
SocWeb: Efficient Monitoring of Social Network Activities

Fotis Psallidas1, Alexandros Ntoulas2,3 and Alex Delis3

1 Columbia University, New York, NY 10027
2 Zynga, San Francisco, CA 94103

3 Univ. of Athens, Athens, 15784, Greece
fotis@cs.columbia.edu, {antoulas,ad}@di.uoa.gr

Abstract. Although the extraction of facts and aggregated information from individual Online Social
Networks (OSNs) has been extensively studied in the last few years, cross–social media–content ex-
amination has received limited attention. Such content examination involving multiple OSNs gains sig-
nificance as a way to either help us verify unconfirmed-thus-far evidence or expand our understanding
about occurring events. Driven by the emerging requirement that future applications shall engage mul-
tiple sources, we present the architecture of a distributed crawler which harnesses information from
multiple OSNs. We demonstrate that contemporary OSNs feature similar, if not identical, baseline
structures. To this end, we propose an extensible model termed SocWeb that articulates the essential
structural elements of OSNs in wide use today. To accurately capture features required for cross-social
media analyses, SocWeb exploits intra-connections and forms an “amalgamated” OSN. We introduce a
flexible API that enables applications to effectively communicate with designated OSN providers and
discuss key design choices for our distributed crawler. Our approach helps attain diverse qualitative and
quantitative performance criteria including freshness of facts, scalability, quality of fetched data and
robustness. We report on a cross-social media analysis compiled using our extensible SocWeb-based
crawler in the presence of Facebook and Youtube.

1 Introduction

The unprecedented growth rate of Online Social Networks (OSNs) both in terms of size and quality poses
multiple research challenges. As individuals flock, the respective OSN volume is constantly increasing.
Regarding quality, users often discuss about aspects of their daily life, thus making OSNs a source of
information that is valuable in many different areas of interest. Among those, detection of events [4, 24,
11], identification of trends [5, 1, 11], announcement of news, detection of communities [2, 17], sentiment
analysis, and location tracking [23] have been in the epicenter of attention. All of the above point into
an ever–increasing need to better understand both the exhibited behavior and its development by either
individuals or groups of users. In doing so, numerous forms of social awareness are being developed [19].

The typical process to unveil and further analyze underlying patterns is that given a single stream of
social data, a Complex Event Processing (CEP) mechanism [12, 10, 26] is deployed to identify trends and
formations of interest in an on-line fashion. Although, a number of studies have been conducted mining data
streams emanating from a single social source, there is great interest in attaining cross-social media analyses
involving multiple streams from different OSNs. Meaningful such aggregation of information can certainly
lead to improved fact verification and enhance trend establishment [4]. Consequently, data originated from
multiple OSNs should not be considered disjointly but rather should be co-developed and co-referenced. In
turn, CEP-engines should blend social streams from multiple OSNs to benefit from their inter-connections.
For instance, let an individualA be a user in 2 of the most widely-used OSNs: Facebook and Twitter. A well-
known challenge where social media content can assist a great deal is the tracking of the movement and the
identification of the current location of A. In [23], it is argued that the current location of A can be inferred
using information about her friends. If we limit ourselves by extracting information from a a specific social
network say Twitter, we are unable to correlate data potentially available from both accounts regarding
the location of A. In this respect, we lose vital information for the location tracking task. Furthermore,



2

information about an event detected in an online stream can be extended or cross-validated using other
OSNs through query formulation strategies [4]. In this context, there is a pressing need to re-consider and
benefit from intra-OSN relations and produce novel types of analysis and applications in numerous fields
including news, events, polls, ads, marketing, games, information tracking, and intra-social awareness.

Obtaining meaningful data simultaneously from multiple OSNs is however not a trivial path to follow.
Conventional crawling approaches for the “open” Web proposed in the last decade fall short in fetching
effectively from multiple OSNs; such methods include (1) BFS crawling [18, 16], (2) contiguous crawling,
(3) focused crawling [22], and (4) random walking [3, 14]. Furthermore, content found on database sys-
tems rather than on web servers, also known as “deep/hidden”, is often crawled (or searched) by filling
forms using appropriate keywords [20, 15]. Given the steadily increasing volume of data and the inherent
physical-network limitations, the distribution and/or the parallelization of crawling have been proposed as
an effective means to realize crawling [25, 9].

OSNs raise different crawling challenges that cannot be captured by state-of-the-art web crawling tech-
niques. By nature, traditional Web data have two salient features that facilitate access: they are available
freely via web-servers or supporting databases and they can be fetched in a straightforward manner. So-
cial network providers allow only “subscribed” applications to fetch their data using exclusively provided
APIs. However, the fetched data is considered private with high sensitivity and heterogeneity. The popu-
lar Facebook and Twitter impose strict limitations and regulations on use of their data.1 Conventional web
crawling techniques that strive to obtain data from OSNs are very likely to deviate from the legal limitations
and provider regulations imposed. Moreover, using the APIs provided by individual OSNs comes at a high
productivity cost. Such API calls can be parameterized in a multitude of ways requiring so user sophistica-
tion. Matters are also inherently more complex when multiple social networks using diverse structures and
building elements are involved in the crawling as there is always need to properly disambiguate the returned
results. SN providers also frequently impose constraints in terms of response time. Provider resources avail-
able for responding to application queries remain limited making those applications prone to network and
processing bottlenecks. Indeed, several approaches have applied traditional crawling techniques to fetch
data from specific OSNs encountering some of the above problems [6, 13, 7]. For instance, [6] uses BFS
and uniform sampling crawling to gather data for Facebook’s analysis purposes; the study reports resource
limitations, privacy restrictions and API misbehavior by both the provider and its users.

To alleviate the aforementioned problems and driven by the motivation to describe and seamlessly ac-
cess multiple OSNs in an amalgamated form, we propose an extensible model SocWeb. SocWeb maps the
structures of the underline OSNs, helps capture their relationships and ultimately offers the basis to develop
a versatile distributed crawler/fetcher. SocWeb leverages two fundamental concepts that we introduce: the
model and its requisite generic social network API or SNAPI. SocWeb’s programmatic interfaces intend on
addressing issues encountered by standard web crawling techniques. The design choices of SNAPI adhere
to the principle of appropriately abstracting the procedure of connecting one or more applications to desired
social network providers by minimizing the effort required and complying with the norms and regulations
imposed by the providers.

The contributions of our work are:

– We present and describe an “amalgamated” OSN, based on the observation that the underlying struc-
tures of OSNs remains similar, if not identical.

– We present the SNAPI that enables simultaneous connection to one or more generic applications with
specific social network providers.

– We outline the design choices of our distributed crawler for automated content extraction from multiple
OSNs.

– We evaluate qualitatively and quantitatively our system and provide characteristics of the data retrieved
as a proof of concept that our system can efficiently monitor data from different OSNs.

1 See for example the discussion on rate limits here: https://dev.twitter.com/docs/faq.



3

2 Representing OSNs in SocWeb

At a high level, an OSN s is typically represented by a directed graph Gs(Vs, Es) where vertices Vs corre-
spond to objects (e.g. users, photos, comments) in the social network and edgesEs (which can be potentially
labeled) correspond to relationships between those objects (e.g. user A posted photo p1). Since our goal is
to efficiently monitor a variety of OSNs, we need to extend this definition to include a set of OSNs.

To this end, we employ the following definitions for the building blocks (vertices, edges) of an OSN.
Object Types (OT). In our SocWeb Model we define two different basic types of objects (vertices), primitive
and composite. More specifically a vertex υ ∈ Vs of OSN s is:

– Primitive, iff dout(υ) = 0 and din(υ) ≥ 1, or
– Composite, iff dout(υ) ≥ 1

where din(υ), dout(υ) are the in- and out-degree of υ respectively. Intuitively, the primitive vertices
define the boundary of a given OSN, while composite vertices may link to either primitive or composite
vertices thus playing the role of both forming and populating a social network.2

In some cases, a given OSN may specialize the types of its objects. For example, Facebook has object
types such as user, post, album and photo. Note that these types correspond to composite vertices. Every
social network has to also define types for primitive nodes. Types that correspond to primitive nodes are, for
example, integers, strings and timestamps. Furthermore, each vertex has a unique object type. We denote
the object type of a vertex υ as VOT (υ).
Link Types (LT). Following the OT definition, we also define two kinds of basic link types between two
vertices υ1, υ2:

– P-link, iff (υ1, υ2) ∈ Es and Composite(υ1) and Primitive(υ2)
– C-link, iff (υ1, υ2) ∈ Es and Composite(υ1) and Composite(υ2)

Similar to the object types, some social networks may further specialize their link types. For example,
a Youtube user may be linked to a post using a ‘posted’, ‘liked’ or ‘disliked’ link. We denote the link
type of an edge (υ1, υ2) asELT (υ1, υ2). We should note here that not all objects can be linked with any
link type. For example, it may not make sense to connect two users with a link denoted as ‘uploaded’.

– Collections and Colinks. One characteristic of OSNs is that an object can link to collections of objects
of the same object and association type. For instance, a Facebook user can be associated with several
photo albums using an ‘uploaded’ link type. Instead of referring to each of the albums as a different
connection we encapsulate the photo albums to form an album collection and use a single link from
the objects. In the SocWeb Model, we call such types of links Co-links and we formally define them as:
Colink(υ,v) = {v1, v2, . . . , vn}, where v = (v1, v2, . . . , vn) is an object representing the collection
of objects v1, . . . , vn with the same type, and υ is the object linking to the collection. Note that we create
collections of objects based on the link type rather that the object type. An object may be connected
to objects of the same type but the connection between them has a different meaning. For instance, a
Facebook user can be connected to posts either because she liked or posted or commented on them.

– Intra-OSN edges and S-links. By using the definitions above, we can describe a graph that represents a
single OSN s. Since our goal is to monitor a set of OSNs, we need a way to represent the interconnec-
tions among them. One straightforward approach would be to consider the union of the set of OSNs,
assuming that their graphs are disconnected. By following this approach, however, we are not able to
take advantage of the fact that a user may have accounts in different OSNs and attribute her objects and
links to the same person. Being able to identify the same person across OSNs is of great importance for
several different scenarios such as opinion mining, personalization and ad targeting.
To this end, we also define a special kind of cross-OSN links. More specifically, for two different
social networks s1, and s2, we consider the additional set of intra-OSN edges Es1,s2 , which is the set
of directed edges (υk, υl) where υk ∈ Vs1 and υl ∈ Vs2 . For these intra-OSN edges, we define the
following types:

2 Note that if dout(υ) = 0 and din(υ) = 0 then υ is an isolated vertex. Such vertices are difficult to discover as there
are no links to them and are very unlikely to appear in a real OSN. For simplicity, in our model, we assume that we
do not have such nodes.



4

• SP -link(υ1, υ2) iff (υ1, υ2) ∈ Es1,s2 ∧ Primitive(υ2) ∧ Composite(υ1)
• SC-link(υ1, υ2) iff (υ1, υ2) ∈ Es1,s2 ∧ Composite(υ2) ∧ Composite(υ1)
• SCo-link(υ1,v) iff υ1 ∈ Vs1 ∧ υ2 ∈ Vs2 ∧ s1 6= s2 ∧ Colink(υ1,v)

Fig. 1: Multi-social graph example with all possible basic object and link types of SocWeb Model.Nodes in
blue and green refer to primitive and composite objects respectively.

To illustrate the abstraction that SocWeb Model offers, we show 2 OSNs in Figure 1 with all the possible
basic object and link types. These types can be further specialized based on the description of each social
network.

3 Accessing OSNs through a Generic API

Most of the social networks today provide an Application Programming Interface (API) to their data in
order to allow developers to build applications. In almost all cases, the API provides a way for authorizing
an application or a user to access data on the OSN. There are typically two levels of authorization: (a) ac-
quiring the minimum credentials that each user/application needs to connect to the OSN, and (b) potentially
selecting additional credentials that are useful to a given application (e.g. to access the birth dates of a user’s
friends).

Since our goal is to access multiple OSNs at the same time, we need to be able to create and maintain
such multiple credentials and interact with a variety of APIs. This, however, is a challenging problem for
the following reasons:

– Given the number of available OSNs there is also a large number of available APIs with multiple
versions available. For instance, Twitter supports a REST API and a Streaming API and the REST API
has multiple versions.

– Each API supports a large number of calls, parametrizable in a multitude of ways.
– Each OSN provides a diversity of encoding formats that can differ from one OSN to another. For ex-

ample, language encodings are typically one of UTF-8, IS0-8859-1 or 1-3byte Unicode sequences(e.g
“\u00ed”).

– There is a large number of different ways to exchange information with an OSN, for example JSON,
XML, KML, RSS (2.0) or ATOM.

– Different OSNs use different authorization procedures. Most of them rely on the standard OAuth proto-
col, which has a mulitude of versions. Additionally, different platforms (Web, desktop, mobile) require
different authorization procedures within the same OSN.



5

– Each OSN enforces its own limitations to the amount of requests that are allowed. Such limitations can
be enforced by IP, by application, by user or by authorized/non-authorized calls within a given time
period (typically per hour or per day). This implies that we need to be aware that an application limit
has been reached when accessing information in an OSN and back off if necessary.

– Each OSN has its own set of error codes. Hence, we need to take appropriate action which may be
different per OSN.

To alleviate these problems we propose a generic Social Network API (SNAPI) for arbitrary OSNs that is
based on the SocWeb Model discussed in Section 2. We proceed by introducing the socWebObject data
structure that is central to our system and we then define the SNAPI, whose purpose is to interact with
arbitrary OSNs using the corresponding APIs through the use of socWebObjects.

3.1 The socWebObject Data Structure

Based on our discussion in Section 2, each node of an OSN graph has a set of p-links, c-links, co-links,
sp-links, sc-links and sco-links associated with it. Additionally, each node has a unique identifier, a unique
object type and belongs to a single OSN and may have one or more nodes pointing to it. To this end, in our
system we use the following data structure to represent a SocWebObject:
socWebObject(id, type, plinks, clinks, colinks, splinks, sclinks, scolinks)
where p-links, c-links, sp-links, sc-links are maps to other socWebObjects based on the association

type and co-links and sco-links are maps to an array of socWebObjects. For instance, let obj be a
socWebObject representing a Facebook user, then we can reference the user name as
obj.plinks["username"], the hometown as obj.clinks["hometown"] and the i-th post of the user
as obj.colinks["posts"][i]. Additionally, the hometown is another socWebObject and we can ref-
erence its longitude as obj.clinks["hometown"].plinks["longitude"].

Call
initialize(

⋃N
i=1Def(si), app id[])

apply definition(Def(s))
apply credentials(user id, app id, credentials)

apply constraints(constraint[])
get object(object id, type, linktype[])
get links(object id, type, linktype[])

Table 1: SNAPI Calls. Def(s) is the definition of OSN s, i.e. the set of nodes and different types of links
of s. linktype[] represents a subset of the different kinds of links p-links, c-links, etc.

3.2 A Generic Social Network API (SNAPI)

In our system, we provide access to the different OSNs by implementing wrappers for the different API
requests together with the most popular parametrization options. Overall, our generic API consists of the
set of calls as shown in 1, which we discuss in more detail.
SNAPI Initialization. SNAPI is initialized by providing the definition (i.e. set of nodes and links with
their types) of the OSNs that we are interested in following to the initialize() call together with the
application ids that are authorized to access information in the OSNs. In the cases where we discover a
new OSN, or we decide to change accessing data through a different application, we can do so on-the-fly
through the apply definition() call.
SNAPI Authorization. For authorization purposes SNAPI provides the apply credentials() call which
uses the login and password provided to connect and acquire the necessary credentials. In most cases, the
credentials are access tokens returned by the OAuth protocol.



6

SNAPI Constraints. In order to make our system’s monitoring capabilities more flexible, we have provided
SNAPI with the capability to specify a set of constraints that can be enforced during the monitoring process.
More specifically, for each object type we can define rules for each one of its connected object types (i.e.
p-,c-,co-,sp-,sc-,sco-links). For instance, suppose we want to retrieve the location of a tweet only if its
longitude is within a specific range. We can express this rule as:
tweet.clinks[‘‘location’’].plinks[‘‘longitude’’] ≥ minimum longitude &&
tweet.clinks[‘‘location’’].plinks[‘‘longitude’’] ≤ maximum longitude
Providing this capability allows us to only monitor parts of an OSN that we are interested in thus saving
resources. In our current implementation, we only allow simple boolean constraints to be provided as input
to SNAPI. We plan to implement these constraints in the form of a full-scale Complex Event Processing
system [12, 10, 26] in the future.
SNAPI Fetching of Data. We provide two different calls for fetching within SocWeb, fetching of objects
and fetching of links, through the get object() and get links() calls respectively. For both calls, we
need to provide an object type together with its id which uniquely identifies an object within a given OSN.
Such an id is typically created by the OSN and found by following the different kinds of links during
monitoring.3 We can also specify the kinds of links that we are interested in (c-links, p-links, etc.) through
the linktype[] parameter. In the case of get object(), the system proceeds iteratively by fetching the
object’s links and applying the provided constraints. If, when retrieving an object, we cannot immediately
decide whether it satisfies a constraint (e.g. we have not discovered a property such as longitude that was
specified in a constraint), we place it in a queue which we periodically clean in order to keep only objects
that satisfy the given constraints.

Efficiently fetching the data from a set of OSNs is a challenging task which we discuss next.

Fig. 2: SocWebFS Architecture

4 Efficient Monitoring of OSNs: The SocWeb Fetcher System

We have so far discussed how we represent a set of OSNs within SocWeb as well as its generic API that
enables us to access the OSNs. Given the enormous size and update rates of information in the OSNs we
need to find ways of monitoring this information in an efficient way. Not all users post information at the
same time, or at the same rate. If we blindly start downloading everything our system comes across, we may
end up with redundant information. In addition, since most of the OSNs impose limitations to the amount

3 Of course, there could be a conflict where a given object id may correspond to objects in more than one OSNs. We
handle this case internally in our system by having an additional OSN id attached to the object id.



7

of objects that we can download within a given period of time, making smart decisions of what to download
and how often is of paramount importance.

In this section we discuss our design around a fetcher system (the SocWebFS) which is built with these
constraints in mind and can make decisions on-the-fly on what to download at a given time. Our system
consists of a central master server that coordinates a set of fetchers. The server keeps track of statistics on
previously downloaded objects and makes estimations on what to download next. We present an overview
of the whole system in Figure 2 and we describe each of the components in the following subsections.

4.1 SocWebFS Server

This is essentially the brain of the system which decides which object to fetch, when to fetch and how
often. The SocWebFS Server comprises seven modules: (a) the Request Queue-Thread Pool, (b) the Frontier
Queue, (c) the Scheduler, (d) the Fetcher Handlers, (e) the ToDump Pool, (g) the Dumper Handlers. As is
typical in these kinds of architectures, these modules operate in a pipeline fashion, sharing global online
data structures in order to coordinate.
Online Structures. This module is responsible for maintaining statistics regarding the online activity of
the users. These statistics are useful in deciding which users to prioritize when downloading objects. The
intuition is that a user who has been posting information at a high rate in the past will continue to do so in
the future. To this end, for each user we maintain her effective online interaction rate:

EIR(u) =
1

7
·#Requests(u) in the last 7 days

Request Queue-Thread Pool. To handle the requests for downloading within our system we maintain
a thread pool. Each request is handled by the first available thread, while the number of threads is tuned
dynamically based on the amount of incoming requests. Depending on the incoming request, a thread, might
change the online structures, update socWebObjects or statistics related to socWebObjects or spawn/delete
fetcher/dumper handlers.
Frontier Queue. This is the most important part in the system as it decides on the prioritization of which
objects to download at any given moment. In its simplest form [9], the first item from the queue is fetched
and then it is placed back in queue to be refreshed again later. This operation can be performed in a variety
of ways in order to optimize for freshness or age of the objects [8], optimize for bandwidth or cost [20], or
adhere to politeness policies.

In our implementation, the frontier module consists of 2 sub-modules: a set of F front FIFO queues, that
guarantee prioritization of SocWebObjects to download, and a set of Q back queues that guarantee polite
behavior of the fetcher (i.e. ensuring that we are not downloading too fast from a given OSN) by monitoring
download rates from the OSNs. Within the front queues we prioritize the objects based on a set of metrics:

– User-based. In this case, we take into account the user’s interaction rates with the OSN. The higher the
EIR for a given user, the higher priority her objects are given in the queue.

– Change-Rate-based. Since the objects change periodically, we need a way to keep track of which ones
are more likely to change in order to prioritize them first. We consider an object to have changed if any
of its c-linked objects has changed. To this end, we use a change rate metric for each object:

CR(obj, link) =
#Changed c-links

tl − ts
where tl, ts are the timestamps of the last and first changed c-link objects respectively. This definition
of average change rate works well in most cases, but our system is flexible to employ different and more
sophisticated change rate approaches (e.g. fitting a probabilistic distribution to the changes to estimate
the rate).

– Importance-based. Depending on the social network schema, it is sometimes the case that some ob-
jects are more important than others. For example, when a user updates their location may be more
important than a new comment that she just posted.



8

To capture this difference in importance among the objects, we employ an importance metric I(obj)
for each object. I(obj) can be static per object type (e.g. location is 10 times more important than
comment) or can be dynamically adjusted. In our implementation, we followed a dynamic approach
and we define the importance of each object as:

I(obj) =
1

n

∑
u∈Users

EIR(u) ·App(obj, u)

This is essentially the average EIR of all the users associated with the given object weighted by an
application-specific weight App. For example, if we were using SocWeb to implement a search engine
App(obj, u) could be the number of times that obj was returned as a result to the user u. In this case,
the more times the user sees obj the higher the weight.

Based on these metrics, all the objects of the frontier are given a priority and are placed in a queue to be
scheduled for fetching.
Scheduler. The goal of the scheduler component is distribute the prioritized objects from the frontier across
several fetcher handlers. The scheduler has three main goals:

– To balance the total fetching workload across the several SocWebFS Fetcher nodes by deciding when
and where to send an object for fetching. To this end, the Scheduler maintains histograms per machine to
estimate the amount of time needed for each machine to perform each request. Given a socWebObject
and its change rate per link as computed in the change rate level, we estimate the amount of requests
that have to be performed to fetch an object and we pick the machine with the smallest load to handle
the fetching.

– To ensure that fetching of an object will not cause the exceed of the limitations (e.g. IP, time, API)
posed by the OSNs. If the scheduler estimates that fetching of an object may potentially exceed on or
more limitations imposed by the OSN, it postpones its fetching for later and periodically repeats this
estimation.

– To ensure fault tolerance by guaranteeing that fetches that received an error or time out will be consid-
ered for fetching again in the near future. To this end, each object gets a unique session id (sid) that
uniquely identifies the transaction. This sid together with the initial request timestamp ts are used to
detect whether we have waited sufficient time before we consider the fetching of the given object as
timed-out. If the object request has timed out, we place the object back to the frontier to be fetched
again later. The process of resending an object back to the frontier is performed only a fixed number of
times per object (set to 3 in our system).

Fetcher Handlers. The fetcher handlers are responsible for the communication of SocWebFS Server with
the SocWebFS Fetchers. Each SocWebFS Fetcher corresponds to a single Fetcher Handler that serves as
middleware for the communication of the SocWebFS Fetcher with Server’s resources. Upon retrieving a
set of requests the handler serializes them and sends them to the fetchers for processing. The handler also
updates the initial request timestamps ts in the frontier.
SocWebFS Fetchers. The goal of a SocWebFS fetcher is to retrieve a single object that is assigned to
it by its corresponding handler. Each fetcher uses the SNAPI that we described in Section 3 which is
initialized at the startup of the system. After authentication, the fetchers operate in four states: (a) connect,
which initializes the connection to the OSN, (b) wait for requests to be assigned, where the fetcher blocks
and awaits yet-to-be-fetched objects from the server, (c) fetching, which requests objects from the OSN,
and (d) upload, which uploads the fetched objects in a bulk mode back to the SocWebFS server. When a
SocWebFS fetcher has finished fetching of objects it issues an upload request that returns a subset or all of
the fetched objects along with statistics(amount of requests, time per request, limitations reached). Next,
Fetcher handler has to send the statistics to the Scheduler, check whether the fetching of each object was
valid or resulted in an error, and append the fetched object to the Dump Pool.
Dumper Handlers and Dump Pool. Each Fetcher Handler has a corresponding Dumper Handler which
takes on the task of saving the retrieved objects to disk and appending newly found objects to the frontier.
To enable the communication of those components, we use a Dump Pool which is essentially implemented
as a set of queues, with each queue corresponding to a pair of Fetcher-Dumper Handlers. In this case, the
Fetcher acts as a producer and the Dumper as a consumer.



9

4.2 Privacy Considerations

We have discussed the overall architecture of our SocWeb system which enables us to download and store
objects from a set of OSNs locally. Our system is flexible enough to handle different OSNs with different
APIs and limitations on the data that we can store.

However, given the sensitive nature of some of the data in the OSNs we may need to enforce additional
limitations in certain cases. For example, certain OSNs pose limitations on whether the data collected can be
at all stored on disk or can only be used on-the-fly. To this end, SocWeb provides subscriptions of external
applications and Dumper Handlers instead of storing the data locally. The only indirect requierment that
we have for the external handlers is that they are capable of consuming the data at the rate that the fetcher
retrieves them from the OSNs. If the external rate is slower, SocWeb drops some of the objects to match the
external consuming rate.

In addition to storing the data, there are also challenges in enforcing access-level constraints to the data.
For example, consider the scenario when users A and B are both friends with user C but user A can
see C’s birthdate but B cannot because C specified so. In this case, users A and B have different access
permissions to user C’s p-link objects. This scenario may happen for all different kinds of links that we
defined in Section 2. To solve this problem, we additionally employ a per-user storage space where we
keep, for a given user, the conflicting parts of an object that are different from the global version of the
object in the system. In this way, we can enable applications using the data that SocWeb collected to adhere
to the privacy of the data because of the different user access levels.

5 Evaluation

Our main objective in evaluating our architecture and the SNAPI interface is to establish the utility of our
approach in terms of a number of key characteristics.

– Robustness: to avoid traps, SNAPI can be parameterized with constraints for cycle detection during
the fetching process. Furthermore, Dumper Handlers determine whether an object may be eligible for
(re-)fetching. Application dependent traps are also detected through parameterization of these handlers.

– Politeness: each OSN poses its own limitations in terms of calls per-application, per-IP and/or per-
user. Our Scheduler and SocWebFS-fetchers offer compliance with imposed retrieval rates as desig-
nated by OSNs. The above can also dynamically re-set limitations that change on the fly. SNAPI also
determines whether heavy workload crawling activities are in place and makes use the respective Face-
book/Youtube streaming API to better facilitate fetching of objects.

– Distributeness: our proposed architecture is based on the single-SocWebFS–server and multiple-concurrent-
clients model, all operating in star-like fashion. The design warrants for fault tolerance (Frontier), work-
load balance (Scheduler), elasticity (Scheduler) and redundancy manipulation (Dumper Handlers).
Even in the case of a software crash, the SocWebFS–server loses no data as the crawlers will await
for the main server to become alive anew. The state of the server is maintained as expressed by the
Frontier and MetaQueue structures is maintained by the back-end database.

– Quality: the relevance of retrieved data is of paramount importance to users and their applications. Our
policies that differentiate between data of “interest” and “no interest” and so assist in achieving per-user
extraction quality characteristics.

– Scalability and High Performance: SocWebFS is able to scale up (or down), in the presence of more
(less) machines and/or bandwidth changes. To examine the scalability of our system we conducted
corresponding experiments.

– Extensibility: The modularity introduced in the design of SocWebFS allows several levels of extensibil-
ity. Application dependent policies are introduced in the form of constraints to parameterize SocWebFS
components (SNAPI, Scheduler, Dumper Handlers). These policies help the proposed model to render
a simple yet powerful abstraction for multi-social networks description.

By and large, the above characteristics are those that have been used over time to ascertain effectiveness
in Web crawling [18, 21, 25]. We also treat carefully the trade-off between performance and maintenance



10

of up to date information (i.e., freshness). As an object may receive repetitive requests for either edited or
deleted distributed content, this will inevitably lead to performance degradation. Scheduler’s design uses
the object change-rate as an estimator for changes expected in the future and offers accurate quantitative
information regarding this issues helping attain a good balance in the trade-off at hand.

We should also point out that we have designed our systems so as to be able to handle diverse types
of retrieved objects, fetching protocols, arbitrary social networks as well as multiple data formats such as
XML, JSON, UTF8-encoding, etc.

5.1 Evaluation Approach and Settings

We experimented with SocWebFS using 2 popular OSNs: Facebook and YouTube. Our evaluation is weaved
around 2 experimental use-cases that illustrate not only the use of our system but also its compliance of
our prototype with the aforementioned behavioral and performance characteristics. In the first use-case, we
exclusively use Facebook to demonstrate the applicability and value of SocWebFS in the presence of a single
OSN. The second scenario uses both Facebook and YouTube networks and explores the inter-connections
formed as soon as users deposit videos on one and proceed with respective posts on Facebook. We refer to
the first use-case as Facebook Spider and to the second as Aggregated Social World.

For both experiments, we employed a private laboratory cloud made up of physical machines featur-
ing Intel(R) Xeon(R) CPU X3220 processors at 2.40GHz, 8GB of RAM all connected through a 1GBps
Ethernet switch. We used 7 virtual machines (VMs) from this cloud with each VM featuring a 2GB main
memory running a client module (i.e., SocWebCrawler). One of these VM servers also undertook the role
of the gateway as all SocWebCrawlers would issue requests to OSNs through this gateway using the NAT
protocol.

5.2 Facebook Spider

In this use-case, we employ SocWeb to play the role of a social spider for Facebook: given an initial number
of objects-nodes in the OSN graph, we intend to retrieve objects by exploiting adjacent links to already
visited nodes. Social graphs are however inherently dynamic. Thus, we will have to continually monitor
already visited nodes for new, deleted and/or updated adjacent links.

Before we start working with SocWeb, we are first required to formally define an abstraction of the
candidate OSN to be crawled as Section 2 outlines. Most of the definition effort here is directed towards
designating the specific objects and link type of interest than the entire network. In this use-case, we create
an abstraction of Facebook that consists of users, albums and posts as our key-interest object types. Each
user is linked with her posts, albums and friends (co-links), his hometown, school, work (c-links) as well
as his first name, surname, birthday, last post’s and album’s creation time (p-links). Each post and album is
connected to the number of likes and comments received (p-links). We also consider albums to be connected
with their photos (co-link).

During the first time of crawling of a user we want to download the full list of her posts, albums and
friends and her c- and p-links. We decide to re-introduce a user to the Frontier module, if and only if
her amount of posts is more than a threshold 4; this threshold can be perceived as a constraint of signif-
icance (i.e., user[“posts”][“likes cnt”] > 1000). We also append to the Frontier her friends and corre-
sponding albums if they were uploaded during the last week with respect to the time of the their crawling.
For albums, we also require to be of significant interest (i.e., user[“albums”][“comments cnt”]>1000).
Once an object has been fetched, its monitoring commences with regard to changes in her links (i.e.,
user[“posts”][“created time”] > user[“last post time”]). If we are required to crawl a friend of a user,
we follow the same procedure but we don’t further crawl the friends of friends. If SocWeb determines to
re-crawl some specific object we consider only content created after the last time it was crawled.

4 Manually set to 1,000 for this experiment.



11

The last action during SocWeb initiation is to acquire a set of nodes in order to start crawling. Here, this
initial set of nodes consists of users whose profiles are publicly available. A large database containing such
names found at drupal.org/project/namedb, contains 129,036 names listed in alphabetical order. We
then use Facebook–API to obtain user–ids with similar names. We were able to retrieve 25,556,963 user–ids
from which we considered only 881,549 users who maintain entirely public profiles.

We focused our crawling in the period of July 26th, 2011, to August 19th, 2011. Our assumption was
that a good number of crawled users in this period were on vacation. In this regard, they were presumably
uploading live content of their daily activities in a bursty manner throughout the day. Also, live content
regarding vacation is invariably deemed attractive for followers (i.e., friends, subscribers etc.) to either
“like” or comment on. Table 2 depicts the overall outcome of this specific crawling exercise that yielded a
sizeable dataset of 2,437 albums and 75,370,629 posts. Apart from the live content, we also crawled their
full history.

Table 2: Facebook Dataset
Names Ids Found Public Users Albums Posts
129,036 25,556,963 881,549 2,437 75,370,629

Figure 3 presents the distribution of the posts made by users in this use-case. This distribution has a
mean of 85.98, standard deviation of 182.48, skewness of 4.10, kyrtosis of 23.79 and follows a power-law.
Evidently, the rates at which users generate new content vary significantly. The overwhelming majority of
users does not create much content and they infrequently use Facebook; some may even have deactivated
their accounts. On the other hand, a small portion of users produce content at a high-rate. The Frontier
component of SocWeb in conjunction with the Scheduler can effectively monitoring the change–rate metric
in order quantify content differentiations. Responding to such observations, users with high content creation
rates are placed to high–priority queues.

Fig. 3: Histogram of posts made by users

To further quantify the effectiveness of the change-rate metric, we measure its fit on the retrieved dataset
of Table 2. In our setup, we sort the retrieved posts in ascending creation time. Then, for each user, we
capture the change rate of his/her posts at any point in time while processing the sorted dataset in a streaming
fashion. As soon as a new user post shows up in the stream, we use the current change–rate to measure
whether it could accurately predict or not the creation time of the new post. This strategy is reflected in
the decision making process of our SocWebCrawlers. In this context, we are only interested in establishing
mis-predictions as yield of our under-estimation of the creation times of posts. Over-estimating the creation
time of posts, while it is considered a misbehavior in general, in our setup is partially alleviated by deciding
a time window of maximum expected change (i.e. the Scheduler decides to re-crawl an object if this time
window has elapsed). In this use-case, we have empirically set this time window to 1 month. In Figure
4a, we show the distribution of posts and the fraction of mis-predictions yielded by the change-rate metric
per month, beginning between April 2005 and some time in August 2012. An interesting property of this



12

distribution is the growth of Facebook in terms of posts per month. Thus, the choice of the scaling factor
of the change-rate metric introduced in Section 4 can adequately fit this kind of increasing OSN behavior.
Finally, our analysis shows that the amount of mis-predictions as a percentage of posts on a monthly basis
remains significantly low as Figure 4b indicates.

(a) Posts and mispredicted posts(#posts that exceeded the
estimated time of creation) per month

(b) Error rate percentage

Fig. 4: Facebook’s growth and SocWeb’s adaptivity

5.3 Aggregated Social World

Figure 5 shows how Facebook users create a post on which they upload content from Youtube. The objective
of this use-case is to demonstrate that SocWeb readily facilitates fetching Youtube information pertinent
to Facebook posts. Offering aggregate information has been successfully employed in event processing
before [4]. When more multiple OSNs are present, information aggregation calls for communication across
social networks, a function that SocWeb can readily offer. Here, we also report on SocWeb performance as
the number of SocWebCrawlers increases and discuss the quality of retrieved data.

Fig. 5: An example of intra-social connections.

We initiate SocWeb by following the same steps as in the Facebook Spider case; object and link types of
interest are shown in Figure 5. By exploiting SocWeb Model’s semantics, we formally define a Facebook
post to be connected to Youtube video(s) as sc-link(s). Further, we let SNAPI trigger requests via Youtube’s
API depending on the content of Facebook post by also applying constraintes (i.e. post[‘‘type’’] =
‘‘video" && is youtube video(post[‘‘link’’])). As social networks inherently display power-



13

law distributions (i.e. Figure 1), we select 10,000 users from our first experiment, whose posts follow the
same skewed distribution, as node-seeds to commence crawling.

Every object that undergoes crawling spends time passing through the various SocWeb components in-
cluding the fetcher handlers, clients, dump pool and finally the dumpers. The expended time for such trips
largely depends on the workload of SocWeb and the available clients to perform the crawling step. The
major overhead though comes from the time required to fetch each object; in our experiments, we estab-
lish that an average 84% of the time goes towards fetching objects when all VMs are in use. Moreover,
social network providers penalize the concurrent access of their graphs. Thus, incrementing the number
of SocWebCrawlers employed doesn’t necessarily reciprocate in terms of the volume of data retrieved. In
this regard, we report on the scalability of SocWeb in terms of data returned to the SocWeb server from the
SocWebCrawlers in the unit of time (bytes per second-bps) as well as the average bps retrieved from each
social network provider as a function of the SocWebCrawlers employed.

Figure 6a shows the average bps rates obtained. Youtube’s response rate is uniformly higher than that
of Facebok although no major optimization (i.e., batch requests) was included in our implementation to
the Facebook’s API. Both providers show consistency to their response rates; however after 3 concurrent
connections, throttling was encountered. Moreover, when the number of SocWebCrawlers increased, the
OSN-provider limitations became apparently severe.

(a) Facebook and Youtube response rate (b) SocWeb’s scalability

Fig. 6: Quantitative analysis of scale

Figure 6b shows the average bps-rate extracted by SocWebCrawlers as the number of deployed SocWe-
bCrawlers increases. The OSNs-imposed limitations for more than 3 concurrent connections affect the
obtained bps-rates. In our experiment, no NAT-pipe saturation occurred and contention was sufficiently
low; as far as the degradation of the stream rate (bps) achieved in the dumpers was only 2% of the average
stream rate of SocWebCrawlers.

It is also worth pointing out some limitations we encountered as OSNs apparently impose constraints on
(possibly) IPs, Application IDs and/or volume of data fetched. In the early stages of our experimentation,
SocWeb faced an outage of more than 1 day due to the above limitations whose nature appeared to be
dynamic. By taking into account the history log, we were able to guide our Scheduler to a more productive
fetching cycle by following a more polite etiquette and building on our experience regarding the specific
times of the day in which we could launch more voluminous crawling activities.

6 Conclusions

In this paper we present SocWeb, a distributed crawling system that helps monitor multiple OSNs simul-
taneously. We introduced the SocWeb Model to formally define not only every participating OSN bit also
existing and developing intra-connections among them. We discuss problems that emerge when applications
communicate with with social network providers in the presence of multiple OSNs and suggest a generic



14

API, SNAPI, to alleviate them. Using the semantics of SocWeb Model and the SNAPI we outline the key
design choices for our monitoring system based on SocWebCrawlers and SocWebCrawlers. We demonstrate
the utility of SocWeb while experimenting with Facebook and Youtube and working on two use-cases.

References
1. S. Asur, B.A. Huberman, G. Szabo, and C. Wang. Trends in Social Media. In 5th Int. AAAI Conf. on Weblogs and

Social Media, Barcelona, Spain, February 2011.
2. L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group Formation in Large Social Networks: Member-

ship, Growth, and Evolution . In Proc. of the 12th ACM SIGKDD Conf., Philadelphia, PA, October 2006.
3. Z. Bar-Yossef, A. Berg, S. Chien, J. Fakcharoenphol, and D. Weitz. Approximating Aggregate Queries about Web

Pages via Random Walks. In Proc. of 26th Int. VLDB Conf., pages 535–544, Seoul, Korea, September 2006.
4. H. Becker, D. Iter, M. Naaman, and L. Gravano. Identifying Content for Planned Events across Social Media Sites.

In Proc. of 5th ACM Int. Conf. on WSDM, Seattle, WA, February 2012.
5. C. Budak, D. Agrawal, and A. El Abbadi. Structural Trend Analysis for Online Social Networks. Proc. of the

VLDB Edowment, 4(10):646–656, July 2011.
6. S.A. Catanese, P. De Meo, E. Ferrara, G. Fiumara, and A. Provetti. Crawling facebook for social network analysis

purposes. In Proc. of the Int. Conf. on Web Intelligence, Mining and Semantics (WIMS ’11), Songdal, Norway,
May 2011.

7. D. Horng Chau, S. Pandit, S. Wang, and C. Faloutsos. Parallel crawling for online social networks. In Proc. of the
16th Int. Conf. on WWW, pages 1283–1284, Banff, Canada, May 2007.

8. J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. In Proc. of the 2000 ACM SIGMOD
Conf., pages 117–128, Dallas, TX, May 2000.

9. J. Cho and H. Garcia-Molina. Parallel Crawlers. In Proc. of the 11th Int. Conf. on WWW, pages 124–135, Honolulu,
HI, May 2002.

10. E.A. Rundensteiner D. Wang and R.T. Ellison. Active Complex Event Processing Over Event Streams. Proc. of
the VLDB Endow., 4(10):634–645, July 2011.

11. W. Dou, K. Wang, W. Ribarsky, and M. Zhou. Event Detection in Social Media Data. In IEEE VisWeek Workshop
on Interactive Visual Text Analytics, Seattle, WA, October 2012.

12. M.H. Ali et al. Microsoft CEP Server and Online Behavioral Targeting. Proc. of the VLDB Endow., 2(2):1558–
1561, August 2009.

13. M. Gjoka, M. Kurant, C.T. Butts, and A. Markopoulou. Walking in Facebook: a Case Study of Unbiased Sampling
of OSNs. In Proc. of the 29th INFOCOM Conf., San Diego, CA, March 2010.

14. M.R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork. On Near-uniform URL Sampling. In Proc. of the
9th Int WWW Conf., Amsterdam, The Netherlands, May 2000.

15. P.G. Ipeirotis, E. Agichtein, P. Jain, and L. Gravano. To search or to crawl?: Towards a query optimizer for text-
centric tasks. In Proc. of the ACM SIGMOD Cong., pages 265–276, Chicago, IL, June 2006.

16. B. Kahle. Preserving the Internet. In Scientific American. Nature Publishing Group, March 1997. www.
sciamdigital.com.

17. J. Leskovec, K.J. Lang, and M. Mahoney. Empirical Comparison of Algorithms for Network Community Detec-
tion. In Proc. of the 19th Int. Conf. on WWW, pages 631–640, Raleigh, NC, April 2010.

18. C.D. Manning, P. Raghavan, and H. Schutze. Introduction to Information Retrieval. Cambridge University Press,
New York, NY, 2008.

19. M. Naaman, J. Boase, and C.-H. Lai. Is It Really About Me?: Message Content in Social Awareness Streams.
In Proc. of ACM Conf. on Computer Supported Cooperative Work (CSCW ’10), pages 189–192, Savannah, GA,
February 2010.

20. A. Ntoulas, P. Zerfos, and J. Cho. Downloading Textual Hidden Web Content Through Keyword Queries. In Proc.
of the 5th ACM/IEEE JCDL Conf., Denver, CO, June 2005.

21. M. Rabinovitch and O. Spatscheck. Web Crawling and Replication. Addison Wesley, 2001.
22. K. Punera S. Chakrabarti and M. Subramanyam. Accelerated focused crawling through online relevance feedback.

In Proc. of the 2002 ACM WWW Conf., pages 148–159, Honolulu, Hawaii, USA, 2002.
23. A. Sadilek, H. Kautz, and J.P. Bigham. Finding your Friends and Following Them to Where You Are. In Proc. of

the 5th ACM Int. Conf. on WSDM, pages 723–732, Seattle, WA, February 2012.
24. T. Sakaki, M. Okazaki, and Y. Matsuo. Earthquake Shakes Twitter Users: Real-time Event Detection by Social

Sensors. In Proc. of the 19th Int. Conf. on WWW, pages 851–860, Raleigh, NC, April 2010.
25. V. Shkapenyuk and T. Suel. Design and Implementation of a High-performance Distributed Web Crawler. In Proc.

of the 18th IEEE ICDE Conf., pages 357–368, San Jose, CA, February 2002.
26. E. Wu, Y. Diao, and S. Rizvi. High-Performance Complex Event Processing Over Streams. In Proc. of the 2006

ACM SIGMOD Conf., pages 407–418, Chicago, IL, June 2006.


