic, this means that we can compute aggregates

for multi-group selections based on the aggregates for individual groups that Figure 8.8

materializes. Extending our technique to materialize aggregates for multiple groups together,

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 233

to account for holistic aggregates, and to change the ordering criterion for what groups to

materialize first are interesting future work.

8.5 Memory Footprint

Before proceeding with our experimental analysis, we first analyze the memory footprint

required by our algorithms. Note that the LAZY approach does not require any memory

while the memory required by our partial cube materialization technique in Section 8.4.4 is

always bounded by a user-provided budget thr. This leaves us with analyzing how much is

required for the backward and forward indexes for the BT+FT and BT approaches.

Following our notation from Section 8.2, let a relation R have attributes

{D1, D2, . . . , D|D|,M1, . . . ,M|M|}, where Di denotes the dimension i and Mj denotes a

measure j. Also, let |R| denote the cardinality of R (i.e., the number of records in R).

To support crossfilter over R, we execute group-by aggregations over each Di. Hence, the

total memory is the sum of memory for provenance indexes of each group-by aggregation:

Total Memory =
|D|∑
i=1

bwi + fwi, i ∈ [1, |D|] (1)

where bwi is the memory for the backward provenance index and fwi the memory required

for the forward index. Since the queries are group-by aggregations we have that the

backward index is an rid index and the forward index is an rid array. We model the memory

consumption of the backward rid index and the forward rid array below:

Memory for the forward index, fwi. We start with the forward index since this is the

simple case. Recall from the semantics of the forward index that we need to keep the

output rid for each input tuple. Hence, the rid array has size equal to the cardinality of the

input relation R (i.e., for each tuple in the input we store the rid of the output group that it

contributes to). This means that the size of the forward index is equal to the size of a word

w (assuming that each rid fits in a word) times the cardinality of R:

fwi = w · |R|, ∀i ∈ [1, |D|] (2)

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 234

Note that here we assume that we know the cardinality of the input and we do not pay extra

costs for reallocations, which is not the case for the backward index.

Memory for the backward index, bwi. To model the memory for backward index we need

to take into account two cases. These are the cases where we know the number of input

records that contributed to each output group of the group-by aggregation queries and the

case that we don’t know them.

For the former case, we don’t care about possible reallocations during provenance

capture. The overall memory consumption under this case is simply equal to the size of a

word times the size of the cardinality of R.

(Case 1: No reallocations required) bwi = w · |R|, ∀i ∈ [1, |D|] (3)

For the latter case, we need to model the reallocations in rid arrays of the backward rid

index. Lets assume that an rid array has initial capacity C. Upon adding rids to the array

and exceeding the initial capacity C, we increase the size of the vector by a growth factor k.

That means that, after n reallocations, we will have allocated:

C,C · k, C · k2, C · k3, . . . , C · kn

To model the memory required by bwi, what we are interested is the last term C · kn.

Also, assume that the group-by aggregation query outputs M groups and each group has

input cardinality om (i.e., #input records that contributed to group m). To find how many

reallocations are required to fit om rids in an array, we need to find the minimum n̂m s.t.:

C · kn̂m
om

≥ 1

As a result, the memory required for bwi is the sum:

(Case 2: Reallocations required) bwi =
M∑

m=0
C · kn̂m (4)

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 235

By substituting (2) and (3) in (1) we get the total memory if no reallocations are required:

(Case 1) Total Memory = 2 · |D| · w · |R| (5)

By substituting (2) and (4) in (1) we get the total memory if reallocations are required:

(Case 2) Total Memory = |D| · w · |R| +
|D|∑
i=1

M∑
m=0

C · kn̂m (6)

8.6 Experimental Settings

Setup. Following previous studies [LJH13; LKS13; PSSC17], we used the Ontime dataset

and four group-by COUNT aggregations on <lat, lon> (65,536 bins), <date> (7,762 bins),

<departure delay> (8 bins), and <carrier> (29 bins); only 8,100 bins have non-zero counts

because <lat, lon> is sparse. Each group-by query corresponds to one output view. This

setup favors cube construction because it involves only four views and coarse-grain binning

on spatiotemporal dimensions (which decreases the size of cubes and increases group

cardinalities). To trigger crossfilter interactions we select every possible group from every

group-by output view.

Techniques. We compare the following: LAZY uses lazy provenance capture and re-

executes the group-by queries on the provenance subset. BT uses SMOKE to capture

backward provenance indexes but re-runs the group-by queries (which requires re-building

group-by hash tables). BT+FT also captures forward provenance indexes that map input

records to the output bars that they contribute to, which can be used to incrementally update

the visualization bars without re-building group-by hash tables. We compare our techniques

with DATA CUBE construction. We first ran IMMENS [LJH13], NANOCUBES [LKS13], and

HASHEDCUBES [PSSC17] to construct the data cubes. However, IMMENS and NANOCUBES

did not finish within 30 minutes, while HASHEDCUBES required 4 minutes. For this reason,

we implemented a custom partial cube construction based on our group-by aggregation push-

down optimization that took 1.6 minutes to construct. This construction resembles the low

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 236

Figure 8.9: Cumulative latency of different crossfiltering techniques. BT+FT outperforms all

approaches with the total time to perform the initial group-by aggregates, track provenance, and

evaluate all interactions being thirty seconds.

dimensional cube decomposition described by IMMENS but using the sparse encoding rec-

ommended by NANOCUBES. Finally, we refer to our technique in Section 8.4.4, that blends

data cubes with provenance for incremental cube exploration, as PARTIALCUBE+BTFT.

Platforms. We ran experiments on a server-class machine running Ubuntu 14.04, and

having a 64GiB 2133MHz DDR4 memory (caches sizes 32KiB L1d, 32KiB L1i, 256KiB

L2, and 10MiB L3) and 3.1GHz Intel Xeon E5-1607 v4 processor.

8.7 Experimental Results

We start by evaluating the performance of LAZY, BT, BT+FT, and DATA CUBE. Figures 8.9

and 8.10 report the individual and cumulative latencies to highlight each and every bar,

respectively, per our experimental settings.

Comparison of LAZY, BT, BT+FT, and DATA CUBE. We make four main observations.

First, we observe that BT outperforms LAZY by leveraging the backward index to avoid

table scans; BT+FT outperforms BT because the forward index lets SMOKE directly update

the associated visualization bars without the need to re-build group-by hash tables; and,

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 237

Departure Delay Date

Latitude Longitude Carrier

330 332 334 336 0 2000 4000 6000 8000

0 50 100 150 200 250 300 300 305 310 315 320 325

0.1
10

1000

0.1
10

1000

Highlighted Bar Index

Q
ue

ry
 C

os
t (

m
s)

BT BT+FT LAZY

Figure 8.10: Latency for each crossfilter interaction. Dashed lines correspond to 150ms interaction

layer. BT+FT performs under the 150ms interaction layer for all 8,100 but 5 interactions, with

interactions on the spatiotemporal dimensions to be <10ms. Data Cube has instantaneous response

time and we do not plot it.

although the DATA CUBE response time is near-instantaneous, the cube construction cost is

considerable and BT+FT is able to complete the benchmark before the cube is constructed

(Figure 8.9). Second, BT+FT performs best (< 10ms) when group-by queries output

many groups (e.g., lat/lon and date) because then each group’s backward provenance is

substantially small. This suggests that provenance can complement cases when data cubes

are expensive (e.g., when a cube dimension contains many bins) by computing the results

online, as we will discuss with our results using PARTIALCUBE+BTFT. Third, Figure 8.10

shows that BT+FT responds within < 150ms (dotted line) for all but five bars, whose

provenance depends on a large subset of the input records (>10% selectivity; >13M records).

Fourth, the capture overhead for BT+FT and BT on the initial group-by queries are relatively

low (< 2× using SMOKE-I). We expect optimizations that use parallelization, sampling,

and deferred provenance capture to reduce crossfilter latencies even further.

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 238

Performance and semantics of PARTIALCUBE+BTFT. Furthermore, we evaluated the

performance of PARTIALCUBE+BTFT on the same benchmark. Recall that for PARTIAL-

CUBE+BTFT we need to set a memory budget. To understand the overall implications

of PARTIALCUBE+BTFT we have set the memory budget to two extremes: unbounded

and 0. Regarding the former, note that the cumulative latency of PARTIALCUBE+BTFT

is the same with the one of BT+FT (i.e., every crossfilter interaction will be served by

performing BT+FT). Regarding the latter, the overall latency of PARTIALCUBE+BTFT

to pre-materialize the results of possible interactions is ~33 seconds. Essentially, this

results in performing BT+FT for every possible bar plus the time required to perform

the ordering of indexes (i.e., ~4 seconds). Now, note that the latency for crossfiltering

using PARTIALCUBE+BTFT depends on whether or not the crossfiltering results have

been pre-materialized. If that’s the case, then the latency is simply the latency of fetching

the materialized results (i.e., ~0ms). Otherwise, the latency is equivalent to the latency of

BT+FT. To this end, the worst performance for crossfiltering is the case where the user

always selects a bar for which crossfiltering results have not been materialized yet. In

this case, the performance is equivalent to BT+FT. This is a highly unlikely event given

that within 29 seconds a user needs to have performed 8,100 crossfiltering interactions

and understood the results of every possible such interaction. To conclude, the best case

performance for crossfiltering using PARTIALCUBE+BTFT is equivalent to DATA CUBE

and the worst performance is equivalent to BT+FT.

So far, we have only experimented with single bar selections which is common in

crossfiltering benchmark. However, as we noted in Section 8.2, crossfiltering can be triggered

by multiple selections through either single-view or multi-view brushes. Furthermore, we

noted that such crossfilter interactions carry AND-OR selection semantics. Here we briefly

discuss our results on worst and best cases under AND and OR semantics.

AND semantics. Regarding AND semantics, the worst case performance comes from

selecting the output groups with highest input cardinalities from each output view. The

latencies of LAZY, BT, and BT+FT for this case in our experiments are ~16s, ~16s, and

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 239

~0.8s, respectively. These results l highlight the overall performance benefits of BT+FT.

Yet, note that 0.8s may still be regarded as a non-interactive response time. By using

PARTIALCUBE+BTFT to materialize groups in decreasing group cardinality order, we can

respond to this query near-instantaneously even after the materialization of the first five

groups in this order. The best case performance under AND semantics (assuming multi-view

selection) comes from selecting the groups with the lowest cardinality from each output view.

In this case, the latencies of LAZY, BT, and BT+FT are ~3.6s, ~0.025s, and ~0.002ms,

respectively, and further highlight the benefits of our provenance-based techniques.

OR semantics. Regarding OR semantics, note that the worst possible performance comes

from when the user selects all possible bars from every (or even all bars from a single) output

view. This case results in re-execution of the initial group-by queries. To account for more

meaningful worst case experiments, we sum up the amount of time required to highlight

every bar in each output view. For the temporal view, the total latencies required by LAZY,

BT, and BT+FT are 6,475.3s, 32s, and 1s, respectively. For the map view, the total latencies

required are 262.3s, 31.5s, and 2.3s for LAZY, BT, and BT+FT, respectively. These results

highlight the performance benefits of our provenance-based techniques for output views that

contain multiple groups each with low group cardinality, even under OR semantics. For

the departure delay view,the latencies are 25.5s, 24.3s, and 1.3s for LAZY, BT, and BT,

respectively. Finally, for the unique carrier view the latencies are 56.3s, 17.7s, and 1.5s,

for LAZY, BT, and BT, respectively. Our results on departure delay and unique carrier

highlight the problem of BT that, given groups of high group cardinality, is affected by

the hash table building, and further shows the benefits of BT+FT that avoids this problem.

Finally, note that best case performance for OR semantics (assuming multi-view selections)

is when users select a single group from every output view. In this case, the performance of

the compared techniques is similar to the best case performance under AND semantics.

Furthermore, note that arbitrary compositions of AND-OR crossfilter semantics is also

possible. While not covered by our experiments since we have already covered AND and

OR semantics independently, we reiterate our general observation on the crossfiltering

CHAPTER 8. CROSSFILTERING AND INCREMENTAL CUBE EXPLORATION 240

performance: whenever the cardinality of the input partition that will be used by the current

crossfilter interaction is low (<10%-20% in our experiments), then BT is significantly faster

than alternative approaches and remains interactive. For higher cardinalities, we believe that

extensions to our partial cube materialization strategy to account for AND-OR semantics as

well as the incorporation of query execution optimizations (e.g., vectorization) can further

improve the performance of our techniques on such complicated crossfilter interactions.

Finally, an important note is that our observations are over a single aggregation function

(i.e., COUNT). In general, different aggregation functions may have different evaluation

complexities As a result, our observation on the correlation of our techniques with input

group cardinalities should be reconsidered in case aggregation functions under consideration

have significantly different complexities.

8.8 Conclusions

In this chapter, we addressed the problem of evaluating crossfilter interactions when there is

no sufficient time or space to compute and materialize data cubes offline, respectively. To

do so, we showed how to express crossfiltering using provenance queries which allowed

to devise provenance-based techniques for their evaluation. Our experimental results show

that instrumentation-enabled (and by extension provenance-enabled) database engines are

powerful enough to support one of the most data-intensive interactions without sacrificing

performance. Going forth, we believe there is ample space for combining provenance with

data cubes. For instance, the order that we used in PARTIALCUBE+BTFT for materialization

only considers group cardinalities. Having control of the interaction space, however, may

allow us to drive what needs to be materialized (e.g., brush interactions may select only

consecutive bars or users have zoom in the map and focus only a small subset of the output

groups). Furthermore, we believe combining provenance-based evaluation techniques with

sampling, vectorization, and other query execution optimization techniques can further

decrease the crossfilter interaction time and increase the user engagement.

CHAPTER 9. INTERACTIVE DATA PROFILING 241

Chapter 9

Interactive Data Profiling

In this chapter, we continue our discussion over applications domains that instrumentation-

enabled database engines can facilitate their expressiveness and optimization by diving into

the domain of interactive data profiling.

9.1 Introduction

Data profiling studies the statistics and quality of datasets (e.g., constraint checking; data

type extraction; or key identification) while interactive data profiling [Nau14] allows users

to interactively profile and examine the reasons for these results. Recent systems include

extensible data profiling platforms (e.g., METANOME [PBF+15]), data wrangling and

cleaning tools (e.g., Wrangler [KPHH11], Profiler [KPP+12], and NADEEF [EEI+13]),

and user-guided functional dependency (FD) miners (e.g., UGUIDE [TBEO+17]).

In such systems, profiling results can be viewed as the results of data-processing work-

flows, and the interactive profiling functionality corresponds to inspecting raw (or sum-

marized) inputs that contributed to these output profiling results. For instance, UGUIDE

mines datasets for FDs and presents violations of candidate FDs to the user to validate.

Similarly, data cleaning applications typically render summary statistics as bar charts or

heat maps [KPP+12] that the user can interactively inspect.

CHAPTER 9. INTERACTIVE DATA PROFILING 242

Figure 9.1: Interactive data profiling interface.

To further demonstrate this functionality, Figure 9.1 shows an interface that we have

built as a SMOKE client for interactive data profiling purposes. At the top, the left panel

is used to select an FD, uniqueness, or mismatched value constraint to check—which are

the main data profiling tasks we consider in this section. Here the user has selected the

FD zip_code→city. The middle panel renders a summary of the check results in terms

of the zipcodes that have more than one city value. Selecting a violation updates the right

panel, which shows the distribution of city values for that zipcode, and the bottom panel,

which renders a table with the individual records that contributed to the violations. This

table can be further restricted by selecting a subset of city values in the top right bar chart.

To provide this functionality, in this section we cast the evaluation of data profiling tasks

(i.e., interactive exploration of FD, uniqueness, and mismatch checks) and the exploration

of data profiling results as operations involving backward and forward provenance queries.

More specifically, our contributions in this chapter are as follows. First, we introduce

provenance-based techniques for the evaluation and interactive exploration of FD (Sec-

tion 9.2), uniqueness (Section 9.2), and mismatch (Section 9.4) checks. Then, we show

experimentally that our techniques improve on alternative state-of-the-art, hand-written

implementations (Section 9.5). These results highlight the power of instrumentation-(and by

extension provenance-)enabled database engines, and suggest that data profiling tools can

express their logic declaratively in provenance terms all while improving their performance.

CHAPTER 9. INTERACTIVE DATA PROFILING 243

9.2 Evaluating Functional Dependencies

In this section, we show how to evaluate FDs and explore violations of them interactively.

The main sketch of our approaches is to express FD violation checks as relational workflows

and track provenance during their execution. Hence, each violation is connected with the

records responsible for the violation through the underlying provenance graph. As such,

users can interactively explore the violation by, say, inspecting the records responsible for

the violation by tracing backward on the provenance graph from the output violation.

Next, we present two approaches based on the above sketch, namely, CD and UG. As

we will see, in the second approach we will not just use provenance for interactive exploring

FD violations but rather also for evaluating FD violation checks. This further highlights

the importance of provenance in the interactive profiling domain. To ease of our discussion

assume that we want to find and explore the violations for the FD A→B over a table T.

CD. Our first approach identifies violations of the FD A→B over the table T with the

following query QCD, which is the typical way to evaluate FDs of this form in SQL terms:

QCD = SELECT A

FROM T

GROUP BY A

HAVING COUNT(DISTINCT B) > 1

Figure 9.2: Query for extracting violations on a FD A→B. By tracking provenance on this query we

can connect the violating A values with the records responsible for the violation.

QCD outputs the distinct values a ∈ T.A that violate the FD. Now, consider tracking

backward provenance on QCD. This results in connecting the input records {t ∈ T |

t.A = a} with each violating value a. Using this provenance information, we can enable

users to inspect the violating input records (e.g., with backward provenance queries), collect

statistics over violations (e.g., using provenance consuming SQL queries), or prompt users

for cleaning purposes to overall expose interactive data profiling capabilities.

CHAPTER 9. INTERACTIVE DATA PROFILING 244

UG. The second approach (UG) is based on an optimization in UGUIDE’s METANOME-

based implementation. Through correspondence with the authors, it turns out that the

implementation effectively simulates provenance indexes, and thus we describe it in prove-

nance terms. We first evaluate the following query for the attributes in the FD attr∈ {A,B}

and at the same time we capture both backward and forward provenance:

Qattr
ug =SELECT attr

FROM T

GROUP BY attr

HAVING COUNT(1) > 1

We then backward trace each a ∈ QA
ug to the input T, and forward trace each provenance

record to QB
ug. If more than one distinct b values are in the forward traced output, then

the FD is violated, and the provenance indexes connect the violation with the tuples that

contributed to the violation, similarly to the result of the CD approach.

As we will see in our experiments, CD is faster than UG for the evaluation of individual

FDs. However, we note that UG is typically faster than CD for batch evaluation of FDs.

9.3 Evaluating Uniqueness

To check uniqueness for an attribute U, we simply execute QU
ug from above to identify values

in U that are not unique. The backward provenance for an output record corresponds to

the input records that contribute to the uniqueness violation. This also illustrates how

provenance from the same query can be shared across data profiling algorithms.

Another similar, yet more complicated, uniqueness check profiling task is to identify

the unique values of an attribute U for a given value of a different attribute V. This task is

equivalent to crossfiltering that we presented in Chapter 8. While our experiments with

crossfiltering in Section 8.6 focused only on group-by aggregation over 4 attributes, the

typical case for profiling is on wide tables with many attributes. Hence, in our experiments

CHAPTER 9. INTERACTIVE DATA PROFILING 245

in this section, we will show the performance of our provenance-based techniques for

crossfiltering over wide tables for uniqueness check purposes.

9.4 Evaluating Mismatches

Finally, mismatches are expressed with selections over the input table that should evaluate to

true but do not. Such constraints are commonly used to identify domain or type violations,

and they can be quite expensive depending on the complexity of the selection predicate.

By tracking provenance over mismatch checks, we can allow users to explore mismatches

without re-evaluating expensive predicates. Essentially, this is similar to our results in Sec-

tion 3.7 with provenance queries when base queries involve expensive selections. As we

noted in Section 3.7, LAZY approaches (i.e., provenance querying by re-evaluating expensive

predicates) are more expensive than our SMOKE-L technique. This is because SMOKE-L

avoids the expensive selection scans of LAZY through provenance-based indexed scans.

9.5 Experiments

Our experiments seek to show evidence that provenance-based techniques allow developers

of interactive data profiling applications to express their logic declaratively without loss in

performance. To do so, we evaluate our techniques on evaluating functional dependency and

uniqueness checks against state-of-the-art, hand-written alternatives. (For mismatches we

have already shown experimental evidence in Section 3.7 and we omit further evaluation.)

Dataset. For our experiments in this chapter we use the Physician [Phy] dataset (2.2m

tuples, 0.6GB, 41 attributes) which was used in the Holoclean [RCIR17] paper for data

cleaning purposes. We use this dataset as it has known functional dependencies that are

violated, as specified in Holoclean [RCIR17], and because it has many attributes, which is

important for our experiments on uniqueness checks.

CHAPTER 9. INTERACTIVE DATA PROFILING 246

 1.8

 2.4

12.9

 1.0

 1.1

 4.9

 1.1

 1.4

 3.0

 0.7

 0.9

 2.0

NPI → PAC_ID Zip → State Zip → City LBN1 → CCN1

0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15

Metanome-UG

Smoke-UG

Smoke-CD

Latency (s)

Figure 9.3: Latency of different approaches for FD violation evaluation and bipartite graph construc-

tion. SMOKE-CD is the minimal overall. METANOME-UG is affected by virtual function calls for

provenance capture, the overheads of JVM, and its data model.

Compared techniques and setup on FD checks. For the evaluation of FDs, we compare

SMOKE that implements both of our CD and UG approaches with UGUIDE that implements

the UG one in METANOME. We refer to our SMOKE techniques as SMOKE-CD and SMOKE-

UG and to the UGUIDE one as METANOME-UG. The comparison is on absolute latency for

the evaluation of four FDs over the Physician dataset (i.e., NPI→PAC_ID, Zip→State,

Zip→City, and LBN1→CCN1).

Compared techniques and setup on uniqueness checks. For the evaluation of uniqueness

checks, we compare the LAZY, BT, BT+FT, and DATA CUBE approaches that we presented

for crossfiltering. Our results here aim to show the performance of these techniques over

many attributes which, while unconventional for interactive data visualization purposes, it is

important for data profiling purposes. For this experiment, we use only 20 out of the overall

41 attributes in the physician dataset because the DATA CUBE approach has quadratic on the

number of attributes complexity, rendering it prohibitively expensive for 41 attributes.

FD Evaluation

Figure 9.3 compares the latency of the FD evaluation techniques using the four FDs over

the Physician dataset, as we discussed in our setup. Overall, SMOKE-UG outperforms

METANOME-UG by 2 – 6× while the simpler SMOKE-CD approach outperforms both

CHAPTER 9. INTERACTIVE DATA PROFILING 247

Figure 9.4: Latency of different approaches for uniqueness checks.

approaches. Both SMOKE capture overheads (< 1.2× overhead) are consistent with our

microbenchmarks in Section 3.7. There are several reasons why SMOKE-UG outperforms

METANOME-UG. METANOME-UG incurs virtual function call costs when constructing its

version of provenance indexes (> 2× overhead on Qattr
ug that we implemented in UGUIDE),

as well as general JVM overhead even after a warm-up phase to enable JIT optimizations.

Furthermore, METANOME-UG models all attribute types as strings, which slows uniqueness

checks for integer data types such as NPI. To account for a fair comparison, the other three

FDs are over string attributes (zip is a string).

Uniqueness Evaluation

Figure 9.4 shows the performance of different techniques to support uniqueness checks.

As we noted in Section 9.3 the different techniques are the same with the ones we use for

crossfiltering, and the results are similar with the ones we showed in Section 8.6. A major

difference, however, is that the DATA CUBE approach in this setting takes substantially more

time than the other approaches. This is because DATA CUBE has quadratic complexity on

the number of attributes whereas the complexity of the other techniques is linear.

CHAPTER 9. INTERACTIVE DATA PROFILING 248

9.6 Conclusions

In this chapter, we drew the connections between instrumentation-enabled (and by extension

provenance-enabled) engines and the domain of interactive data profiling. Our experimental

results show evidence that provenance capture and querying as implemented in SMOKE

enable interactive data profiling applications developers to express their techniques declara-

tively in provenance terms and meet or even gain in performance compared to hand written

alternatives. Going forth, we believe there are many directions in the intersection of data pro-

filing and instrumentation engines worth of further exploration. For instance, the techniques

that we introduced in this chapter cover only a small fraction of possible profiling techniques

without covering, say, the general class of conditional dependencies. (Refer to [Nau14] for

a classification of data profiling tasks.). Furthermore, while in Chapter 6 we denoted how

more attributes can be added and removed from plans and how instrumentors can piggyback

computations within plans, these only provide the mechanisms that data profiling tasks;

such as piggybacking cardinality; data distribution; and small materialized aggregates; can

build upon. Putting them into practice per application domain is interesting future work.

CHAPTER 10. PHYSICAL DATABASE DESIGN 249

Chapter 10

Physical Database Design

Our instrumentation-based techniques in support of crossfiltering (Chapter 8) and interactive

exploration of data profiling results (Chapter 9) illustrate a common pattern of interactive

applications tightly connecting them with the domain of adaptive physical database design:

during the execution of queries we perform physical database design to support future

interactions. In particular, for both crossfiltering and data profiling, we performed physical

database design during queries that mainly involved group-by aggregations.

In this section, we extend our results beyond group-by aggregations by proposing

instrumentation-based frameworks and techniques to allow applications to perform adap-

tive physical database design on selections and joins. For selections, we introduce

instrumentation-based frameworks to ease the implementation of known and novel database

cracking techniques without the need to alter the database internals (Section 10.1). For joins,

we introduce instrumentation-based techniques for adaptive denormalization with the goal

to optimize the performance of consecutive queries involving identical joins (Section 10.2).

10.1 Database Cracking

Database query engines evaluate range selection queries over base tables with serial scans,

clustered or non-clustered indexed scans, or using binary search variants if the table is sorted

CHAPTER 10. PHYSICAL DATABASE DESIGN 250

on the attributes involved in the selection. Typically, serial selection scans are considered

expensive when the selections have low selectivity, the predicate evaluation is expensive,

or when scanned tuples are wide. In such cases, it is preferable to evaluate selections with

either indexed scans or scans over sorted relations. The problem is that such indexes or

sorted relations may not be available at the time of query execution, however. To address

this problem, one approach could be to block the query execution to construct indexes or

sort input tables. Unfortunately, such approaches are heavyweight and block the query

execution for a lot of time. More importantly, sorting or providing a full index does not

necessarily guarantee that queries in the workload will need the full power of an index or

a sorted relation. For instance, in cases where users progressively zoom-in into a specific

range, by tightening the bounds of the range selection query, only a small subset of the

initial table will be used. Hence, time spent on full indexing or sorting is wasted.

For these reasons, database cracking [SDL18; SJD13; PPI+14; HIKY12; IKM07a;

IKM07b; IMKG11; KM05; PIM15] has been introduced as a partial indexing and sorting

paradigm that enables fast access to data partitions relevant to future range selection queries

by adapting to the user workload. To illustrate, consider the following example:

Figure 10.1: Cracking example.

Example 14 (Cracking Example) Consider the column A in relation T in Figure 10.1. An

initial query Q1 asks for the tuples in T where A ∈ (10, 20). A database cracking technique

will answer the query and at the same time reorganize the column A so that all values above,

CHAPTER 10. PHYSICAL DATABASE DESIGN 251

below, and within this range will be adjacent as shown in Figure 10.1(1). For this first query,

the values will be stored in a separate column Acr, often called the cracked column. Next,

a query Q2 that asks for the records in T in the range A ∈ (7, 16] can focus only on the

last two partitions since the first partition is guaranteed not to have records in this range.

Recursively, the database cracking technique can split the partitions involved in the current

query as shown in Figure 10.1(2).

An important observation from the example above is that the query Q2 attempts to zoom

into the results of Q1 by tightening its bounds (i.e., from (10, 20) to (12, 16]). Similarly,

one could also imagine several other access patterns (e.g., zooming-out or sequential

access patterns). This illustrates a desired characteristic from database cracking techniques,

namely, their robustness to different workloads. To this end, several database cracking

techniques [HIKY12; SDL18; PIM15] have been introduced each demonstrating various

robustness characteristics for different access patterns. Fitting arbitrarily complex access

patterns, however, and designing novel database cracking techniques is an ever-increasing

challenging task both in terms of algorithmic development and co-designing with database

internals because database cracking is a by-product of query execution.

To this end, in this section, we focus on the problem of how can we enable the de-

velopment of novel adaptive physical database designers for database cracking purposes.

More precisely, we break down the problems involved in the construction of a database

cracking technique. Then, we introduce two general instrumentation-based frameworks

for the integration of cracking techniques within selection plans. Throughout, we discuss

how known cracking techniques can be introduced in the instrumentation-based frameworks

while our experiments show how instrumentation can introduce novel functionality that

cracking techniques can use for optimization purposes. Our main result, that highlights the

power of instrumentation, is that advanced database cracking techniques can be seamlessly

integrated and developed within a database engine without changing the database internals.

CHAPTER 10. PHYSICAL DATABASE DESIGN 252

10.1.1 Database Cracking Breakdown

At their core, database cracking techniques [SDL18; SJD13; PPI+14; HIKY12; IKM07a;

IKM07b; IMKG11; KM05] reorganize columns, and their corresponding tables, involved

in selection queries to optimize the performance of subsequent selection queries. Hence, a

natural way to breakdown how database cracking techniques operate is by understanding

how they reorganize columns and tables involved in selections. Furthermore, since such

techniques are triggered from the execution of selection queries, another way to break them

down is by understanding when they perform the reorganization by means of what they

perform before, during, and after the current selection query.

Next, we provide background and breakdown cracking techniques based on how they

reorganize the physical database design. Then, we discuss what they perform before, during,

and after the current selection. After this discussion, we summarize the requirements of

database cracking techniques from instrumentation frameworks. The next section will

introduce such instrumentation frameworks and show how we can fulfill these requirements.

Cracking-Driven Reorganization

Database cracking techniques reorganize columns involved in selections by solving vari-

ants of the well-known Dutch National Flag (DNF), or three-way partitioning, problem

introduced by Edgar Dijkstra [Dij97, Chapter 14] that we rephrase as follows:

Definition 2 (Dutch National Flag Problem (DNF)) Given an array of N elements with

values {red, blue, green} randomly shuffled devise an efficient algorithm that sorts the array

so that elements of the same color are all adjacent.

Reduction from DNF. To see the reduction from DNF to database cracking, consider each

element in an array and a range query. Each element in the array is either above (red), within

(blue), or below (green) the range. Database cracking, similarly to the DNF problem, asks

to group together the elements that are above, within, and below a range.

CHAPTER 10. PHYSICAL DATABASE DESIGN 253

Crack-in-two and crack-in-three. The 3-way partitioning of DNF can either be solved

by algorithms that perform either directly 3-way partitioning or by two successive 2-way

partitioning steps. In database cracking terminology, three-way partitioning algorithms are

referred to as crack-in-three, and the ones that apply two consecutive 2-way partitioning

steps are referred to as crack-in-two. For instance, if a range query [low, high] is given, then

one can perform the 3-way partitioning by first performing a 2-way partitioning based on

low and then another 2-way partitioning based on high.

Partitioning Variants. Consider again our zoom-in example in Figure 10.1. If zoom-in

is the pattern of choice for the user exploration, it is clear that a lot of time is wasted by

crack-in-two and crack-in-three algorithms in generating the partitions above and below

the given range because subsequent queries will not access these partitions. This illustrates

the major problem of initial database cracking techniques that decided the partitioning

based on the selection predicate of the current query. This decision should be a function

of both the current query and the expected future query workloads. To this end, several

cracking techniques (e,g., hybrid cracking [IMKG11], stochastic cracking [HIKY12], and

meta-adaptive indexing [SDL18]) have been introduced with the goal set to decide on

partitioning strategies targeting various future workloads. Since future workloads may be

arbitrarily complex, however, we expect novel database cracking techniques to condition

further their partitioning strategies based on future workloads. In this direction, our main

focus is to show how instrumentation can assist in the introduction of arbitrarily complex

cracking techniques within a database in a principled manner.

Out-of-place and in-place. Another major concern with database cracking regards whether

the reorganization is out-of-place (i.e., the partitions are stored in places other than the

column from which they originated) or in-place (i.e., the partitions are stored in the same

column from which they originated). Typically, the first query that triggers the column

reorganization results in the generation of a new column, namely, cracked column, where

the partitions will be stored. Hence, in this case, the reorganization is out-of-place. For

subsequent selections, database cracking techniques typically perform in-place cracking on

CHAPTER 10. PHYSICAL DATABASE DESIGN 254

the new cracked column. However, we expect techniques to perform out-of-place cracking

on cracked columns as well. This is because in-place cracking is typically more expensive

than out-of-place as the latter can use more space to avoid several culprits of the former

(e.g., immense data shuffling due to swaps).

Tuple reconstruction and table reorganization. Consider the queries of our example

in Figure 10.1. Both queries perform a range selection on column A. However, the projection

is on every column that appears under table A. This means that subsequent selections on

column A will use the reorganized column A to perform the selection but access to the other

columns is still required to provide the results. This can be addressed by maintaining an extra

array with rids, to map values of the cracked column A to their original positions [SDL18],

or techniques such as sideways cracking [IKM09] that physically reorganize copies of other

columns so that they can be in sync with the cracked column. The former techniques can

use the rid array to perform secondary index scans to base records to evaluate the projection.

The latter techniques perform scans and evaluate projections on the reorganized columns.

While these techniques are important for the optimization of future queries, they are agnostic

to the future workload and assume no idle time in-between selection queries to better decide

on the reorganization of the physical database design.

Cracking Before, During, and After Query Execution

Besides how cracking techniques reorganize the physical design of columns and tables,

another dimension to classify them is based on what they perform before, during, and after

the execution of a selection query.

Before. Before the evaluation of a selection query, cracking techniques may need to perform

monitoring of input queries to the database system, block the query execution to perform

physical database design that was scheduled after previous selection queries, or even perform

reorganization right before the query execution.

CHAPTER 10. PHYSICAL DATABASE DESIGN 255

During. During the execution of selection queries, database cracking techniques typically

either overlap the reorganization of columns with the query execution or compute statistics to

be used after the query execution and before the next selection to perform the reorganization.

After. Finally, cracking techniques that perform cracking after query execution typically

use statistics collected during the execution of the selection queries to better drive how they

perform the reorganization.

Cracking Requirements

Our discussion above illustrates that cracking techniques can be arbitrarily complex and

database engines need to provide extensible and flexible ways for their principled intro-

duction. More specifically, our discussion over the cracking reorganization illustrates that

cracking techniques can be arbitrarily complex by targeting different database settings and

future query workloads. Hence, both current and potentially future cracking techniques need

flexibility for their introduction within the query execution. Furthermore, our discussion

over when cracking takes places illustrates that cracking techniques need flexibility for when

to focus their reorganization efforts.

Per current practice, cracking techniques have been predominantly introduced within

MonetDB or as standalone tools, with the majority of other database engines to lack

such functionalities. Cracking techniques, however, are increasingly important especially

with respect to the advent of data-intensive interactive applications that need databases to

reorganize the underlying storage adaptively and streamline future data-intensive workloads.

As user exploration patterns can be arbitrarily complex, cracking techniques that aim to be

robust towards such patterns can also become arbitrarily complex (e.g., instead of cracking a

whole column we may want to crack only some subsets that best fit future user exploration

patterns). As such, we expect the introduction of both known and novel cracking techniques

within other databases aiming to target such application domains. In this direction, we next

introduce instrumentation-based frameworks to show principled and flexible ways for the

implementation of cracking techniques within an instrumentation-enabled database engine.

CHAPTER 10. PHYSICAL DATABASE DESIGN 256

10.1.2 Instrumentation-Based Cracking Frameworks

In this section, we describe how database cracking can be implemented within SMOKE

using our instrumentation framework. More specifically, our main focus is to introduce two

cracking frameworks that inject the reorganization during selections or defer it after the

selections. After their introduction, we conclude this subsection with other instrumentation

mechanisms that cracking techniques may seek to use for their implementation.

Injected Cracking

Consider the instrumentation of the selection operator in Section 6.3.1. Our framework

introduced three instrumentation points (i.e., σbeforeP , σafterP , and σN) so that instrumen-

tors can consume the tuples that satisfied and did not satisfy the predicate. Our goal here is

to show that database cracking techniques can use these instrumentation points to perform

their cracking logic. Consider the following code sketch and associated plans for the range

selection query and the cracking instrumentor.

Column Tc_in, Tc_above, Tc_below, Tc;

for(Tuple t in T){

if(t.a > 10 && t.a < 20){

projection.consume(t)

Tc_in.push_back(t.a)

}else{

if(t.a>=20)

Tc_above.push_back(t.a)

else

Tc_below.push_back(t.a)

}}

Tc = union(Tc_below, Tc_in, Tc_above)

Figure 10.2: Code fragments in blue, green, and red denote code injected by the cracking instrumentor.

The query asks for the records in table T s.t. T.a ∈ (10, 20). The database compiles this

query and generates a physical plan, as shown in the middle of Figure 10.2. The cracking

instrumentor implements the σafterP , σN, and `afterend instrumentation points. σafterP

CHAPTER 10. PHYSICAL DATABASE DESIGN 257

defines a column Tc_in and populates it with the values of T.a that satisfy the predicate.

σN defines two other columns Tc_above and Tc_below and populates them with the values

of T.a that are above and below the range, respectively. These three columns essentially

provide the three-way partitioning required by the database cracking. To conclude, the

cracking instrumentor instruments the pipeline of the selection scan by implementing the

`afterend instrumentation point, that we introduced in Section 6.3. This operator unions the

three columns in order to provide the cracked column Tc and is executed after the pipeline

that involves the selection has finished its execution.

Properties. The cracking framework described above has many desirable properties:

1. The cracking implementation is up to the cracking instrumentor and it does not

require cracking developers to change any of the database internals on their own. This

highlights the overall power of instrumentation-enabled engines.

2. The framework provides flexibility for the introduction of both well-known and novel

semantics. For instance, one could change the instrumentation logic to generate tables

with all or some of the attributes of the input table. In database cracking terms, this

corresponds to sideways projections that aim to avoid the tuple reconstruction costs

due to non-clustered nature of the cracked column, as we discussed in Section 10.1.1.

Furthermore, a cracking technique may decide to only materialize the partition of

records that satisfy the selection (e.g., by instrumenting only σafterP without instru-

menting σN) or even materialize only a subset of the partition of records that satisfy

the selection (e.g., by implementing σafterP to first check if a record belongs in the

desired subset).

3. The framework also provides flexibility on scheduling the partitioning strategy. For

instance, one could devise multiple variants by deferring the instrumentation of either

the positive or the negative side. Deferring in this setup means that the selection

will be re-executed after the execution of the initial selection but this time only for

cracking purposes. Hence, one could inject cracking on the positive side and defer the

CHAPTER 10. PHYSICAL DATABASE DESIGN 258

negative one and vice versa, or even inject the cracking for the negative side only for

the values above the range and defer the ones below the range.

4. The final union to consolidate a cracking column happens after the selection. In fact,

if the selection is part of a larger plan, this consolidation could happen after the whole

plan, right after the pipeline that the selection is involved, or right after (or before)

the execution of any pipeline (that follows the pipeline involving the selection) in the

plan. The decision for when to consolidate is up to the cracking instrumentor.

5. The final consolidation could also not happen at all. The three partitions could be

registered as individuals partitions of the cracked column. Future selection queries

could simply scan these individual partitions without requiring access to specific parts

of the cracked column.

6. The selection preserves the structure of the initial query. This means that parent

operators can consume records that satisfy the selection without blocking on in-place

cracking variants to finish their reorganization.

7. The actual partitioning is out-of-place which, although requires more memory, avoids

swaps that hurt the performance of in-place cracking variants.

Injected Statistics - Deferred Cracking

The scheduling flexibility discussed above (Property 3) is an important property because

injecting cracking adds overhead to the query execution that upsteam applications may

not tolerate. In this direction, deferring the cracking logic comes with several benefits for

optimizations and policy-making that could be informed by lightweight statistics injected

in the initial selection. This is the main idea behind the second framework for cracking

purposes that we introduce here.

Consider the example code sketch for a cracking technique illustrated in Figure 10.3.

Using the instrumentation points on selection, we can implement σafterP and σN to get

CHAPTER 10. PHYSICAL DATABASE DESIGN 259

int Tc_in_cnt=0, Tc_below_cnt=0;

for(Tuple t in T){

if(t.a > 10 && t.a < 20){

projection.consume(t)

Tc_in_cnt++

}else{

if(t.a<=10) Tc_below_cnt++

}}

Column Tc = Column(T.size())

int Tc_below_idx = 0,

Tc_in_idx = Tc_below_cnt,

Tc_above_idx = Tc_below_cnt +

Tc_in_cnt;

for(Tuple t in T){

if(t.a > 10 && t.a < 20)

Tc[Tc_in_idx++] = T.a;

else if(t.a >= 20)

Tc[Tc_above_idx++] = T.a;

else

Tc[Tc_below_idx++] = T.a;}

Figure 10.3: Example of deferred cracking driven by statistics injected in the selection.

statistics from the query execution. In our example in Figure 10.3, we are getting the number

of records that satisfy the selection (by implementing σafterP accordingly) and the number

of records that are below the given range (by implementing σN accordingly). Then, the

cracking instrumentor can instrument the pipeline and defer the cracking reorganization

after the selection. After the selection, the cracking instrumentor knows how many records

are above, in, and below the range. Using this information, the choice of the reorganization

can be better informed. For instance, using these statistics we can preallocate exact memory

for the partitions, as shown in Figure 10.3. Similarly, we could decide on only cracking one

of the partitions because the selectivities for the others are low, and so on.

The deferred reorganization can also be further informed by statistics gained at the coarse

grain. For instance, if a sequential access pattern is the choice of the user for exploration,

then instead of getting statistics for the partitions based on the current selection, a cracking

technique could decide to implement σafterP and σN to get statistics for the partitions that

CHAPTER 10. PHYSICAL DATABASE DESIGN 260

will be accessed next. Lets say that at the coarse level we have determined that the user is

performing window-based selections with a step of 5. The current selection is on T.a ∈
(10, 20). This means that we should implement σafterP as if(t.a > 15)Tc_in_cnt + +;.

Similarly, we can implement σN as if(t.a < 25)Tc_above_cnt + +;. Then, the deferred

logic knows the size of the partition that will be accessed next and properly create a partition

for this chunk. To conclude our discussion on the second framework, we also note that the

properties that we introduced for the first framework are also provided by this framework.

Other Useful Instrumentation Mechanisms

We conclude our discussion on cracking, with several other instrumentation mechanisms

that are useful for the introduction of cracking techniques within a database. Throughout

our discussion note that no change of database internals is required: the cracking module

registers its logic to the instrumentation framework without worrying about the internals of

the database engine—which is the overall point of our discussion. Furthermore, note that

for our discussion next, we do not limit to instrumentation of selections in physical plans

but also account for instrumentation at logical IR levels (i.e., SQL query, parsed SQL query,

and logical plans) that we discussed in Chapter 2.

Identifying selections. When a query enters the database, the database cracking module

should decide if the query is a selection query and if of interest for cracking purposes.

The decision logic is up to the module and could be made either by instrumenting at the

level of physical plans or at logical IR levels. For instance, the decision could be made

by registering to the instrumentation points before or after the parsing module. Before

the parsing module means that the cracking modules knows how to identify a selection in

the textual representation of the SQL query while after the parsing module means that the

cracking module could identify the selection in the parsed AST.

Blocking the query execution. Database cracking techniques should also be able to block

the query execution in anticipation of the completion of a currently in-flight reorganization

that could help either the selection query or further cracking decision. This blocking could

CHAPTER 10. PHYSICAL DATABASE DESIGN 261

happen before and after the parsing module, before or after the query optimizer, or right

before the physical plan execution. Blocking before the optimizer is useful when the in-flight

reorganization will affect the decisions of the optimizer while blocking after is typically due

to a generated plan that is poor enough that waiting for the cracking reorganization pays off.

Cracking before query execution. Several cracking techniques perform a reorganization

before the query execution. For instance, hybrid cracking could be triggered before the

query execution to generate several partitions of a column. Similarly, a cracking technique

may take it to the extreme and block the query execution to sort one or more columns

directly. Such techniques may block the query execution and, upon completion, they could

re-trigger the selection queries so that they can use the new physical database design. This

is also allowed by blocking the query execution, stopping the current query execution, and

spawning another query. All operations are supported by our instrumentation framework.

Cracking with two-sided scans. Our discussion on the instrumentation frameworks focuses

on one-sided scans because this is the primary choice for selections by databases. Cracking

techniques, however, may want to perform two-sided scans as they typically result in better

performance on cracking reorganizations. If such scans are not available in a database,

recall from our discussion in Chapter 6 that instrumentation applications can introduce

their own physical operators. Furthermore, recall that our physical plan instrumentation

framework provides essential operations for the replacement of operators within a physical

plan. As such, cracking techniques can introduce two-sided scans, if not present in the

database, and replace existing one-sided scans within physical plans. Finally, we note that

the introduction of flexible defer and inject semantics on two-sided scans, similar to the

ones that we introduced for one-sided scans, are interesting future work.

10.2 Denormalization

Many applications express their analytical logic using joins over normalized databases. Such

joins can be very expensive—especially if they are repetitive and the applications have

CHAPTER 10. PHYSICAL DATABASE DESIGN 262

interactive latency requirements (e.g., interactive data visualizations). To account for the poor

performance of joins, such applications first denormalize the database to generate a, so-called,

denormalized representation using denormalization strategies [LP14; PDZ+18]. Then, joins

over the normalized representation can be converted into scans over the denormalized one.

Unfortunately, denormalized representations have two problems that we address in this

section. First, inducing a denormalized representation is an expensive operation that may

take a lot of time and space to construct. As such, it blocks the user exploration similarly to

how data cubes, for crossfilter purposes, and sorting, for selection purposes, block the user

exploration. Furthermore, denormalization comes with data redundancy costs and violates

the physical data independence [Cod70], as we discussed in Section 7.5.4.

To account for these problems, we show the connection between provenance capture

and denormalization and based on this connection we introduce a provenance-based denor-

malization technique. As we will see, fine-grained provenance capture on joins will provide

us with a denormalized representation that is cheap to construct, avoids data redundancy

costs, and does not require applications to change their querying logic (i.e., ensure physical

data independence).

To ease our discussion over the different techniques, we consider a small instance of our

example delayed flights database from Chapter 7. For convenience, Figure 10.4 repeats the

schema from Chapter 7. Figure 10.5 depicts the database instance.

flights(fid,y,m,d,h,adelay,ddelay,origin,dest,carrier)

airlines(carrier,name,iata,active)

airports(apid,name,iata,lat,lon,elevation,city,state)

states(state,name,polygons[])

Figure 10.4: The flights database schema.

As an example denormalization of this database we will consider joining all the tables

on the colored attributes:

Note that our goal here is not to introduce a denormalization strategy (i.e., what query to

use to denormalize the database). Rather, our focus is given such a query how to create the

CHAPTER 10. PHYSICAL DATABASE DESIGN 263

Figure 10.5: A small instance of the flights database schema.

D = SELECT *
FROM flights F, airports AP1, airports AP2,

states S1, states S2, airlines AL

WHERE F.origin = AP1.origin AND
F.dest = AP2.dest AND
F.carrier = AL.carrier AND

AP1.state = S1.state

AP2.state = S2.state

Figure 10.6: Example denormalization query for the flights database.

denormalized representation in such a way that the construction cost is low and the query

performance over the denormalized relation is close or better that materializing directly

the whole denormalized relation. Hence we note that denormalization queries that involve

different types of joins (e.g., outer joins such as the ones introduced by WIDETABLE),

projection clauses other than ‘*’ even if these involve functions over base attributes (e.g.,

a binning function over the delay attribute of the flights table), or even selections on base

tables or intermediate join results are valid input for the techniques that we discuss below.

10.2.1 Provenance for Denormalization

Our core idea is that fine-grained provenance indexes constructed as a result of the denor-

malization query provide a tuple graph connecting the tuples of the output join result with

CHAPTER 10. PHYSICAL DATABASE DESIGN 264

the tuples of the base tables involved in the join computation. More precisely, the backward

indexes provide a mapping from each output tuple to the input tuples that contributed to the

output tuple, while forward indexes provide the inverse mapping (i.e., mapping from each

input tuple to the output tuples that it contributed to). Hence, instead of materializing the

denormalized representation with all the attributes from each table which has substantial

materialization cost, we instead only materialize the forward and backward indexes.

Figure 10.7: (a) The example denormalization query illustrated as a workflow. (b) Denormalized

representation generated as a result of provenance capture on the example denormalization query.

To illustrate, consider the denormalization query in Figure 10.6. The forward and

backward indexes as a result of fine-grained provenance capture on this query are shown

in Figure 10.7: The backward rid indexes D→ AL, D→ AP1, D→ AP2, D→ S, and D→
F map the output rids of the denormalized relation D to the input rids of the table instances

airlines AL, airports A1, airports A2, states S, and flights F, respectively. (Note that there is

one backward rid index per input table instance and that each backward rid index is an rid

array because the mapping from output to input for joins is 1 to 1). Similarly, the forward

rid indexes S→ D, AL→ D, AP1→ D, AP2→ D, and F→ D map the input rids of the

input table instances to the output rids of the denormalized relation. (Again, note that there

is one forward index per input table instance, and each forward index is an rid index because

the mapping from input to output for joins is 1 to N.)

CHAPTER 10. PHYSICAL DATABASE DESIGN 265

Now, note that the denormalization query asks for all the attributes of the input tables

as a result of the SELECT clause. This leads to materializing a full-blown denormalized

relation D that contains all the attributes of each table, which is what we want to avoid due

to its high materialization cost. The idea here is that if we materialize the join indexes then

the denormalized relation does not need to be materialized at all. This is because instead of

accessing the attribute values as materialized in the denormalized relation D we can evaluate

future queries on D by using only the backward and forward indexes with the techniques

that we show next.

10.2.2 Querying

Our provenance-based technique above constructs a denormalized representation. How can

applications use this denormalized representation to streamline future join queries, however?

In this direction, it is easy to see that our provenance indexes for joins result in the

physical encoding of a fundamental data structure known as join indexes [Val87]. Assume

two relations R and S. Tuples in R are uniquely identified by the surrogate key r. Similarly,

every records in S is uniquely identified by the surrogate key s. Now, recall that a join index

for a join between tables R and S is a relation, say, RS with tuples (r, s) based on the results

of the join. In our case, the surrogate keys are rids. Furthermore, instead of physically

representing join indexes as relations, we represent them using rid indexes and rid arrays.

Now, note that this physical representation of join indexes (i.e., using rid indexes and

rid arrays) is well-known [WLPS17] and has been used for the construction of efficient

join evaluation algorithms [WLPS17; LR99]. Hence, the main novelty of our technique

is the construction of the denormalized representation during the execution of initial joins

(as opposed to their so-far known offline construction) that well-known join algorithms

can readily pickup. Furthermore, several other physical representations for join indexes

have already been introduced, primarily involving compression [WLPS17], that stem from

the same representation that our provenance-based technique induces. This highlights a

potentially rich space for future work to address how to push the construction of alternative

CHAPTER 10. PHYSICAL DATABASE DESIGN 266

physical representations of join indexes (e.g., by pushing the compression algorithms

in [WLPS17]) within the provenance capture phase.

10.3 Experimental Settings

Our experiments in this chapter seek to show the novel semantics and the performance

benefits that instrumentation engines can provide to adaptive physical database design

techniques. To this end, we show the performance of instrumentation-based techniques for

database cracking and adaptive denormalization in both novel and standard settings.

Datasets. For our experiments, with both cracking and adaptive denormalization, we

use common settings in terms of datasets. For cracking we compare techniques using a

uniform dataset of 10 million double precision values, while for adaptive denormalization

we compare techniques using TPC-H.

Table 10.1: Cracking techniques that we use in our evaluation.

Abbreviation Description
NO CRACKING Query execution without cracking.

DEFER Injected statistics, deferred cracking.
INJECT Injected cracking.

INJECT-NEGATIVE Injected cracking materializing only records not passing the selection.
INJECT-POSITIVE Injected cracking materializing only records passing the selection.
INJECT-2SIDED Cracking by instrumenting two-sided scans.

Compared Cracking Techniques. Table 10.1 shows a brief description of the different

techniques that we experiment with for cracking. NO CRACKING evaluates selection queries

without performing cracking and forms our baseline. DEFER and INJECT refer to the

techniques that we introduced in Section 10.1 for cracking injected within the selection

and deferred after the selection, respectively. INJECT-POSITIVE and INJECT-NEGATIVE

refer to techniques that perform cracking only for the records that pass or not the selection,

respectively. Finally, INJECT-2SIDED refers to a standard cracking technique that uses two-

sided scans (as opposed to the one-sided scans of INJECT). To introduce this technique in

SMOKE we used our instrumentation framework to (1) introduce two-sided scans, (2) replace

CHAPTER 10. PHYSICAL DATABASE DESIGN 267

the one-sided scans provided by the selection operator, and (3) instrumented the two-sided

scans to perform cracking. Steps (1) and (2) are implemented using the replace functionality

of the Actions module and step (3) is implemented by instrumenting instrumentors that we

briefly discussed in Section 6.4.4.

Table 10.2: Denormalization techniques that we use in our evaluation.

Abbreviation Description
NO MATERIALIZATION No materialization of the join results.

FULLROW Materializes the join results in row-store format.
FULLCOL Materializes the join results in column-store format.

FULLROW+COL Materializes the join results in row-store format followed
by converting the row-store to column-store.

FULLROW+COMPESSION Materializes the join results in row-store format followed
by dictionary compression of textual attributes.

FULLCOL+COMPESSION Materializes the join results in column-store format fol-
lowed by dictionary compression of textual attributes.

BT+FT Our provenance-based denormalization technique.

Compared Denormalization Techniques. We compare the performance of denormaliza-

tion techniques on denormalizing the join Lineitem ./ Orders ./ Customer ./ Nation

of the TPC-H database (SF=1). Table 10.2 show the techniques that we use for mate-

rializing denormalized representations. FULLROW materializes the result of the join in

row-store format. FULLCOL materializes the result in columnar format. FULLROW+COL

first materializes the result in row-store format and then converts it into column-store format.

FULLROW+COMPESSION and FULLCOL+COMPESSION perform dictionary compression

on the induced row- and column-store formats of FULLROW and FULLCOL. (We do not

perform compression on the representation of FULLROW+COL: FULLROW+COL and

FULLCOL result in the same representation, yet the former is slower to construct.) All the

techniques we have described so far are the most common and performant denormalization

techniques [PDZ+18; LP14]. (This is modulo techniques that perform further compression

on other types of columns on either row- or column-store representations. We found that

dictionary compression is already costly enough and we omit further compression steps.).

Furthermore, BT+FT refers to our provenance-based technique from Section 10.2, that

represents the denormalized relation using provenance indexes. Finally, NO MATERIAL-

CHAPTER 10. PHYSICAL DATABASE DESIGN 268

IZATION performs the join but does not materializes any result and we use it only to report

denormalization overheads. We have implemented and compared all techniques within

SMOKE. Note that SMOKE is a row-store that does not support compression. We have

extended SMOKE to support columnar storage and dictionary compression only to support

the denormalization techniques that rely on this functionality.

Measures. We compare the different techniques on their absolute latency for completion of

respective tasks as well as on the memory they use.

Platform. We ran our experiments on a MacBook Pro running macOS Sierra 10.14.1 with

16GB 2133MHz LPDDR3 memory (caches include 32KiB L1d, 32KiB L1i, 256KiB L2,

and 4MiB L3) and a 2.3GHz Intel Core i5 processor.

10.4 Experimental Results

Having described our experimental settings, we next present our experimental results on

database cracking (Section 10.4.1) and denormalization (Section 10.4.2)

10.4.1 Database Cracking

The goal of our experiments with database cracking is to highlight novel semantics that

instrumentation provides for techniques aiming to address this problem. To this end, Fig-

ure 10.8 drives our discussion by showing the latency (y-axis) of cracking techniques while

varying the selectivity (x-axis) of a range selection predicate (θ1 < v < θ2). (The selection

is applied over the 10 million double precision values of the dataset we described in our

settings.) Our main observations are as follows:

Our first observation regards the comparison between INJECT, INJECT-POSITIVE, and

INJECT-NEGATIVE. INJECT-POSITIVE and INJECT-NEGATIVE always outperform INJECT.

This is because INJECT materializes the whole cracked column whereas INJECT-NEGATIVE

materializes only the values that did not satisfy the selection and INJECT-POSITIVE ma-

terializes only the values that pass the selection. These results highlight that if we know

CHAPTER 10. PHYSICAL DATABASE DESIGN 269

Figure 10.8: Latency of different cracking techniques.

exploration patterns that users follow, then we can use this knowledge to push (through

instrumentation) more complicated cracking strategies in selections that a) best fit user-

exploration patterns and b) decrease the overheads of materializing whole cracked columns

that traditional cracking strategies perform.

Our second observation regards the comparison between INJECT-POSITIVE and INJECT-

NEGATIVE. As shown in Figure 10.8, INJECT-POSITIVE is faster than INJECT-NEGATIVE

for all selectivities below 50%. Above 50%, this observation is inverted and INJECT-

NEGATIVE becomes faster than INJECT-POSITIVE. This is because INJECT-POSITIVE

materializes the values that pass the predicate and INJECT-NEGATIVE materializes the

values that did not pass the predicate. Hence, below 50% selectivity INJECT-POSITIVE

has to perform less work than INJECT-NEGATIVE, above 50% the roles are inverted and

INJECT-POSITIVE has to perform more work, and at 50% selectivity both approaches have

the exact same performance, as shown in Figure 10.8.

Our third observation regards the bell curves that are formed by the different ap-

proaches while we vary the selectivity. This is due to branch mispredictions as is also

noted in [PPI+14]. We note that to eliminate branch mispredictions a common technique

CHAPTER 10. PHYSICAL DATABASE DESIGN 270

is to use predication. Branch-free cracking variants that use predication to address this

problem have already been introduced [PPI+14]. Such variants require significant rewriting

of the underlying selections and are suitable for different types of workloads and selection

selectivities. In this direction, we believe our physical plan instrumentation framework can

help in the introduction of complex techniques (e.g., to introduce predication) by altering

the internal logic of selections.

Our fourth observation regards the comparison between INJECT with DEFER. Note

that the DEFER approach is slower than the INJECT approach for all selectivities below a

threshold (i.e., ~85% selectivity in our experiments in Figure 10.8). Although DEFER is

slower in most of the cases, recall that it is executed after the selection. Therefore, it does

not block the query execution for cracking purposes as is the case for INJECT. Now the

reason why DEFER is faster than INJECT is due to two reasons. First, recall that branch

mispredictions are low for high selectivities. As a result, DEFER avoids both mispredictions

in the initial selection and in the deferred execution. Second, recall that INJECT needs to

reallocate memory during the initial selection to store the values that are above, below, and

in the range of the selection. This is because the size of these arrays (i.e., below, above, and

in the range) is not known in advance and INJECT needs to perform reallocations during the

execution of the selection when appending to these arrays. In contrast, DEFER tracks the size

of the arrays during selections. After the selection, the sizes of the arrays are known, and

DEFER uses them to allocate the arrays with exact size. As branch mispredictions decrease,

the benefit of allocating once using DEFER catches up the reallocations of INJECT, which

overall renders DEFER better in high selectivities.

Our fifth observation regards the comparison between cracking using one-sided and two-

sided scans (i.e., INJECT and INJECT-2SIDED). As shown in Figure 10.8, INJECT-2SIDED

is worse than INJECT for small selectivities and better in high selectivities. This is due to

the differences in branch mispredictions and cache misses of single- and two-sided scans as

well as because INJECT-2SIDED performs in-place cracking and does not need to store an

extra column. (Recall that INJECT is out-of-place and needs to store an extra column.) For

CHAPTER 10. PHYSICAL DATABASE DESIGN 271

our purposes, the main takeaway is that instrumentation can be equally used to express and

introduce both variants in a principled way within a database without having to rewrite its

internals—which is the overall point of our discussion.

So far, we have compared the different techniques with regards to their overall latency.

For completeness and to conclude our discussion on cracking, we also compare techniques

based on the space that they use. For our experiments, recall that the underlying column has

N=10mil. double precision numbers. DEFER and INJECT needs to write a column the size of

the original one (i.e., N). INJECT-NEGATIVE and INJECT-POSITIVE need to write (1–X)∗N
and X ∗N, respectively, where X refers to the selectivity. INJECT-2SIDED performs in-place

cracking. Hence, it does not require extra storage. Finally, NO CRACKING performs the

selection without materializing any information for database cracking purposes.

10.4.2 Denormalization

To evaluate our denormalization strategies, we experiment with TPC-H. More specifically,

we compare our provenance-based denormalization technique (i.e., BT+FT) with the denor-

malization techniques FULLROW, FULLCOL, FULLROW+COL, FULLROW+COMPESSION,

and FULLCOL+COMPESSION that we outlined in our settings (Section 10.3). Also, recall

from our settings that the denormalization is on the join Lineitem ./ Orders ./ Customer

./ Nation over a TPC-H instance with SF=1. Figures 10.9 and 10.10 compare the tech-

niques in terms of latency and space required to construct the denormalized representation.

To better explain denormalization overheads, we also include the results of NO MATERIAL-

IZATION that only performs the join without materializing a denormalized representation.

Next, we discuss in detail our main observations over our experimental results.

Latency of BT+FT. Among the different techniques, BT+FT takes the least amount of

time (i.e., 2.7s) to construct its denormalized representation. In comparison to NO MATE-

RIALIZATION (i.e., not materializing a denormalized representation), BT+FT incurs only

a ~1× overhead whereas the rest of the techniques (i.e., FULLROW, FULLCOL, FULL-

ROW+COL, FULLCOL+COMPESSION, and FULLROW+COMPESSION) incur significantly

CHAPTER 10. PHYSICAL DATABASE DESIGN 272

Figure 10.9: Latency of different denormalization techniques.

higher overheads (i.e., ~3.8×, ~8.6×, ~18.5×, ~49.7×, and ~54.4× overhead, respectively).

These results highlight the latency-wise benefits of BT+FT for denormalization purposes.

Comparison with FULLROW, FULLCOL, and FULLROW+COL. The main reason why

BT+FT outperforms FULLROW, FULLCOL, and FULLROW+COL is because the cost of

constructing provenance indexes is significantly smaller than materializing full relations.

In essence, the three techniques FULLROW, FULLCOL, and FULLROW+COL perform

what we called LOGIC-TUP provenance capture in Section 3.7 which has significantly

higher capture (and query) costs, as we showed experimentally in Section 3.7. Their main

difference is on how the materialize their end-result (i.e., in column or row format) which

is the main reason behind their overall differences on latency. Finally, note that BT+FT

has the same complexity no matter how wide the denormalized relation becomes. In

contrast, FULLROW, FULLCOL, and FULLROW+COL would have higher or lower overhead

depending on whether the denormalized relation was wider of narrower, respectively. While

the typical case is to have wide denormalized relations, we note that in order for FULLROW,

FULLCOL, and FULLROW+COL to have the same or better performance than BT+FT, the

CHAPTER 10. PHYSICAL DATABASE DESIGN 273

Figure 10.10: Space required by different denormalization techniques.

input relations to the join need to have records with size equal or less to the size of an RID.

This is an extreme and highly unlikely case but we note it here for completeness.

Comparison with FULLROW+COMPESSION and FULLCOL+COMPESSION. FULL-

ROW+COMPESSION and FULLCOL+COMPESSION perform dictionary compression on

the textual attributes of the relations induced by FULLROW and FULLCOL, respec-

tively. Since the dictionary compression is performed after the denormalization, FULL-

ROW+COMPESSION and FULLCOL+COMPESSION incur even higher overhead than FULL-

ROW and FULLCOL which, in turn, have higher overhead than BT+FT.

Comparison on space consumption by different denormalization techniques. Finally,

we also compare the different denormalization techniques in terms of space consumption.

As shown in Figure 10.10, BT+FT requires only 160MB for the provenance indexes

while the compared techniques require at least 1GB (i.e., FULLROW+COMPESSION and

FULLCOL+COMPESSION that perform dictionary compression; for these two techniques,

we do not include the space required for the dictionary) and up to 4GB (i.e., FULLROW).

These results highlight the space-wise benefits of BT+FT for denormalization purposes.

CHAPTER 10. PHYSICAL DATABASE DESIGN 274

Takeaways: Our experiments provide evidence that instrumentation-enabled database

engines provide principle mechanisms for the introduction of both well-known as well as

novel and performant database cracking and denormalization techniques.

10.5 Conclusions

In this chapter, we explored connections between instrumentation (and provenance) with

physical database techniques. Based on connections with database cracking, we introduced

two novel instrumentation frameworks for database cracking purposes that can be used

for the replication of well-known cracking techniques as well as for the introduction of

novel cracking techniques. Furthermore, based on the connections between provenance and

denormalization, we introduced a denormalization technique that constructs denormalized

representations faster and using less space than well-known denormalization techniques. As

such, our discussion and experiments highlight the expressive and optimization power of

instrumentation-enabled engine in the domain of physical database design. Going forth, we

believe that instrumentation can be central in the construction of novel physical database

designs (e.g., online compression of provenance indexes by using [WLPS17] and devising

list and bitmap compression algorithms to further optimize denormalization schemes) with

the overall goal to best-fit user exploration patterns.

CHAPTER 11. QUERY DISCOVERY 275

Chapter 11

Query Discovery

We continue our discussion on application domains by focusing on query discovery. Query

discovery techniques aim to provide search interfaces on top of databases so that end

users can discover queries that best fit their analytical needs. More specifically, given an

input database and examples of desired query results through an interface, the goal is to

return possible queries that generate the example results (or a superset of them). This

formulation can be attractive because SQL queries are known to be hard to compose due

to the compositionality of SQL. Hence, query discovery approaches typically focus on a

semantically meaningful subset of SQL for which discovering queries can be efficient.

In this direction, this chapter presents a query discovery system, namely S4, that provides

a spreadsheet-style search interface on top of analytical databases, so that end users can

discover queries from an important class of join queries, namely, project-join queries.

As a system, S4 precedes the development of SMOKE. As such, it provides us with an

opportunity for a retrospective analysis of how we could have build S4 if instrumentation-

enabled engines, such as SMOKE, were available. We present this analysis in Section 11.11

after the detailed presentation of S4. Finally, S4 is a product of my internship at Microsoft

Research in collaboration and under the guidance of some of my great colleagues and

mentors: Kaushik Chakrabarti, Surajit Chaudhuri, and Bolin Ding.

CHAPTER 11. QUERY DISCOVERY 276

11.1 Introduction

Modern data warehouses usually have large and complex data schemas. A decision-support

query on such a data warehouse typically touches a small portion of the schema. However,

to express such a query, the enterprise information worker needs to comprehend the entire

schema and locate elements of interest. This is extremely burdensome for most users.

Query discovery has recently been proposed as a solution to this problem [QCJ12;

SCC+14]. An enterprise information worker is often aware of a few example tuples that

should be present in the output of a query. These example tuples together form an example

spreadsheet, one per each row. Previous systems discover project-join queries (PJ queries)

that contain the given example tuples, or the example spreadsheet, in their output [QCJ12;

SCC+14]. This liberates users from understanding the entire schema.

Example 15 (Discovery of PJ queries in TPC-H) Consider a database instance of a

TPC-H sub-schema in Figure 11.1. The database contains information about customers,

the countries they live in, the orders they placed, the parts purchased in each order, the

suppliers of those parts, and the countries the suppliers are based in. The arrows point in the

direction of foreign-key to primary-key relationships between pairs of relations. Suppose an

enterprise information worker uses a query discovery system to discover the PJ query that

outputs all customers and, for each customer, outputs her name, the name of the country

she lives in, and the names of the parts she ordered. The PJ query and its output is shown

in Figure 11.2(b)-(i). She is aware of an example spreadsheet of three example tuples that

should be present in the query result: a customer named ‘Rick’ (does not know his full

name) who lives in ’USA’ and ordered an ‘Xbox’, a customer named ‘Julie’ (not sure where

she lives) who ordered an ‘iPhone’ and a customer named ‘Kevin’ who lives in ‘Canada’

(not sure what he ordered). She can provide this information by typing these example

tuples into an example spreadsheet (e.g., in Microsoft Excel or Google Sheets) as shown in

Figure 11.2(a). Note that some cells in the example spreadsheet can be empty. The system

returns the desired PJ query in Figure 11.2(b)-(i) as it contains all the example tuples in its

CHAPTER 11. QUERY DISCOVERY 277

CustId CName NatId

c1 Rick Miller n1

c2 Julie Smith n1

c3 Kevin Chen n2

Customer

PartId PName

p1 Xbox One

p2 iPhone 6

p3 Samsung

Galaxy

Part

NatId NName

n1 USA

n2 Canada

n3 China

Nation

OId CustId Clerk

o1 c1 Julie

o2 c2 Kevin

o3 c3 Rick

ItemId OId PartId

i1 o1 p1

i2 o1 p3

i3 o2 p2

i4 o3 p2

LineItem

PartSuppId PartIdSuppId

ps1 p1 s1

ps2 p1 s2

ps3 p2 s1

ps4 p3 s3

SuppId SName NatId

s1 Century Electronics n1

s2 Kevin Brown n2

s3 Shenzhen Trading n3

SupplierPartSupp

Orders

Figure 11.1: A sample database

output relation. The example tuples and corresponding tuples in the output are shaded with

the same color. The system maps the columns of the example spreadsheet to the projected

columns in the query for users to better understand the PJ query discovered; the latter are

labeled by the name of the corresponding column in the example spreadsheet (A, B and C).

One main limitation of these previous systems is that they require the output relations of

PJ queries to exactly contain all the example tuples and do not perform any ranking. As a

result, they cannot i) tolerate errors that the user might make while providing the example

tuples and ii) perform IR-style relevance ranking.

CHAPTER 11. QUERY DISCOVERY 278

Rick Miller USA Xbox One

Rick Miller USA Samsung..

Julie Smith USA iPhone 6

Kevin Chen Canada iPhone 6

A

Rick

Julie

USA

iPhone

Xbox

CanadaKevin

Oid CustId Clerk

Orders

Customer

NatIdNName

ItemId OidPartId

PartId PName

LineItem

Nation

Part

CustIdCName NatId

C

B

A

PartSuppId PartId SuppId

PartSupp

Supplier

NatId NName

PartIdPName

Part

SuppId SName NatId

C

B

(a)

(b)

(i)

(ii)

Julie USA Xbox One

Julie USA Samsung..

Kevin USA iPhone 6

Rick Canada iPhone 6

Century… USA Xbox One

Century… USA iPhone 6

Kevin BrownCanada Xbox One

Shenzhen... China Samsung..

Nation

(iii)

Customer.

CName

Nation.

Nname

Part.

Pname

Supplier.

SName

Nation.

Nname

Part.

Pname

Orders.

Clerk

Nation.

Nname

Part.

PnameA
Oid CustId Clerk

Orders

Customer

NatIdNName

ItemId OidPartId

PartId PName

LineItem

Nation

Part

CustIdCName NatId

C

B

Figure 11.2: (a) Example spreadsheet. (b) PJ queries and their outputs.

• Tolerating errors: Suppose the user wants to discover the query that outputs all orders

and, for each order, outputs the name of clerk who processed the order, the country of the

customer who placed the order, and the parts in the order. She provides an example tuple:

a clerk named ‘Rick’ processed an order from a customer in ‘USA’, and the order consisted

of the part ‘Xbox’. However, it is not ‘Rick’ but another clerk ‘Julie’ who processed

that order. The desired PJ query and its output is shown in Figure 11.2(b)-(iii). We say

that she made a relationship error with respect to that PJ query as, although ‘Rick’ is a

correct domain value (he is indeed a clerk), the provided relationship of ‘Rick’ with ‘USA’

CHAPTER 11. QUERY DISCOVERY 279

and ‘Xbox’ is wrong. The user can also make domain errors. Suppose the user wants to

discover the query that outputs all suppliers and, for each supplier, outputs its name, the

country it is based in and the parts it supplies. She then provides such an example tuple: a

supplier named ‘Rick’ based in ‘USA’ who supplies the part ‘Xbox’. The desired PJ query

and its output is shown in Figure 11.2(b)-(ii). There is a domain error with respect to the

PJ query as there is no supplier named ‘Rick’.

• Performing relevance ranking: Suppose there is a supplier with name ‘Welton USA’ who

supplies Xbox One. Consider the first example tuple in Figure 11.2(a). In addition to the

the PJ query shown in Figure 11.2(b)-(i), some other PJ queries may also contain that

example tuple in their outputs (e.g., a customer ‘Rick Miller’ who ordered ‘Xbox One’

which is supplied by ‘Welton USA’). The former is more relevant, as country name ‘USA’

is a better match to ‘USA’ in the example tuple than supplier name ‘Welton USA’.

To address the above issues, in this chapter, we propose to discover not only the PJ

queries which exactly contain the given example tuples, or the example spreadsheet, in its

output but also those that partially contain them. We compute a relevance score for each PJ

query that quantifies how well its output contains the example tuples and return PJ queries

with the top-k highest scores.

Technical challenges

In a large real-world database, there are numerous ways of projecting and connecting tables

and rows through foreign keys. So there could be millions of PJ queries that partially contain

the user-specified example tuples in their output relations.

The first technical challenge is to develop a scoring model that allows us to tolerate

relationship/domain errors and quantifies how well the user-given example spreadsheet is

contained in the output of PJ queries, in order to perform a relevance ranking of them.

The second and main technical challenge is to compute the top-k PJ queries efficiently.

One important application of our system is to provide online data-search and discovery

CHAPTER 11. QUERY DISCOVERY 280

services in data processing tools such Excel Online [Exc18] and Google Sheets [Goo18].

While a user may spend a significant amount of time in specifying the query, such as the

example spreadsheet in our system, it has been shown that, in the context of online search,

query latency is critical to user satisfaction. Increases in latency directly lead to lower

utilization and higher rates of query abandonment [Bru09; May06].

Overview of our solution and key insights

In this chapter, we adapt a candidate-enumeration and evaluation framework, which is also

used in keyword search systems for relational databases [ACD02; HGP03; LLWZ07].

In the first step, called PJ query enumeration, we enumerate all candidate PJ queries that

are potential answers for a user-specified example spreadsheet. The only requirement for

these candidate PJ queries, called minimality, is that no table or projection column can be

dropped without “losing” in relevance score. In the second step, called PJ query evaluation,

we execute candidate PJ queries, and compare their output relations with the example

spreadsheet to calculate their scores. A naive solution is to execute all the candidates and

output the top-k with the highest scores.

It is important to note that the first step is very efficient, as it is pursued on the schema-

level and no join is required. So it constitutes a negligible fraction of the overall query

processing time. The second step, evaluating scores of PJ queries, is expensive (as it requires

joins). As our scoring model quantifies how well the user-given example spreadsheet is

contained in the output of join and projection, we need to at least examine rows in the join

output, which may partially contain an example tuple. So this challenge translates to that of

evaluating as few PJ queries as possible. The naive solution, evaluating all the candidates,

is hence infeasible (we will compare it with the approaches we propose in Section 11.6).

Although calculating the exact relevance scores is expensive, we derive their upper

bounds in a much more efficient way (without executing any join). Inspired by the work

on multi-step kNN search [SK98], we evaluate PJ queries in decreasing order of their

upper bound scores, and terminate with the top-k as soon as the max upper-bound score of

CHAPTER 11. QUERY DISCOVERY 281

Customer

NatIdNName

Nation

CustIdCNameNatId

B

ItemIdOidPartId

PartIdPName

LineItem

Part C

Figure 11.3: Common sub-expressions (sub-PJ queries) in Figure 11.2(b)

non-evaluated queries is no higher than the current top-k score. We refer to the resulting

approach as BASELINE.

Our main insight to improve on BASELINE is that there are many common sub-

expressions, called sub-PJ queries, that are shared among the PJ queries. For example, the

PJ queries (i) and (iii) in 11.2(b) share the two sub-PJ queries shown in Figure 11.3. If we

can compute the output relations of these sub-PJ queries once, and cache (or memorize) them

in memory, we can re-use them multiple times later when we evaluate queries containing

these two sub-PJ queries. This reduces the overall evaluation cost significantly.

A novel component, called caching-evaluation scheduler, in our system determines,

for the set of candidate PJ queries, i) the order following which these PJ queries will be

evaluated; ii) output relations of which sub-PJ queries to be cached; and iii) when to put

the output relations into the cache and when to remove them, as we have only a budgeted

amount of memory. There are two aspects in the objective of this component: one is to

evaluate as few PJ queries as possible to discover the top-k; and the other one is to utilize

the cached output relations as much as possible to reduce the overall evaluation cost. We

will formalize the task of this component and refer to it as caching-evaluation scheduling

problem.

Contributions and organization. We have built a spreadsheet-style search system, namely,

S4, to tackle the challenges based on the above insights. Our contributions are as follows:

• We introduce a novel scoring model for a PJ query w.r.t. an example spreadsheet. It

allows us to tolerate both types of errors and perform IR-style relevance ranking of PJ

queries in response to example spreadsheets. (Section 11.2)

CHAPTER 11. QUERY DISCOVERY 282

• We introduce S4 based on a candidate-enumeration and evaluation framework, and we

enable a flexible caching-evaluation component in its architecture. (Section 11.3)

• To tackle the technical challenges of our task, we first introduce some basic operators in

our system and propose our BASELINE strategy with the goal set to evaluate as few PJ

queries as possible. (Section 11.4)

• We then introduce our cache-aware optimization techniques to improve on the BASELINE.

We propose the caching-evaluation scheduling problem with the objective of minimizing

the overall evaluation cost. We prove it is NP-complete. Several novel heuristics are

proposed to solve this problem, and the resulting strategy is called FASTTOPK. We prove

that FASTTOPK has performance guarantee in the worst-case in two aspects: i) it does not

evaluate too many PJ queries in addition to the necessary ones; and ii) the gap between

the evaluation cost introduced by FASTTOPK strategy and the optimal evaluation cost is

bounded in the worst case. We also introduce how to extend our system and strategies to

handle incremental updates on the example spreadsheet. (Section 11.5)

• We perform our experimental study on both real-life and synthetic datasets to evaluate

the efficiency of our approaches, together with a user study to evaluate the effectiveness

of our scoring model. (Section 11.6)

Finally, extensions and proofs are presented in Sections 11.7 to 11.9.

11.2 System Task and Scoring Model

We first present our data model and formally define our system task of discovering top-k

project-join queries for a given example spreadsheet. Then, we present the model to compute

the relevance score of a project-join query w.r.t. an example spreadsheet.

CHAPTER 11. QUERY DISCOVERY 283

11.2.1 Data Model

We consider a databaseD with m relations R1, R2, · · · , Rm. For a relation R, let R[i] denote

its ith column, and col(R) = {R[i]}i=1,...|col(R)| denote the set of columns of R. For a tuple

r in R, denote r ∈ R and let r[i] be its cell value on the column R[i].

Let G(V , E) denote the directed schema graph of D where the vertices in V represent the

relations in D, and the edges in E represent foreign key references between two relations:

there is an edge from Rj to Rk in E iff the primary key defined on Rk is referenced by a

foreign key defined in Rj. There can be multiple edges from Rj to Rk and we label each

edge with the corresponding foreign key’s attribute name. For simplicity, we omit edge

labels in our examples and description if they are clear from the context.

In a relation Ri, we refer to a column as text column if its values are strings. Fig-

ure 11.1 shows an example database involving seven relations with a total of five text

columns: Customer.CustName, Nation.NatName, Orders.Clerk, Part.PartName, and

Supplier.SuppName. In the rest of this chapter, we focus only on text columns as well as

primary or foreign key columns of relations.

11.2.2 Discovering Top-k PJ Queries by Example Spreadsheet

Example spreadsheet. An example spreadsheet is a multi-column table and serves as an

interactive interface for PJ query discovery. Each cell of this spreadsheet is typed by the

user, and could either be empty or contain some text. Figure 11.2(a) gives an example.

Definition 3 (Example spreadsheet) An example spreadsheet T is a table with multiple

rows {t} and columns col(T). Each row t ∈ T is called an example tuple, where each cell is

either a string (i.e., one or more terms) or empty. Let t[i] denote its cell value on the column

i ∈ col(S), and let t[i] = ∅ if t[i] is empty. Each row t contains at least one term and so does

each column T[i].

CHAPTER 11. QUERY DISCOVERY 284

Project-Join (PJ) queries. We aim to discover queries in directed-tree shapes with projec-

tions and foreign key joins that generate a table from D to expand the user-given example

spreadsheet T.

Definition 4 (Project-Join Queries) A project-join query Q = (J , C,φ) w.r.t to an example

spreadsheet T is specified by:

• a join tree J ⊆ G, i.e., a directed subtree of the schema graph G(V , E) of the database D
representing all the relations (vertices of J) and joins (edges of J) involved in the query

– let col(J) be the set of all columns of relations in J ,
• a set of projection columns C ⊆ col(J) from the relations in J , which the join result is

projected onto, and
• a column mapping φ : col(T) → C from columns of the example spreadsheet T to the

projection columns in C – it is a surjective function, i.e., ∀c ∈ C : ∃i ∈ col(T) s.t. φ(i) = c.

It is important to ensure that there is no redundant table or projection column in the

discovered PJ queries. Intuitively, a table or a projection column is redundant if, after it is

dropped from the PJ query, the output relation matches the example spreadsheet equally

well or even better. We formally define them as minimal PJ queries and only consider them

as the candidates to be discovered.

Definition 5 (Minimal Project-Join Queries) A PJ query Q = (J , C,φ) w.r.t. an example

spreadsheet T is minimal iff

i) for any degree-1 vertex (relation) R in J , there is a column i ∈ col(T) s.t. φ(i) ∈ col(R),

i.e., every degree-1 relation R has a column of the example spreadsheet mapped to it and
ii) for every column i of T which is mapped to column R[j] of a relation R in J through φ

(i.e., φ(i) = R[j]), there exists at least one term in column T[i] appearing in column R[j].

In the rest of this chapter, when we refer to PJ queries, we refer to minimal project-join

queries. For the example database in Figure 11.1, three PJ queries and their output relations

are shown in Figure 11.2(b).

CHAPTER 11. QUERY DISCOVERY 285

Let A(Q) be the output relation when Q is executed on database D: joins in J are

executed first, and then the results are projected on columns C. Columns of the example

spreadsheet T are mapped to columns C of the output relation A(Q) according to φ.

Property i) in Definition 5 is similar to the minimality of candidate networks in keyword

search literatures like [ACD02; HGP03; LLWZ07]. In our case, degree-1 relations not

satisfying i) can be excluded from J s.t. we have no less distinct tuples in the output relation

A(Q), because they have no column in the projection and the join tree is still valid after the

removal of them.

Property ii) in Definition 5 says that a column i in the example spreadsheet T should

not be mapped to a column R[j] in the projection C if none of the terms in the column T[i]

appears in R[j] (and the corresponding column inA(Q)). Intuitively, if the two columns T[i]

and R[j] have no overlapping vocabularies, they are likely from two different domains so it

is meaningless to map T[i] to R[j]. In fact, we can drop the column i from T to get a smaller

example spreadsheet T′, and drop the column R[j] from the projection C and the mapping φ,

denoting as C ′ = C – {R[j]} and φ′; in our scoring model, we can prove that the relevance

score of Q′ = (J , C ′,φ′) w.r.t. T′ is no less than the score of Q = (J , C,φ) w.r.t. T.

Based on our scoring model introduced next in Section 11.2.3, we will show that we do

not “lose” in score by looking only at the minimal PJ queries (Proposition 1). A bit more

formally, for any non-minimal PJ query Q = (J , C,φ), we can find a minimal PJ query

Q′ = (J ′, C ′,φ′) with J ′ as a subtree of J and/or φ′ as a sub-mapping of φ such that the

score of Q′ is no less than the score of Q. For example, consider the example spreadsheet in

Figure 11.2(a) without column C, Figure 11.2(b)-(i) is no longer a minimal PJ query, as the

degree-1 relation Part violates property i) and removing it will not reduce the score. Another

example in Figure 11.2 is that it does not make sense to map column A in the example

spreadsheet to column Nation.NName because any PJ query with this mapping violates

property ii), and we can remove this pair of columns from the example spreadsheet/PJ query

without reducing the score.

CHAPTER 11. QUERY DISCOVERY 286

End-to-end system task. For a user-given example spreadsheet T, the goal of our system is

to find minimal PJ queries with the top-k highest scores w.r.t. T. The incremental version of

our task is: suppose we have found the top-k PJ queries for a user-given example spreadsheet

T, after one or more cells in T are updated by the user, how to find the updated top-k PJ

queries efficiently.

11.2.3 Scoring Model for PJ Queries

The score of a PJ query Q w.r.t. an example spreadsheet T quantifies how well the Q’s

output A(Q) contains rows in T. We first present the scoring model and then show how it

allows us to tolerate relationship and domain errors for performing relevance ranking.

An IR system computes a score of a document w.r.t. a keyword query, which quantifies

how well the former contains the terms in the latter. A straightforward way to compute the

score of Q w.r.t. T is to treat T as a “query” (by concatenating all text in T) and A(Q) as a

“document” (again, by concatenating) and apply a traditional IR relevance scoring model

[Sin01]. We do not adopt this model as we need to quantify how well A(Q) contains each

example tuple with their columns aligned according to the mapping φ; it is difficult to do so

in this model as it removes the row/column boundaries.

Containment score w.r.t. single example tuple. We first define a score score(t | A(Q))

to quantify how well A(Q) contains a single example tuple t ∈ T. Let score(t | r) denote

the similarity between an example tuple t ∈ T and a row r ∈ A(Q) in the PJ query output

(referred to as row-row similarity). By definition of containment, score(t | A(Q)) should

be high as long as there is one row r ∈ A(Q) in the PJ query’s output relation with a high

row-row similarity score(t | r) with t; so we refer to the most similar tuple for t to define

the containment score:

score(t | Q) = max
r∈A(Q)

score(t | r). (11.1)

Row-row similarity. One way to get row-row similarity score(t | r) between an example

tuple t ∈ T and a row r ∈ A(Q) in the PJ query output is to treat t as a “query” (by

CHAPTER 11. QUERY DISCOVERY 287

concatenating the terms in all cells in t) and r as a “document” (again, by concatenating).

Again, this model is not suitable as we need to respect the mapping φ while computing the

row-row similarity. We need to compare a cell t[i] with the cell r[φ(i)] it is mapped to. Let

scorecell(t[i] | r[j]) denote the cell similarity between an example tuple cell t[i] and a cell r[j]

in an output row. We compute the row-row similarity by summing up the cell similarities

for all columns.

score(t | r) =
∑

i∈col(T)
scorecell(t[i] | r[φ(i)]). (11.2)

We use a simple cell similarity scorecell(t[i] | r[j]) as: how many terms in t[i] appear

in r[j] if t[i] is non-empty and 0 otherwise. We discuss how to adapt a more complicated

IR-style cell similarity to perform relevance ranking in Section 11.7.2.

Row containment score w.r.t. entire example spreadsheet. We are now ready to define

the row-wise containment score to quantify how wellA(Q) contains all the example tuples in

T, denoted as scorerow(T | Q). The more individual tuples in the example spreadsheetA(Q)

contains, the higher should be the final score. So, a natural way is to sum up containment

scores for all the example tuples in the example spreadsheet:

scorerow(T | Q) =
∑
t∈T

score(t | Q) =
∑
t∈T

max
r∈A(Q)

score(t | r). (11.3)

Example 16 We compute the score scorerow(T | Q) of PJ query Q in Figure 11.2(b)-(iii)

w.r.t. the example spreadsheet T in Figure 11.2(a). Recall that cell similarity scorecell(t[i] |

r[j]) is how many terms in t[i] appear in r[j] if non-empty, and 0 otherwise. For each row

in T, the most similar row in A(Q) is shaded with the same color (yellow, pink and green

for the three rows). The single tuple containment scores are 2, 1, and 1 respectively. So,

scorerow(T | Q) = 4. Similarly, the score between the same example spreadsheet and PJ

query in Figure 11.2(b)-(ii) is 2 + 1 + 2 = 5.

Tolerating errors. Naturally, the scoring function should have the following property:

higher the number of errors in the example spreadsheet with respect to the output of a

CHAPTER 11. QUERY DISCOVERY 288

PJ query Q, lower the score of Q. The above score scorerow satisfies this property. For

example, the example spreadsheet in Figure 11.2(a) has 2 errors in the output of PJ query in

Figure 11.2(b)-(ii) (Rick and Julie in column A do not appear in column Supplier.SName

for the first two example tuples), while it has 3 errors in the output of PJ query (iii) (one

term missed for each example tuple). From Example 16, we see that (ii) has a higher

score scorerow than (iii). However, it penalizes relationship and domain errors equally.

Relationship errors are more common, so we want to penalize them less than domain errors.

We next introduce column containment score for that purpose.

Column containment score. We define column containment score that penalizes only

domain errors. Subsequently, we will put it together with the row containment score

scorerow to penalize the two classes of errors differently. A cell in column i ∈ col(T) in an

example spreadsheet T has a domain error in a PJ query Q iff it has one term not occurring

in the mapped column φ(i) of the join tree J of Q. The column-wise containment score

that quantifies how well the cells in each column i ∈ col(T) are contained in the mapped

column φ(i) will penalize only domain errors.

For each cell in the example spreadsheet T, we first find the most similar cell in the

mapped column φ(i) of the join tree J of Q. We sum up the similarities between cells

paired in this way to obtain the column-wise containment score:

scorecol(T | Q) =
∑

i∈col(T)

∑
t∈T

max
r∈J [φ(i)]

scorecell(t[i] | r[φ(i)]), (11.4)

where let J [φ(i)] be the relation T[i] is mapped to in database D.

Example 17 We compute the column-wise containment score scorecol of the PJ query Q in

Figure 11.2(b)-(ii) w.r.t. the example spreadsheet T in Figure 11.2(a). Column A in T is

mapped to column Supplier.SuppName (in the database in Figure 11.1) through φ. Only

one (Rick) out of the three terms in T.A appears in Supplier.SuppName. For each of

the other two columns in T, both terms can be found in the corresponding column in the

database. So scorecol(T | Q) = 5. Similarly, the column-wise containment score of the PJ

CHAPTER 11. QUERY DISCOVERY 289

query Q in Figure 11.2(b)-(iii) is 3 + 2 + 2 = 7. In contrast to Example 16, now (iii) has a

higher score than (ii) because (iii) has no domain errors while (ii) has 2 domain errors.

Putting it together. We obtain the final relevance score score(T | Q) of a PJ query Q w.r.t.

an example spreadsheet T by taking a linear combination of row-wise and column-wise

containment scores. We introduce a parameter 0 ≤ α ≤ 1 to control the relative penalty of

the two classes of errors. Similar to prior work, we also penalize PJ queries with larger join

trees as the relationship among the mapped columns in J is looser. We penalize it with a

factor of 1 + ln(1 + ln |J |), where |J | is the number of relations in J .

score(T | Q) =
α · scorerow(T | Q) + (1 – α) · scorecol(T | Q)

1 + ln(1 + ln |J |)
. (11.5)

Minimality and scores. In Proposition 1 below, we show why we are interested in finding

only minimal PJ queries (Definition 5).

Proposition 1 Consider a user-given example spreadsheet T and a PJ query Q = (J , C,φ)
in a database D. If property i) in Definition 5 is not satisfied, let R be a degree-1 relation in

J with no column in T mapped to it. Define a smaller J ′ = J – R and Q′ = (J ′, C,φ).
We have score(T | Q) ≤ score(T | Q′).

If property ii) is violated, let i be a column in T s.t. no term in T[i] appears in the

database column R[j] it is mapped to. We can remove the column i from T to get a smaller

example spreadsheet T′, and remove the column R[j] from the projection C and the mapping

φ: let C ′ = C–{R[j]} and φ′ be the range-restriction of φ by C ′, i.e., φ′(i) = φ(i) iff φ(i) ∈ C ′

and undefined otherwise. Let Q′′ = (J , C ′,φ′). We have score(T | Q) = score(T′ | Q′′).

11.3 System Architecture

The S4 system architecture is depicted in Figure 11.4, with two major components: offline

index building and online top-k ranking.

CHAPTER 11. QUERY DISCOVERY 290

Figure 11.4: S4 System Architecture

11.3.1 Offline Index Building

Directed Schema Graph. First, we maintain the directed schema graph G(V , E) in mem-

ory, which keeps schema-level information about the database D, including names of

relations/columns (in V), and foreign keys (in E).

Secondly, for the purpose of PJ query enumeration and evaluation (computing their

scores), we build two types of in-memory indexes that are extensions to inverted indexes in

traditional IR.

Column-level inverted index. Given a term w, index inv(w) returns all the database

columns where w appears in at least one row.

Row-level inverted index. For a term w and a column R[i] in relation R, inv(w, R[i]) returns

all rows in R, where w appears in column i, and its term frequency in each cell.

Finally, for interactive performance, the PJ queries need to be executed and scored

without accessing the database on disk using in-memory join indexes. Attivio Active

Intelligence Engine uses a similar index to perform query-time join [SJTDP11]. We call it:

In memory (key, foreign key) snapshot of the database. We keep the primary-key and

foreign-key columns of each row in each relation of the database materialized in memory.

CHAPTER 11. QUERY DISCOVERY 291

11.3.2 Online Top-k Ranking

We adopt a PJ-query enumeration-ranking framework for online top-k ranking. S4 processes

a user-specified example spreadsheet in two steps as follows to output the top-k PJ queries.

PJ query enumeration. The set of minimal PJ queries, denoted as QC, for the example

spreadsheet could all be candidate answers for the top-k. The component, PJ Query

Enumerator, generates this set of PJ queries. We adapt the CN generation algorithm

described in [HP02] for this component. Since the generation of QC (without computing

their scores) can be done by accessing only the schema graph and column-level inverted

index, it is quite efficient. Moreover, we compute an upper bound of its score for each PJ

query in QC. This upper bound can be also computed efficiently without executing any join.

More details about the generation of QC and upper-bound score computation will be given

in Section 11.4.1.

PJ query ranking. Taking PJ queries inQC as the input, the main contribution of this paper

is about how to identify those with the top-k highest scores from QC. To this end, PJ Query

Evaluation Component evaluates some queries in QC to get their scores. By evaluating a

PJ query, we mean executing the query to compute its score w.r.t. the example spreadsheet.

Because our scoring model quantifies how well the example spreadsheet is contained in the

output of join and projection of a PJ query, to get the row containment score, we need to

at least examine rows which either completely or partially contain the example tuples in

the output. This process requires to execute joins and thus is the bottleneck in online top-k

ranking. Details about the evaluation of PJ queries will be given in Section 11.4.1 (basic

version) and Section 11.5.1 (cache-aware version).

Caching-Evaluation Scheduler finds a strategy that specifies: i) which queries to be

evaluated to get the top-k, ii) the order of evaluations, and iii) how to use the in-memory

Sub-PJ Query Cache to speedup the evaluations. We focus on this scheduler in the rest

part. We present a baseline strategy in Section 11.4 without utilizing the cache and a more

efficient cache-aware strategy in Section 11.5.

CHAPTER 11. QUERY DISCOVERY 292

11.4 Baseline Evaluation Strategy

In Section 11.4.1, we first introduce the basic operators in our evaluation strategy: how

to enumerate all candidate PJ queries QC for an example spreadsheet and compute their

upper-bound scores and exact scores. We also analyze their costs. For interactive speed, it

is affordable to enumerate QC first and compute the upper-bound scores but it would be

too expensive to compute the exact scores for all queries in QC. To design more efficient

approaches, in Section 11.4.2, we study what is the minimal set of queries we have to

evaluate to get the top-k given those upper bounds. We end this section with a worst-case

optimal baseline strategy in Section 11.4.3.

11.4.1 Basic Operators in Evaluation Strategy

Before introducing our evaluation strategies, we give more details about the basic operators

in our system and analyze their costs.

11.4.1.1 Enumerating Minimal PJ Queries QC

For a user-specified example spreadsheet T, we utilize the directed schema graph G(V , E)
and column-level inverted index to generate QC. For each column T[i] in T, we first

find all the columns Ci in D which contain at least one term in T[i], called candidate

projection columns. Ci is essentially the union of inv(w)’s for all terms w’s in T[i], i.e.,

Ci =
⋃

w∈T[i] inv(w).

Consider the example table in Figure 11.2. The candidate projection columns for

column A are: Customer.CustName, Orders.Clerk (containing all the 3 terms in A) and

Supplier.SuppName (containing only the first term, Rick). For column B, there is only one,

Nation.NatName (containing both terms in B). And for column C, Part.PartName (contains

both terms) is the only one.

Given candidate projection columns Ci’s generated in the above process, to enumerate

QC, we can pick one column from each Ci to form C and mapping φ, and generate directed

CHAPTER 11. QUERY DISCOVERY 293

Steiner trees to get J that connect to relations in C, using the CN generation algorithm

described in [HP02]. It is important to note that all PJ queries violating i) and ii) in

Definition 5 are pruned during the enumeration.

11.4.1.2 Computing Upper Bounds of Relevance Scores

It can be shown that the score of a PJ query Q w.r.t. T, score(T | Q), can be upper bounded

by its column-wise score scorecol for any value parameter α. This simple but effective upper

bound can be computed in a light-weight way, without executing any join in Q. We will use

this upper bound frequently in the rest of this chapter.

Proposition 2 (Upper Bound of Score) For any 0 ≤ α ≤ 1,

score(T | Q) ≤ scorecol(T | Q)
1 + ln(1 + ln |J |)

, score(T | Q). (11.6)

It suffices to show that scorerow(T | Q) ≤ scorecol(T | Q) to prove Proposition 2. The

intuition is that, in scorerow(T | Q), each row in T is matched to the most similar row in the

output relationA(Q), while in scorecol(T | Q), each cell in T is matched to the most similar

cell in the corresponding column of A(Q). The latter has a weaker constraint in matching

so it produces a higher score.

Computing score and column containment score scorecol. To compute the upper bound

score, it suffices to compute the column containment score scorecol in Equation (11.4). To

compute scorecol, for each term w appearing in column i of T, suppose column i is mapped

to column j of a relation R, we need to scan inv(w, R[j]) once to compute the cell similarity

score(t[i] | r[j]) for each cell t[i] in T and each cell r[j] in R. Then scorecol can be computed

directly as in Equation (11.4). Refer to Algorithm 1 for more details.

Proposition 3 Consider an example spreadsheet T and a PJ query Q = (J , C,φ) in a

database. For each column i in T and each term w in the column T[i], suppose i is mapped

to a column R[j] in a relation R of J , let lw = |inv(w, R[j])| be the number of rows in R

that contain w in the column R[j], i.e., the size of row-level inverted index inv(w, R[j]) for

term w in column R[j]. Algorithm 1 computes score and scorecol in O(
∑

w∈T lw) time.

CHAPTER 11. QUERY DISCOVERY 294

Algorithm 1 Computing scorecol(T | Q) and score(T | Q)
1: Initialize cell similarities scorecell to be 0 for all entries.

2: For each column i of T: it is mapped to R[j] of relation R

3: For each tuple t ∈ T and each term w in t[i]

4: Retrive row-level inverted index inv(w, R[j]);

5: For each row r ∈ inv(w, R[j]): scorecell(t[i] | r[j])++.

6: Compute scorecol(T | Q) from scorecell as in Equation (11.4).

7: Compute score(T | Q) as in Equation (11.6).

11.4.1.3 Evaluating PJ Queries for Relevance Scores

We now introduce how S4 evaluates PJ queries to compute the exact relevance score

score(T | Q) and analyze its performance. According to Equation (11.5), the only missing

part is the row containment score scorerow(T | Q).

Computing score and row containment score scorerow. As in Equation (11.3), for each

example tuple t in T, we need to find the most similar row in the output relation A(Q).

Indeed, we can first execute the PJ query Q, for example, sending it as a SQL query to

the database (as in [SCC+14]), and then examine each row in the output relation A(Q).

To utilize our in-memory indexes and compute the scores more efficiently, we design an

execution plan for Q using hash joins. More details are in Section 11.8.1. Following we

focus on analyzing its complexity.

Proposition 4 Consider an example spreadsheet T and a PJ query Q = (J , C,φ) in a

database. For each term w in T, let lw be defined as in Proposition 3. For each relation R

in J , let |R| be the number of rows and dJ (R) be the degree of R in J . We can compute

score(T | Q) in O(
∑

R∈J |R| · dJ (R) +
∑

w∈T lw) time.

11.4.1.4 Cost Analysis

It is quite common to enumerate candidate database queries in previous keyword search

literature [ACD02; HP02; HGP03; LLWZ07]. Similarly in our case, we only access the

CHAPTER 11. QUERY DISCOVERY 295

schema graph and column-level inverted index to enumerate QC (no need to execute any

actual join).

Now, comparing the complexity of computing upper bounds of scores (Proposition 3)

with computing exact scores (Proposition 4), we find that the additional cost, O(
∑

R∈J |R| ·
dJ (R)), to compute the exact score is truly the bottleneck. In the worst case, this cost is

proportional to the total number of rows in all relations involved in a PJ query. On the

other hand, the cost, O(
∑

w∈T lw), to compute the upper bound is only proportional to the

number of rows that contain keyword terms in projection columns of the PJ query.

2.60%

0.89%

0.28%

97.40%

99.11%

99.72%

1 10 100 1000

Low

Medium

High

Time (μsec.)

Enumeration + upper bound computation Evaluation

Figure 11.5: Average running time of “query enumeration + upper bound computation” v.s. “query

evaluation” per PJ query.

Figure 11.5 compares i) the time for query enumeration plus upper bound computation

(orange bars), with ii) the time to compute exact scores via query evaluation (blue bars),

on average per query. We generate 50 example spreadsheets for CSUPP dataset and divide

them into three buckets (H, M, L) based on the frequency of terms in the dataset (from

highly frequent to lowly). Please refer to Section 11.6.1 for more details about the setting.

All PJ queries are generated for those example spreadsheets, and for each, we compute both

the upper-bound score and the exact score. The experimental result also shows that query

enumeration plus upper bound computation requires a negligible fraction of the overall

processing time. So, in the rest part, we assume that QC can be enumerated first for each

given example spreadsheet and score is associated with each query in QC generated in the

query enumeration step.

CHAPTER 11. QUERY DISCOVERY 296

11.4.2 Minimal Evaluation Set

From both theoretical and experimental analysis in the last subsection, we find that the

bottleneck in our PJ-query enumeration-ranking framework is to evaluate candidate PJ

queries in QC, i.e., to execute PJ queries and compute their exact scores; and on the other

hand, we can enumerate all PJ queries in QC and compute the upper bounds of scores for

all of them quite efficiently. Now the major challenge translates to that of evaluating as few

PJ queries inQC as possible to get the top-k with highest scores, given that an upper bound

of score is associated with each one in QC.

In the rest of this chapter, we will write score(T | Q) as score(Q) and score(T | Q) as

score(Q) if T is clear from the context.

Given the set of queries in QC and their upper-bound scores, we now analyze what

is the minimal (sub)set Qmin ⊆ QC of queries we have to evaluate to get the top-k with

the highest scores in QC. Let QC = {Q1, Q2, . . . , QN}, where Qi’s are ordered by their

upper-bound scores score(Q1) ≥ . . . ≥ score(QN). Intuitively, if we evaluate queries in

QC in this order, we can terminate if

topk{score(Q1), . . . , score(Qi)} > score(Qi+1), (11.7)

where topk{. . .} is the k-th largest number in the set, we can assert that the top-k queries are

among {Q1, . . . , Qi}. Let i∗ be the minimal index i that satisfies the termination condition

in Equation (11.7), let

Qmin = {Q1, Q2, . . . , Qi∗} ⊆ QC. (11.8)

We can show that, informally, if based on only the upper-bound information score, Qmin,

called minimal evaluation set, is the minimal subset of queries in QC we have to evaluate to

get the top-k.

Proposition 5 (Optimality of Qmin) Given a set of PJ queries QC and upper bounds score

of their scores. Any multi-step ranking algorithm to find queries with the top-k scores inQC

has to evaluate all queries in the set Qmin (in Equation (11.8)) to compute their scores.

CHAPTER 11. QUERY DISCOVERY 297

The formalization of the class of multi-step ranking algorithms and the proof of this

proposition are given in Section 11.9.

11.4.3 Worst-Case Optimal Baseline Strategy

Based on the upper bounds of scores and the optimality ofQmin introduced in the above two

subsections, we have a simple but “worst-case optimal” strategy BASELINE (Algorithm 2).

The idea is to evaluate queries Q1, Q2, . . . in QC one by one (to get the exact scores)

in the descending order of upper-bound scores. Recall that upper-bound scores (line 1)

can be computed efficiently and are associated with all queries in QC, as discussed in Sec-

tions 11.4.1.2 and 11.4.1.4. For each Qi, we use the operator introduced in Section 11.4.1.3

to compute its true score (line 4). If after we finish evaluating Qi Equation (11.7) is satisfied,

then we can terminate and output the current top-k among the evaluated PJ queries.

Algorithm 2 Baseline Evaluation Strategy: BASELINE

Input: queries in QC and upper bounds of their scores

Output: top-k PJ queries in QC with the highest scores
1: Sort queries in QC: score(Q1) ≥ . . . ≥ score(QN).

2: Initialize Qtopk ← ∅.
3: For i = 1 to N do

4: Evaluate Qi to compute score(Qi).

5: Let Qtopk ← Qtopk ∪ {Qi}; if |Qtopk| > k, keep only

queries in Qtopk with the top-k highest scores.

6: If termination condition Equation (11.7) is satisfied, exit the loop.

7: Output Qtopk.

It is not hard to show that BASELINE evaluates only queries in Qmin and thus is worst-

case optimal for finding top-k.

Theorem 2 (Correctness and Optimality) BASELINE correctly finds the PJ queries with the

top-k scores among QC and evaluates only queries in the minimal evaluation set Qmin.

CHAPTER 11. QUERY DISCOVERY 298

Disadvantages of BASELINE. BASELINE strategy in Algorithm 2 is worst-case optimal in

terms of the number of PJ queries it evaluates. But the evaluation cost (or, response time)

can be potentially improved significantly. BASELINE has several disadvantages. First, this

baseline algorithm does not utilize frequent common subexpressions in QC. Indeed, we can

cache the output relations of some subexpressions so that they can be re-used for more than

one PJ query QC. Secondly, as we do not have infinite memory, to maximize the benefit

we get from caching, we need to make the decisions of which subexpressions to be cached

and when, for a batch of PJ queries. BASELINE examines queries in QC one-by-one, so

such decisions cannot be made wisely. The strategy we introduce in Section 11.5 improves

BASELINE from the above two angles.

11.5 Optimizing Caching-Evaluation

We introduce our cache-aware optimization techniques in this section to overcome the

disadvantages of BASELINE. The goal is still to find PJ queries with the top-k scores in QC

w.r.t. the user-given example spreadsheet T. We will first discuss how to evaluate a PJ query.

i.e., compute its score, when output relations of some sub-parts of it are cached, together

with a cost model which quantify the cost of such cache-aware evaluation, in Section 11.5.1.

We then formulate the cache-evaluation scheduling problem, i.e., an abstract version of

the task to be solved by caching-evaluation scheduler in Section 11.5.2. Core technical

challenges we resolve here are: to determine the order of PJ queries in QC to be evaluated,

which sub-PJ queries to be cached, and for how long, with the goal of minimizing the

evaluation cost, or maximizing the benefit we get from caching. We show that it is NP-hard.

Section 11.5.3 introduces a near-optimal solution to this problem. We will discuss how to

extend our approach for incremental computation in Section 11.5.4.

CHAPTER 11. QUERY DISCOVERY 299

11.5.1 Cache-Aware Evaluation of PJ Queries

Recall that the evaluation of scorecol is lightweight as we discussed in Section 11.4.1.2. So

here, we focus on computing scorerow of a PJ query Q w.r.t. T.

Caching sub-PJ queries in evaluation. Lets formally define a sub-PJ query of Q, and

discuss how to evaluate PJ query Q if the output relations of some sub-PJ queries of Q have

been cached.

Definition 6 (Sub-PJ Query) Q′ = (J ′, C ′,φC ′) is said to be a sub-PJ query of a PJ query

Q = (J , C, φ), iff J ′ is a subtree of J ; C ′ ⊆ C is a subset of columns from relations in

J ′ which the columns in T are mapped to; and φC ′ is a range-restriction of φ by C ′, i.e.,

φC ′(i) = φ(i) iff φ(i) ∈ C ′ and is undefined iff φ(i) ∈ C – C ′. We denote Q′ � Q if Q′ is a

sub-PJ query of Q.

Two types of subtrees are considered here: i) J ′ is a subtree of J rooted at some internal

node, containing all leaves below; and ii) a type-i) subtree plus the parent of its root.

Figure 11.3 shows two sub-PJ queries Q′1 (left) and Q′2 (right) of the PJ query Q in

Figure 11.2(b)-(i).

We have a sub-PJ query cacheM in our system, which temporarily stores the output

relations of some sub-PJ queries in a budgeted amount of memory. The execution plans of

PJ-queries can be easily extended to take advantage of the cached output relations of sub-PJ

queries: for a PJ query Q and a set of cached sub-PJ queries inM, instead of starting from

the leaves of Q, we start from the output relations of maximal sub-PJ queries of Q inM
and follow the execution plan of Q afterward. Q′ is said to be a maximal sub-PJ query of

Q inM, iff Q′ � Q and there is no Q′′ whose output relation is cached inM such that

Q′ ≺ Q′′ � Q. Intuitively, we want to utilize the output relations cached inM as much as

possible. More details are given in Section 11.8.2.

Cost model of evaluation. We do not have unlimited memory to cache every single sub-PJ

query. So our scheduling-evaluation scheduler needs to determine which sub-PJ queries

to be cached and for how long, so as to maximize the benefit we obtain from caching, or

CHAPTER 11. QUERY DISCOVERY 300

equivalently, to minimize the total evaluation cost. To this end, a cost model needs to be

introduced.

We define cost(Q) to be the cost of evaluating a (sub-)PJ query Q, without utilizing the

cache, and cost(Q,M) be the cost of evaluating Q when a set of sub-PJ queriesM have

their output relations in the cache. We abuse the notationM a bit – we use it to denote

both the set of sub-PJ queries as well as their cached output relations. Details about the cost

model can be found in Equations (11.12) and (11.13) in Section 11.8.3, which is calibrated

to the execution plans we use.

11.5.2 Caching-Evaluation Scheduling Problem

We are given a set of PJ queries QC = {Q1, Q2, . . . , QN}, ordered by their upper-bound

scores score(Q1) ≥ score(Q2) ≥ . . . ≥ score(QN). Let T (Qi) be the set of all sub-PJ

queries of Qi and T (Q) =
⋃

Qi∈Q T (Qi) for a set of PJ queries Q ⊆ QC. We first

introduce a general framework of our caching-evaluation strategies to find the top-k answers

from QC, and then define the caching-evaluation scheduling problem to find the best

strategy.

Operators. To utilize output relations of sub-PJ queries shared by multiple PJ-queries in

QC, we maintain a cacheM of size at most B. Three types of operators are allowed:

a) Evaluate(Q,M): to evaluate a PJ or sub-PJ query Q using output relations cached in

M, and get its relevance score score(T | Q) (for Q ∈ QC) and output relation A(Q).

b) Add(Q,M): to store the output relation A(Q) inM.

c) Delete(Q,M): to delete A(Q) fromM.

The size ofM, denoted as |M|, is the memory available to keep the output relations of

(sub-)PJ queries inM. We want to ensure that, at any time, |M| could be at most B.

Caching-evaluation schedule and termination condition. Initially, the cacheM is empty,

and for every PJ query Qi ∈ QC we only know its upper-bound score. We want to apply

CHAPTER 11. QUERY DISCOVERY 301

the above three types of operators in some order on PJ queries in QC and their sub-PJ

queries. The goal is that, at some point, the set of evaluated queries, denoted asQE, satisfies:

QE ⊇ Qmin, i.e., the top-k have been found. Note that Qmin is not known in advance.

Objective. Each type-a operator Evaluate(Q,M) (Q is either a PJ query from QC or a

sub-PJ query) has a cost, cost(Q,M), as defined in Equation (11.13) in Section 11.8.3. The

goal is to minimize the total evaluation cost of type-a operators. Each type-b/c operator also

has a cost but it is negligible compared to type-a’s cost.

Problem statement (CACHE-EVAL SCHEDULER) Given a set of PJ queries QC = {Q1,

Q2, . . . , QN}, with their upper-bound scores score(Q1) ≥ score(Q2) ≥ . . . ≥ score(QN),

w.r.t. an example spreadsheet T, a sequence of operators in type-a,b,c are chosen to be

executed and the objective is to:

minimize
∑

Op. Evaluate(Q,M)’s executed

cost(Q,M)

s.t.M has size at most B at any time, and

eventually QE ⊇ Qmin.

Theorem 3 (Hardness) Even when the set Qmin is known, the CACHE-EVAL SCHEDULER

problem is NP-complete, with |QC| + |T (QC)| as the input size, where |T (QC)| is the total

number of sub-PJ queries of queries in QC.

11.5.3 A Near-Optimal Strategy

We will introduce a near-optimal strategy, FASTTOPK, for the CACHE-EVAL SCHEDULER

problem. It is based on two heuristics: guessing the minimal evaluation set and caching

critical sub-PJ queries. We will also analyze the theoretical guarantee on performance it

provides, in terms of the evaluation cost.

CHAPTER 11. QUERY DISCOVERY 302

11.5.3.1 Guessing The Minimal Evaluation Set

The first challenge is that the minimal evaluation set Qmin is unknown to us. Our strategy

BASELINE (Algorithm 2) examines only queries in Qmin because it evaluates queries one

by one, but Qmin is known only after it terminates. Ideally, if we know Qmin in advance,

we can find frequent sub-PJ queries in Qmin (the ones contained by many PJ queries), and

cache their output relations so that they can be re-used multiple times in the evaluation.

Indeed, we can consider all queries in QC in one batch, but since Qmin is usually a small

subset of QC, sub-PJ queries that are frequent in QC may not be frequent in Qmin or even

do not exist in Qmin – so our decision of which sub-PJ queries to be cached based on their

frequencies in QC is likely to be sub-optimal.

We note that Qmin is a “prefix” of QC, and can be uniquely specified by the index i∗ as

in Equations (11.7) and (11.8). So our heuristic to resolve this challenge is to create a few

batches B0,B1,B2, . . . of queries in the order of Q1, Q2, . . . , Qi, . . . to approximate Qmin.

We will optimize the cache-evaluation schedule for queries in each batch. After we finish

evaluating each batch of queries in Bj, we check the termination condition Equation (11.7),

and eventually we stop at Bj∗ after evaluating queries inQE = B0 ∪B1 ∪ . . .∪Bj∗ ⊇ Qmin.

On one hand, we want to create as few batches as possible, i.e., j∗ is small, so common

sub-PJ queries across different queries can be found in one batch and we can cache and

re-use their output relations; and on the other hand, we do not want to evaluate too many

additional queries that are not in Qmin, i.e., QE – Qmin is small.

The following batch-forming strategy balances the two concerns. The first batch of

queries to be evaluated is B0 = {Q1, . . . , Qk}, as Qi’s are ordered by the upper-bound

scores and B0 has the least number of queries we have to evaluate to get the top-k.

After finishing evaluating this batch, if the termination condition in Equation (11.7) is

not satisfied, we will consider the next batch with a slightly larger number of queries:

B1 = {Qk+1, . . . , Qk(1+ε)}. Again, if the termination condition is satisfied, we can stop

and output the top-k; and otherwise, we consider the next batch. In general, the jth batch is

Bj = {Qk(1+ε)j–1+1, . . . , Qk(1+ε)j}, for some constant ε > 0.

CHAPTER 11. QUERY DISCOVERY 303

Algorithm 3 Near-Optimal Strategy: FASTTOPK

Input: queries in QC and upper bounds of their scores

Output: top-k PJ queries in QC with the highest scores

1: Sort queries in QC: score(Q1) ≥ . . . ≥ score(QN).

2: Initialize Qtopk ← ∅.
3: Let the first batch be B0 ← {Q1, . . . , Qk}, i← k, and j← 0.

4: Do

5: BatchEval(Bj) to get score(Q)’s for all Q ∈ Bj.
6: Let Qtopk ← Qtopk ∪ Bj;

keep only queries in Qtopk with the top-k highest scores.

7: Let i← k(1 + ε)j and then j← j + 1.

8: Form next batch: Bj = {Qi+1, Qi+2, . . . , Qk(1+ε)j}.

9: While (topk{score(Q1), . . . , score(Qi)} ≤ score(Qi+1))

10: Output Qtopk.

This high-level procedure is outlined in Algorithm 3. Recall the discussion in Sec-

tion 11.4.1, upper-bound scores can be computed efficiently and are associated with all

queries in QC (line 1). The loop (lines 4-9) forms batches one-by-one as described above.

The value of i in line 7 of every loop is the index of the last PJ query evaluated up to now, so

line 9 can check the termination condition in Equation (11.7) to see whether the top-k have

been found.

Suppose the algorithm terminates with i = iend. In Section 11.5.3.3, we will utilize

the fact that i∗ ≤ iend ≤ i∗(1 + ε), where i∗ = |Qmin| is the least number of PJ queries

any strategy has to evaluate, to give a performance guarantee of our strategy. Intuitively,

based on this fact, we have that the size of QE, the set of queries evaluated by FASTTOPK

(Algorithm 3), is at most (1 + ε)|Qmin|. So FASTTOPK does not examine too many

additional queries that are not inQmin. To bound the total evaluation cost, we can also show

that there are at most O(log1+ε(|Qmin|/k)) batches.

CHAPTER 11. QUERY DISCOVERY 304

The only missing building block in FASTTOPK (Algorithm 3) is now the subroutine

BatchEval(Bj) in line 5.

11.5.3.2 Caching Critical Sub-PJ Queries

Let’s focus on the subroutine BatchEval(Bj). We want to evaluate a batch Bj of queries

using operators in type-a/b/c, so that the total cost is minimized. The basic idea of our

approach for this subroutine is to partition queries in a batch Bj into groups, such that each

group of PJ queries share at least one heavy-cost sub-PJ query, called critical sub-PJ query.

The output relation of this sub-PJ query is cached inM if its size is no more than the budget

B. We will later show that this seemingly simple heuristic has strong theoretical/practical

performance guarantee.

Critical sub-PJ query. Let T (Qi) be the set of all sub-PJ queries of Qi, and T (Bj) =⋃
Qi∈Bj T (Qi). A sub-PJ query Q∗ ∈ T (Qi) is said to be critical to Qi in Bj, if i) Q∗ is

shared by more than one query: there exists Qi′ ∈ Bj s.t. i′ 6= i and Q∗ ∈ T (Qi′) ∩ T (Qi);

and ii) Q∗ has the highest cost, cost(Q∗), among those in T (Qi) satisfying condition i).

It is intuitive that the output relation of a critical sub-PJ query is worth caching inM,

because it can benefit the evaluation of at least one PJ query in Bj, as condition i); and it has

the highest cost among all such sub-PJ queries of a PJ query, as condition ii), so that we

can benefit the most from caching it. We describe this heuristic for BatchEval(Bj) more

formally in Algorithm 4.

In line 1, all sub-PJ queries of Q = (J , C,φ) ∈ Bj can be enumerated efficiently by

retrieving the rooted subtree at each node in J . As we further elaborate in Section 11.8.3,

the cost of each sub-PJ query Q′i can be computed efficiently from Equation (11.12) by

summing up the sizes of relations in Q′i and row-level inverted indexes for columns in

the projection of Q′i. For each iteration (lines 2-10), the critical sub-PJ query Q∗ in Bj
with the highest cost and output relation of size no more than B is picked (line 4). Since

we are focusing on foreign-key joins, we will use the number of rows in the root relation

of Q′ multiplying the number of columns in the output relation as the size of the output

CHAPTER 11. QUERY DISCOVERY 305

Algorithm 4 BatchEval(Bj): strategy for evaluating a batch of queries for their scores

while minimizing the cost

Input: queries in a batch Bj and cache budget B

Task: get score(Q) by evaluating every Q ∈ Bj
1: Sort the M sub-PJ queries in T (Bj) as:

cost(Q′1) ≥ cost(Q′1) ≥ . . . ≥ cost(Q′M).

2: While Bj is not empty

3: ClearM using type-c operators Delete.

4: Pick Q∗ = argmaxQ′∈T (Bj){cost(Q
′) |

|A(Q′)| ≤ B ∧ ∃i1 6= i2 : Q′ ∈ T (Qi1) ∩ T (Qi2)}.

5: If no such Q∗ can be found, evaluate

all the remaining queries in Bj and terminate.

6: Let Critical–1(Q∗)← {Qi ∈ Bj | Q∗ ∈ T (Qi)}.

7: Execute Evaluate(Q∗,M) and Add(Q∗,M).

(evaluate Q∗ and store its output relation inM)

8: For each Qi ∈ Critical–1(Q∗) do

9: Evaluate Qi usingM: call Evaluate(Qi,M).

10: Let Bj ← Bj – Critical–1(Q∗).

relation, |A(Q′)|. The set of queries in Bj containing Q∗ as a sub-PJ query is put into a

set Critical–1(Q∗) is (line 6). We first evaluate and cache the output relation of Q∗ inM
(lines 7). Then all queries having Q∗ as its sub-PJ query are evaluated to get their scores

usingM (lines 8-9), and removed form Bj (line 10). After that, the cacheM is cleared up

(line 3).

Example 18 Consider a batch of three PJ queries, Bj = {Q1, Q2, Q3}, where Q1-Q3 are

depicted in Figure 11.2(b)-(i), (ii), (iii), respectively. Two sub-PJ queries Q′1 and Q′2 of them

are shown in Figure 11.3 (left and right, respectively). Both are contained in two queries

Q1 and Q3, so could potentially be critical sub-PJ queries to Q1 and Q3. If Q′2 has the

CHAPTER 11. QUERY DISCOVERY 306

largest cost cost(Q′2) among all such sub-PJ queries, then Q′2 is a critical to both Q1 and

Q3, and line 4 will pick Q∗ = Q′2. We have Critical–1(Q∗) = {Q1, Q3} ⊆ Bj in line 6.

Our strategy FASTTOPK would cache A(Q′2) inM first (line 7), and then use it to evaluate

Q1 and Q3 (lines 8-9). After that, only Q2 is left in Bj and will be evaluated as in line 5.

Although this subroutine is applied for each batch independently in Algorithm 3 to find

the top-k in QC, we will later show that it has an overall performance guarantee, using the

fact that the total number of batches is small (the last value of j in Algorithm 3).

Theorem 4 (Putting Together and Correctness) FASTTOPK strategy (Algorithm 3 with

subroutine BatchEval as Algorithm 4), correctly finds the queries in QC with the top-k

scores.

11.5.3.3 Performance Analysis

We will start with the time complexity of our strategy FASTTOPK, and then analyze its

approximation ratio.

Time complexity. The online response time of our system is determined by time spent i)

on generating PJ queries in QC and their upper bounds, ii) on evaluating PJ queries, and

iii) on optimizing the scheduling of caching and evaluations (FASTTOPK strategy). i) is

negligible compared to ii) (analyzed in Section 11.4.1.4). ii) is modeled as the objective

in our CACHE-EVAL SCHEDULER problem and the goal of FASTTOPK is to reduce it as

much as possible. The purpose of the following theorem is to show that the time spent

by FASTTOPK on iii) is negligible compared to ii), excluding time spent on executing

type-a/b/c operators.

Theorem 5 (Time Complexity) Given a set of PJ queries in QC and their sub-PJ queries

T (QC) with costs and upper-bound scores associated, the time complexity of FASTTOPK

is O(N + Mall(smax + logMall)) (excluding the running time of operators in type-a/b/c

chosen by FASTTOPK to be run), where N = |QC| is the number of PJ queries in QC,

Mall =
∑

Qi∈QC
|T (Qi)| here is the total number of sub-PJ queries of queries in QC, and

CHAPTER 11. QUERY DISCOVERY 307

smax is the max size of a join tree J of a PJ query in QC. Because of the definition of a

sub-PJ query, we have Mall = Θ(smax · N).

Performance ratio. Our FASTTOPK strategy (Algorithms 3 and 4) provides a feasible

solution (a scheduling of operators in type a/b/c) to the CACHE-EVAL SCHEDULER problem.

We now compare the cost of this strategy with the cost of the optimal solution (which is

hard to be found as shown in Theorem 3).

For a set of PJ queriesQ = {Qi}, let costTOT(Q) be the total cost of evaluating queries

in Q one by one without caching:

costTOT(Q) =
∑
Qi∈Q

cost(Qi).

Let costOPT(Q) be the cost of evaluating all queries in Q using the optimal strategy in

the CACHE-EVAL SCHEDULER problem.

Let costSOL(Q) be the cost of evaluating all queries inQ using our FASTTOPK strategy

in Algorithms 3 and 4.

Theorem 6 (Performance Ratio) Given PJ queries in QC with upper-bound scores associ-

ated, the strategy FASTTOPK in Algorithms 3 and 4 evaluates a set of PJ queries QE s.t.

|Qmin| ≤ |QE| ≤ (1 + ε)|Qmin|, (11.9)

and the benefit from caching

costTOT(QE) – costSOL(QE) (11.10)

≥ 1
2c2

(
costTOT(QE) – log1+ε

(
|Qmin|

k

)
· costOPT(QE)

)
where c is the number of columns in T.

Informally, the above theorem gives guarantees for our FASTTOPK strategy from two

aspects: i) it does not evaluate too many additional PJ queries in additional to the necessary

ones inQmin, as in Equation (11.9); and ii) costTOT(QE) – costSOL(QE) is the benefit we

obtained from caching, and is lower bounded by the gap between the total cost and the cost

of the optimal strategy (RHS of Equation (11.10)).

CHAPTER 11. QUERY DISCOVERY 308

11.5.3.4 Heuristics for Further Improvement

Our strategy can be further improved. Although not improving the performance ratio in

Theorem 6, the following two heuristics are effective to improve its performance in practice.

The first heuristic is as follows. Consider each iteration of lines 3-10 in Algorithm 4,

only one output relation (the one of Q∗) is cached inM. Indeed, if there is still room in

M, it will always be beneficial to cache more sub-PJ queries to speed up the evaluation of

queries in Critical–1(Q∗). So our heuristic here is to order queries in Critical–1(Q∗) in such

a way that “similar” queries (sharing common sub-PJ queries) are consecutive. While we

evaluate these queries one-by-one in this order, the standard LRU replacement algorithm is

applied to insert and replace output relations of sub-PJ queries inM – but note that we never

replace the output relation of Q∗ until finishing evaluating all queries in Critical–1(Q∗).

Such an order can be formed as follows. Starting with any query in Critical–1(Q∗), in each

step, we pick the query, which shares the most sub-PJ queries with the last one but is not in

the order yet, to be the next one in this order. Repeat until all queries are placed in the order.

The second heuristic is an extension to our termination condition in Equation (11.7). We

call it the skipping condition. During the execution of FASTTOPK, we maintain the current

kth highest score for all the queries that have been evaluated. In line 9 of Algorithm 4, before

we evaluate Qi, we first check whether its upper-bound score is higher than the current top-k

score – if not, we can safely skip the evaluation of Qi. This heuristic is particularly powerful

and necessary for the last batch of queries in Algorithm 3, as this batch is usually large and

contains queries not in Qmin.

11.5.4 Incremental Computation

Our strategy can be easily extended for incremental computation. The incremental version of

our end-to-end system task is: suppose we have found the top-k PJ queries for a user-given

example spreadsheet T, after one or more cells in T are updated – the updated example

CHAPTER 11. QUERY DISCOVERY 309

spreadsheet is denoted as T′ – how to find the top-k PJ queries for T′ by re-using the

evaluation results for T.

If the user adds/deletes a column in T, we re-start and generate a completely new

caching-evaluation schedule using FASTTOPK (Algorithms 3 and 4), because in this case,

the set of PJ queries, QC
′, to be evaluated for T′ are different from QC for T.

We focus on speeding up the case when the set of columns in T are unchanged, but

some rows are updated (with one or more cells). In this case, QC
′ may have large overlap

with QC and thus evaluation results for QC can be re-used. The basic ideas are to derive a

tighter upper bound of score(T′ | Q) based on the unchanged part of T and to schedule the

incremental part of evaluation for QC
′ carefully. Refer to Section 11.7.1 for more details.

11.6 Experimental Evaluation

We present an experimental study of the techniques proposed in this paper. We evaluate and

compare three algorithms.

• NAIVE: evaluates all the enumerated PJ queries in QC;

• BASELINE (Algorithm 2): as described in Section 11.4.3;

• FASTTOPK (Algorithms 3-4): as described in Section 11.5.

We compare the performance of the three algorithms, and evaluate their sensitivity with

respect to various parameters (Section 11.6.2). We also conduct a user study to evaluate

the effectiveness of our scoring model (Section 11.6.3). Additional experiments about

incremental computation are deferred to the appendix.

11.6.1 Settings of Experiments

We have implemented all the algorithms using C++/CLI (Common Language Infrastructure)

on a Windows 8.1 machine with an Intel i7-4770 CPU at 3.4GHz with 16GB RAM.

Datasets. We use two datasets to evaluate the system performance: CSUPP and Adven-

tureWorks. Our primary dataset, CSUPP, is a real-life database containing information

CHAPTER 11. QUERY DISCOVERY 310

related to customer service and IT support from a Fortune 500 Company. It has a size of

95GB. AdventureWorks, ADVW for short, is a synthetic database with information related

to sales, purchasing, product management and contact management with size 300MB [Adv].

Although ADVW has a small size, we use it for its realistic and complex schema (93 primary

key-foreign key edges compared with 63 in CSUPP), and also scale up its dimension/fact

tables by creating new rows.

Relations # Columns # Text Columns # Edges

CSUPP 105 1721 821 63

ADVW 71 650 104 93

For the user study, we use the real database IMDB [IMD] with information about movies,

because our judges are more familiar with the movie domain compared with CSUPP or

ADVW.

Index building. To build the inverted indexes, we tokenize each cell in each text column

in the database. We discard tokens containing non-alphanumeric characters and those with

more than 15 characters. For each token, we construct a list consisting of column identifiers

(which uniquely identifies a column across all columns in the database) of all columns

containing it. This forms the column-level inverted index. For each token in each column,

we construct a list consisting of the row identifiers (which identifies the row within the

relation) of all cells containing it in the column. This forms the row-level inverted index.

We also build an in-memory (key, foreign key) snapshot as discussed in Section 11.3.1. We

store all indexes in memory. Table 11.1 shows the index sizes. For both databases, the total

index size is about 7% of the database size.

Inv. index (MiB) (key,fk) snap. (MiB) Tokens

CSUPP 4759.7 1237.4 6434684

ADVW 6.86 12.57 125083

Table 11.1: Index sizes

Example spreadsheet (ES) generation. We manually choose 10 semantically meaningful

join queries with 6 or more text columns. We execute them and project the results on all

CHAPTER 11. QUERY DISCOVERY 311

the text columns involved. We generate an ES with m rows and n columns by (i) randomly

choosing one of the semantically meaningful join queries and (ii) randomly choosing m

rows and n columns from its output. We keep only the first token of the cell and all cells of

the ES are non-empty. We use m = 3 and n = 3 in all our experiments.

To simulate real-life inputs, we introduce relationship errors in the ESs (default is 2

errors). To introduce a relationship error, we randomly select a cell of an ES generated

above and replace it with the value of another cell in the same column in the join query’s

output. As before, we keep only the first token of the chosen cell.

We generate 50 ESs for CSUPP and 450 ESs for ADVW. We divide the 50 ESs for

CSUPP into 3 buckets, namely low, medium, and high, based on the sizes of row-level

inverted indexes of terms in the ESs (from lowly frequent to highly frequent). There are 25,

15, and 10 ESs in the three buckets, respectively. This is to test how our approaches are

sensitive about the frequency of terms.

Description Symbol Ranges and default values

Param. in scoring model α 0.5, 0.6, 0.7, 0.8, 0.9, 1.0

k in top-k k 5, 10, 20, 50, 100

Batch increase factor ε 0.2, 0.4, 0.6, 0.8, 1.0, 2.0

Cache size (MiB) B 100, 200, 500, 1000, 2000

relationship errors e 0, 1, 2, . . . , (m – 1) ∗ n

Table 11.2: Parameters we vary in our experiments along with their description, value ranges, and

default values (underlined)

11.6.2 System Performance

We compare the algorithms by: (i) execution time and (ii) number of PJ query-row evalua-

tions (times PJ queries are evaluated on rows in the ES). (ii) indicates the benefit of using

upper bounds score of scores for early termination. (i) indicates the combined benefit of

caching shared sub-PJ queries and early termination.

CHAPTER 11. QUERY DISCOVERY 312

In our experiments, we vary the 5 parameters in Table 11.2. Unless otherwise specified,

we use the underlined default values. We use CSUPP as the dataset in Exp-I to IV, and

ADVW in Exp-IIV.

0.1

1

10

100
N

aï
ve

B
as

e
lin

e

Fa
st

To
p

K

N
aï

ve

B
as

e
lin

e

Fa
st

To
p

K

N
aï

ve

B
as

e
lin

e

Fa
st

To
p

K

Low Medium High

Ti
m

e
 (

se
c.

)

Enumeration + upper bound computation Evaluation

Figure 11.6: Comparison of FASTTOPK with NAIVE and BASELINE

Exp-I: Comparing FASTTOPK with NAIVE and BASELINE. Figure 11.6 shows the

average execution times (in log scale) of the three algorithms for each of the three ES buckets

(low, medium and high). The execution time here is partitioned into query “enumeration +

upper bound computation” and “evaluation” (evaluating PJ queries to compute their scores).

Figure 11.6 shows that the “enumeration + upper bound computation” part takes a tiny

fraction of the overall execution time for all the three approaches.

We used default values of the 5 parameters shown in Table 11.2 for this experiment.

FASTTOPK outperforms NAIVE by factors of 11, 10 and 5 for the low, medium and

high buckets respectively. NAIVE often takes several minutes to return answers, and it

can be found from Figure 11.6 that the crucial bottleneck is query evaluation to compute

scores. Such inefficiency motivates the problem addressed in this paper for interactive query

discovery.

The improvement of execution time in BASELINE and FASTTOPK is the combined

benefit gained from using the upper bounds score for early termination and caching shared

sub-PJ queries. Without using the upper bounds, NAIVE has to go through and evaluate all

the PJ queries enumerated in QC; but with the help of the upper bounds, BASELINE and

CHAPTER 11. QUERY DISCOVERY 313

0

10000

20000

30000

40000

50000

60000

N
aï

ve

B
as

e
lin

e

Fa
st

To
p

K

N
aï

ve

B
as

e
lin

e

Fa
st

To
p

K

N
aï

ve

B
as

e
lin

e

Fa
st

To
p

K

Low Medium High

R
o

w
 E

va
lu

at
io

n
s

Figure 11.7: Amount of queries evaluated by NAIVE (without using upper bound score), BASELINE

(using score), and FASTTOPK (using score)

FASTTOPK can terminate as soon as the condition in Equation (11.7) is satisfied. Figure 11.7

plots the numbers of queries evaluated by the three approaches. The significantly smaller

numbers of queries evaluated by BASELINE and FASTTOPK explain their faster execution

time compared with NAIVE.

In Figure 11.6, FASTTOPK outperforms BASELINE by factors of 5, 3 and 1.5 for the

low, medium and high buckets respectively. This shows the benefit gained from solving the

problem of caching-evaluation scheduling by our FASTTOPK strategy.

0

0.5

1

1.5

2

2.5

3

3.5

100 200 500 1000 2000

Ti
m

e
 (

se
c.

)

Cache size (MiB)

Baseline FastTopK

(a) Execution time for “low” bucket

0

10

20

30

40

100 200 500 1000 2000

Ti
m

e
 (

se
c.

)

Cache size (MiB)

Baseline FastTopK

(b) Execution time for “high” bucket

Figure 11.8: Varying cache size B for ESs in “low”/“high” bucket

Exp-II: Vary cache size. Figure 11.8 shows execution time of the two algorithms for the

low/high ES buckets. FASTTOPK outperforms the BASELINE for all cache sizes. Higher the

CHAPTER 11. QUERY DISCOVERY 314

cache size, more the sharing, larger the gap. With a cache size of B = 2GiB, FASTTOPK

outperforms BASELINE by a factor of 6X for the low-cost ESs and by 3.7X for medium-cost

ESs. The gap is smaller for high-cost ESs; FASTTOPK outperforms BASELINE by a factor

of 2.3X for B = 2GiB. It is because the results of many of those common sub-PJ queries are

too large to fit in the cache. We need a larger cache to obtain the full benefit of sharing for

high-cost ESs and get speedups. The trend for the medium ES bucket is similar.

0

5

10

15

0.5 0.6 0.7 0.8 0.9 1

Ti
m

e
 (

se
c.

)

Alpha

Baseline FastTopK

(a) Varying score weight α

0

5

10

15

20

5 10 20 50 100
Ti

m
e

 (
se

c.
)

k

Baseline FastTopK

(b) Varying k

Figure 11.9: Varying α and k for ESs in “medium” bucket

Exp-III: Vary parameter α. Figure 11.9(a) shows the execution times of the two algorithms

with different values of α. Since (1 – α) is the weight on the column containment score

scorecol and the upper bound score is proportional to scorecol, smaller values of α imply

tighter upper bound scores and thus faster early termination. Hence, the number of PJ

query-row evaluations and the execution time of both algorithms increase in α. FASTTOPK

outperforms the BASELINE by a factor of 3.5X for all values of α. While they evaluate

almost the same number of PJ queries, FASTTOPK performs better due to caching shared

outputs of common sub-PJ queries.

Exp-IV: Vary k. With increase in k, both approaches evaluate more PJ queries before they

terminate, and thus need more execution time. They perform almost the same number of PJ

Query-row evaluations. But, due to shared evaluation, FASTTOPK outperforms BASELINE

by a factor of 3-4X for k‘s as in Figure 11.9(b).

Exp-V: Vary number of relationship errors. We generate different sets of ESs with

different numbers of relationship errors (varying from 0 to 5). Higher the number of

CHAPTER 11. QUERY DISCOVERY 315

errors, lower the final scores of the top-k PJ queries. A lower kth highest score delays the

satisfaction of the termination condition. So the number of PJ query-row evaluations increase

significantly with the number of errors. Overall, FASTTOPK outperforms BASELINE by a

factor of 2-6X.

Exp-VI: Vary ε. We find that FASTTOPK is robust to ε. There is negligible change in

execution time as we vary ε from 0.2 to 2.0, so we omit the plot. One would expect the

performance to suffer when ε is high (say, 2.0) since FASTTOPK would evaluate many

PJ queries outside the minimum evaluation set. However, due to both cache-evaluation

scheduling and the skipping condition, it does not incur much more cost of evaluating such

PJ queries.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

0 500 1000 1500 2000

Ti
m

e
 (

se
c.

)

Scale Factor

Ti
m

e
 (

se
c.

)

(a) Scaling up dimension tables

2000

0

2

4

6

8

10

12

14

0 10 20 30 40 50

Ti
m

e
 (

se
c.

)

Scale Factor

(b) Scaling up fact tables

Figure 11.10: Varying scale factor in ADVW.

Exp-VII: Scale up dimension tables and fact tables. In this experiment, we start with

the original ADVW database and scale it up to create databases with different statistical

properties.

First, we scale up the dimension tables by creating new rows containing the same values

as existing rows (but different row identifiers). We do not modify the fact tables, i.e., the

new rows are not referenced by any fact rows. Figure 11.10(a) shows that the average

execution time (over 450 ESs) of FASTTOPK increases slowly as we increase the scale

factor (# new rows created for each existing row) from 1 to 2000. This is due to increase in

CHAPTER 11. QUERY DISCOVERY 316

cost of retrieving rows from the row-level inverted index. There is no increase in join cost

(hash lookups) as the fact table is unchanged.

Next, we scale up the fact tables by creating new fact rows that reference the same

dimension table rows as existing fact rows. We do not modify the dimension tables. This is

to test the case that relations with a huge number of tuples and relatively few unique values

in certain columns. Figure 11.10(b) shows the average execution time of FASTTOPK as

we increase the scale factor (# new fact rows created for each existing fact row) from 1 to

50. The execution time increases at a much faster rate (superlinear) compared with the first

case. This is due to increase in join cost (hash lookups), although the inverted index retrieval

cost does not change. This also shows that the join cost dominates the overall cost of query

processing.

11.6.3 User Study

We have conducted a user study in IMDB to evaluate the effectiveness of our scoring model.

We use the IMDB database for this study as our judges are more familiar with the movie

domain compared with CSUPP or ADVW. For the fairness of evaluation, we generate

ESs from a source different from IMDB. We use HTML tables extracted from the web

[CHZ+08]. We select HTML tables about movies by creating a list of movies and checking

for overlap of the subject column of the table with that list. We generate 52 ESs from

randomly selected rows and columns of randomly selected movie HTML tables. For each

ES, we compute the top-10 PJ queries and present it to the three judges via a web-based

user interface.

We have all the human judges get familiar with and agree on the organization of the

IMDB database, and give them access to each original HTML table, so that they can mark

each PJ query as relevant or non-relevant to an ES. Different subsets of ESs are assigned

to different judges. On average, judges marked 2.3 results as relevant per ES. The overall

CHAPTER 11. QUERY DISCOVERY 317

mean reciprocal rank (MRR)1 is 0.79; it shows that the relevant result(s) typically appear at

the top.

To study the effectiveness for varying characteristics of the ES, we divide the 52 ESs

into 3 buckets high (highly frequent terms), medium, and low, based on posting list sizes

of the terms in the ESs. The MRRs for the high, medium and low buckets are 0.87, 0.78

and 0.71, respectively. The MRR is quite stable across all the buckets; the MRR values are

slightly lower for the low and medium buckets due to presence of a few ESs containing

foreign language movies (which are not well-covered by IMDB) in these buckets.

11.7 Extension and Discussion

11.7.1 Incremental Computation

Let T′ = Told∪Tnew, where Told is the set of unchanged rows that are identical to the ones

in T, and Tnew is the set of new rows or updated rows in T′. Recall that QE ⊆ QC is the

set of PJ queries that have been evaluated for T. For the new set of queries, QC
′, generated

by the PJ query enumerator for T′, can be partitioned into QC
′ = QC

old ∪QC
new, where

QC
old = QC

′ ∩QE and QC
new = QC

′ – QE. For each query in QC
old, since it has been

evaluated for T, we keep and re-use its score w.r.t. rows in Told; and for each query in

QC
new, since it is new or unevaluated before, we need to (re-)evaluate it for every row in

T′. We will discuss how to utilize the “partial scores” of queries in QC
old to get better

upper bounds of scores, and how to take the incremental changes into consideration when

scheduling caching-evaluation.

Improved upper-bound scores for QC
old. For a query Q ∈ QC

old, a better upper bound

of its score can be computed as a combination of its old score w.r.t. rows in Told and

1Defined as 1
number of inputs

∑
each input

1
rank of the first right answer

CHAPTER 11. QUERY DISCOVERY 318

column-wise score w.r.t. the rest part of T′. For any 0 ≤ α ≤ 1, we have

score(T′ | Q) ≤ score(Told | Q) +
scorecol(Tnew | Q)
1 + ln(1 + ln |J |)

(11.11)

≤ score(T′ | Q) (the one defined in Proposition 2).

Note that score(Told | Q) in (11.11) is known, as Q has been evaluated for rows in Told.

scorecol can be computed as in Section 11.4.1.2. Compared to score, RHS of (11.11) is a

better upper bound of score, and thus implies a smaller minimal evaluation set Q′min for T′.

So our strategies terminate more quickly using this upper bound.

Incremental caching-evaluation scheduling. We only need to modify our cost model so

that the incremental updates can be automatically considered in our strategy FASTTOPK

(Algorithms 3-4). In our current cost model (11.12)-(11.13) in 11.8.3, we need to evaluate

each query Q = (J , C,φ) for every row in T. The new cost model to handle updates will

take into consideration the number of rows in T′ we need to evaluate Q on. i) For a (sub-)PJ

query Q ∈ T (QC
old) – T (QC

new), we only need to evaluate it for rows in Tnew, so we

define cost′(Q) = |Tnew| · cost(Q) and cost′(Q,M) = |Tnew| · cost(Q,M); ii) for a

(sub-)PJ query Q ∈ T (QC
new) – T (QC

old), we need to evaluate it for all rows in T′, so

we define cost′(Q) = |T′| · cost(Q) and cost′(Q,M) = |T′| · cost(Q,M); and iii) for a

(sub-)PJ query Q ∈ T (QC
old)∩ T (QC

new), we create two copies of it – the one belonging

to queries in QC
old is associated with cost as i) and the one belong to queries in QC

new

is associated with cost as ii). Such a weighted cost model is applied in FASTTOPK to get

updated top-k PJ queries.

Experimental Results

We generate complete 3× 3 example spreadsheets in CSUPP as described in Section 11.6.1.

We simulate incremental input by starting with the completely filled-out first row and then

adding one cell at a time from the complete example spreadsheet (i.e., 6 cell additions).

Our simulator adds cells row-by-row, from left to right. We average our results over the 50

example spreadsheets.

CHAPTER 11. QUERY DISCOVERY 319

0

0.5

1

1.5

2

[1,0] [1,1] [1,2] [2,0] [2,1] [2,2]

Ti
m

e
 (

se
c.

)

ES Cell

FastTopK-Inc Baseline-Inc FastTopK-NInc

Figure 11.11: Execution time for incremental input [row, column]

We evaluate three approaches for incremental input:

(i) FASTTOPK-NINC: always treating an example spreadsheet as a new one and applying

FASTTOPK on it;

(ii) FASTTOPK-INC: described in Section 11.5.4 and above; and

(iii) BASELINE-INC: extending BASELINE using the same ideas as FASTTOPK-INC

without caching-evaluation scheduling

Refer to Section 11.6.1 for the settings of experiments. Figure 11.11 shows the execution

times of the three algorithms for the 6 cell additions via row-wise typing. FASTTOPK-INC

significantly outperforms both BASELINE-INC and FASTTOPK-NINC. FASTTOPK-NINC

performs poorly since it does not use previously computed scores for the unchanged example

tuples. This is especially true for the first few cells in a new row (e.g., [2,0], [2,1]). In these

cases, the incremental approaches evaluate the PJ queries only for the changed example

tuple (only a few terms) while FASTTOPK-NINC evaluates them for both changed and

unchanged example tuples. BASELINE-INC suffers as it does not share results of sub-PJ

queries as in the non-incremental case.

11.7.2 Generalizing Cell Similarity

We can extend cell similarity to perform IR-style relevance ranking as in [Sin01]. For

example, we can define cell similarity to be higher if there is an exact match between an

CHAPTER 11. QUERY DISCOVERY 320

example tuple cell and output row cell (as opposed to the latter only containing some terms

of the former). And we can incorporate terms weights (based on inverse document frequency

and document length) in cell similarity.

We can also extend cell similarity to handle spelling errors, synonyms, and fuzzy

matching. For example, to handle fuzzy matching, we can built the inverted indexes (both

column-level and row-level) on n-grams as terms instead of words [MSLN00]. When

processing an example spreadsheet, we split each cell into n-grams (instead of words) and

retrieve the inverted indexes corresponding to those n-grams. For spelling errors, we can

simply replace a term in the example spreadsheet with a list of similar terms (within certain

edit distance), look up them in our inverted indexes, and take the union of posting lists.

Synonyms can be handled similarly.

11.7.3 AND v.s. OR Semantics

Our definition of PJ queries (Definition 4) requires that every column in the example

spreadsheet is mapped to some column in the database. We can relax this constraint by

allowing that only a subset of the example spreadsheet columns is mapped to the set of

database columns, i.e., simply ignoring some example spreadsheet columns. Consider a

PJ query Q = (J , C,φ), this relaxation changes our mapping from “φ : col(T) → C” to

“φ : col(T)→ C ∪ {⊥}”. When a column i in the example spreadsheet T is mapped to ⊥,

this column does not correspond to any column in the output relation of Q. We call our old

column mapping, AND-column mapping, and the new relaxed one, OR-column mapping.

Our approaches can be extended to handle OR-column mapping easily. A simple

extension is as follows. For a user-given example spreadsheet T with c columns, our system

can create 2c example spreadsheets T0, T1, . . . , T2c–1, each of which consists of a subset

of columns of T. We then process them using our FASTTOPK strategy one by one. The 2c

top-k resulting lists are aggregated to generate the overall top-k. Since c is small in practice,

the cost of this approach is affordable. A more direct way is to enumerate all PJ queries

under this OR semantics. To this end, we can apply the Candidate Network Generator in

CHAPTER 11. QUERY DISCOVERY 321

[HGP03] to generate an extended set of candidate PJ queries in QC
+, each of which has a

subset of example spreadsheet columns mapped to its projection. Then both of our strategies

BASELINE and FASTTOPK still work on QC
+.

Experimental Results

Refer to Section 11.6.1 for the settings of experiments. We use CSUPP dataset and corre-

sponding example spreadsheets to compare FASTTOPK with AND-column mapping (the

one described in the main body of this chapter) with the extended version of FASTTOPK

with OR-column mapping (the simple extension described above).

0.01 0.15
0.98

6.62

24.3

0

5

10

15

20

25

5 10 20 50 100

Se
t

D
if

fe
re

m
ce

k

(a) Difference in result sets

0.1

1

10

100

AND OR AND OR AND OR

Low Medium High

Ti
m

e
 (

se
c.

)

Enumeration Evaluation

(b) Execution time

Figure 11.12: AND-column mapping v.s. OR-column mapping

Figure 11.12(a) shows the average set difference between the result sets with AND and

OR-column mapping for the 50 example spreadsheets for various values of k. For smaller

values of k, there is almost no difference between the two result sets. For example, the

top 10 results are identical for 49 out of the 50 ESs. It means that, even when we allow

OR-column mapping in PJ queries, the top ones are likely to have all the columns in example

spreadsheets mapped to their projections (AND semantics).

Figure 11.12(b) shows the average execution times of the two approaches. Note that

“enumeration” here means “query enumeration + upper-bound score computation”. The

OR-semantics implementation is only a bit slower than the AND-semantics one since the

CHAPTER 11. QUERY DISCOVERY 322

execution time for the Ti created from the biggest subset of columns in T (i.e., the entire

example spreadsheet) dominates the execution time. This shows that our system can be

easily adapted to support OR-semantics whenever necessary, e.g., when the system returns

an empty result for some user-specified example spreadsheet.

0

15000

30000

45000

60000

75000

AND OR AND OR AND OR AND OR AND OR AND OR

Naïve FastTopK Naïve FastTopK Naïve FastTopK

Low Medium High

R
o

w
 E

va
lu

at
io

n
s

Figure 11.13: Amount of queries enumerated and evaluated in AND and OR semantics by NAIVE

(not using score) and FASTTOPK (using score)

Figure 11.13 plots the number of PJ queries enumerated and evaluated in AND and OR

semantics. NAIVE evaluates all the PJ queries enumerated in both semantics. We can find

that, in the AND semantics, less PJ queries are enumerated than in OR because of stronger

constraints in the column mapping φ. Using upper bounds score, the number of PJ queries

actually evaluated by FASTTOPK is much less than the total number of queries enumerated.

11.8 Computing Exact Scores

11.8.1 Execution Plan for PJ Queries

We need to execute the PJ query Q and, for each tuple t in the example spreadsheet, examine

every row in the output relationA(Q) to compute the terms maxr∈A(Q) score(t | r) in (11.3).

We utilize the (key, foreign key)-snapshot of the database (discussed in Section 11.3.1), and

select a pre-optimized plan to execute Q in memory. Our execution plan for Q borrows

ideas from hash joins:

CHAPTER 11. QUERY DISCOVERY 323

Stage I (scanning row-level inverted indexes to score cells): For each term w in each

cell t[i] ∈ T, suppose column i is mapped to column j in a relation R in the database D
through φ, we retrieve the row-level inverted index inv(w, R[j]) to compute cell similarities

scorecell(t[i] | r[j]) (as lines 1-5 of Algorithm 1) for rows r ∈ R. scorecell is then associated

to primary keys of rows in R.

Stage II (bottom-up hash joins): Starting from the leaf relations in J , the primary key of

each row, associated with cell similarities, is inserted into a hash table if cell similarity is

non-zero in at least one cell – after that, a leaf relation is called evaluated.

Recursively, Stage II-A (scan/hash lookup): for each relation above, if all of its children

relations have been evaluated, we can start to scan its rows in the in-memory (key, foreign

key)-snapshot of this relation, and for each row, look up all foreign keys (in different

columns) in the corresponding hash tables popped up from the children relations to conduct

the foreign-key joins. Stage II-B (building hash table): Then, the primary key of each row

in the join output with nonzero cell similarities (in at least one cell) is put into a hash table.

After that this relation is called evaluated.

Stage III (computing scores): After the root relation is evaluated, we get the output relation

A(Q), with cell similarities associated in each row of A(Q), and then we can compute the

row containment score as in (11.1)-(11.3). Note at at each relation, we only need to keep

primary/foreign key columns and columns in the projection C. �

The above evaluation plan can be executed either for Q with one row of T, or with all

rows of T together.

Figure 11.14 shows the execution plan for the PJ query in Figure 11.2(b)-(i) on the first

row of the example table in Figure 11.2(a). A rectangle node represents the operation to

retrieve row-level inverted indexes and compute cell similarities in Stage-I. A circle node

represents the operations (scanning, hash lookups, and building hash table) we perform on a

relation (labeled beside) in Stage-II, after all of its children are evaluated. For example, on

the Orders node, we lookup foreign key Orders.CustId of each row in the hash table built

by the node Custmer, and then build a hash table with Orders.OId (key in the hash table)

CHAPTER 11. QUERY DISCOVERY 324

Scan/Lookup and
build hash table

Score cells

inv(“Xbox′ ′,Part.PartName)

inv(“Rick′′,Customer.CustName)

inv(“USA′′,Nation.NatName)

Part
Orders

Customer

Nation

LineItem

Execution plan for
sub-PJ query rooted at Orders

3©

1©

6©

2©

4©

5©
7©

8©

Figure 11.14: Execution plan for the PJ query in Figure 11.2(b)-(i) and its sub-PJ queries (operators

executed in the order of 1, 3, 6, 2, 4, 5, 7, 8)

and cell similarities on column Customer.CustName and column Nation.NatName. On the

root node LineItem, we need to look up two foreign keys PartId and OId in the hash tables

popped up by its two children Part and Orders, respectively. Operations are performed in

the order of 1©, 3©, 6©, 2©, 4©, 5©, 7©, 8© to compute the final score.

11.8.2 Speedup Execution using Cache

The execution plans of PJ-queries can be easily extended to take advantage the cached

sub-PJ queries: for a PJ query Q and a set of cached sub-PJ queries inM, instead of starting

from the leaves of Q, we start from the output relations of maximal sub-PJ queries of Q in

M and follow the execution plan of Q afterwards.

For example, Figure 11.3 shows two sub-PJ queries Q′1 (left) and Q′2 (right) of the PJ

query Q in Figure 11.2(b)-(i). Intuitively, the execution plan of a sub-PJ query Q′ � Q is a

subtree of the execution plan of Q. For example, the dotted polygon and the dashed polygon

in Figure 11.14 are the execution plans of Q′1 and Q′2, respectively.

In the execution plan of Q in Figure 11.14, if both Q′1 and Q′2 are materialized inM,

we can start from their output relations inM and execute only the operations 3©, 4©, 5©,

CHAPTER 11. QUERY DISCOVERY 325

and 8© (only the join with Part is needed in 8©). If a even larger one Q′3 (rooted at Orders),

whose plan is the shaded polygon in Figure 11.14, is cached, we can start from the output

relations of Q′1 and Q′3 (Q′2 is no more a maximal one) and execute only the operation 8©.

11.8.3 Cost Model for Computing Exact Scores

For the PJ-query Q = (J , C,φ) w.r.t. T, there are three major operators involved in our

execution plan in 11.8.1: i) retrieving row-level inverted index; ii) scanning a relation while

doing hash lookups; and iii) building a hash table. The running time of each of these

operators is constant. So a natural and light-weight cost model of the execution plan for Q

is to count the number of operations ii) and iii) executed on tuples in the relations of J and

the number of tuples retrieved from inverted indexes. For a (sub-)PJ query Q, define the

cost of evaluating Q as:

cost(Q) =
∑

R∈V(J)
|R| · dJ (R) +

∑
i∈col(T)

∑
w∈T[i]

|inv(w,J [φ(i)])|. (11.12)

The first component on the RHS of (11.12) quantifies the total number of hash lookups/in-

serts: dJ (R) is the degree of relation R in J , as for each tuple in R, the number of hash

lookups is equal to the number of children of R in J , and for every relation except the root

relation in R, we need to build a hash table by inserting tuples in this relation. The second

component quantifies the number of tuples we need to retrieve from row-level inverted

indexes: here let J [φ(i)] be the column which i is mapped to in a relation of J .

More generally, we have a set of sub-PJ queries cached inM. The cost of the execution

plan for Q when we reuse output relations of sub-PJ queries inM is defined to be:

cost(Q,M) = cost(Q) –
∑

maximal Q′∈M
Q′�Q

cost(Q′), (11.13)

as the output relations of maximal sub-PJ queries Q′ of Q inM can be directly retrieved

fromM and reused.

CHAPTER 11. QUERY DISCOVERY 326

Both cost(Q) and cost(Q,M) can be computed efficiently. In (11.12)-(11.13), |R|, the

number of tuples in R, and |inv(w,J [φ(i)])|, the length of a row-level inverted index, can

be gotten in constant time. So the total time is O(V(J) + # terms in T).

11.9 Proofs

Proof of Proposition 1. For the first part (property i)), since no column in T is mapped to R,

by excluding R from Q, the column containment score is unchanged, i.e., scorecol(T | Q) =

scorecol(T | Q′). So it suffices to prove scorerow(T | Q) ≤ scorerow(T | Q′). Consdier the

output relations A(Q) and A(Q′), for any t ∈ A(Q), we have t ∈ A(Q′), because Q′ has

less key-foreign key constraints in joins. So from Equation (11.1), we have, for each t ∈ T,

score(t | Q) ≤ score(t | Q′). Then the conclusion follows from Equation (11.3)

For the second part (property ii)), scorecol(T | Q) = scorecol(T′ | Q′′) is also obvious

as no term in the removed column T[i] appears in the removed R[j]. It suffices to prove

scorerow(T | Q) = scorerow(T′ | Q′′). Comparing Q with Q′′, their join trees are the same

and the projection in Q′′ is a subset of the projection in Q. So the output relation A(Q′′)
is essentially the projection of A(Q) on C ′. And since the column R[j] excluded in Q′′

contains no term in the spreadsheet column T[i], the above claim follows. �

Proof of Proposition 2. From Equation (11.5), it suffices to show scorerow(T | Q) ≤
scorecol(T | Q). Putting Equation (11.2) into Equation (11.3), and comparing it with

Equation (11.4), we can derive this relationship. �

Proof of Proposition 3. For each term w in a column i of T, if T[i] is mapped to R[j],

we need to scan the row-level inverted index inv(w, R[j]) – the term in Equation (11.4),

scorecell(t[i] | r[φ(i)]), is obtained by aggregating the results for different terms. The total

cost is dominated by O(
∑

w∈T lw), i.e., lengths of inverted indexes. �

Proof of Proposition 4. Again, the row-level inverted indexes need to be scanned to

compute the terms scorecell(t[i] | r[φ(i)]) in Equation (11.2). To compute the terms

maxr∈A(Q) score(t | r) in Equation (11.3), we need to scan the output relationA(Q) at least

CHAPTER 11. QUERY DISCOVERY 327

once. The complexity of generating A(Q) using the hash-join execution plan introduced in

Section 11.8.1 is O(
∑

R∈J |R| · dJ (R)). �

Proof of Proposition 5. Let’s first define the class of algorithms, called multi-step ranking

algorithms. A multi-step ranking algorithm takes i) a set of PJ queries QC, and ii) upper

bounds score of their scores, as input. In each step, it picks one or more PJ queries in QC

with unknown scores and evaluates them, i.e., computes score(Q); based on the known

scores, it continues to pick the next one or more PJ queries to evaluate, until the top-k of

known scores is larger than the max of upper-bound scores of queries with unknown scores.

The following proof follows from [SK98].

Recall Qmin = {Q1, Q2, . . . , Qi∗} ⊆ QC, and i∗ is the minimal i s.t.

topk{score(Q1), . . . , score(Qi)} > score(Qi+1) ≥ score(Qi+2) ≥ . . . ≥ score(QN). We

prove this proposition via contradiction. Consider any multi-step ranking algorithm that

evalutes a set of PJ queries Q′ and claims that all queries with the top-k scores in QC have

been found in Q′. Pick any Qp ∈ Qmin – Q′. Let Qq be the PJ query in Q′ with the kth

highest score, i.e., score(Qq) = topk{score(Q) | Q ∈ Q′}.

i) If score(Qp) ≥ score(Qq): Since the algorithm has not evaluated Qp, the adversary can

set score(Qp) = score(Qp). Then score(Qp) ≥ score(Qq) = topk{score(Q) | Q ∈ Q′}, so

Qp is missed from the top-k and the output of the algorithm is incorrect.

ii) If score(Qp) < score(Qq): Consider the set of top-k PJ queries in Q′, Q′topk = {Q |

score(Q) ≥ score(Qq)} ∩ Q′. We have Q′topk ⊆ {Q1, Q2, . . . , Qp–1}, because for any

Q ∈ Q′topk, we have score(Q) > score(Qp). Then it follows that topk{score(Q1), . . . ,

score(Qp–1)} > score(Qp). Note that p ≤ i∗ which contradicts with the minimality of i∗.

Both i) and ii) lead to contradiction, so we have Qmin ⊆ Q′. �

Proof of Theorem 2. To prove the correctness, we only need to show that if Equation (11.7)

is satisfied, the top-k are among Q1, Q2, . . . , Qi. This is true, because, from the way how

Qi’s are ordered in Equation (11.7) and BASELINE, for any j > i, we have score(Qj) ≤
score(Qi+1). The second part, of the theorem (i.e., BASELINE evaluates only queries in

Qmin) is trivial. �

CHAPTER 11. QUERY DISCOVERY 328

Proof of Theorem 3. Given a sequence of type-a,b,c operators, to check whether it is a

feasible solution, we only need to check when it eventually evaluates all PJ queries in Qmin

and, at any time, the cache size it uses is no more than B. So when Qmin is known, the

problem is in NP. We use a reduction from the HAMILTONIAN PATH problem to show

CACHE-EVAL SCHEDULER is NP-hard.

Consider a HAMILTONIAN PATH instance: given a undirected graph G(V,E), whether

there exist an ordering of all vertices v1, v2, . . . , vn ∈ V (|V| = n) s.t. (vi, vi+1) ∈ E for

i = 1, . . . , n – 1. This problem is NP-complete even in a restricted class of graphs, where

every vertex has degree equal to three [GJS74]. Now let’s construct an instance of our

CACHE-EVAL SCHEDULER problem. For each vertex v ∈ V, create a PJ query Qv inQmin.

For each edge e = (v, u), create a sub-PJ query Qsub
e and let Qsub

e be a sub-PJ query of

both Qv and Qu. So for each created PJ query Qv, we have the set of all sub-PJ queries of

Qv to be T (Qv) = {Qsub
e | e is incident on v}. Finally, let |A(Qsub

e)| = B for every e ∈ E,

i.e., at any time, we can only keep the output relation of one sub-PJ query in our cache; and

let cost(Qsub
e) = C1 be equal for every e and cost(Qv) = C2 be equal for every v ∈ V. To

prove the NP-hardness, it suffices to show such a claim: there is a Hamiltonian path in G if

and only if there exists a sequence of operators to evaluate Qmin with cost no more than

n · C2 – (n – 1) · C1.

To prove the claim, we need to transform a path into a sequence of operators and vice

versa. A subpath vi–1vivi+1 in the Hamiltonian path corresponds to: when evaluting Qvi–1 ,

we put Qsub
(vi–1,vi)

in cache and reuse it to evaluate Qvi ; and after that, we clear the cache and

put Qsub
(vi,vi+1)

in cache. Details are omitted here. �

Proof of Theorem 4. The correctness follows directly from Theorem 2. The set of PJ

queries FASTTOPK evaluate is always a superset of those evaluated by BASELINE (i.e., all

queries in Qmin have been evaluated when FASTTOPK terminates). �

Proof of Theorem 5. The second part, Mall = Θ(smax · N), is directly from our definition

of sub-PJ queries.

CHAPTER 11. QUERY DISCOVERY 329

For the overall time complexity, we focus on Algorithm 4 first. For each sub-PJ query

Q′, we need O(smax) time to get cost(Q′) and |A(Q′)|, which are used in lines 1 and 4. So

we need a total of O(M ·smax) time for all sub-PJ queries. Sorting all sub-PJ queries in line 1

needs O(M · logM) time. The remaining question is how to get Q∗ and Critical–1(Q∗)

efficiently (lines 4, 6, and 8). Note that Bj is the set of unevaluated PJ queries. For each

sub-PJ query Q′, we keep a hash set HS(Q′) of unevaluated PJ queries it belongs to. For

each PJ query Q, we also keep a list LT(Q) of sub-PJ queries it contains. So after a PJ-queriy

Q is evaluated, each HS(Q′) can be updated in constant time if Q′ is a sub-PJ query of

Q. To get Q∗ in all iterations, we only need to scan all sub-PJ quries Q′1, . . . , Q
′
M in order

and check whether |HS(Q′)| > 1 for each. Critical–1(Q∗) can be directed retrived from

HS(Q∗). So the time complexity of Algorithm 4 is O(M(smax + logM)).

In Algorithm 3, the additional time besides invoking Algorithm 4 is at most O(N ·
(log N + log k)) (soring plus keeping the top-k).

So from x log x + y log y ≤ (x + y) log(x + y), we have the overall time complexity is

O(N +Mall(smax + logMall)). �

Proof of Theorem 6. The first part Equation (11.9) is directly from the definition of Qmin

and the way we construct batches in Algorithm 3.

To prove the main result Equation (11.10), we first prove, for each batch B

costTOT(B) – costSOL(B) ≥
1
2c2

(costTOT(B) – costOPT(B)) . (11.14)

That is, the cost saved by FASTTOPK is no less than 1/2c2 of the optimal save. Summing

up Equation (11.14) for all batches B = B0,B1, . . ., since they are disjoint and ∪Bj = QE,

we have

costTOT(QE) – ΣBjcostSOL(Bj) (11.15)

≥ 1
2c2

(
costTOT(QE) – ΣBjcostOPT(Bj)

)
.

FASTTOPK works batch-by-batch, so we have i)
∑
Bj costSOL(Bj) = costSOL(QE). Since

Bj ⊆ QE, we have ii) costOPT(Bj) ≤ costOPT(QE). And it is obvious that iii) the total

CHAPTER 11. QUERY DISCOVERY 330

number of batches processed by Algorithm 3 is at most log1+ε (|Qmin|/k). Our performance

ratio Equation (11.10) follows from Equation (11.15) and i)-iii).

The only missing part is the proof for Equation (11.14). Let the batch of PJ queries

B = {Q1, . . . , Qn}. Suppose in the optimal solution,

costTOT(B) – costOPT(B)≤
∑
Qi∈B

cost(Qi) – cost(Qi,M∗i), (11.16)

whereM∗i is the status of cache before Qi is evaluated. From Equation (11.13),

cost(Qi) – cost(Qi,M∗i) =
∑

maximal Q′∈M∗i
Q′�Qi

cost(Q′). (11.17)

On the other hand, in Algorithm 4, when Qi is to be evaluated, we have cacheMi = {Q∗}

(lines 8-9), where Q∗ is the most costly sub-PJ query among those in {maximal Q′ ∈M∗i |

Q′ � Qi} based on its selection (line 4). There are at most c maximal sub-PJ queries for Qi

(as there are at most c leaves in the join tree), so

cost(Qi) – cost(Qi,Mi)≥
1
c
(cost(Qi) – cost(Qi,M∗i)) . (11.18)

Among all PJ queries in B, in the worst case, a fraction 1
2c of them can benefit as much as

Equation (11.18) from the cache. So putting Equation (11.18) back to Equation (11.16), we

can obtain Equation (11.14). The proof can be completed. �

11.10 Conclusion And Future Work

In this chapter, we proposed and studied the problem of discovering top-k project join queries

which approximately contain a user-given set of example tuples in their outputs. The main

technical challenge is to share results of common subexpressions among the PJ queries and

still terminate early. We formalize the problem as the caching-evaluation scheduling problem,

show its hardness, and develop a near-optimal solution. Our experiments demonstrate that

our solution is both efficient and effecitive in finding the top-k PJ queries. Our ranker

captures some classes of errors; extending it to other types of errors (e.g., spelling errors

and fuzzy matching) and evaluating its quality on real enterprise users are open challenges.

CHAPTER 11. QUERY DISCOVERY 331

11.11 Retrospective Analysis

Having described S4 in detail, we now provide our retrospective analysis to answer how

instrumentation-enabled engines, such as SMOKE, could have helped in its development.

As we showed experimentally, the main problem behind the performance of S4 lies on

the computation of the exact scores and, more specifically, on the computation of the row

score similarity for every project-join query wrt to a given spreadsheet. To compute this

similarity, S4 needs to evaluate thousands of join queries and this computation needs to

happen interactively when users search through the spreadsheet interface. Executing such

queries against a database engine without our indexes takes considerable time, rendering

query discovery a non-interactive process. To account for this problem, we built two

indexes, namely, row-level inverted index and primary key-foreign key (pk-fk) snapshot of

the database that overall allowed us to perform thousands of joins per second and overall

compute the similarity scores of project-join queries interactively.

In fact, most of the codebase of S4 and most of the time spent on its development was on

implementing the logic behind building these indexes and using them in the query plans of

project-join queries to compute the overall scores. Regarding building these indexes, we had

to crawl (using projection; group-by; and join queries) the underlying data warehouses, ship

projection; group-by; and join results over to S4, and manipulate the results to create the

indexes. Note that both types of indexes have graph-like structures (i.e., row-level indexes

are inverted indexes from terms to row ids, and pk-fk snapshots are inverted indexes from

row ids of primary keys to row ids of foreign keys) and our query evaluation strategies had

to incorporate them for the score computations. While these tasks may seem straightforward

in comparison to the overall algorithmic development of S4, core performance benefits

come from these tasks and we had to implement them from scratch to make S4 interactive.

Now, recall our provenance capture techniques over group-by queries. The row-level

inverted index is exactly the backward rid index over grouping on distinct terms of column

elements. This can be expressed with the query SELECT T.C FROM T GROUP BY T.C.

The result of this query with backward provenance capture in SMOKE is a backward index

CHAPTER 11. QUERY DISCOVERY 332

mapping each term in T.C to the row ids in T that it came from. Hence, to construct

the index we need to perform this query for every table T and column C. Note that, for

consolidation purposes, we can also combine all indexes together by grouping on terms.

Finally, note that each cell of a column may have multiple terms (e.g., full text). To account

for such cases we first need to split terms per cell and then feed them to the group-by query

above. (We can do so with an unnest operation on the list of split terms.) The end result is

exactly the row-level inverted index of S4, and we only had to issue some queries to our

provenance-enabled SMOKE database to create it.

Furthermore, recall our provenance capture techniques over join queries. The pk-fk

snapshot index of S4 is exactly the which-provenance backward indexes over all possible

two-way joins involving all possible primary key-foreign key combinations as specified in

the schema of the database. Essentially, we map each row id of a primary key to the row

ids of the foreign key table that have the same primary key in the joined column. As such,

the construction of the pk-fk snapshot, in our provenance-enabled SMOKE database, would

involve issuing a set of simple join queries over which we would capture which-provenance.

Having represented these indexes as backward provenance, we can now use them to

compute scores of project-join queries using backward trace statements. Essentially, we need

to compute intersections and unions over backward rid lists similar to the ones we described

for crossfiltering (Chapter 8) and details on demand (Chapter 7). Such intersections and

unions are evaluated efficiently in SMOKE following well-known techniques [WLPS17].

Our overall analysis highlights the premise of instrumentation-enabled engines in al-

lowing application developers to focus on tasks that are inherent to their goals (e.g., query

discovery in this case) as opposed to spending time writing databases from scratch only to

embed their logic within physical operators.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 333

Chapter 12

Other Connections and the Road

Ahead

We conclude our discussion over applications domains, by drawing the connections be-

tween instrumentation and the domains of negative provenance (Section 12.1), online

query optimization (Section 12.2), and the general domain of interactive applications (Sec-

tion 12.3). Across domains, we discuss how well-known techniques can be expressed in an

instrumentation-based way—hence, further evaluating the expressiveness of our instrumen-

tation framework and demonstrating best practices—and we introduce novel extensions and

semantics that instrumentation-enabled engines could enable in a principled manner—hence,

covering interesting future directions.

12.1 Negative Provenance

Negative provenance [CWH+17; HCDN08; CJ09] is a fundamental type of information that

allows applications to answer questions such as “why an input tuple has not contributed

to outputs”. Applications of negative provenance include network analytics [CWH+17],

data debugging [AHS12], causality [MGS11; MGMS10], and integrity repairs [XZAT18;

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 334

MGS11], to name a few. Unfortunately, without instrumentation mechanisms to allow

capturing negative provenance information within plans, state-of-the-art negative provenance

capture systems typically rewrite queries to their negated forms and track positive provenance

by operating at the logical level. As we demonstrated in Chapter 3, capturing provenance at

the logical level comes with performance penalties, however. Such performance penalties

are even higher for negative provenance capture because negative provenance needs to

be captured per intermediate operator (i.e., which records where filtered per intermediate

operator). Hence, provenance capture needs to be applied on the negations of subplans.

Negating and tracking positive provenance per intermediate operator, however, is not nec-

essary shall a database provides instrumentation points on data flows that are not generated

by the query execution, as we introduced in SMOKE in Section 6.3.

SELECT COUNT(*), states.name, states.polygon

FROM ontime, airports, states

WHERE flights.origin = airports.iata and

intersects(Point(airports.x, airports.y),

states.polygon);

GROUP BY states.name, states.polygon;

Figure 12.1: Flights per state.

To further highlight the importance of negative provenance and illustrate how it can be

captured through physical plan instrumentation, consider again our flights database and

the query in Figure 12.1 that counts the delayed flights per state. To do so, it finds within

which state each airport lies by intersecting the location of each airport with the polygon of

each state. The problem with the above query is that polygons can have arbitrary precision

on bounding a state (or region in general). As a result, if we have selected a resolution for

polygons that leaves out airports, then the overall results and the insights we can get by

visualizing a heatmap of the counts of flights per state may be erroneous.

In fact, this is the case shall we instantiate our database schema with delayed flights

from the ontime [Ont] dataset, airports and airlines from OpenFlights [Ope], and state

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 335

Figure 12.2: A heatmap of delayed flights for our example. Zooming in reveals that the Jack

McNamara Field Aiport is not covered by the state polygons and not included in our results of

delayed flights per state. As a result, insights extracted from the heatmap may be erroneous.

polygons from the US Census Tiger shapefiles [USC], which is the typical setting in many

experimental studies. Consider the heatmap in Figure 12.2(top). At first sight, nothing

seems to be wrong with the heatmap. However, if we zoom-in in Crescent City we can see

that the Jack McNamara Field Airport is not included in our results. The visual explanation

of this problem is depicted in Figure 12.2(bottom). The airport is not included in our results

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 336

because the polygons from the US Census Tiger shapefiles have low resolution and the

intersects() function of our query filters out the Jack McNamara Field Airport.

Figure 12.3: Capturing negative provenance for our example using instrumentation.

To provide this explanation to the user we need to track negative provenance at the

moment we are executing our initial query. To express this in SMOKE, consider the plan

in Figure 12.3(left) and the negative provenance manager in Figure 12.3(right). By using

the not_joined_from_left instrumentation point of the nested loop join operator that

performs the intersection, we can track which airports failed to pass the intersection. In

SMOKE, we can express this functionality both declaratively and imperatively, as we

discussed in Section 6.8.2; Figure 12.3(right) shows a declarative approach that stores the

airports that where filtered out by the instersection in the relation pruned_airports.

A final note on this example is that the not_joined_from_left instrumentation point

inherits the schema of the left side and this may be problematic for explanation purposes.

For instance, the city of an airport in our example has no role in the query and a database

may push a projection before the join to remove the city from further consideration in the

plan. This is problematic because the pruned_airports relation for negative provenance

capture still needs the details of the airport so that it can show them as explanation to the

user, as shown in Figure 12.2(bottom). This functionality can also be expressed in SMOKE.

More specifically, recall how the Actions component of the Physical Plan Instrumentation

Framework of SMOKE allows us to change the schema of operators only to be captured by

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 337

instrumentation applications, as we discussed in Section 6.8.1. Using this functionality, we

can get more attributes from the airports table to populate the pruned_airports table and

provide better explanations to users.

To conclude our discussion on negative provenance, we note that while our discussion

above is limited on negative provenance capture on the left side of a nested loop joins,

SMOKE also provides negative points for selections, HAVING clauses (implemented as

selections), and both right and left sides of both nested loop and hash-based joins, as

discussed in Section 6.3. Extending this functionality for other types of operators (e.g.,

anti-joins and set difference) is interesting future work. Furthermore, SMOKE also provides

deferring negative provenance on operators. Putting these functionalities in practice per

domain is also interesting future work.

12.2 Online Query Optimization

Traditional query optimizers that take as input a query and decide on a physical plan for its

implementation can make arbitrarily erroneous decisions [LGM+15] due to the absence of

exact statistics and knowledge of runtime conditions (e.g., change in a memory budget).

To address this problem, there is a vast literature of online query optimizers that observe

the query at runtime and change it in response to updated statistics or runtime conditions.

More specifically, online query optimization techniques collect knowledge about a query

(e.g., CPU counts and memory consumption, updated selectivity and cardinality estimates,

or even complete data structures such as bloom filters and hash tables) as well as observe

run time events (e.g., change of memory budgets or CPU and machine availability). Then,

based on this knowledge, they make decisions on how to change a physical plan at runtime.

Smooth scans [BGIA+18] collect statistics during selections and change selection scans to

index scans, and vice versa. Adaptive joins as introduced in commercial databases [SQL18;

Ora17], change nested loop joins to hash joins, and vice versa, at runtime. Sideways [IT08]

and lookahead information passing [PDZ+18] techniques collect information from one

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 338

operator to pass it over and optimize other operations in a plan. Finally, probabilistic

predicates [LCKC18; LKC18] change selections, which are applied after expensive machine

learning operators, to probabilistic predicates before the machine learning operators.

All these example techniques require fine-grained control over the runtime of a physical

plan (e.g., to change its control flow, manipulate internal state of operator, and observe and

respond to runtime events). In the absence of such mechanisms, however, each technique has

been implemented in an ad-hoc way by changing the internals of a single database server.

To this end, in this section, we revisit popular optimization techniques (i.e., probabilistic

predicates, adaptive joins, and information passing) to express core tasks of them using

our Physical Plan Instrumentation Framework. Our discussion aims to illustrates best

instrumentation practices to enable the implementation of online optimization techniques

without having to deal with the complexities of changing the underlying database engine.

12.2.1 Probabilistic Predicates

Consider the query and plan in Figure 12.4. The query processes a corpus of videos,

extracts boxes per frame and camera (i.e., PRODUCE cameraId, frameID, vehBox), fea-

turizes each box (i.e., F1, F2), classifies each box to the type and color of the vehicle it

contains (i.e., C1, C2), and selects only the frames with boxes containing vehicles with type

SUV and color red (i.e., WHERE type = SUV AND color = red).

In queries such as the above, the machine learning components (e.g., the vehicle detector

VehDetector, the featurizers F1, F2, and classifiers C1, C2) typically dominate the query

execution cost. However, note that the selections type = SUV AND color = red will only

consider frames with vehicles of type SUV and color red. Hence, the machine learning

components will spend a considerable amount of time processing frames that do not include

vehicles of interest to the final result. In traditional query optimization this problem is

typically solved by performing selection pushdown. However, in cases such as the above

selections cannot be pushed down since the initial corpus is not annotated with types and

colors of vehicles in frames.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 339

SELECT cameraID, frameID,

C1(F1(vehBox)) AS type,

C2(F2(vehBox)) AS color

FROM (PROCESS videos

PRODUCE cameraID,frameID,vehBox

USING VehDetector)

WHERE type = SUV AND color = red;

videos → VehDetector → F1, F2 → C1, C2 → σtype=SUV∧color=red

Figure 12.4: Example query (top) and corresponding plan (bottom) we use in our discussion. The

query processes a corpus of videos to select the frames having vehicles with color red and type SUV.

(Example borrowed from the original probabilistic predicates papers [LCKC18; LKC18].)

To address this problem, Lu et al. [LCKC18; LKC18] introduced the notion of proba-

bilistic predicates (PPs). PPs is an online query optimization technique that, given plans

involving such expensive machine learning components followed by selections on their final

output, aims to push down the “selections” before the ML pipeline. Instead of pushing the

selection, per the traditional selection pushdown optimization, they create and push their

probabilistic alternatives. For instance, in the case above, we can build classifiers PPSUV

and PPred that classify an input frame as containing vehicles of type SUV and color red,

respectively. The premise is that such predicates can be cheap enough to construct and much

cheaper than running the whole ML pipeline. The result is the plan shown in Figure 12.5.

videos→ PPSUV, PPred →VehDetector→ F1, F2 → C1, C2 → σtype=SUV∧color=red

Figure 12.5: The physical plan of our example after the introduction of probabilistic predicates

PSUV, Pred before the expensive VehDetector.

Now, while there are many connections behind how our physical plan instrumentation

framework can help in expressing the introduction of PPs in a plan (e.g., adding selections

or changing their predicates online can be provided by the add_operator and CNF

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 340

Figure 12.6: Getting positive and negative labels and updating PPs by instrumenting selections.

manipulation functions provided by the Actions component) here we will focus on how to

construct PPs online to illustrate more complex features and best instrumentation practices.

The online construction of PPs lies on the fact that when we are first presented with a

query, such as the one in Figure 12.4, we have no way of introducing PPs. Recall that PPs are

classifiers. To build them we need some positive and negative labels first. For our example,

we need to get the frames that pass the selection WHERE type = SUV AND color = red).

To perform this operation, recall the instrumentation points on selection Section 6.3.1

and our implementation of them in Figure 12.6. To get positive labels for either SUVs or

red colored vehicles we can implement the before_parent or after_parent instru-

mentation functions of the selection type = SUV AND color = red. Every record that

satisfies the selection provides positive labels. To get both positive and negative labels we

can use the not_satisfied point on the selection. Every record that does not passes the

selection can either have type!=SUV AND color=red, type=SUV AND color!=red, and

type!=SUV AND color!=red. In Figure 12.6 we show a sketch of how this functionality

can be implemented in an imperative way in SMOKE. By implementing the instrumenta-

tion functions on_before_parent and on_after_parent we can populate the relations

suvs, reds that maintain positive and negative labels, respectively. Then, the techniques

introduced in [LCKC18; LKC18] can use the relations suvs and reds to construct PPs.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 341

By taking an instrumentation perspective on the construction of PPs, we can also see

how different implementations of instrumentors can lead to novel techniques. For instance,

instead of relying on classifiers that are built on the whole input we can use one-pass online

classifiers to update PPs per record. As long as we have a guarantee on the accuracy of

the current classifiers we can introduce PPs in the plan. Furthermore, note that PPs are

predicated on the fact that machine learning pipelines are slow. However, to be sure about

that monitoring of the machine learning operators is required since the machine learning

operators are UDFs without a closed-form cost formula. Finally, as noted in [KEA+17] not

every frame in a sequence of frames is equally important. By understanding the underlying

sequence of frames or taking into consideration other underlying data statistics, which is

logic that can be expressed within instrumentors, we believe there is ample space for future

work on the optimization of PPs. Hence, instrumentation frameworks that facilitate their

development and fast introduction in a database are important.

To conclude our discussion on probabilistic predicates, we note that the instrumentation-

enabled techniques that we presented above allow PPs to be introduced in a database without

having to change its internals. This is a very important result since the instrumentation

framework that we introduced is not focused on just probabilistic predicates. This highlights

the extensibility provided by an instrumentation-enabled database engine and the interesting

future directions that we can take by (re)modelling tasks in an instrumentation-driven way.

12.2.2 Adaptive Joins

During query optimization, the optimizer may select a physical join implementation that is

suboptimal for the query at hand. For instance, an optimizer may select a nested loop join

in anticipation of low input cardinalities to the join operation in contrast to a hash-based

join implementation because building hash tables may be expensive for the estimated input

cardinalities. However, input cardinalities may have been underestimated substantially

as a result of cardinality estimation errors in subplans [LGM+15]. To account for such

errors, we can build an online optimizer that gets better estimates during runtime. Updated

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 342

estimates, in turn, can result in identifying that the nested loop join has a higher cost than

an equivalent hash join implementation. Based on this information, we want to replace the

nested loop join with a hash-based one. This is the main idea behind adaptive joins [SQL18;

Ora17] that change from one join implementation to another during query execution based

on updated statistics tracked at runtime.

Similarly to the other query optimization techniques that we discussed above, adap-

tive joins, while important, they have been implemented within specific databases by

changing their internals. Next, we discuss how adaptive joins can be implemented in an

instrumentation-based way by discussing how hash joins can replace nested loop joins and

how these decisions can be triggered by statistics collected at run time. Furthermore, we

discuss how hash joins can change to nested loop joins, to target cases when memory budgets

for hash tables used in hash joins are not enough. Changing, however, the underlying join

implementation is only one way to optimize the join in this case. In this direction, we show

how to introduce compression of hash tables to decrease the memory footprint of hash joins

instead of changing them to nested loop ones.

Nested Loop Joins (NLJ)→ Hash Joins (HJ)

A naive approach to change an NLJ to a HJ one is by stopping the NLJ and rerunning the

join with HJ. Essentially, this technique is similar to pre-flight replacement. There are two

problems with this approach. First, parent operators of the NLJ may have already consumed

partial results of the NLJ. In this case, we have to search all parent operators until a blocking

parent operator, remove their state, reinitialize them, and only then execute the hash join.

Of course, re-execution is not always possible because the first blocking operator may be

the root node of the plan in which case results have been sent to client applications, and a

database engine cannot have control on the state of client applications. Second, re-execution

in the form of delete state and re-execute misses optimization opportunities as partial results

have already been created and re-execution wastes time recreating them. For these reasons,

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 343

we need to introduce techniques that guarantee the continuation of the execution of the HJ

from where the NLJ left off, as we also discussed in Section 6.8.3.

Consider a scalar in-memory implementation of NLJ for a natural equi-join between the

outer relation A and the inner relation B. The natural join scans A and, for each tuple in A, it

scans B for matches. To do so, the NLJ maintains a state (i.e., the current left and right input

tuples in the nested loops). Changing NLJ to HJ has two cases based on which relation we

want to make the probe side and which the build side of the HJ.

A probe, B build. Assume a HJ implementation that builds the hash table on B and probes

it with tuples of A. To guarantee continuation, the HJ needs to build the hash table on the B

side, as usual, but it needs to probe the hash table only with the tuples of A that the NLJ

has not considered in its outer loop. To do so, we first can either introduce a new scan on B

and feed it on the hash table construction or use the current scan of B. Both approaches are

possible. The only problem with the second approach is that we have to reinitialize the scan

to rescan from the start. Once the hash table is constructed, we can ask the current scan on

A, that was previously used to feed NLJ, to continue producing tuples which we will now

use to probe the hash table of HJ.

A build, B probe. Furthermore, assume an HJ implementation that has A on the build side

and B on the probe side. In this case, we don’t need to build the hash table on all of A.

Rather, we only need to build only on the A tuples that have not yet been considered by the

NLJ. To do so, we can continue the scan on A from where NLJ left it off. Then, we can

restart the scan on B and probe the hash table on A to perform the join. Note however a case

that needs extra consideration here. The last inner loop on B for the A tuple, say, alast that

the NLJ left off may have not finished yet. In this case, the technique we discussed above

may output duplicate join results involving alast and B tuples for which the last inner loop

has already passed over. To address this issue, we simply first finish the inner loop for alast

before proceeding with the change to HJ.

Besides the change between join implementations, we also need to base our decision on

statistics tracked during query execution. For our example, one type of such statistics is an

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 344

update on the join cardinality estimate. Given an update of such estimate, we would like to

set up a condition (e.g., the re-estimated join selectivity deviates a lot from the estimated

join selectivity rendering the remaining cost of the NLJ to be higher than the HJ one).

To perform these operations (i.e., change between join implementations, track statistics,

and setting up conditions), we need to operate directly on the physical plan. This is where

the instrumentation framework that we introduced in Chapter 6 comes into place.

To track the join cardinality, we can instrument the NLJ operator to get the number

of tuples that pass and do not pass the join predicate. We have already shown how to

perform this operation in Chapter 6. To set up a condition on the deviation of the re-

estimated join cardinality from the initially estimated cardinality and get notified when it

is met, we can use the on function of the Announcer component in Section 6.7. Recall

that the on function takes as input a Condition, a ResolveFunction, and parameters

to be passed to the ResolveFunction when the Condition is met. For our example,

the ResolveFunction function of the Announcer has to implement the logic that we

described above for replacing NLJ with HJ.

on(join_cardinality > thr, my_replace, {NL,A,B});
void my_replace(PhysicalOpPNode NL,A,B){
nl_parent = NL.parent; // keep the parent

remove_operator(NL, SINGLE); // remove NL

add_operator(B, ./ht); // add hash table building as parent of B

add_operator(A, ./probe); // add probe as parent of A

./ht.parent = ./probe; // add probe as parent of build

./probe.parent = nl_parent; // the parent of probe is the NL parent

}

Figure 12.7: Changing NLJ to HJ using the physical plan instrumentation framework of SMOKE.

We show this specification in Figure 12.7. The on function takes as input the condition

join_cardinality > thr, where thr expresses the deviation from the initially esti-

mated join cardinality. Note that more complicated conditions are beyond our discussion.

Here, we only want to show how such conditions can be expressed in SMOKE. Furthermore,

the on function takes as input the function my_replace which will change the NLJ to

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 345

HJ once the condition is met. In Figure 12.7, we show a sketch of how to implement

my_replace to change NLJ to HJ if we were to make the A relation the probe size and the

B relation the build side, using operations from the Actions component of SMOKE.

Finally, recall our discussion on equivalent under replacement operators in Section 6.8.3.

SMOKE exposes replacements, such as NLJ to HJ, directly and instrumentation applications

do not need to provide their own replacement functions. For instance, in our example one

could set the on function to use the replace of SMOKE instead of my_replace.

Hash Joins (HJ)→ Nested Loop Joins (NLJ)

Replacing a hash join with a nested loop join implementation is also important. More

specifically, in real time systems where memory budgets can change at any given time,

hash-based algorithms that use hash tables may need to swap to alternatives that use no extra

memory for their computation. Next, we discuss changing HJ to NLJ when the memory

footprint used by HJ has surpassed a given budget.

Changing HJ to NLJ has two cases. Changing HJ to NLJ if the build side of HJ has not

finished yet is straightforward. We just replace NLJ to HJ, as we would do in a pre-flight

replacement. Changing HJ to NLJ while HJ is probing has two cases based on what side

will become the outer relation and which will become the inner relation of NLJ, similarly to

the NLJ→HJ replacement. In this case, however, both can be treated in the same way.

Assume that at the moment we want to change HJ to NLJ, the scan for probing on the

probe side has stopped on the tuple Bj. Based on Bj, we have the following bi-partition of

B tuples BC = {B0, . . . , Bj} and B′C = {Bj+1, . . . , B|B|}, where BC and B′C denote the

partitions that we have and not have probed with, respectively. What we need to do now is

set the NLJ to account only for A and B′C; whether we put A as outer and B′C as inner, or

vice versa, is not affecting the correctness of the join. Expressing this change in SMOKE is

similar to how we expressed NLJ→HJ, and we omit further discussion.

Finally, to express the condition (i.e., the hash table memory is above a budget) recall

that our Storage Manager allows accessing the state of operators to get statistics (e.g., size)

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 346

of data structures maintained by SMOKE. As such, we can specify an on function again

with the condition to be that the memory of a hash table is above a threshold.

Other Actions and Hash Table Compression

As a final note, the techniques that we discussed above only change one operator to another

to account for knowledge acquired during the plan execution. However, such actions are

only way to act upon knowledge acquired at runtime. In this direction, we note that the

pattern illustrated by the on function (i.e., whenever a condition is met, perform an action)

can account for the introduction of arbitrarily complex actions.

As an example, consider again that we use an HJ to perform a join but, at runtime, the

space required by HJ exceeds a memory budget). In our discussion above, we handled this

case by changing HJ to NLJ. However, we could also simply compress the hash table to

drop its memory footprint below the memory budget. To do so, the on function should

take a condition on the memory of the hash table, as above, but the ResolveFunction

should be a hash table compressor. (Here, we only focus on expressing this functionality,

and we omit a discussion on hash table compression.) Now, note that compressing a hash

table means that parent operators of the HJ that still need to consume the join results in a

non-compressed form are in jeopardy. In this direction, the ResolveFunction should not

only compress the hash table but also add other operators (i.e., using the Actions component

of SMOKE) to perform the decompression before the parents consume join results.

12.2.3 Information Passing

Complex query plans may involve operators out of which we can extract information that

can be used for the optimization of other operations within the plan. This is the main

idea behind information passing techniques, such as LOOKAHEAD [ZPSP17; PDZ+18]

and SIDEWAYS [IT08] information passing. While such techniques are powerful for the

optimization of query plans they are only supported by specific databases, as we discussed

in Chapter 1. In this direction, next, we show how to use the instrumentation capabilities of

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 347

SMOKE to implement such techniques within our framework and without having to deal with

the internals of the underlying database. To avoid redundancy on instrumentation practices

in this space, we limit our discussion on lookahead information passing (LIP).

SELECT d_year, c_nation,
sum(lo_revenue) - sum(lo_supplycost) as profit

FROM lineorder
LEFT JOIN dates ON lo_orderdate = d_datekey
LEFT JOIN customer ON lo_custkey = c_custkey
LEFT JOIN supplier ON lo_suppkey = s_suppkey
LEFT JOIN part ON lo_partkey = p_partkey
WHERE c_region = 'AMERICA' AND

s_region = 'AMERICA' AND
(p_mfgr = 'MFGR#1' OR p_mfgr = 'MFGR#2')

GROUP BY d_year, c_nation;

(a) SQL specification

(b) Logical plan. (c) Logical Plan with LIP optimization.

Figure 12.8: SSB query Q4.1: (a) SQL specification, (b) logical plan without LIP optimization, (c)

logical plan with LIP optimization. Example borrowed from [PDZ+18].

Consider the Query 4.1 from the star schema benchmark (SSB) [OOCR09], as illustrated

in Figure 12.8a. The query joins the table linorder with the tables supplier, customer,

and dates after it has applied selections on the tables supplier and customer. (Also,

the query is followed by a grouping on d_year,c_nation and an aggregation to compute

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 348

the profit per group. For our discussion on LIP the group-by aggregation is irrelevant; we

use it here to highlight that optimizations can focus on subparts of a plan.)

The logical plan for the query Q4.1 is a left-deep plan, as illustrated in Figure 12.8b. A

physical plan for this query first builds hash tables on the right sides (i.e., on σ(supplier),

σ(customer), and dates) and probes these hash tables with records from the linorder

table to evaluate the joins. (Note that Figure 12.8 shows only the logical plan for ease of

presentation and compliance with the presentation of the LIP technique [PDZ+18]. We have

omitted the corresponding and more complicated physical plan.)

Now, a core observation on this plan is that records from the lineorder that will be

pruned out by, say, the join with the σ(customer) will pass earlier operations in the plan.

As a result, a lot of space and time will be consumed early in the plan for records that

have no effect on the overall result due to late pruning. For instance, for the lineorder

records that will be pruned by the join with σ(customer) we will have to pay the costs of

performing their join (e.g., probing the underlying hash table) with σ(supplier).

To address this problem, Zhu et al. [ZPSP17] introduced LIP techniques that encapsulate

the core principle of “drop early, drop fast” (i.e., drop records early as opposed to waiting

to be pruned late by plan operators). For our example, the LIP technique is shown in Fig-

ure 12.8c. The main idea is to construct LIP filters (i.e., bloom filters) during the selections

and construction of hash tables from the right sides. Using these LIP fliters we can check

which lineorder records will be pruned out by later joins. As such, we can push these

filters down to the lineorder to avoid probing hash tables with lineorder records that

will not be joined. This is illustrated with the prune operator in Figure 12.8c that takes as

input the LIP filters from the right sides (illustrated with red arrows in Figure 12.8c).

Now, let us consider how such techniques can be implemented in an instrumentation-

based way. First, we need to construct the LIP filters (i.e., bloom filters) during the selection

from the right sides. We illustrate how this can be done during the selection on customer

in Figure 12.9. The main idea is to use the instrumentation points of the selection that we

introduced in Section 6.3 and implement their corresponding instrumentation functions

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 349

Figure 12.9: Sketch for the construction of an LIP filter (i.e., bloom filter) during the selection

σc_region=AMERICA using instrumentation points of the selection operator.

to construct the corresponding LIP filter. We illustrate a sketch of this implementation

in Figure 12.9. Using the on_before_parent instrumentation function we can access the

records that satisfy the selection and append the information to the LIP filter. Using the

on_not_satisfied we can access records that did not satisfy the selection and append

this information to the LIP filter accordingly. Similarly, we can also construct LIP filters for

the selection on suppliers and parts.

Figure 12.10: Sketch for the implementation of the prune operator and its addition to the plan.

Now, we still have to introduce the prune operator in our plan. We can do so by

implementing the operator in our LIP optimizer and adding the operator within the plan

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 350

using the Actions component, that we introduced in Section 6.8. We illustrate the underlying

implementation in Figure 12.10.

To conclude our discussion on information passing, we showed how to express an

illustrative LIP technique without having to change the database internals using only the

mechanisms provided by our instrumentation framework. By taking an instrumentation per-

spective on this domain, we believe there is ample space for future work such as information

passing and inter-communication across different plans within the same or across different

instrumentation-enabled database engines. As such, our instrumentation framework is a first

step towards a potentially rich space of future optimizations.

12.3 Interactive Applications

In Chapter 7, we described how core visualization interactions can be succinctly expressed

in provenance and instrumentation terms. This means that a visualization engine that is

engineered to support provenance querying can readily add support for such interactions.

Developers can then declaratively specify interactive visualizations and rely for their opti-

mization on the underlying instrumentation- and provenance-enabled visualization engine.

In this section, we look beyond existing interactive visualization features to examine new

functionality that may be possible with the capabilities of such an engine. Finally, note

that while most of our focus throughout this dissertation was on fine-grained provenance,

coarse-grained provenance can also be derived from instrumentation (i..e., by extracting

the descriptions from physical operators, as we discussed in Chapter 6). Hence, in our

discussion next we will consider both forms of provenance in presenting novel interactions.

12.3.1 Advanced Provenance Analysis

To begin, we first highlight a rich area of provenance analysis techniques, such as interactive

query specification [AHS12]; what-if analysis [AKLT15; DIMT13]; and result explana-

tion [WM13] among others, that already exists. These techniques are a natural fit with

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 351

Figure 12.11: Before and after of an advanced provenance analysis. (a) the user selects outliers in

the initial visualization (shown on the left), and (b) the results of the predicate explanation update the

visualization (shown on the right). In practice, the visualization will update in place.

a provenance-enabled visualization engine (Figure 12.11). First, their inputs consist of

provenance metadata and user-provided information that can be naturally elicited through a

visualization interface. Second, their outputs are often in the form of predicates, records, or

queries that can be naturally rendered in a visualization. Furthermore, they can be integrated

as a function over the provenance result in a similar way to linked brushing and crossfiltering

in Chapters 7 and 8. We illustrate a few examples of such integration below.

Data Explanation. Outlier explanation techniques [WM13; ROS15; WMS12] take as input

anomalies in the visualized data, the query used to generate the visualization, and return

simple predicates that are most “responsible” for those errors. Figure 12.11 shows how this

is integrated into an interactive visualization. The user selects anomalies in the scatter plot

on the left (A). Then, the data explanation analysis procedure uses V1 and the fine-grained

provenance of the selected points to generate a predicate explanation. Rather than rendering

the explanation in textual form, we can also deeply integrated the explanation into the

visualization itself. The example visualization in Figure 12.11 recomputes the query V1

over a subset of the input identified by the explanation and renders it as an overlay (B).

Why-not Analysis. Non-existence of anticipated query results play a detrimental role in the

overall data exploration and analysis. For instance, in Section 12.1, we showed the impact of

an airport that was not contributing to the number of flights per state because the intersection

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 352

with low-resolution polygons that we used to represent states geographically was pruning

it out. Furthermore, if the state of California was missing in the map plot of Figure 12.2,

then the user may be confused. Similarly, if the user complains that the COUNT of delayed

flights should be higher for a specific carrier, perhaps by resizing its corresponding bar to

be higher, then the user is questioning the absence of delayed flights in the visualization.

Although the algorithms for generating these explanations may differ [AHS12; MGMS10],

the way they can be integrated into, and presented within, the visualization are similar to the

preceding example on data explanation. For instance, in Figure 12.2 in Section 12.1 we can

click on a state on the map to check which airports within a state have not contributed to

the result, use the negative provenance to identify the airports that are not contributing to

the result, and finally present airport details with tooltips all while zooming in to focus the

visualization on the location of identified airports, as shown in Figure 12.2(bottom).

12.3.2 Multi-application Linking

Visualizations contain multiple views in order to present patterns between important com-

binations of attributes as we showed with linked brushing and crossfiltering interaction in

Chapters 7 and 8. Such interactions are powerful because they assist users in identifying

relationships between patterns, such as correlation statistics or data dependencies, visually.

In terms of functionality, they combine record-level backward tracing from selections

in the visualization with forward tracing to (and refreshing of) visualizations dependent

on shared input data. By expressing these forms interactions in terms of provenance it

becomes clear that the backward and forward tracing as well as refresh operations need not

be coupled, nor even be implemented within the same visualization application. As long as

different applications process the same dataset, and the underlying database engine supports

instrumentation and provenance functionality, then linking and crossfiltering across multiple

applications is possible. This is particularly important for enterprise and academic settings

with different applications getting developed over the same datasets.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 353

(a) Different applications can be implemented on top of the same database.

(b) Interacting in one application can result in updates on other applications.

Figure 12.12: Provenance can enable linking and crossfiltering across different applications.

Figure 12.12 illustrates linking between the visualization application that we built

in Chapter 7 over delayed flights with an external search application that allows users to

search online for flights. (For our example, assume for now that the database contains both

already performed and available flights.) The user may use a form-based search interface,

as shown in Figure 12.12 (left), to find recent flights through Houston. This result set is

fundamentally the result of a query workflow over the data store but presented as a text-

and image-based web application. By tracing these search results back to the input data

(the red rectangle over states represents the traced back subset of the relation), they can

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 354

also be traced forward to update the visualization application (depicted by the red arrows).

Furthermore, changing the search parameters may also update both the search results and

the visualization. The reverse is also possible: selecting data in the visualization can also

update the search results.

While our example focuses on an external search application, similarly any other ap-

plication can be connected to our visualization and search applications. For instance, user

profile tools may show to users their past flights and bookings can be linked to update the

visualization to show delay statistics of the user’s past flights, as well as to update the search

results with flights the user has taken. Generalizing, any application that tracks backward

provenance can issue interactions that update the presentation in any other application that

supports forward provenance, as long as the two coordinate on the same base relations.

Finally, note that multi-application linking can also be supported when two applica-

tions are built on top of different databases as long as there are provenance connections

between the databases. For instance, consider again our example in Figure 12.12. As we

noted above, the database contains both already perform flights and flights available for

booking. In the common setup, however, flights available for booking will be hosted in

a different OLTP database. Then, when flights are performed and their delays are known

they will be transferred to an OLAP database, so that we can build analytical tools (e.g., our

visualization applications) and better understand underlying patterns. (For an overview of

how applications are built within enterprises and how data are transferred from one type

of database to another refer to [CDN11]). To support multi-application linking we need

to track provenance during the transfer from the OLTP database to the OLAP database.

Then, we can backward trace from the search application to the OLTP database, then back

to the OLAP database, and finally forward to the visualization application. While what

we described above is often regarded as a pipe dream, we believe that given the ever-

increasing importance of provenance and its adoption across systems [Wid05; BCTV04;

GA09; NKG+17; GKM06; Cui01; GKIT07; LDY13; IST+15; WMS13; IPW11; IW10;

Ike12; WS97; CLMR16] such functionalities can now become a reality.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 355

Vis

a b c d

b Prov

(a) Hovering over bar b triggers an interaction event to trace

b’s provenance (Prov) and update the line chart (Vis).

a b c d

Visc Prov

(b) Hovering over bar c performs the same logic but for the

event associated with c.

Vis
c

Provb

(c) Explicitly tracking the provenance as a relation of events

can easily render a history of past events.

Figure 12.13: Provenance of a crossfilter interaction can be modeled as the history of the visualiza-

tion’s interaction events.

12.3.3 Provenance of Interactions

So far, we have described how provenance can be used to express the results of interactions.

For example, in our crossfiltering application in Figure 7.13 in Chapter 7 we showed that

the bottom bar chart is updated by re-running V1 over the backward provenance of the

highlighted bars in the top bar chart. In many cases, interactions simply change the inputs to

the application logic (e.g., V1, V2) rather than the logic itself. In these cases, interactions

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 356

are a form of input data, whose provenance and versions can be tracked, By doing so we

can change the logic of the application by visualizing the results of past interactions.

Figure 12.13 illustrates this for a simple crossfiltering visualization, where hovering over

bars in the bar chart updates the line chart. We have simplified the workflow for clarity. Vis

describes all application logic to compute and render both views; it is analogous to the union

of V1 and V2 in Figure 7.13 in Chapter 7 for crossfiltering. When the user hovers over the b

bar, the crossfilter logic executes Vis(Prov(b)) to update the visualization, shown as the red

arrows in Figure 12.13a. The crossfilter logic is typically written within an event-handler that

executes for each interaction event.1 Thus, when the user hovers over bar c, the crossfilter

logic simply executes Vis(Prov(c)), shown in Figure 12.13b.

SELECT Vis(Prov(e)) FROM events e

WHERE e.source = 'barchart';

Figure 12.14: Query pseudocode to render history of interactions generated from the bar chart.

Now, note that the interaction events b and c are data, thus we might track the provenance

of the visualization interactions in e.g., a relation of events (Figure 12.13c shows a

relation containing b,c). This relation lets us decouple visualization update logic from

user interactions, and manage them explicitly. For instance, Figure 12.13c shows how a

history of past events can be presented and Figure 12.14 shows how it can be implemented

in a relational manner. Similarly, selecting a single record is akin to undo or time-travel.

Generalizing on this pattern, advanced functionality may also select a 2D-range of marks,

and query for historical interactions (backward provenance to the events relation) that

generated charts based on the selection (forward provenance to historical visualizations).

1In a relational context, where the visualization is modeled as a materialized view, as we discussed

in Chapter 8 this is similar to scheduling view updates in response to changes in input relations.

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 357

12.3.4 Application Design Search

Tracking [HSG+17] and recovering [MCACM17; HKN+16] coarse-grained provenance

in order to understand how workflows and applications throughout an organization result

in reads and writes of data files. This can be helpful if a developer wants to analyze a

given dataset, by suggesting previous workflows that have processed the same files. Similar

functionality can help provide inspiration for visualization and application developers. For

example, visualization developers that want to analyze flight delays for the North American

marketing team can use coarse-grained provenance to find visualizations that use the flight

relations. They can use these visualizations, such as Figure 7.1, to interactively specify

the subset of the flight relations they want to work with. Based on this subset of records,

fine-grained provenance can be used to identify the visualizations that primarily uses this

specific subset. This iterative form of refinement can help the developer find the most

relevant designs and application logic to borrow from, or perhaps find that their desired

visualization already exists.

12.3.5 Interaction-By-Example

View synthesis and query-by-example systems [PDCC15; MLVP14; DFG17] address the

problem where, given an input database and examples of desired query results, the goal

is to return queries that generate the example results (or a superset). This formulation can

be attractive because SQL queries are known to be hard to compose. This is due to the

expressiveness and overall compositionality of SQL, and approaches typically focus on a

semantically meaningful subset of the language for which identifying the queries by output

examples can be efficient. For instance, as we showed in Chapter 11, our focus with S4 was

to discover project join (PJ) queries because within the context of analytical databases with

large schemas the main problem is to discover salient connections between data elements

across many different relations. While the task is computational hard in the general case, we

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 358

showed experimentally that our techniques can suggest top-k PJ queries in interactive time

for common and semantically meaningful cases.

Now, our overall discussion over interactive visualizations and applications has shown

that we can express a wide range of visualization interactions in a blend of provenance and

relational operations. Connecting these results with query discovery illustrates the potential

to develop interaction-by-example as an interactive visualization discovery paradigm. For

instance, we can allow users to directly select and manipulate parts of a static visualization

(e.g., drag marks to new locations) to specify an example of a desired interaction, and

underlying interaction discovery systems can suggest possible interactions composed out

of provenance and relational operators. This is akin to [SVK+07] but specific to fine-

grained provenance rather than coarse-grained provenance. Such a synthesis engine can

then generate the appropriate provenance statements blended with SQL to support the

interaction. The simplicity of provenance queries suggests that this may be both tractable

and semantically meaningful, and we expect future work in this direction with the goal set

to address the challenging problem of composing interactive visualization applications.

12.3.6 Deconstruction and Restyling

We conclude our discussion over possible novel interactions, by presenting ways that prove-

nance and instrumentation can help in deconstructing and restyling interactive visualizations.

Harper et al. [HA14] present a technique to extract data from marks in D3 visualizations and

re-style the data using new visual encodings. For instance, a bar chart might be restyled into

a scatterplot that is colored differently. Their technique relied on D3 because it automatically

annotates each mark with the record used to generate the mark. However, D3 does not track

annotations across data processing workflows, thus restyling is limited to design. In this

direction, we showed how to express interactive visualizations as relational workflows and

track fine-grained provenance over them, which encodes the overall annotations of marks

with input records. Furthermore, instrumentation can let users restyle a visualization based

on changing the data processing parts. For example, we can plot MAX rather that COUNT

CHAPTER 12. OTHER CONNECTIONS AND THE ROAD AHEAD 359

statistics in our crossfiltering application, or modifying the semantics of linked interactions.

This is possible through adding, removing, and modifying operators that SMOKE provides

through its Actions component, as we discussed in Section 6.8.

12.4 Conclusions

In this chapter, we showed connections between instrumentation with the domains of

negative provenance, query optimization, and interactive applications. More specifically,

across domains we showed, how well-known and novel techniques can be introduced in a

principle way within a database without requiring developers to change the database internal

but, instead, using the instrumentation mechanisms of SMOKE. Furthermore, across domains

and individual techniques, we highlighted best instrumentation practices as well as suggested

future directions for expressing both novel and well-techniques. As such, our discussion

suggests a first step towards the instrumentation-based optimization and introduction of both

well-known and novel techniques for a large number of important application domains that

rely their logic on how queries are executed by a database.

CHAPTER 13. RELATED WORK 360

Chapter 13

Related work

In this chapter, we cover related work on instrumentation, provenance, physical database

design, online query optimization, and data visualization. More specifically, we start by

presenting related work in the areas of instrumentation in software development (Sec-

tion 13.1) and in databases (Section 13.2) and discuss the main differences from our work.

Then, we present related work in provenance (Section 13.3) and discuss the importance of

instrumentation-enabled database engines in this domain. Furthermore, we cover related

work on the domains of interactive data visualization (Section 13.4), physical database

design (Section 13.5), online query optimization (Section 13.6), and interactive data profil-

ing (Section 13.7) to present their current state and discuss how taking an instrumentation

perspective in these domains can assist expressibility and optimizations.

13.1 Instrumentation in Software Development

Instrumentation is a powerful concept that allows third-party code to alter, analyze, and

extend the functionality provided by a program, application, or system. Technically,

instrumentation can happen on various underlying representations of a program lifecy-

cle including source code instrumentation, instrumentation of representations used dur-

ing compiling and linking, and binary instrumentation. As such, several instrumenta-

CHAPTER 13. RELATED WORK 361

tion frameworks have been proposed, such as Intel Pin [LCM+05], ATOM [SE94], Val-

grind [NS03]; DynamicRio [Bru04], Etch [RVL+97], LLVM instrumentors [TZW+17;

LA04], with the goals set to facilitate the development, management, and optimization

of the vast amount of programs that require instrumentation capabilities. Such pro-

grams include profilers [GKM82], cache simulators [MC17; JCLJ08], debuggers [Sta86;

LLV], memory checkers [NS03], address sanitizers [SBPV12], trace analyzers [Int], and

dynamic re-compilers [BGA03], to name a few.

Using such instrumentation frameworks for query instrumentation, while possible,

requires developers to instrument at the level of source code and binaries. As we argued

in Chapter 2, source code and binary representations of queries are low level, making

operations (e.g., changing a nested loop join to a hash join) harder to implement and

optimize compared to instrumenting at the level of physical plans. In other terms, similarly

to how compilers like LLVM and GDB provide different instrumentation mechanisms for

each of their underlying IRs to deal with the different semantics exposed by each IR, so

needs to be the case for databases shall we treat them as DSL compilers of SQL queries to

physical plans. Every IR (e.g., SQL queries in textual form, ASTs, logical plans, physical

plans, and even source code for query-compiled engines) needs to be coupled with IR-

specific instrumentation mechanisms to best facilitate the development of techniques that

need access to the semantics of each IR.

13.2 Instrumentation in Databases

Instrumentation is not a novel concept in databases either. For instance, PostgreSQL [Pos13]

provides hooks where queries, ASTs, logical plans, and physical plans are redirected to third-

party applications for instrumentation. Similar is the case for other data processing systems

such as MonetDB [Mal18; Mon15b], MySQL [Mys18a; Mys18b], or Spark [Spa18]. The

main difference from other instrumentation-enabled database systems is that SMOKE focuses

on exposing mechanisms to applications to operate on IRs rather than simply sending IRs to

CHAPTER 13. RELATED WORK 362

applications to operate on them. Furthermore, as we showed in Chapter 6, the mechanisms

that we exposed required changing underlying database components that instrumentation

applications cannot perform by simply manipulating a given IR. Additionally, note that

in this dissertation we focused on mechanisms over physical plans because our focus is

on applications that rely their logic on how queries are executed. This is not to say that

instrumentation mechanisms at other IR levels is not important. To the contrary, we believe

there is ample space for research towards instrumentation mechanisms on different IRs (e..g.,

logical plans or all the way down to binaries) to account for other applications domains (e.g.,

mechanisms for instrumenting logical plans can be used to help applications that perform

logical query rewriting while instrumentation on binaries can be used for security purposes).

13.3 Provenance

Provenance is a fundamental type of information that describes the connection between

input and output data items of a computation. Large bodies of work have studied theoretical

foundations of provenance [GKT07; Ike12; BKT01; GT17; CWW00; CCT09], data models

for provenance representations [CWW00; MCF+11; ABS+06; Wid05], as well as systems

and techniques for provenance capture and querying [Wid05; BCTV04; GA09; NKG+17;

GKM06; Cui01; GKIT07; LDY13; IST+15; WMS13; IPW11; IW10; Ike12; WS97].

The importance of provenance is most exaggerated by its real-world applications. Vir-

tually, any application that depends its logic on the connections between input and output

data elements can be expressed in provenance terms. As such, provenance is (or can

be) integral across applications including debugging [WMS13; KIT10; IST+15; LDY13;

CTV05; ZSF17; KBY17], data integration analysis [CWW00], diagnostics [TBEO+17],

auditing [EU 18], security [CWH+17; KIT10], explaining query results [WM13; WMS12;

ROS15; DFG17], data cleaning [CIOP14; HKW+15], iterative analytics [CLMR16], and

interactive data profiling [PBF+15], among others as we showed. This ubiquity highlights

the importance of instrumentation-(and by extension provenance)-enabled systems.

CHAPTER 13. RELATED WORK 363

At their core, provenance systems need to capture the relationships between input and

output data items of a workflow with the goal to streamline future queries over provenance.

State-of-the-art approaches involve materializing the provenance graph (i.e., the connections

between input and output) eagerly during workflow execution or lazily during provenance

querying. In Chapters 3 to 5, we formally defined the problems of provenance capture and

analysis, classified state-of-the-art techniques, and discussed their shortcomings. Here, we

note that current provenance systems either incur high overhead to capture provenance, or

provenance analysis costs, or both. These overheads are enough that application developers

resort to hand-tuned implementations to hard-code provenance logic in their applications.

The main criticism behind introducing provenance capabilities within physical operators

and in general systems (i.e., to follow the physical provenance capture approach) is that it

requires significant changes in the underlying codebase [HDBL17]. In this direction, we

showed that having an instrumentation-enabled database engine allowed us to introduce

provenance operators in the database without changing its internals. The end result is

a provenance-enabled database engine that is performant enough to provide orders of

magnitude faster provenance capture and analysis over lazy and eager logical provenance

capture alternatives. Furthermore, we showed experimental evidence that the performance

of our provenance-enabled engine meets or even improves on the performance of hand-

tuned implementations of data-intensive tasks across various domains that could have been

expressed declaratively in provenance terms and optimized as such.

13.4 Interactive Data Visualization

Data visualization studies are primarily concerned with the transformation of raw data

to visual representations (e.g., barcharts, scatterplots, heatmaps, and dendrograms) and

how users can interact with the visual representations to gain fast insights. Traditional

visualization toolkits (e.g., d3 [BOH11] or Qt [qt]) provide general purpose program-

ming APIs that application developers can use to implement transformations of raw data

CHAPTER 13. RELATED WORK 364

to visual representations. These toolkits are typically coupled with native or separate

event handling libraries (e.g., jQuery [jQu] or React [rea]) so that users can specify inter-

action logic to form interactive visualizations. Unfortunately, these approaches require

imperative implementation of the visualization and interaction logic which leads to applica-

tions that are hard to implement, maintain, optimize, extend, and reason about [WHW16;

WPM+17]. Data visualization systems (e.g., Tableau [tab] or Excel PowerBI [Pow18]) aim

to address the problem of ease of implementation by allowing users to load or connect to

their datasets in order to visualize and interact with them using predefined visualizations

and interactions. Unfortunately, they offer domain-specific interaction and visualization

logic all while depend on underlying query processing engines that are not optimized for

data-intensive interactive applications. More recent data visualization systems, such as

Vega-lite [SMWH17] or tidyverse [Tid], allow for declarative specifications of visualizations

and interactions. Although these systems offer considerable degrees of freedom for the

specification of interactive visualizations they are limited by the expressive and optimization

power of their underlying data processing capabilities.

In this direction, in Chapter 7, we introduced our declarative approach towards the

specification of interactive visualizations. More specifically, we started by specifying

interactive visualizations in SQL-like terms. While expressive enough to support interaction

classes in a well-known taxonomy of interactions [YKSJ07], we discussed why specifying

several classes of important, data-intensive interactions (i.e., interactive selections, multi-

view linking, and logic over selections) in pure SQL-terms leads to interactions that are hard

to express and optimize. To address this problem, we expressed these classes in a blend

of SQL, provenance, and instrumentation terms and showed their performance benefits

in Chapters 5, 8 and 10. Hence, an instrumentation-enabled engine (and by extension a

provenance-enabled engine) is expressive enough to support the specification of interactions

all while allowing their optimization through instrumentation capabilities. We believe our

results illustrate interesting connections that the visualization systems discussed above [tab;

SMWH17; Tid; BOH11] can exploit to further their expressive and optimization power.

CHAPTER 13. RELATED WORK 365

13.5 Physical Database Design

The physical database design literature has long studied the problem of creating redundant

data structures and data layouts either offline [CN07; ACN00; DRS+05; Ora03; MGY15],

online [BC07; CN07], or adaptively [KM05; IKM07a; SJLM16; LSJM17; AIA14; PIM15;

VAPGZ17] with the goal to minimize the expected execution cost of a possible future query

workload subject to constraints, such as space and time, on constructing redundant designs.

Offline Physical Database Design

Offline physical database design is concerned with the construction of data structures

(e.g., B-trees, hash tables, dictionaries, data cubes, and inverted lists) and layouts (e.g.,

through partitioning, chunking, and compression) given a future query workload (fixed or

paramaterized). This is important for database applications with fixed or parameterized

future query logic because it enables the construction of designs that can support any future

query online. To address this problem, several offline physical database designers [CN07;

ACN00; DRS+05; Ora03; MGY15] have been proposed in the past that output a set of

data structures and layouts that, if created, will optimize the performance of the future

query workload. The decision of the design is subject to several constraints with the most

important being the budget on the space occupied by the design. In the general case, this

makes the decision an NP-hard problem with several techniques trying to approximate the

decision either by formulating and addressing the problem as a knapsack variant [CN07]) or,

more recently, through robust optimization and reinforcement learning [MGY15; SSD18].

While the central optimization problem is not tightly connected with what we have

been discussing throughout this dissertation, we note that our provenance-based and

instrumentation-based techniques result in physical database designs that offline physical

database designers can use in their decision (e.g., data cubes, inverted indexes, join indexes,

and denormalized representations). This highlights the extensibility of instrumentation-

enabled engines towards the physical database design space.

CHAPTER 13. RELATED WORK 366

Besides the construction of physical database designs, however, we also noted that offline

physical database design depends on assumptions (e.g., infinite offline time, available DBAs

to apply the suggestions, and that applications have future logic known a-priori [IPC15])

that may not hold in practice—especially in the space of interactive applications. This

observation motivates the notion of online physical database design that we discuss next.

Online Physical Database Design

Online physical design approaches [BC07; CN07] do not assume a fixed workload. Instead,

they continuously monitor changes in the workload to update the physical design.

As we have already discussed, such techniques need monitoring capabilities (e.g., to

extract runtime statistics such as CPU consumption or memory pressure), the ability to pig-

gyback computations in physical plans for “execution feedback” (e.g., to gain insights over

the underlying data distributions such as cardinalities [SLMK01] and histograms [AC99;

BCG01]), and tradeoff the overhead of monitoring and gaining execution feedback with the

query execution. Based on these mechanisms, several components are constructed (e.g., pro-

filers [Pro], feedback caches [SLMK01; BCK+11], and query progress estimators [CNR04;

KDCN11]) that overall handle the online physical database design logic.

The connection between instrumentation-enabled engines and online physical database

design is straightforward. Instrumentation engines provide the underlying mechanisms for

the synthesis of the components that drive the online physical database design logic. More

specifically, the interactive data profiling and provenance pushdown techniques that we

discussed in Chapters 5 and 9 enable piggybacking of statistics. Furthermore, the compo-

nents of our instrumentation framework allow for the implementation of more complicated

monitoring, piggybacking, scheduling, and runtime management techniques. More pre-

cisely, Points and Instrumentors provide a principle way to implement more complicated

monitoring and piggybacking techniques, the Scheduler allows deferring partially or fully

the implementation logic to avoid the query execution overhead, and the Announcer can

notify physical database designers with runtime events (e.g., for query progress estimation).

CHAPTER 13. RELATED WORK 367

Despite these connections, online physical database design approaches generate the

same physical designs as offline ones. Such designs, however, may take considerable time

to construct, even if optimized by instrumentation engines, that upstream applications—

especially interactive applications ones—may not tolerate. This observation motivates the

space of adaptive physical database design that we discuss next.

Adaptive Physical Database Design

Finally, adaptive approaches treat the current (or a batch of previous) queries as an indication

of future queries similarly to online approaches. In contrast to offline and online approaches,

adaptive approaches typically reuse prior results and data structures [GCZ+17; DBCK17] or

incrementally restructure the physical design [KM05; IKM07a; SJLM16; LSJM17; AIA14;

PIM15] to avoid the excessive costs of creating in full data structures. Each adaptive

design is fundamentally structured to support decisions on a limited set of current queries

(e.g., database cracking techniques [SDL18; SJD13; PPI+14; HIKY12; IKM07a; IKM07b;

IMKG11; KM05] make design decisions based on selections) and target a limited set of

future queries (e.g., selections on subsets of previous range selections).

While adaptive physical database techniques are important—especially for the domain

of interactive applications—, there is little research besides cracking variants. In this

direction, we showed that provenance capture is in effect a form of adaptive physical

database design. More specifically, we showed how to generate physical database designs

in the form of provenance indexes (Chapter 3), annotations (Chapters 3 and 4), or other

physical database designs (e.g., rollup cubes) induced by our workload-aware optimizations

(Chapter 5). Moreover, we showed how to perform adaptive physical database design over

group-by aggregations to account for crossfilter interactions and increment cube exploration

(Chapter 8), over group-by followed by distinct operators to account for evaluation and

exploration of functional dependency and uniqueness profiling tasks (Chapter 9), over

selections by introducing cracking frameworks to account for the ever increasing cracking

variants (Section 10.1), and over joins to perform adaptive denormalization (Section 10.2).

CHAPTER 13. RELATED WORK 368

In this direction, we believe that instrumentation-enabled engines can be instrumental

in the space of adaptive physical database design by allowing us to piggyback physical

database design choices within query execution in arbitrarily complex ways.

13.6 Online Query Optimization

Online query optimization is a domain where techniques recognize the fact that a database

optimizer may decide on suboptimal plans due to the absence of detailed statistics or un-

awareness of runtime events. To address this problem, online query optimization techniques

collect knowledge about a query during its execution (e.g., statistics of CPU and memory

consumption or better selectivity and cardinality estimates) and observe runtime events

(e.g., an increase in a memory budget). Based on this knowledge, they then make deci-

sions on how to change a physical plan. As query complexity increases, such techniques

require to collect and induce more sophisticated knowledge to reoptimize a query online.

In Chapters 1 and 12, we discussed how recent complicated query optimization techniques

including Probabilistic Predicates [LCKC18; LKC18], Smooth Scan [BGIA+18], Side-

ways [IT08] and Lookahead [PDZ+18] Information Passing, and Adaptive Joins [SQL18;

Ora17] can use the underlying mechanisms of our physical plan instrumentation mechanisms

to implement their logic. As such, and given recent advances in online query optimiza-

tion (primarily using reinforcement and deep learning [KYG+18; MP18]), we believe that

instrumentation-enabled engines can provide the principle underlying mechanisms to ease

the implementation and overall optimization of online query optimization techniques.

13.7 Interactive Data Profiling

We conclude this chapter by describing related work on (interactive) data profiling. As we

noted in Chapter 9, data profiling is a domain that studies the statistics and quality of datasets

(e.g., constraint checking; data type extraction; or key identification) while interactive data

CHAPTER 13. RELATED WORK 369

profiling allows users to interactively profile and examine the reasons for these results. For

a classification of (interactive) profiling tasks and their connections with other domains

including query optimization refer to [Nau14]. Recent profiling systems include extensible

data profiling platforms (e.g., METANOME [PBF+15]), data wrangling and cleaning tools

(e.g., Wrangler [KPHH11], Profiler [KPP+12], and NADEEF [EEI+13]), and user-guided

functional dependency (FD) miners (e.g., UGUIDE [TBEO+17]). In Chapter 9, we showed

how to evaluate data profiling tasks (i.e., functional dependency, uniqueness, and mismatch

checks) and explore their results in instrumentation and provenance terms. Experimentally,

we showed that SMOKE is capable of optimizing the evaluation and exploration of these tasks

in comparison to their hand-tuned implementations within alternative profiling systems.

In this direction, we believe our results show evidence that instrumentation- and

provenance-enabled engines provide a principle way towards the optimization of the impor-

tant domain of (interactive) data profiling. Furthermore, our techniques show best practices

for the interactive data profiling domain that profiling platforms, such as the ones described

above, can exploit to further their expressive and optimization power.

CHAPTER 14. CONCLUSIONS 370

Chapter 14

Conclusions

In Chapter 1, we posed two main classes of research questions that we aimed to address

throughout this dissertation. We can summarize these questions as follows: (1) what are the

mechanisms to facilitate the development of applications that operate over how queries are

executed by databases and (2) provided a database engine augmented with such mechanisms,

what is its overall expressive and optimization power.

To address the former class of questions, we introduced a database engine, namely,

SMOKE, that exposes mechanisms in the form of a Physical Plan Instrumentation Frame-

work. Our Physical Plan Instrumentation Framework comprises several components in-

cluding Points that are used in the development of Instrumentors for pushing external logic

within the logic of physical operators; a Scheduler that allows applications to schedule

their instrumentation logic relative to the query execution; a Storage Manager that allows

applications to access the state of the database, implement their own logic, and access the

internal state of operators in a plan; an Announcer that allows applications to specify run

time conditions and get notified when such events are met; and an Actions component that

allows applications to modify, add, remove, and replace physical operators. In support of

such mechanisms, we also outlined and addressed several technical challenges behind each

component. Furthermore, we outlined the changes that SMOKE undertook in support of

such mechanisms involving primarily its Compiler and the changes in its physical algebra.

CHAPTER 14. CONCLUSIONS 371

Overall, we view our mechanisms and the underlying changes that we made to the database

engine as the first step towards instrumentation-enabled database engines that can best

facilitate the development of applications, across numerous domains, that rely their logic on

how queries are executed by databases.

To address the second class of questions, we introduced and experimented with several

instrumentation-based techniques on top of SMOKE across domains (i.e., positive and nega-

tive provenance management, interactive visualizations, interactive data profiling, physical

database design, query discovery, online query optimization, and interactive applications).

Expressiveness-wise, we showed how to express well-known techniques, introduce novel

semantics on well-known techniques, and introduced novel techniques across domains.

Performance-wise, we introduced techniques that are either on par with or several orders

of magnitude faster than state-of-the-art hand-written alternatives. Finally, throughout

our discussion, we introduced design principles and best practices for instrumentation in

SMOKE. We believe our techniques and experimental evidence highlight the expressive and

optimization power that instrumentation-enabled engines can provide across domains.

CHAPTER 15. FUTURE WORK 372

Chapter 15

Future Work

Throughout this dissertation, we took the first step towards the introduction of physical plan

instrumentation mechanisms and associated instrumentation-enabled techniques from within

our prototype database. We believe there is ample space for future work towards research

and practice. Next, we summarize interesting future directions.

Instrumentation

We start our discussion with future directions on instrumentation (i.e., extending support

on alternative database designs, declarative specification of the instrumentation logic, and

interoperation of instrumentation applications with user programs).

Alternative Database Designs

SMOKE is an in-memory query compiled engine with limited or no support for columnar

execution, vectorization, parallelization, distributed execution, interpretation, and on-disk

storage. Introducing such, loosely speaking, features in a database that natively supports

instrumentation needs to be followed by a revisit of the instrumentation-based mechanisms

that we proposed in this dissertation. This is because such features result in different

implementations of physical operators and internal components. Different implementations

CHAPTER 15. FUTURE WORK 373

of physical operators and internal components, however, need to be followed by a revisit

of our instrumentation mechanisms and their implementation (e.g., new physical operators

require the introduction of instrumentation points and their semantics on processing data

flows while the introduction of interpretation needs to be followed by changes on the design

of instrumentors and internal database components, as we discussed in Section 6.10). Given

the vast space of physical algebras, storage layouts, and query execution mechanisms that

have been introduced over the years, extending support of our instrumentation mechanisms

to alternative designs remains an interesting future work.

Declarative Specification of Instrumentation Logic

Another important direction for instrumentation-enabled engines, also connected with our

discussion above, regards the declarative specification of instrumentation logic.

First, having to deal with the semantics of every possible underlying physical algebra may

soon become bewildering as a research task. In this direction, note that the instrumentation

points that we introduced in Section 6.3 have a logical underpinning. For instance, no matter

whether a selection is performed in a columnar or row-major fashion there is always going

to be a point in the logic of the selection where its parent consumes its results. Similarly,

there are always going to be points in the selection that we can introduce negative data flows

and there are always going to be points where we evaluate predicates. Hence, the points

σ
before
P , σafterP , σN, and the techniques of the Actions component for modifying CNFs

have logical underpinnings that are not strongly tied to the physical implementation. Building

on these logical underpinnings, we believe there is a chance for a logical instrumentation

algebra that can be compiled down to Instrumentors. In this way, we can allow different

databases with different physical algebras to communicate their instrumentation logic,

similarly to how a relational query can be equally expressed in different databases.

Second, recall from our discussion in Section 6.4.3 that SMOKE allows the declarative

specification of instrumentation logic over points based on SQL. In this direction, we believe

there is ample space for future work that allows other forms of declarative specification.

CHAPTER 15. FUTURE WORK 374

More specifically, following recent and older proposals for the declarative specification of

physical database designs [IZH+18; TSI96], we believe that the declarative specification of

instrumentors to perform physical database design is an interesting future work, especially

given the connections of instrumentation with adaptive physical database design that we

showed in Part II. Similar we believe is the case for online query optimization techniques and

their declarative specification through instrumentation applications. In fact, the on statement

of the Announcer, that is strongly connected to how online query optimization techniques

can be triggered for re-optimization purposes, already has a declarative form which can be

read as follows: when a condition is met apply a resolution function. Specifying the actual

runtime conditions and their resolution functions in a declarative form is an open challenge

given the multiple different forms that runtime statistics and resolution functions can take

across hardware specifications.

Interoperation of Instrumentation Applications with User Programs

Our focus in this dissertation has primarily been on the specification of instrumentation

applications right before query execution. User programs, however, may want to dynamically

control instrumentation applications during and after the query execution. In such scenarios,

an important direction for future work is on the interoperation of instrumentors with the

runtime of user programs. Similarly to how databases provide SQL and database connectivity

mechanisms (e.g., JDBC or ODBC) as interfaces to external programs for querying purposes,

instrumentation applications should also provide interfaces to user programs. For instance,

a program that issues a natural join query A ./ B to a database may want the results of

the query as well as the time spent on joining each tuple from B. Accessing the timing

information requires user programs to have programmatic access to instrumentors which is

a non-trivial task. For instance, user programs may want to access this timing information

online (e.g., get the timing information as long as it is available without waiting for the

whole query to complete its execution). Furthermore, user programs may want to modify

instrumentors at runtime. For instance, a user program may decide at runtime (i.e., after it has

CHAPTER 15. FUTURE WORK 375

observed some timing results) that timing is required only for tuples with certain attributes

or timing information should be aggregated over batches of tuples. As such, exposing

optimized interfaces for the seamless interoperation of user programs and instrumentation

applications is important to ease the implementation of user programs and the exposure of

instrumentation-enabled engines.

Finally, throughout Part I we also proposed several guidelines on implementing in-

strumentation frameworks and provenance techniques on alternative databases designs,

instrumentation security, and user experiences around instrumentation engines. To avoid

redundancy, we omit further discussion here.

Applications

Throughout our discussion on applications, we discussed several important task-specific

future directions. For conciseness, here we summarize the two main directions based on

which we proposed task-specific directions: expressiveness and optimization.

Expressiveness

The techniques we have presented throughout cover only a limited class of functionalities

across domains. Exploring the limits of instrumentation-enabled engines (i.e., recognizing

what is expressible in instrumentation terms and what is not) across domains is an interesting

future work. For instance, in the domain of interactive data profiling, we considered only FD,

uniqueness, and mismatch checks. The class of interactive data profiling is much richer than

only these checks (see [Nau14] for a recent survey) and understanding the extent to which

instrumentation is the right way to go about addressing the exploration of data profiling is

important. Overall, we believe this dissertation takes the first step towards understanding

what tasks are candidates for instrumentation across application domains, yet understanding

in complete the extent per domain is both an important and hard problem.

CHAPTER 15. FUTURE WORK 376

Optimization

Regarding optimization, recall that our instrumentation- and provenance-based techniques

across domains are over a fixed physical algebra. Changing the way a database performs

query execution, as we discussed above, provides novel challenges (e.g., provenance capture

under parallel query execution) that we have not addressed in this dissertation. Furthermore,

for several tasks across domains, especially the ones covered in Chapters 7, 10 and 12, we

considered how they can be expressed in instrumentation-enabled database engines and

how we can introduce novel semantics through frameworks. Putting them into practice,

extending their semantics, and using the proposed frameworks for optimization purposes in

novel ways (e.g., devising algorithms for database cracking and adaptive denormalization

based on online statistics or devising novel algorithms for crossfiltering across applications

based on how users are currently interacting with the visual pane) remain open challenges

that we have not addressed in this dissertation.

BIBLIOGRAPHY 377

Bibliography

[ABH+13] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and Samuel

Madden. The design and implementation of modern column-oriented

database systems. Foundations and Trends® in Databases, 5(3):197–280,

2013.

[ABS+06] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha

Nabar, Tomoe Sugihara, and Jennifer Widom. Trio: A system for data,

uncertainty, and lineage. In VLDB, pages 1151–1154, 2006.

[ABW03] Arvind Arasu, Shivnath Babu, and Jennifer Widom. Cql: A language for

continuous queries over streams and relations. In DBPL, 2003.

[AC99] Ashraf Aboulnaga and Surajit Chaudhuri. Self-tuning histograms: Building

histograms without looking at data. SIGMOD Rec., 28(2):181–192, 1999.

[ACD02] Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das. Dbxplorer: A system

for keyword-based search over relational databases. In ICDE, 2002.

[ACN00] Sanjay Agrawal, Surajit Chaudhuri, and Vivek R. Narasayya. Automated

selection of materialized views and indexes in sql databases. In VLDB, 2000.

[ADM+15] Tim Althoff, Xin Luna Dong, Kevin Murphy, Safa Alai, Van Dang, and Wei

Zhang. Timemachine: Timeline generation for knowledge-base entities. In

KDD, 2015.

BIBLIOGRAPHY 378

[Adv] AdventureWorks. https://msftdbprodsamples.codeplex.com/releases.

[AHS12] Azza Abouzied, Joseph Hellerstein, and Avi Silberschatz. Dataplay: Interac-

tive tweaking and example-driven correction of graphical database queries.

In UIST, pages 207–218, 2012.

[AIA14] Ioannis Alagiannis, Stratos Idreos, and Anastasia Ailamaki. H2O: A hands-

free adaptive store. In SIGMOD, 2014.

[AKLT15] Sepehr Assadi, Sanjeev Khanna, Yang Li, and Val Tannen. Algorithms for

provisioning queries and analytics. arXiv preprint arXiv:1512.06143, 2015.

[AW16] Daniel Alabi and Eugene Wu. PFunk-H: Approximate query processing

using perceptual models. In HILDA, 2016.

[BC87] Richard A. Becker and William S. Cleveland. Brushing scatterplots. In

Technometrics, 1987.

[BC07] N. Bruno and S. Chaudhuri. An online approach to physical design tuning.

In ICDE, 2007.

[BCG01] Nicolas Bruno, Surajit Chaudhuri, and Luis Gravano. Stholes: A multidi-

mensional workload-aware histogram. In SIGMOD, pages 211–222, 2001.

[BCHS17] Leilani Battle, Remco Chang, Jeffrey Heer, and Michael Stonebraker. Po-

sition statement: The case for a visualization performance benchmark. In

DSIA, 2017.

[BCK+11] Nicolas Bruno, Surajit Chaudhuri, Arnd Christian König, Arnd Christian

König, Vivek Narasayya, Ravi Ramamurthy, Manoj Syamala, and Nico

Bruno. Autoadmin project at microsoft research: Lessons learned. Bulletin

of the IEEE Computer Society Technical Committee on Data Engineering,

December 2011.

BIBLIOGRAPHY 379

[BCS16] Leilani Battle, Remco Chang, and Michael Stonebraker. Dynamic prefetching

of data tiles for interactive visualization. In SIGMOD, 2016.

[BCTV04] Deepavali Bhagwat, Laura Chiticariu, Wang Chiew Tan, and Gaurav Vijay-

vargiya. An annotation management system for relational databases. In

VLDB, pages 900–911, 2004.

[BGA03] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastruc-

ture for adaptive dynamic optimization. In CGO, 2003.

[BGIA+18] Renata Borovica-Gajic, Stratos Idreos, Anastasia Ailamaki, Marcin

Zukowski, and Campbell Fraser. Smooth scan: Robust access path selection

without cardinality estimation. The VLDB Journal, 2018.

[BKT01] Peter Buneman, Sanjeev Khanna, and Wang Chiew Tan. Why and where: A

characterization of data provenance. In ICDT, 2001.

[BOH11] Michael Bostock, Vadim Ogievetsky, and Jeffrey Heer. D3: Data-driven

documents. In InfoVis, 2011.

[Bru04] Derek L. Bruening. Efficient, Transparent, and Comprehensive Runtime Code

Manipulation. PhD thesis, Massachusetts Institute of Technology, 2004.

[Bru09] Jake Brutlag. Speed matters for google web search (2009):

http://services.google.com/fh/files/blogs/google_delayexp.pdf, 2009.

[BZN05] Peter A Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100: Hyper-

Pipelining Query Execution. In CIDR, 2005.

[CCD+03] Sirish Chandrasekaran, Owen Cooper, Amol Deshpande, Michael J Franklin,

Joseph M Hellerstein, Wei Hong, Sailesh Krishnamurthy, Samuel R Mad-

den, Fred Reiss, and Mehul A Shah. TelegraphCQ: continuous dataflow

processing. In SIGMOD, 2003.

BIBLIOGRAPHY 380

[CCT09] James Cheney, Laura Chiticariu, and Wang-Chiew Tan. Provenance in

databases: Why, how, and where. In Foundations and Trends in Databases,

2009.

[CDN11] Surajit Chaudhuri, Umeshwar Dayal, and Vivek Narasayya. An overview of

business intelligence technology. CACM, 2011.

[CGS03] Surajit Chaudhuri, Prasanna Ganesan, and Sunita Sarawagi. Factorizing

complex predicates in queries to exploit indexes. In SIGMOD, 2003.

[CHZ+08] Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, and

Eugene Wu. Uncovering the relational web. In WebDB, 2008.

[CIOP14] Anup Chalamalla, Ihab F Ilyas, Mourad Ouzzani, and Paolo Papotti. Descrip-

tive and prescriptive data cleaning. In SIGMOD, 2014.

[CJ09] Adriane Chapman and H. V. Jagadish. Why not? In SIGMOD, pages

523–534, 2009.

[CLKG16] Samy Chambi, Daniel Lemire, Owen Kaser, and Robert Godin. Better bitmap

performance with roaring bitmaps. SPE, 2016.

[CLMR16] Zaheer Chothia, John Liagouris, Frank McSherry, and Timothy Roscoe.

Explaining outputs in modern data analytics. In VLDB, 2016.

[CN07] Surajit Chaudhuri and Vivek Narasayya. Self-tuning database systems: A

decade of progress. In VLDB, 2007.

[CNR04] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. Estimat-

ing progress of execution for sql queries. In SIGMOD, 2004.

[Cod70] Edgar F Codd. A relational model of data for large shared data banks. In

CACM, 1970.

[cro15] Crossfilter. http://square.github.io/crossfilter/, 2015.

http://square.github.io/crossfilter/

BIBLIOGRAPHY 381

[CTV05] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. Dbnotes: A

post-it system for relational databases based on provenance. In SIGMOD,

2005.

[Cui01] Yingwei Cui. Lineage tracing in data warehouses. PhD thesis, Stanford

University, 2001.

[CWH+17] Ang Chen, Yang Wu, Andreas Haeberlen, Boon Thau Loo, and Wenchao

Zhou. Data provenance at internet scale: architecture, experiences, and the

road ahead. In CIDR, 2017.

[CWW00] Yingwei Cui, Jennifer Widom, and Janet L. Wiener. Tracing the lineage of

view data in a warehousing environment. ACM Trans. Database Syst., 2000.

[DBCK17] Kayhan Dursun, Carsten Binnig, Ugur Cetintemel, and TIm Kraska. Revisit-

ing reuse in main memory database systems. In SIGMOD, 2017.

[DFG17] Daniel Deutch, Nave Frost, and Amir Gilad. Provenance for natural language

queries. In VLDB, 2017.

[Dij97] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall PTR,

Upper Saddle River, NJ, USA, 1st edition, 1997.

[DIMT13] Daniel Deutch, Zachary G Ives, Tova Milo, and Val Tannen. Caravan:

Provisioning for what-if analysis. In CIDR, 2013.

[DKR97] Mark Derthick, John Kolojejchick, and Steven F. Roth. An interactive visual

query environment for exploring data. In UIST, 1997.

[DRS+05] Karl Dias, Mark Ramacher, Uri Shaft, Venkateshwaran Venkataramani, and

Graham Wood. Automatic performance diagnosis and tuning in oracle. In

CIDR, 2005.

BIBLIOGRAPHY 382

[EEI+13] Amr Ebaid, Ahmed Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-

Arnulfo Quiane-Ruiz, Nan Tang, and Si Yin. Nadeef: A generalized data

cleaning system. PVLDB, 2013.

[EU 18] EU GDPR. https://www.eugdpr.org/, 2018.

[Exc18] Excel. https://www.office.com/start/default.aspx, 2018.

[FKL+17] Franz Faerber, Alfons Kemper, Per-Ake Larson, Justin Levandoski, Thomas

Neumann, and Andrew Pavlo. Main memory database systems. Foundations

and Trends®in Databases, 8(1-2):1–130, 2017.

[fol17] Facebook folly. http://bit.ly/fbfolly, 2017.

[FS15] Pedro Flemming and David Schwalb. Hyrisesql: A sql interface for hyrise a

technical documentation. Technical report, Hasso-Plattner-Institute, 2015.

[GA09] Boris Glavic and Gustavo Alonso. Perm: Processing provenance and data on

the same data model through query rewriting. In ICDE, 2009.

[GCB+97] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Re-

ichart, Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A

relational aggregation operator generalizing group-by, cross-tab, and sub-

totals. In Data Mining and Knowledge Discovery, 1997.

[GCZ+17] Alex Galakatos, Andrew Crotty, Emanuel Zgraggen, Carsten Binnig, and

Tim Kraska. Revisiting reuse for approximate query processing. In VLDB,

2017.

[GJS74] M. R. Garey, David S. Johnson, and Larry J. Stockmeyer. Some simplified

np-complete problems. In STOC, 1974.

[GKIT07] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen.

Update exchange with mappings and provenance. In VLDB, 2007.

https://www.eugdpr.org/
http://bit.ly/fbfolly

BIBLIOGRAPHY 383

[GKM82] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof: A

call graph execution profiler. In SIGPLAN, 1982.

[GKM06] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano. Mondrian:

Annotating and querying databases through colors and blocks. In ICDE,

2006.

[GKT07] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. Provenance semir-

ings. In PODS, 2007.

[Goo18] Googlesheets. https://docs.google.com/spreadsheets/, 2018.

[GT17] Todd J. Green and Val Tannen. The semiring franework for database prove-

nance. In PODS, pages 93–99, 2017.

[HA14] Jonathan Harper and Maneesh Agrawala. Deconstructing and restyling d3

visualizations. In UIST, 2014.

[Han12] Pat Hanrahan. Analytic database technologies for a new kind of user: The

data enthusiast. In SIGMOD, 2012.

[HAW08] Jeffrey Heer, Maneesh Agrawala, and Wesley Willett. Generalized selection

via interactive query relaxation. In CHI, 2008.

[HCDN08] Jiansheng Huang, Ting Chen, AnHai Doan, and Jeffrey F. Naughton. On

the provenance of non-answers to queries over extracted data. Proc. VLDB

Endow., 1(1):736–747, August 2008.

[HDBL17] Melanie Herschel, Ralf Diestelkämper, and Houssem Ben Lahmar. A survey

on provenance: What for? what form? what from? The VLDB Journal, 2017.

[HGP03] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style keyword

search over relational databases. In VLDB, 2003.

BIBLIOGRAPHY 384

[HH99] Peter J. Haas and Joseph M. Hellerstein. Ripple joins for online aggregation.

SIGMOD Rec., 28(2):287–298, June 1999.

[HIKY12] Felix Halim, Stratos Idreos, Panagiotis Karras, and Roland H. C. Yap.

Stochastic database cracking: Towards robust adaptive indexing in main-

memory column-stores. In PVLDB, 2012.

[HKN+16] Alon Halevy, Flip Korn, Natalya F Noy, Christopher Olston, Neoklis Poly-

zotis, Sudip Roy, and Steven Euijong Whang. Goods: Organizing google’s

datasets. In SIGMOD, 2016.

[HKW+15] Daniel Haas, Sanjay Krishnan, Jiannan Wang, Michael J Franklin, and Eu-

gene Wu. Wisteria: Nurturing scalable data cleaning infrastructure. PVLDB,

8(12):2004–2007, 2015.

[HMT11] Nicolas Hanusse, Sofian Maabout, and Radu Tofan. Revisiting the partial

data cube materialization. In ADBIS, pages 70–83, 2011.

[HP02] Vagelis Hristidis and Yannis Papakonstantinou. Discover: keyword search in

relational databases. In VLDB, 2002.

[HS12] Jeffrey Heer and Ben Shneiderman. Interactive dynamics for visual analysis.

CACM, 2012.

[HSG+17] Joseph M Hellerstein, Vikram Sreekanti, Joseph E Gonzalez, James Dalton,

Akon Dey, Sreyashi Nag, Krishna Ramachandran, Sudhanshu Arora, Arka

Bhattacharyya, Shirshanka Das, et al. Ground: A data context service. In

CIDR, 2017.

[IHW04] Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Adapting to source

properties in processing data integration queries. In Proceedings of the 2004

ACM SIGMOD International Conference on Management of Data, SIGMOD

’04, pages 395–406, New York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 385

[Ike12] Robert Ikeda. Provenance In Data-Oriented Workflows. PhD thesis, Stanford

University, 2012.

[IKM07a] Stratos Idreos, Martin L Kersten, and Stefan Manegold. Database cracking.

In CIDR, 2007.

[IKM07b] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Updating a cracked

database. In SIGMOD, 2007.

[IKM09] Stratos Idreos, Martin L. Kersten, and Stefan Manegold. Self-organizing

tuple reconstruction in column-stores. In SIGMOD, 2009.

[IMD] IMDB. http://www.imdb.com/interfaces.

[IMKG11] Stratos Idreos, Stefan Manegold, Harumi Kuno, and Goetz Graefe. Merging

what’s cracked, cracking what’s merged: Adaptive indexing in main-memory

column-stores. In VLDB, 2011.

[Int] Intel trace analyzer: https://software.intel.com/en-us/intel-trace-

analyzer/documentation.

[IPC15] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. Overview of

data exploration techniques. In SIGMOD, 2015.

[IPW11] Robert Ikeda, Hyunjung Park, and Jennifer Widom. Provenance for general-

ized map and reduce workflows. In CIDR, 2011.

[IST+15] Matteo Interlandi, Kshitij Shah, Sai Deep Tetali, Muhammad Ali Gulzar,

Seunghyun Yoo, Miryung Kim, Todd Millstein, and Tyson Condie. Titian:

Data provenance support in spark. In VLDB, 2015.

[IT08] Zachary G Ives and Nicholas E Taylor. Sideways information passing for

push-style query processing. In ICDE, 2008.

BIBLIOGRAPHY 386

[IW10] Robert Ikeda and Jennifer Widom. Panda: A system for provenance and data.

Data Engineering Bulletin, 33(3):42–49, 2010.

[IZH+18] Stratos Idreos, Kostas Zoumpatianos, Brian Hentschel, Michael S. Kester,

and Demi Guo. The data calculator: Data structure design and cost synthesis

from first principles and learned cost models. In SIGMOD, 2018.

[JCLJ08] Aamer Jaleel, Robert S Cohn, Chi-Keung Luk, and Bruce Jacob. Cmp$im:

A pin-based on-the-fly multi-core cache simulator. In MoBS, 2008.

[JJHM14] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. M4:

A visualization-oriented time series data aggregation. In VLDB, 2014.

[JMS+08] Namit Jain, Shailendra Mishra, Anand Srinivasan, Johannes Gehrke, Jennifer

Widom, Hari Balakrishnan, Ugur Çetintemel, Mitch Cherniack, Richard

Tibbetts, and Stan Zdonik. Towards a streaming SQL standard. In VLDB,

2008.

[jQu] jQuery. https://jquery.com/.

[JRSS08] Ryan Johnson, Vijayshankar Raman, Richard Sidle, and Garret Swart. Row-

wise parallel predicate evaluation. PVLDB, 1(1):622–634, 2008.

[KAI17] Michael S. Kester, Manos Athanassoulis, and Stratos Idreos. Access path

selection in main-memory optimized data systems: Should i scan or should i

probe? In SIGMOD, pages 715–730, 2017.

[KBP+14] Albert Kim, Eric Blais, Aditya Parameswaran, Piotr Indyk, Sam Madden, and

Ronitt Rubinfeld. Rapid sampling for visualizations with ordering guarantees.

In arXiv, 2014.

[KBY17] Arun Kumar, Matthias Boehm, and Jun Yang. Data management in machine

learning: Challenges, techniques, and systems. In SIGMOD, pages 1717–

1722, 2017.

https://jquery.com/

BIBLIOGRAPHY 387

[KDCN11] Arnd Christian König, Bolin Ding, Surajit Chaudhuri, and Vivek Narasayya.

A statistical approach towards robust progress estimation. Proc. VLDB

Endow., 5(4):382–393, December 2011.

[KEA+17] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.

Noscope: Optimizing neural network queries over video at scale. Proc.

VLDB Endow., 10(11):1586–1597, August 2017.

[KHDA12] Kenrick Kin, Björn Hartmann, Tony DeRose, and Maneesh Agrawala. Proton:

multitouch gestures as regular expressions. In CHI, 2012.

[KIT10] Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Querying data

provenance. In SIGMOD, 2010.

[KJTN14] Niranjan Kamat, Prasanth Jayachandran, Kathik Tunga, and Arnab Nandi.

Distributed and interactive cube exploration. In ICDE, 2014.

[KLK+18] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, Andrew

Pavlo, and Peter Boncz. Everything you always wanted to know about

compiled and vectorized queries but were afraid to ask. Proc. VLDB Endow.,

2018.

[KLZ13] Sven Köhler, Bertram Ludäscher, and Daniel Zinn. First-order provenance

games. In In Search of Elegance in the Theory and Practice of Computation.

2013.

[KM05] Martin L Kersten and Stefan Manegold. Cracking the database store. In

CIDR, 2005.

[KPHH11] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wran-

gler: interactive visual specification of data transformation scripts. In CHI,

2011.

BIBLIOGRAPHY 388

[KPP+12] Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M Hellerstein, and

Jeffrey Heer. Profiler: Integrated statistical analysis and visualization for

data quality assessment. In AVI, 2012.

[KYG+18] Sanjay Krishnan, Zongheng Yang, Ken Goldberg, Joseph Hellerstein, and Ion

Stoica. Learning to optimize join queries with deep reinforcement learning.

arXiv preprint arXiv:1808.03196, 2018.

[LA04] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong

program analysis & transformation. In CGO, 2004.

[LCKC18] Yao Lu, Aakanksha Chowdhery, Srikanth Kandula, and Surajit Chaudhuri.

Accelerating machine learning inference with probabilistic predicates. In

SIGMOD, 2018.

[LCM+05] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Ge-

off Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:

Building customized program analysis tools with dynamic instrumentation.

In PLDI, pages 190–200, 2005.

[LDY13] Dionysios Logothetis, Soumyarupa De, and Kenneth Yocum. Scalable lin-

eage capture for debugging disc analytics. In SoCC, pages 17:1–17:15,

2013.

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,

and Thomas Neumann. How good are query optimizers, really? Proc. VLDB

Endow., 2015.

[LH14] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on ex-

ploratory visual analysis. In Vis, 2014.

[LJH13] Zhicheng Liu, Biye Jiang, and Jeffrey Heer. imMens: Real-time visual

querying of big data. In Computer Graphics Forum, 2013.

BIBLIOGRAPHY 389

[LKC18] Yao Lu, Srikanth Kandula, and Surajit Chaudhuri. Interactive demonstration

of probabilistic predicates. In SIGMOD, 2018.

[LKS13] Lauro Lins, James T Klosowski, and Carlos Scheidegger. Nanocubes for

real-time exploration of spatiotemporal datasets. EuroVis, 19(12):2456–2465,

2013.

[LLG18] Seokki Lee, Bertram Ludäscher, and Boris Glavic. Pug: a framework and

practical implementation for why and why-not provenance. The VLDB

Journal, 2018.

[LLV] LLVM. https://lldb.llvm.org/.

[LLWZ07] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query in

relational databases. In SIGMOD, 2007.

[LP14] Yinan Li and Jignesh M. Patel. Widetable: An accelerator for analytical data

processing. Proc. VLDB Endow., 2014.

[LR99] Zhe Li and Kenneth A. Ross. Fast joins using join indices. The VLDB

Journal, 1999.

[LRB+97] M Livny, R Ramakrishnan, K Beyer, G Chen, D Donjerkovic, S Lawande,

J Myllymaki, and K Wenger. Devise: Integrated querying and visual explo-

ration of large datasets (demo abstract). In SIGMOD, 1997.

[LSJM17] Yi Lu, Anil Shanbhag, Alekh Jindal, and Samuel Madden. Adaptdb: adaptive

partitioning for distributed joins. In VLDB, 2017.

[LWYZ16] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. Wander join: Online aggrega-

tion via random walks. In SIGMOD, 2016.

[Mal18] MAL Profilers. https://www.monetdb.org/Documentation/

Manuals/MonetDB/Profiler, 2018. Last accessed on 11/17/2018.

https://lldb.llvm.org/
https://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler
https://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler

BIBLIOGRAPHY 390

[May06] Marissa Mayer. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-

20.html, 2006.

[MC17] Rano Mal and Yul Chu. A flexible multi-core functional cache simulator

(fm-sim). In SummerSim, 2017.

[MCACM17] Ruslan Mavlyutov, Carlo Curino, Boris Asipov, and Philippe Cudre-Mauroux.

Dependency-driven analytics: A compass for uncharted data oceans. In CIDR,

2017.

[MCF+11] Luc Moreau, Ben Clifford, Juliana Freire, Joe Futrelle, Yolanda Gil, Paul

Groth, Natalia Kwasnikowska, Simon Miles, Paolo Missier, Jim Myers, Beth

Plale, Yogesh Simmhan, Eric Stephan, and Jan Van den Bussche. The open

provenance model core specification (v1.1). Future Generation Computer

Systems, 2011.

[MGMS10] Alexandra Meliou, Wolfgang Gatterbauer, Katherine F. Moore, and Dan

Suciu. The complexity of causality and responsibility for query answers and

non-answers. Proc. VLDB Endow., 2010.

[MGS11] Alexandra Meliou, Wolfgang Gatterbauer, and Dan Suciu. Reverse data

management. In VLDB, 2011.

[MGY15] Barzan Mozafari, Eugene Zhen Ye Goh, and Dong Young Yoon. Cliffguard:

A principled framework for finding robust database designs. In SIGMOD,

2015.

[MLVP14] Davide Mottin, Matteo Lissandrini, Yannis Velegrakis, and Themis Palpanas.

Exemplar queries: Give me an example of what you need. Proceedings of

the VLDB Endowment, 7(5):365–376, 2014.

BIBLIOGRAPHY 391

[MMP17] Prashanth Menon, Todd C Mowry, and Andrew Pavlo. Relaxed operator

fusion for in-memory databases: Making compilation, vectorization, and

prefetching work together at last. PVLDB, 2017.

[Mon15a] MonetDB. https://www.monetdb.org/, 2015. Last accessed on

11/17/2018.

[Mon15b] MonetDB Tachograph. https://www.monetdb.org/Documentation/

Manuals/MonetDB/Profiler/tachograph, 2015. Last accessed on

11/17/2018.

[MP18] Ryan Marcus and Olga Papaemmanouil. Towards a hands-free query opti-

mizer through deep learning. CoRR, 2018.

[MSLN00] Ethan Millar, Dan Shen, Junli Liu, and Charles K. Nicholas. Performance

and scalability of a large-scale n-gram based information retrieval system. J.

Digit. Inf., 1(5), 2000.

[Mys18a] MySQL Performance Schema. https://dev.mysql.com/doc/dev/mysql-

server/8.0.0/PAGE_PFS.html, 2018.

[Mys18b] MySQL Rewrite Plugin. https://dev.mysql.com/doc/refman/8.0/

en/rewriter-query-rewrite-plugin.html, 2018. Last accessed on

11/17/2018.

[Nau14] Felix Naumann. Data profiling revisited. In SIGMOD Record, 2014.

[Neu11] Thomas Neumann. Efficiently compiling efficient query plans for modern

hardware. In VLDB, 2011.

[NKG+17] Xing Niu, Raghav Kapoor, Boris Glavic, Dieter Gawlick, Zhen Hua Liu,

Vasudha Krishnaswamy, and Venkatesh Radhakrishnan. Provenance-aware

query optimization. In ICDE, 2017.

https://www.monetdb.org/
https://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler/tachograph
https://www.monetdb.org/Documentation/Manuals/MonetDB/Profiler/tachograph
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin.html

BIBLIOGRAPHY 392

[NL14] Thomas Neumann and Viktor Leis. Compiling database queries into machine

code. Data Engineering Bulletin, 37(1):3–11, 2014.

[NS00] Chris North and Ben Shneiderman. Snap-together visualization: a user

interface for coordinating visualizations via relational schemata. In AVI,

2000.

[NS03] Nicholas Nethercote and Julian Seward. Valgrind: A program supervision

framework. In In Third Workshop on Runtime Verification (RV), 2003.

[Ont] Airline On-Time Performance. http://stat-computing.org/

dataexpo/2009/the-data.html.

[OOCR09] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen, and Stephen Revilak. The

star schema benchmark and augmented fact table indexing. In Technology

Conference on Performance Evaluation and Benchmarking, pages 237–252.

Springer, 2009.

[Ope] OpenFlights: Airport, airline and route data. https://openflights.

org/data.html.

[Ora03] Oracle. Oracle database 10g: The self-managing database. Technical report,

Oracle, 2003.

[Ora14] Oracle. Oracle endeca information discovery: A technical overview. Techni-

cal report, Oracle, 2014.

[Ora17] Oracle. Optimizer with oracle database 12c release 2. Technical report,

Oracle, 2017.

[PBF+15] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and

Felix Naumann. Data profiling with metanome. In VLDB, 2015.

http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
https://openflights.org/data.html
https://openflights.org/data.html

BIBLIOGRAPHY 393

[PDCC15] Fotis Psallidas, Bolin Ding, Kaushik Chakrabarti, and Surajit Chaudhuri. S4:

Top-k spreadsheet-style search for query discovery. In SIGMOD, 2015.

[PDZ+18] Jignesh M. Patel, Harshad Deshmukh, Jianqiao Zhu, Navneet Potti, Zuyu

Zhang, Marc Spehlmann, Hakan Memisoglu, and Saket Saurabh. Quickstep:

A data platform based on the scaling-up approach. Proc. VLDB Endow.,

2018.

[Phy] Physician Compare National. https://data.medicare.gov/data/

physician-compare.

[PIM15] Eleni Petraki, Stratos Idreos, and Stefan Manegold. Holistic indexing in

main-memory column-stores. In SIGMOD, 2015.

[Pos13] Hooks in PostgreSQL, 2013.

[Pow18] Power bi. https://powerbi.microsoft.com, 2018.

[PPI+14] Holger Pirk, Eleni Petraki, Stratos Idreos, Stefan Manegold, and Martin

Kersten. Database cracking: Fancy scan, not poor man’s sort! In DaMoN,

2014.

[Pro] SQL Server Profiler. http://www.microsoft.com/technet/prodtechnol/sql/2000/

maintain/sqlops5.mspx.

[PSSC17] Cıcero AL Pahins, Sean A Stephens, Carlos Scheidegger, and Joao LD

Comba. Hashedcubes: Simple, low memory, real-time visual exploration of

big data. In TVCG, 2017.

[PSWC17] Marianne Procopio, Carlos Scheidegger, Eugene Wu, and Remco Chang.

Load-n-go: Fast approximate join visualizations that improve over time. In

DSIA, 2017.

https://data.medicare.gov/data/physician-compare
https://data.medicare.gov/data/physician-compare
https://powerbi.microsoft.com

BIBLIOGRAPHY 394

[PW18] Fotis Psallidas and Eugene Wu. Smoke: Fine-grained lineage at interactive

speed. ArXiv e-prints, abs/1801.07237, 2018.

[QCJ12] Li Qian, Michael J. Cafarella, and H. V. Jagadish. Sample-driven schema

mapping. In SIGMOD, 2012.

[qt] Cross-platform software development for embedded and desktop. https:

//www.qt.io/.

[RAK+17] Sajjadur Rahman, Maryam Aliakbarpour, Ha Kyung Kong, Eric Blais, Karrie

Karahalios, Aditya Parameswaran, and Ronitt Rubinfield. I’ve seen enough:

incrementally improving visualizations to support rapid decision making.

Proceedings of the VLDB Endowment, 10(11):1262–1273, 2017.

[RCIR17] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. Holoclean:

Holistic data repairs with probabilistic inference. In VLDB, 2017.

[rea] React. https://jquery.com/.

[RO10] Tiark Rompf and Martin Odersky. Lightweight modular staging: A pragmatic

approach to runtime code generation and compiled dsls. In GPCE, 2010.

[ROS15] Sudeepa Roy, Laurel Orr, and Dan Suciu. Explaining query answers with

explanation-ready databases. In VLDB, 2015.

[RSt16] Rstudio shiny. https://shiny.rstudio.com/, 2016.

[RVL+97] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank

Levy, Brian Bershad, and Brad Chen. Instrumentation and optimization

of win32/intel executables using etch. In USENIX Windows NT Workshop,

1997.

[SBPV12] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry

Vyukov. AddressSanitizer: A fast address sanity checker. In USENIX ATC,

2012.

https://www.qt.io/
https://www.qt.io/
https://jquery.com/

BIBLIOGRAPHY 395

[SCC+14] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev

Novik. Discovering queries based on example tuples. In SIGMOD, 2014.

[SDL18] Felix Martin Schuhknecht, Jens Dittrich, and Laurent Linden. Adaptive

adaptive indexing. In ICDE, 2018.

[SE94] Amitabh Srivastava and Alan Eustace. Atom: A system for building cus-

tomized program analysis tools. In PLDI, pages 196–205, 1994.

[SGB+18] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M. Rush.

Seq2Seq-Vis: A Visual Debugging Tool for Sequence-to-Sequence Models.

ArXiv e-prints, 2018.

[Shn84] Ben Shneiderman. Response time and display rate in human performance

with computers. In CSUR, 1984.

[Shn96] Ben Shneiderman. The eyes have it: A task by data type taxonomy for

information visualizations. In Symposium on Visual Languages, pages 336–

343, 1996.

[Sin01] Amit Singhal. Modern information retrieval: A brief overview. IEEE Data

Eng. Bull., 24(4):35–43, 2001.

[SJD13] Felix Martin Schuhknecht, Alekh Jindal, and Jens Dittrich. The uncracked

pieces in database cracking. Proc. VLDB Endow., 7(2):97–108, October

2013.

[SJLM16] Anil Shanbhag, Alekh Jindal, Yi Lu, and Samuel Madden. Amoeba: a shape

changing storage system for big data. In VLDB, 2016.

[SJTDP11] T. Smith, W. Johnson, R. Tamm-Daniels, and S. Probstein. Querying joined

data within a search engine index. US Patent No. 8073840, 2011.

BIBLIOGRAPHY 396

[SK98] Thomas Seidl and Hans-Peter Kriegel. Optimal multi-step k-nearest neighbor

search. In SIGMOD, 1998.

[SLMK01] Michael Stillger, Guy M. Lohman, Volker Markl, and Mokhtar Kandil. Leo -

db2’s learning optimizer. In VLDB, pages 19–28, 2001.

[SMWH17] Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey

Heer. Vega-lite: A grammar of interactive graphics. In TVCG, 2017.

[Spa18] Spark Monitoring and Instrumentation.

https://spark.apache.org/docs/latest/monitoring.html, 2018. Last accessed

on 11/17/2018.

[SQL18] SQLServer2017. Adaptive query processing in SQL databases. https:

//docs.microsoft.com/en-us/sql/relational-databases/

performance/adaptive-query-processing , 2018.

[SRHH15] Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. Re-

active vega: A streaming dataflow architecture for declarative interactive

visualization. In InfoVis, 2015.

[SSD18] Ankur Sharma, Felix Martin Schuhknecht, and Jens Dittrich. The case for

automatic database administration using deep reinforcement learning. arXiv

preprint arXiv:1801.05643, 2018.

[Sta86] Richard Stallman. https://www.gnu.org/software/gdb/, 1986.

[SVK+07] Carlos E Scheidegger, Huy T Vo, David Koop, Juliana Freire, and Cláudio T

Silva. Querying and creating visualizations by analogy. In TVCG. IEEE,

2007.

[tab] Tableau. http://www.tableausoftware.com.

https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://docs.microsoft.com/en-us/sql/relational-databases/performance/adaptive-query-processing
https://www.gnu.org/software/gdb/
http://www.tableausoftware.com

BIBLIOGRAPHY 397

[TBEO+17] Saravanan Thirumuruganathan, Laure Berti-Equille, Mourad Ouzzani, Jorge-

Arnulfo Quiane-Ruiz, and Nan Tang. Uguide: User-guided discovery of

fd-detectable errors. In SIGMOD, pages 1385–1397, 2017.

[Ten16] Tensorboard: Visualizing learning. https://www.tensorflow.org/

guide/summaries_and_tensorboard, 2016.

[TER18] Ruby Y. Tahboub, Grégory M. Essertel, and Tiark Rompf. How to architect

a query compiler, revisited. In SIGMOD, 2018.

[Tid] Tidyverse. https://www.tidyverse.org/.

[TSI96] Odysseas G. Tsatalos, Marvin H. Solomon, and Yannis E. Ioannidis. The

gmap: A versatile tool for physical data independence. The VLDB Journal,

1996.

[TSW11] Tomasz Tylenda, Mauro Sozio, and Gerhard Weikum. Einstein: Physicist or

vegetarian? summarizing semantic type graphs for knowledge discovery. In

WWW, 2011.

[Tuk77] John W Tukey. Exploratory data analysis. Reading, Mass., 1977.

[TXS+15] Pawel Terlecki, Fei Xu, Marianne Shaw, Valeri Kim, and Richard Wesley.

On improving user response times in tableau. In SIGMOD, 2015.

[TZW+17] Ronny Tschüter, Johannes Ziegenbalg, Bert Wesarg, Matthias Weber, Chris-

tian Herold, Sebastian Döbel, and Ronny Brendel. An llvm instrumentation

plug-in for score-p. In LLVM-HPC, 2017.

[USC] TIGER Products - Geography - U.S. Census Bureau.

https://www.census.gov/geo/maps-data/data/tiger.html.

[Val87] Patrick Valduriez. Join indices. ACM Transactions on Database Systems

(TODS), pages 218–246, 1987.

https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tensorflow.org/guide/summaries_and_tensorboard
https://www.tidyverse.org/

BIBLIOGRAPHY 398

[VAPGZ17] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang.

Automatic database management system tuning through large-scale machine

learning. In SIGMOD, 2017.

[WBM14] Eugene Wu, Leilani Battle, and Samuel R. Madden. The case for data

visualization management systems: Vision paper. In VLDB, 2014.

[WDR06] Eugene Wu, Yanlei Diao, and Shariq Rizvi. High-performance complex

event processing over streams. In SIGMOD, 2006.

[WHW16] Yifan Wu, Joseph M Hellerstein, and Eugene Wu. A devil-ish approach to

inconsistency in interactive visualizations. In HILDA, 2016.

[Wic09] Hadley Wickham. ggplot2: elegant graphics for data analysis. Springer

Science & Business Media, 2009.

[Wid05] Jennifer Widom. Trio: a system for integrated management of data, accuracy,

and lineage. In CIDR, 2005.

[Wil03] Adalbert Wilhelm. User interaction at various levels of data displays. In

CSDA, 2003.

[WLPS17] Jianguo Wang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson.

An experimental study of bitmap compression vs. inverted list compression.

In SIGMOD, 2017.

[WM13] Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in

aggregate queries. PVLDB, 6(8):553–564, 2013.

[WMS12] Eugene Wu, Samuel Madden, and Michael Stonebraker. A demonstration of

dbwipes: clean as you query. In VLDB, 2012.

[WMS13] Eugene Wu, Samuel Madden, and Michael Stonebraker. Subzero: a fine-

grained lineage system for scientific databases. In ICDE, pages 865–876,

2013.

BIBLIOGRAPHY 399

[WPM+17] Eugene Wu, Fotis Psallidas, Zhengjie Miao, Haoci Zhang, Laura Rettig,

Yifan Wu, and Thibault Sellam. Combining design and performance in a

data visualization management system. In CIDR, 2017.

[WS97] Allison Woodruff and Michael Stonebraker. Supporting fine-grained data

lineage in a database visualization environment. In ICDE, 1997.

[XZAT18] Jane Xu, Waley Zhang, Abdussalam Alawini, and Val Tannen. Provenance

analysis for missing answers and integrity repairs. IEEE Data Eng. Bull.,

41(1):39–50, 2018.

[YKSJ07] Ji Soo Yi, Youn ah Kang, John Stasko, and Julie Jacko. Toward a deeper

understanding of the role of interaction in information visualization. In

TVCG, 2007.

[ZPSP17] Jianqiao Zhu, Navneet Potti, Saket Saurabh, and Jignesh M. Patel. Looking

ahead makes query plans robust: Making the initial case with in-memory star

schema data warehouse workloads. Proc. VLDB Endow., 2017.

[ZSF17] Zhao Zhang, Evan R Sparks, and Michael J Franklin. Diagnosing machine

learning pipelines with fine-grained lineage. In HPDC, pages 143–153, 2017.

	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivating Application Domains
	1.2 Current Approaches and Limitations
	1.3 Main Research Questions
	1.4 Mechanisms and Smoke
	1.5 Applications
	1.6 Outline and Contributions

	I Provenance and Instrumentation
	2 Background
	2.1 Architecture of Smoke
	2.1.1 Smoke Under Normal Query Execution
	2.1.2 Smoke Under Instrumentation
	2.1.3 Instrumentation at Different IR Levels

	2.2 Physical Plans
	2.3 Physical Plan Compilation in Smoke
	2.4 History of Our Proposal and Part Outline

	3 Fine-Grained Provenance Capture
	3.1 Introduction
	3.2 Problem Definition
	3.3 Lineage Representations
	3.4 Lineage Capture on Single Operator Plans
	3.4.1 Projection
	3.4.2 Selection
	3.4.3 Group-By Aggregation
	3.4.4 Hash-based Joins
	3.4.5 Set Union
	3.4.6 Bag Union
	3.4.7 Set Intersection
	3.4.8 Bag Intersection
	3.4.9 Set difference
	3.4.10 L-joins and Nested Loops
	3.4.11 Cross product

	3.5 Lineage Capture on Multi-Operator Plans
	3.6 Experimental Settings
	3.7 Experimental Results
	3.7.1 Single Operator Lineage Capture
	3.7.2 Multi-Operator Lineage Capture
	3.7.3 Lineage Query Performance

	3.8 Conclusions and Future Work

	4 Expressing and Evaluating Provenance Analytics
	4.1 Introduction
	4.2 Background
	4.3 Data Models
	4.3.1 Example Database
	4.3.2 Data Model of Logical Normalized Approaches
	4.3.3 Data Model of Logical Denormalized Approaches
	4.3.4 Data Models of Physical Approaches

	4.4 Path Queries
	4.5 Provenance Consuming SQL queries
	4.6 Provenance Semantics
	4.6.1 Which-Provenance
	4.6.2 Why-provenance
	4.6.3 How-provenance
	4.6.4 Where-provenance

	4.7 Conclusions

	5 Optimization of Provenance Analytics
	5.1 Introduction
	5.2 Setup
	5.3 Provenance Pruning
	5.3.1 Pruning Input Relations
	5.3.2 Pruning Provenance Directions

	5.4 Provenance Consuming SQL queries
	5.4.1 Selection Push-down
	5.4.2 Data Skipping Push-down
	5.4.3 Grouping and Aggregation push-down

	5.5 Provenance semantics
	5.5.1 Which-provenance
	5.5.2 How-Provenance

	5.6 Experiments
	5.6.1 Provenance Pruning
	5.6.2 Provenance Consuming SQL queries
	5.6.3 Provenance Semantics

	5.7 Conclusions

	6 Physical Plan Instrumentation
	6.1 Introduction
	6.2 Architecture of Smoke and Examples
	6.2.1 Architecture
	6.2.2 Motivating Examples of Instrumentation Applications

	6.3 Instrumentation Points
	6.3.1 Selection
	6.3.2 Hash-based Group-By Aggregation
	6.3.3 Joins
	6.3.4 Other Operators

	6.4 Instrumentation Logic
	6.4.1 Instrumentors and Instrumentation Points
	6.4.2 Imperative Specification
	6.4.3 Declarative Specification
	6.4.4 Instrumenting Instrumentors
	6.4.5 Registration Process

	6.5 Scheduler
	6.5.1 Automatic Defer
	6.5.2 Manual Defer
	6.5.3 Partial Inject-Partial Defer
	6.5.4 Execution Orders

	6.6 Storage Manager
	6.6.1 Access to Smoke's Storage
	6.6.2 Operator State Access

	6.7 Announcer
	6.8 Actions
	6.8.1 Changing Input and Output Schemas
	6.8.2 Changing Internal Logic
	6.8.3 Replacing Physical Operators
	6.8.4 Adding Physical Operators
	6.8.5 Removing Physical Operators

	6.9 Changes on Database Components
	6.9.1 Instrumentation-Aware Compiler
	6.9.2 Physical Algebra
	6.9.3 Optimizer

	6.10 Discussion
	6.11 Conclusions

	II Applications
	7 Expressing Interactive Visualizations
	7.1 Introduction
	7.2 Setup
	7.3 iSQL: Data Model and Language Overview
	7.3.1 Linked-Brushing Example
	7.3.2 Static Visualizations
	7.3.3 User Interactions
	7.3.4 Interactive Visualizations

	7.4 Expressiveness of iSQL
	7.5 Connections with Provenance and Instrumentation
	7.5.1 Initial Static Visualization Extended
	7.5.2 Multi-View Linking
	7.5.3 Interactive Selections
	7.5.4 Logic Over Selections

	7.6 Conclusions and Future Work

	8 Crossfiltering and Incremental Cube Exploration
	8.1 Introduction
	8.2 Problem Definition
	8.3 Expressing Crossfilter with Provenance Queries
	8.4 Techniques
	8.4.1 Lazy
	8.4.2 BT
	8.4.3 BT+FT
	8.4.4 Combining Provenance with Cubes

	8.5 Memory Footprint
	8.6 Experimental Settings
	8.7 Experimental Results
	8.8 Conclusions

	9 Interactive Data Profiling
	9.1 Introduction
	9.2 Evaluating Functional Dependencies
	9.3 Evaluating Uniqueness
	9.4 Evaluating Mismatches
	9.5 Experiments
	9.6 Conclusions

	10 Physical Database Design
	10.1 Database Cracking
	10.1.1 Database Cracking Breakdown
	10.1.2 Instrumentation-Based Cracking Frameworks

	10.2 Denormalization
	10.2.1 Provenance for Denormalization
	10.2.2 Querying

	10.3 Experimental Settings
	10.4 Experimental Results
	10.4.1 Database Cracking
	10.4.2 Denormalization

	10.5 Conclusions

	11 Query Discovery
	11.1 Introduction
	11.2 System Task and Scoring Model
	11.2.1 Data Model
	11.2.2 Discovering Top-k PJ Queries by Example Spreadsheet
	11.2.3 Scoring Model for PJ Queries

	11.3 System Architecture
	11.3.1 Offline Index Building
	11.3.2 Online Top-k Ranking

	11.4 Baseline Evaluation Strategy
	11.4.1 Basic Operators in Evaluation Strategy
	11.4.2 Minimal Evaluation Set
	11.4.3 Worst-Case Optimal Baseline Strategy

	11.5 Optimizing Caching-Evaluation
	11.5.1 Cache-Aware Evaluation of PJ Queries
	11.5.2 Caching-Evaluation Scheduling Problem
	11.5.3 A Near-Optimal Strategy
	11.5.4 Incremental Computation

	11.6 Experimental Evaluation
	11.6.1 Settings of Experiments
	11.6.2 System Performance
	11.6.3 User Study

	11.7 Extension and Discussion
	11.7.1 Incremental Computation
	11.7.2 Generalizing Cell Similarity
	11.7.3 AND v.s. OR Semantics

	11.8 Computing Exact Scores
	11.8.1 Execution Plan for PJ Queries
	11.8.2 Speedup Execution using Cache
	11.8.3 Cost Model for Computing Exact Scores

	11.9 Proofs
	11.10 Conclusion And Future Work
	11.11 Retrospective Analysis

	12 Other Connections and the Road Ahead
	12.1 Negative Provenance
	12.2 Online Query Optimization
	12.2.1 Probabilistic Predicates
	12.2.2 Adaptive Joins
	12.2.3 Information Passing

	12.3 Interactive Applications
	12.3.1 Advanced Provenance Analysis
	12.3.2 Multi-application Linking
	12.3.3 Provenance of Interactions
	12.3.4 Application Design Search
	12.3.5 Interaction-By-Example
	12.3.6 Deconstruction and Restyling

	12.4 Conclusions

	13 Related work
	13.1 Instrumentation in Software Development
	13.2 Instrumentation in Databases
	13.3 Provenance
	13.4 Interactive Data Visualization
	13.5 Physical Database Design
	13.6 Online Query Optimization
	13.7 Interactive Data Profiling

	14 Conclusions
	15 Future Work
	Bibliography

