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ABSTRACT

Data lineage is a fundamental type of information that describes
the relationships between input and output data items in a work-
flow. As such, an immense amount of data-intensive applications
with logic over the input-output relationships can be expressed
declaratively in lineage terms. Unfortunately, many applications
resort to hand-tuned implementations because either lineage sys-
tems are not fast enough to meet their requirements or due to no
knowledge of the lineage capabilities. Recently, we introduced a set
of implementation design principles and associated techniques to
optimize lineage-enabled database engines and realized them in our
prototype database engine, namely, Smoke. In this demonstration,
we showcase lineage as the building block across a variety of data-
intensive applications, including tooltips and details on demand;
crossfilter; and data profiling. In addition, we show how Smoke
outperforms alternative lineage systems to meet or improve on
existing hand-tuned implementations of these applications.
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1 INTRODUCTION

Data lineage describes the relationship between individual input
and output data items of a workflow, and is a fundamental type
of information for any application that requires an understanding
of the input-output derivation process. As such, data lineage can
be pertinent across applications of several domains including de-
bugging, data integration, auditing, security, network diagnostics,
provisioning, explaining query results, data cleaning, iterative ana-
lytics, and interactive visualizations. This ubiquity of lineage across
domains highlights the importance of lineage-enabled systems.

The core problem that lineage systems need to address is to
capture lineage at the moment of workflow execution with the goal
to streamline future queries over lineage. Consider the following:

Example 1. Figure 1 shows two views V1 and V2 generated from
queries over a database. Linked brushing is an interaction technique
where users select marks (e.g., circles) in one view, and marks derived
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Figure 1: Two workflows generate visualization views V1 and V2.
Then, a linked brushing interaction highlights in red marks in V2
that share the same input records with selected marks of V1. This
interaction can be expressed as a backward query from selected cir-

cles in V1 followed by a forward query to highlight the bars in V2.

from the same records are highlighted in other views. This functional-
ity can be expressed with lineage queries (i.e., as a backward query
from selected circles in V1 to input records followed by a forward
query to highlight bars in V2) and optimized by a lineage system.

Unfortunately, current lineage systems incur either high lineage
capture overhead, or high lineage query processing costs, or both.
As a result, applications that could be expressed in lineage terms
resort to manual implementations. For instance, the linked brushing
in our example is typically implemented manually to meet inter-
active latency requirements (e.g., <150ms). Understanding this dis-
crepancy is both important—manually implementing lineage-based
features for increasingly complex applications is error-prone and
results in applications that are hard to maintain and optimize—and
bewildering—why are application developers forced to manually
compile lineage-based logic into physical implementations?

Our recent work [20, 21] showed how four simple design princi-
ples enable fast lineage capture and lineage query performance in an
in-memory database engine. Our prototype, namely, Smoke, instru-
ments physical operators to tightly integrate lineage capture logic
within operator execution logic and uses write-efficient indexes to
store lineage (tight integration principle). Furthermore, Smoke pig-
gybacks lineage in data structures constructed and reused during
normal execution (i.e., hash tables) for faster lineage capture (reuse
principle). In addition, if queries that process lineage are known
up-front, Smoke enables optimizations that prune captured lineage
(a-priori knowledge principle) and push the logic of such queries
into the lineage capture phase (lineage consumption principle).

The goal of our demonstration is to showcase the potential of
performant lineage-enabled database systems towards the optimiza-
tion of data-intensive applications. To this end, we will showcase a
variety of popular user-facing applications with challenging perfor-
mance requirements (i.e., tooltips and details on demand, crossfilter,
and interactive data profiling) by first expressing them in lineage
terms. Per application, we present head-to-head comparisons with
state-of-the-art lineage systems and existing hand-tuned implemen-
tations to demonstrate the performance benefits of using Smoke.
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id qty $

j1 1 6 40

j2 1 1 40

j3 2 9 5
id qty

b1 1 6

b2 1 1

b3 2 9

id $

a1 1 40

a2 2 5 id sum

o1 1 280

o2 2 45
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Figure 2: Input, intermediate, and output relations for query

γid,sum(qty×$)(A ▷◁ B). Lines signify edges of the lineage (or prove-

nance) graph and colored by output record.

2 BACKGROUND AND SMOKE OVERVIEW

To provide background on lineage challenges; lineage systems;
Smoke; and lineage applications, we use the example in Figure 2.

Figure 2 illustrates a relational workflow consisting of a natu-
ral join between tables A and B followed by grouping on id and
aggregating on sum(qty · $). Lineage represents the dependencies
between input and output records for each operator [4], illustrated
as lines. The set of lines constitutes the edges in the lineage (or
provenance) graph of the workflow. Lineage queries recursively fol-
low these pointers from workflow output to source input records (a
backward() query) or vice versa (a forward() query). For instance,
the green lines show that o1 depends on a1 twice and once each
for b1 and b2; the orange lines show that b3 contributes to o2 once.
The core challenge of a lineage system is to capture (or materialize)
a representation of the lineage graph, without slowing down the
workflow, in order to answer lineage queries quickly.

State-of-the-art techniques and lineage systems can be classified
as lazy or eager. Lazy [5, 7] approaches are based on the observation
that O.id in the output relation directly corresponds to the id of
the input records it depends upon. In other words, in some cases
backward lineage queries can be rewritten as relational queries over
input relations. For example, backward(o1, B) can be rewritten
as σB.id=o1 .id(B). Lazy approaches benefit from not materializing
the lineage graph during the workflow execution. However, the
rewritten lineage queries are either slow or require physical design
options (i.e., indexes and views) to be pre-built. In addition, rewrit-
ing in many cases is not possible without additional overheads if
the workflow is non-invertible (e.g., if id was not projected in O).

Eager approaches materialize the lineage graph during workflow
execution and can be further classified as logical or physical. Logical
approaches [1, 3, 6, 15] rewrite the workflow into either (a) one
that annotates each output record with its lineage information by
extending the output schema (e.g., O’s schema is extended with the
full or partial schemas of A and B) or (b) to multiple queries that
generate lineage relations to store tuple-level input-output relation-
ships (e.g., each operator’s lines in Figure 2 is a separate relation).
Finally, physical approaches re-implement operators to write input-
output relationships to an external lineage system [8–10, 23]. Each
eager approach answers lineage queries with a different technique
depending on the induced data model for the lineage graph.

Although eager approaches typically execute lineage queries
faster than lazy approaches, their capture overhead can severely
impact workflow execution performance [21], often by orders of
magnitude. Logical approaches are affected by the relational lin-
eage graph representation, extra indexing and projection steps,
and expensive joins. Physical approaches are affected by per-arrow

communication costs with the lineage system, write-inefficient in-
dexes, and the lack of co-optimization of the lineage capture with
the query execution. Finally, many applications use the output of
lineage queries as inputs to further analyses and queries. For such
applications, it is not clear how to take advantage of this apriori
knowledge, if available, with either physical or logical approaches.

As a result, while lineage has the potential to express and op-
timize applications across a vast amount of domains (e.g., from
auditing to data cleaning to explaining outliers), the performance
overheads of existing approaches deter the direct use of lineage
query processing systems in practice. This effect is prevalent in data-
intensive interactive applications (e.g., interactive visualizations
and profiling) where developers resort to hand-tuned implementa-
tions to meet their demanding interactive latency requirements.

To this end, we introduced Smoke [20, 21] as a lineage-enabled
query engine that applies four design principles (Section 1) to avoid
the shortcomings of alternative approaches and meet the perfor-
mance requirements of data-intensive lineage applications. Smoke
improves upon logical and physical approaches by storing lineage
in read- and write-efficient indexes to avoid relational encodings
of the lineage graph, extra indexing steps, and inefficient indexes.
Furthermore, Smoke introduces a physical algebra that tightly inte-
grates lineage capture and workflow execution to avoid API calls,
extra projection steps, and expensive joins. Finally, Smoke lever-
ages knowledge over possible future lineage queries to (a) prune or
partition lineage indexes or (b) materialize views during workflow
execution with the goal to streamline these lineage queries.

3 DEMONSTRATION

The purpose of our demo is to showcase 1) the variety of applica-
tions that fast lineage systems can express and support and 2) that
the performance benefits of careful lineage capture and query de-
signs in Smoke outperform alternative lineage systems and can be
on par with or improve on hand-tuned implementations. To do so,
our demonstration includes three interactive applications: tooltips
and details-on-demand (Section 3.1), crossfilter (Section 3.2), and
interactive data profiling (Section 3.3). Next, along with their de-
scription, we discuss how participants can interact with them and
how they are live-benchmarked to show performance differences.

3.1 Tooltips and Details-On-Demand

Visualizations often use tooltips to show additional attributes of
a visualized output record, and use details-on-demand to render
the input records that contributed to a mark in the visualization.
For instance, Figure 3 shows our interface for a visualization that
executes and renders each output record from TPC-H Q1 as a bar in
a barchart; the visualization process is also modeled as a relational
workflow [24]. The bar height corresponds to one of Q1’s 8 aggre-
gation functions, and users can hover over any bar to see a tooltip
with the full output record. Furthermore, users can click on a bar
to see the input lineitem records that computed the bar’s value in
the bottom right table. Finally, our interface shows the workflow
code and plan to better explain the process to participants.
Techniques. We will let participants use the application using
Smoke-based, lazy, and eager approaches as described in Section 2.
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Figure 3: Tooltips and details-on-demand interface.

Benchmark. This application supports barchart visualizations for
TPC-H queries Q1, Q3, Q10, and Q12. The benchmark compares
the alternative lazy and eager techniques (Section 2) with Smoke
in terms of initial visualization load times as well as interaction
response times for simulated tooltip and details-on-demand inter-
actions for every bar in each query’s bar chart visualization.

3.2 Crossfilter

Crossfilter is an important interaction technique to help explore
correlated statistics across multiple visualization views. In the com-
mon setup, multiple group-by queries along different attributes are
each rendered as, say, bar charts. When the user highlights a bar
(or set of bars) in one view, the other views update by considering
only the subset that contributed to the highlighted bar(s).

As the initial queries are group-by aggregations, recent research
proposes variations of data cubes to accelerate crossfiltering [12,
13, 17]. However, it can take minutes or hours to construct data
cubes. Such offline time is not available if the user has loaded a new
dataset (e.g., into Tableau) and wants to explore as soon as possible.
This has recently been referred to as the cold-start problem for
interactive visualizations [2]. To address this problem we can cast a
crossfilter interaction as a backward query from highlighted bar(s)
to the input dataset followed by computing the group-by queries on
the traced input subset (i.e., on the output of the backward query).

Our demonstration aims to show how lineage-based techniques
canmake use of the lineage capture and query capabilities of Smoke
to address this problem. Participants will interact with the interface
in Figure 4, which renders the Ontime [16] dataset using 6 visual-
ization views of group-by COUNT aggregations on <state>, <date>,
<departure delay>, <carrier>, <year>, and <month>. As a crossfilter
example, in Figure 4 we restrict the year range to [2005-2008] and
the views are updated by considering only the tuples in this range.
Techniques. We compare four techniques: Lazy uses the lazy ap-
proach (i.e., rewrites the backward lineage query as a selection over
the input relation using a full-table scan) and re-executes the group-
by queries on the lineage subset. BT uses the indexes of Smoke to
identify the lineage subset, but re-runs the group-by queries (which
requires re-building group-by hashtables). BT+FT also captures
forward lineage indexes and uses them to incrementally update the
visualized views and avoid rerunning the group-by queries. Finally,
the Data Cube technique uses our hand-optimized version of
existing visualization-optimized cube constructions [12, 13].

Figure 4: Crossfilter interface.

Benchmark. The benchmark will simulate crossfilter interactions
in each of the visualization view and compare the time to render
the initial visualization (to measure lineage capture overheads) as
well as individual and cumulative interaction response times.

3.3 Interactive Data Profiling

Data profiling studies the statistics and quality of datasets (e.g.,
constraint checking; data type extraction; or key identification),
and interactive data profiling [14] allows users to interactively pro-
file and examine the reasons for these results. Recent systems in-
clude extensible data profiling platforms (e.g.,Metanome [18]), data
wrangling and cleaning tools (e.g., Trifacta Wrangler, Profiler [11])
and user-guided functional dependency miners (e.g., UGuide [22]).

In such systems, profiling results can be viewed as the results of
data-processing workflows and the interactive profiling function-
ality corresponds to inspecting raw (or summarized) inputs that
contributed to these output statistics. For instance, UGuide mines
datasets for functional dependencies (FDs) and presents violations
of candidate FDs to the user to validate. Similarly, data cleaning
applications typically render summary statistics as bar charts or
heat maps [11] that the user can interactively inspect.

In this application, we provide an interactive interface for a com-
mon set of interactive profiling tasks. These include evaluating
common constraints (i.e., functional dependency, uniqueness, and
mismatch constraint checks), rendering statistics over correspond-
ing constraint violations, and generating previews of the violating
records. These constraints have been shown to be expressible as
relational workflows and, as such, the interactive profiling tasks of
this application can be expressed in lineage terms.

For instance, checking an FD A→B over a table T will output
the distinct values a ∈ T.A that violate the FD. It can be expressed
as the query QCD = SELECT A FROM T GROUP BY A HAVING
COUNT(DISTINCT B) > 1. Interactive data profiling further requires
identifying and connecting the input tuples {t ∈ T | t.A = a} with
each violating value a. These inputs can then be used to collect
statistics over violations or prompt users for cleaning purposes.
The key observation is that these inputs are precisely the backward
lineage for the output value a of the FD checking query.

Figure 5 shows the interface that participants will use to per-
form interactive data profiling. On the top, the left panel is
used to select functional dependency, uniqueness, or mismatched
value constraints to check. Here the user has selected the FD
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Figure 5: Interactive data profiling interface.

zip_code→city. Themiddle panel renders a summary of the check
results in terms of the zipcodes that have more than one city value.
Selecting a violation updates the right panel, which shows the distri-
bution of city values for that zipcode, and the bottom panel, which
renders a table with the individual records that contributed to the
violations. This table is further restricted by selecting a subset of
city values in the top right bar chart. Each interaction in the middle
and right panels can be expressed using a backward lineage query.
Evaluating functional dependencies. There are two approaches
to translating a functional dependency A→B into relational work-
flows. The first straightforward approach (CD) is described above as
QCD, and capturing backward and forward lineage indexes lets the
application generate violation statistics and previews. The second
approach (UG) is based on an optimization inUGuide’sMetanome-
based implementation. Through correspondence with the authors,
it turns out that the implementation effectively simulates lineage
indexes, and thus we describe it in lineage terms. We first evaluate
Qug,attr=SELECT attr FROM T GROUP BY attr HAVING COUNT(1)
> 1 for the attributes in the FD attr∈ {A, B}, and capture lineage.
We backward trace each a ∈ Qug,A to the input T, and forward trace
each lineage record to Qug,B. If more than one distinct b values are
in the forward traced output, then the FD is violated, and the lin-
eage indexes connect the violation with the tuples that contributed
to the violation. CD is typically faster than UG for the evaluation
of individual FDs; UG is faster than CD for batch evaluation of FDs.
Uniqueness and mismatches. To check uniqueness for an at-
tribute attr, we simply execute Qug,attr from above to identify those
that are not unique. The backward lineage for an output record
corresponds to the input records that contribute to the uniqueness
violation. This also illustrates how lineage from the same query can
be shared across data profiling algorithms. Finally, mismatches are
expressed with predicates over the input table that should evaluate
to true but do not. Such constraints are commonly used to identify
NULL values and domain or type violations.
Techniques. For FDs, we compare Smoke using both approaches
(CD and UG) with UGuide, which implements the UG approach.
This is to show that Smoke can improve the performance of hand-
tuned implementations. For uniqueness and mismatch checks we
compare Smoke with eager and lazy approaches.
Benchmark. This application uses the Physician [19] dataset (2.2m
tuples, 0.6GB) to run the interactive data profiling techniques above.
The application is pre-populated with four FDs, four uniqueness
tests, and four mismatch constraints. The benchmark will simulate
the user clicking on each of the constraints and then clicking each
of the output violations (top middle and right panels in Figure 5).
We will report the cumulative performance in real time for the
alternative techniques against the Smoke-based approaches.

4 CONCLUSIONS

This demonstration highlights the potential of fast lineage-enabled
relational systems towards the optimization of data-intensive appli-
cations. We described how interactive visualizations and interactive
data profiling are expressible as a combination of relational work-
flows and fine-grained lineage queries. Furthermore, we described
the design principles behind our in-memory relational execution
engine called Smoke that both captures lineage with low overhead
and supports lineage queries at interactive speeds. Our demonstra-
tion shows that Smoke outperforms alternative lineage systems and
is on par with or improves on the performance of hand-optimized
alternatives. Participants can experience first-hand the power of
application specification using declarative lineage statements.
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