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ABSTRACT

An enterprise information worker is often aware of a few example
tuples that should be present in the output of the query. Query
discovery systems have been developed to discover project-join
queries that contain the given example tuples in their output. How-
ever, they require the output to exactly contain all the example tu-
ples and do not perform any ranking. To address this limitation,
we study the problem of efficiently discovering top-k project join
queries which approximately contain the given example tuples in
their output. We extend our algorithms to incrementally produce
results as soon as the user finishes typing/modifying a cell. Our
experiments on real-life and synthetic datasets show that our pro-
posed solution is significantly more efficient compared with apply-
ing state-of-the-art algorithms.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—query processing, tex-
tual databases

Keywords

SQL query discovery; example spreadsheet; relevance ranking

1. INTRODUCTION

Modern data warehouses usually have large and complex data
schemas. A decision-support query on such a data warehouse typ-
ically touches a small portion of the schema. However, to express
such a query, the enterprise information worker needs to compre-
hend the entire schema and locate the schema elements of interest.
This is extremely burdensome for most users.

Query discovery has recently been proposed as a solution to this
problem [18, 22]. An enterprise information worker is often aware
of a few example tuples that should be present in the output of a
query. These example tuples together form an example spread-
sheet, one per each row. Previous systems discover project-join
queries (PJ queries) that contain the given example tuples, or the
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Figure 1: A sample database

example spreadsheet, in their output [18, 22]. This liberates users
from understanding the entire schema. We illustrate this below.

EXAMPLE 1. Consider a database instance of a TPC-H sub-
schema in Figure 1. The database contains information about cus-
tomers, the countries they live in, the orders they placed, the parts
purchased in each order, the suppliers of those parts, and the coun-
tries the suppliers are based in. The arrows point in the direction of
foreign-key to primary-key relationships between pairs of relations.

Suppose the user wants to discover the PJ query that outputs all
customers and, for each customer, outputs her name, the name of
the country she lives in, and the names of the parts she ordered. The
PJ query and its output is shown in Figure 2(b)-(i). She is aware
of an example spreadsheet of three example tuples that should be
present in the query result: a customer named ‘Rick’ (does not
know his full name) who lives in "USA’ and ordered an ‘Xbox’, a
customer named ‘Julie’ (not sure where she lives) who ordered an
‘iPhone’ and a customer named ‘Kevin’ who lives in ‘Canada’ (not
sure what he ordered). She can provide this information by typing
these example tuples into an example spreadsheet (in forms of, e.g.,
Microsoft Excel and Google Sheets) as shown in Figure 2(a). Note
that some cells in the example spreadsheet can be empty. The sys-
tem returns the desired PJ query in Figure 2(b)-(i) as it contains
all the example tuples in its output relation. The example tuples
and corresponding tuples in the output are shaded with the same
color. The system maps the columns of the example spreadsheet to
the projected columns in the query for users to better understand
the PJ query discovered; the latter are labeled by the name of the
corresponding column in the example spreadsheet (A, B and C).

One main limitation of these previous systems is that they re-
quire the output relations of PJ queries to exactly contain all the
example tuples and do not perform any ranking. As a result, they
cannot i) tolerate errors that the user might make while providing
the example tuples and ii) perform IR-style relevance ranking.
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Figure 2: (a) Example spreadsheet (b) PJ queries and their outputs

e Tolerating errors: Suppose the user wants to discover the query
that outputs all orders and, for each order, outputs the name of clerk
who processed the order, the country of the customer who placed
the order, and the parts in the order. She provides an example tuple:
a clerk named ‘Rick’ processed an order from a customer in ‘USA’,
and the order consisted of the part ‘Xbox’. However, it is not ‘Rick’
but another clerk ‘Julie’ who processed that order. The desired
PJ query and its output is shown in Figure 2(b)-(iii). We say that
she has made a relationship error with respect to that PJ query as,
although ‘Rick’ is a correct domain value (he is indeed a clerk), the
provided relationship of ‘Rick’ with ‘USA’ and ‘Xbox’ is wrong.

The user can also make domain errors. Suppose the user wants to
discover the query that outputs all suppliers and, for each supplier,
outputs its name, the country it is based in and the parts it supplies.
She then provides such an example tuple: a supplier named ‘Rick’
based in ‘USA’ who supplies the part ‘Xbox’. The desired PJ query
and its output is shown in Figure 2(b)-(ii). There is a domain error
with respect to the PJ query as there is no supplier named ‘Rick’.
e Performing relevance ranking: Suppose there is a supplier with
name ‘Welton USA” who supplies Xbox One. Consider the first
example tuple in Figure 2(a). In addition to the the PJ query shown
in Figure 2(b)-(i), some other PJ queries may also contain that ex-
ample tuple in their outputs (e.g., a customer ‘Rick Miller’ who
ordered ‘Xbox One’ which is supplied by ‘Welton USA’). The for-
mer is more relevant, as country name ‘USA’ is a better match to
‘USA’ in the example tuple than supplier name ‘Welton USA’.

To address the above issues, in this paper, we propose to discover

not only the PJ queries which exactly contain the given example
tuples, or the example spreadsheet, in its output but also those that
partially contain them. We compute a relevance score for each PJ
query that quantifies how well its output contain the example tuples
and return PJ queries with the top-k highest scores.
Technical challenges. In a large real-world database, there are nu-
merous ways of projecting and connecting tables and rows through
foreign keys. So there could be millions of PJ queries that partially
contain the user-specified example tuples in their output relations.

The first technical challenge is to develop a scoring model that
allows us to tolerate relationship/domain errors and quantifies how
well the user-given example spreadsheet is contained in the output
of PJ queries, in order to perform a relevance ranking of them.

Customer Lineltem

cemidoidarid
/ Nation B /Part C

Figure 3: Common sub-expressions (sub-PJ queries) in Figure 2(b)

The second and the main technical challenge is to compute the
top-k PJ queries efficiently. One important application of our sys-
tem is to provide online data-search and discovery services in data
processing tools, e.g., in Excel Online [3] and Google Sheets [1].
While a user may spend a significant amount of time in specifying
the query, i.e., the example spreadsheet in our system, it has been
shown that, in the context of online search, query latency is criti-
cal to user satisfaction. Increases in latency directly lead to lower
utilization and higher rates of query abandonment [7, 16].
Overview of our solution and key insights. In this paper, we
adapt a candidate-enumeration and evaluation framework, which
is also used in keyword search systems for relational databases [5,
12, 15]. In the first step, called PJ query enumeration, we enumer-
ate all candidate PJ queries that are potential answers for a user-
specified example spreadsheet. The only requirement for these can-
didate PJ queries, called minimality, is that no table or projection
column can be dropped without “losing” in relevance score. In
the second step, called PJ query evaluation, we execute candidate
PJ queries, and compare their output relations with the example
spreadsheet to calculate their scores. A naive solution is to execute
all the candidates and output the top-k with the highest scores.

It is important to note that the first step is very efficient, as it
is pursued on the schema-level and no join is required. So it con-
stitutes a negligible fraction of the overall query processing time.
The second step, evaluating scores of PJ queries, is expensive (as
it requires joins). As our scoring model quantifies how well the
user-given example spreadsheet is contained in the output of join
and projection, we need to at least examine rows in the join output,
which may partially contain an example tuple. So this challenge
translates to that of evaluating as few PJ queries as possible. The
naive solution, evaluating all the candidates, is hence infeasible (we
will compare it with the approaches we propose in Section 6).

Although calculating the exact relevance scores is expensive,
we derive their upper bounds in a much more efficient way (with-
out executing any join). Inspired by the work on multi-step kNN
search [20], we evaluate PJ queries in decreasing order of their up-
per bound scores, and terminate with the top-k as soon as the max
upper-bound score of un-evaluated queries is no higher than the
current top-k score. This approach is referred to as BASELINE.

Our main insight to improve BASELINE is that there are many
common sub-expressions, called sub-PJ queries, that are shared
among the PJ queries. For example, the PJ queries (i) and (iii) in
2(b) share the two sub-PJ queries shown in Figure 3. If we can com-
pute the output relations of these sub-PJ queries once, and cache
(or memorize) them in memory, we can re-use them multiple times
later when we evaluate queries containing these two sub-PJ queries.
This reduces the overall evaluation cost significantly.

A novel component, called caching-evaluation scheduler, in our
system determines, for the set of candidate PJ queries, i) the order
following which these PJ queries will be evaluated; ii) output re-
lations of which sub-PJ queries to be cached; and iii) when to put
the output relations into the cache and when to remove them, as we
have only a budgeted amount of memory. There are two aspects in
the objective of this component: one is to evaluate as few PJ queries
as possible to discover the top-k; and the other one is to utilize the
cached output relations as much as possible to reduce the overall
evaluation cost. We will formalize the task of this component and
refer to it as caching-evaluation scheduling problem.



Contributions and organization. We have built a spreadsheet-
style search system (called S4) to tackle the challenges based on
the above insights. Our contributions are summarized as follows:
e We introduce a novel scoring model for a PJ query w.r.t. an ex-
ample spreadsheet. It allows us to tolerate both types of errors and
perform IR-style relevance ranking of PJ queries (Section 2).

e We introduce our system based on a candidate-enumeration and
evaluation framework, and we enable a flexible caching-evaluation
component in the system architecture (Section 3).

o To tackle the technical challenges of our task, we first introduce
some basic operators in our system and propose BASELINE strat-
egy. It aims to evaluate as few PJ queries as possible (Sections 4).
e We then introduce our cache-aware optimization techniques to
improve BASELINE. We propose the caching-evaluation schedul-
ing problem with the objective of minimizing the overall evalua-
tion cost. We prove it is NP-complete. Several novel heuristics are
proposed to solve this problem, and the resulting strategy is called
FASTTOPK. We can prove that FASTTOPK has performance guar-
antee in the worst-case in two aspects: i) it does not evaluate too
many PJ queries in addition to the necessary ones; and ii) the gap
between the evaluation cost introduced by FASTTOPK strategy and
the optimal evaluation cost is bounded in the worst case. We also
introduce how to extend our system and strategies to handle incre-
mental updates on the example spreadsheet (Section 5).

e We perform experimental study on real-life and synthetic datasets
to evaluate the efficiency of our approaches, together with a user
study to evaluate the effectiveness of our scoring model (Section 6).

2. SYSTEM TASK AND SCORING MODEL

We first present our data model, and formally define our system
task of discovering top-k project-join queries for a given example
spreadsheet. Then, we present the model to compute the relevance
score of a project-join query w.r.t. an example spreadsheet.

2.1 Data Model

We consider a database D with m relations R1, Ro,--- , Rp,.
For a relation R, let R[i] denote its ™ column, and col(R) =
{R[i]}i=1,...|co1(r)| denote the set of columns of R. For a tuple r
in R, denote r € R and let r[4] be its cell value on the column RJ[i].

Let G(V, &) denote the directed schema graph of D where the
vertices in ) represent the relations in D, and the edges in £ repre-
sent foreign key references between two relations: there is an edge
from R; to Ry in £ iff the primary key defined on Ry is referenced
by a foreign key defined in R;. There can be multiple edges from
R; to Ry and we label each edge with the corresponding foreign
key’s attribute name. For simplicity, we omit edge labels in our
examples and description if they are clear from the context.

In a relation R;, we refer to a column as text column if its val-
ues are strings. Figure 1 shows an example database with a total of
seven relations. There five text columns: Customer.CustName,
Nation.NatName, Orders.Clerk, Part.PartName, and Supplier.
SuppName. In the rest of this paper, we focus on only text columns
and primary or foreign key columns of the relations.

2.2 Discovering Top-k PJ Queries by
Example Spreadsheet

Example spreadsheet. An example spreadsheet is a multi-column
table and serves as an interactive interface for PJ query discovery.
Each cell of this spreadsheet is typed by the user, and could either
be empty or contain some text. Figure 2(a) gives an example.

DEFINITION 1. (Example spreadsheet) An example spreadsheet
T is a table with multiple rows {t} and columns col(T"). Each row

t € T is called an example tuple, where each cell is either a string
(i.e., one or more terms) or empty. Let t[i] denote its cell value on
the column i € col(S), and let t[i] = 0 if t[i] is empty. Each row t
contains at least one term and so does each column T'[i).

Project-Join (PJ) queries. We aim to discover queries in directed-
tree shapes with projections and foreign key joins that generate a
table from D to expand the user-given example spreadsheet 7'.

DEFINITION 2. (Project-Join Queries) A project-join query () =
(T, C, ) for T is specified by:

e g join tree J C G, ie., a directed subtree of the schema
graph G(V, &) of the database D representing all the rela-
tions (vertices of J) and joins (edges of J) involved in the
query — let col(J) be the set of all columns of relations in 7,

e a set of projection columns C C col(J) from the relations in
J, which the join result is projected onto, and

e a column mapping ¢ : col(T) — C from columns of the
example spreadsheet T to the projection columns in C —itis a
surjective function, i.e., Vc € C : 3i € col(T) s.t. ¢(3) = c.

It is important to ensure that there is no redundant table or pro-
jection column in the discovered PJ queries. Intuitively, a table or
a projection column is redundant if, after it is dropped from the PJ
query, the output relation matches the example spreadsheet equally
well or even better. We formally define them as minimal PJ queries
and only consider them as the candidates to be discovered.

DEFINITION 3. (Minimal Project-Join Queries) A PJ query QQ =
(T, C, ¢) w.rt. an example spreadsheet T is minimal iff

i) for any degree-1 vertex (relation) R in J, there is a column
i € col(T) s.t. Pp(i) € col(R), i.e., every degree-1 relation
R has a column of the example spreadsheet mapped to it; and

ii) for every column i of T which is mapped to column R][j] of
a relation R in J through ¢ (i.e., $(i) = R[j]), there exists
at least one term in column T'[i] appearing in column R[j].

In the rest of this paper, when we refer to PJ queries, we refer to
minimal project-join queries. For the example database in Figure 1,
three PJ queries and their output relations are shown in Figure 2(b).

Let A(Q) be the output relation when Q) is executed on database
D: joins in J are executed first, and then the results are projected
on columns C. Columns of the example spreadsheet 1" are mapped
to columns C of the output relation A(Q) according to ¢.

Property i) in Definition 3 is similar to the minimality of can-
didate networks in keyword search literatures like [5, 12, 15]. In
our case, degree-1 relations not satisfying i) can be excluded from
J s.t. we have no less distinct tuples in the output relation A(Q),
because they have no column in the projection and the join tree is
still valid after the removal of them.

Property ii) says that a column ¢ in the example spreadsheet 1
should not be mapped to a column R[j] in the projection C if none
of the terms in the column 7°[¢] appears in R[j] (and the correspond-
ing column in A(Q)). Intuitively, if the two columns 7'[¢] and R[j]
have no overlap in their vocabularies, they are likely from two dif-
ferent domains so it is meaningless to map 7'[¢] to R[j]. In fact, we
can drop the column ¢ from 7 to get a smaller example spreadsheet
T, and drop the column R[j] from the projection C and the map-
ping ¢, denoting as C' = C — { R[]} and ¢’; in our scoring model,
we can prove that the relevance score of Q' = (J,C’, ¢') wr.t. T'
is no less than the score of Q = (J,C, ¢) w.rt. T

Based on our scoring model introduced next in Section 2.3, we
will show that we do not “lose” in score by looking only at the
minimal PJ queries (Proposition 1). A bit more formally, for any



non-minimal PJ query @ = (J,C, ¢), we can find a minimal PJ
query Q' = (J',C’,¢’) with J' as a subtree of 7 and/or ¢’ as a
sub-mapping of ¢ such that the score of Q’ is no less than the score
of Q. For example, consider the example spreadsheet in Figure 2(a)
without column C, Figure 2(b)-(i) is no longer a minimal PJ query,
as the degree-1 relation Part violates property i) and removing it
will not reduce the score. Another example is, in Figure 2, it does
not make sense to map column A in the example spreadsheet to
column Nation.NName — any PJ query with this mapping violates
property ii), and we can remove this pair of columns from the ex-
ample spreadsheet/PJ query without reducing the score.
End-to-end system task. For a user-given example spreadsheet
T, the goal of our system is fo find minimal PJ queries with the
top-k highest scores w.r.t. T'. The incremental version of our task
is: suppose we have found the top-k PJ queries for a user-given
example spreadsheet T, after one or more cells in 7" are updated by
the user, how to find the updated top-k PJ queries efficiently.

2.3 Scoring Model for PJ Queries

The score of a PJ query () w.r.t. an example spreadsheet 7" quan-
tifies how well the s output .A(Q) contains rows in T". We first
present the scoring model and then show how it allows us to tolerate
relationship and domain errors for performing relevance ranking.

An IR system computes a score of a document w.r.t. a keyword
query, which quantifies how well the former contains the terms in
the latter. A straightforward way to compute the score of Q w.r.t. T'
is to treat T" as a “query” (by concatenating all text in 7") and A(Q)
as a “document” (again, by concatenating) and apply a traditional
IR relevance scoring model [23]. We do not adopt this model as we
need to quantify how well A(Q) contains each example tuple with
their columns aligned according to the mapping ¢; it is difficult to
do so in this model as it removes the row/column boundaries.
Containment score w.r.t. single example tuple. We first define
a score score(t | A(Q)) to quantify how well A(Q) contains a
single example tuple t € T'. Let score(t | ) denote the similarity
between an example tuple t € T and a row 7 € A(Q) in the PJ
query output (referred to as row-row similarity). By definition of
containment, score(t | LA(Q)) should be high as long as there is
one row r € A(Q) in the PJ query’s output relation with a high
row-row similarity score(t | r) with ¢; so we refer to the most
similar tuple for ¢ to define the containment score:

score(t | Q) T&z}(g) score(t | 7). (1)
Row-row similarity. One way to get row-row similarity score(¢ |
r) between an example tuple ¢ € T and a row r € A(Q) in the PJ
query output is to treat ¢ as a “query” (by concatenating the terms
in all cells in ¢) and r as a “document” (again, by concatenating).
Again, this model is not suitable as we need to respect the mapping
¢ while computing the row-row similarity. We need to compare a
cell ¢[¢] with the cell r[¢(4)] it is mapped to. Let scorecen (¢[é] |
r[7]) denote the cell similarity between an example tuple cell ¢[¢]
and a cell r[4] in an output row. We compute the row-row similarity
by summing up the cell similarities for all columns.

> scorecen(ti] | r[6(i)]). 2)

i€col(T)

score(t | 1) =

We use a simple cell similarity scoreceu(t[i} | r[j]) as: how
many terms in ¢[z] appear in r[j] if ¢[¢] is non-empty and O other-
wise. We discuss how to adapt a more complicated IR-style cell
similarity to perform relevance ranking in Appendix A.2.

Row containment score w.r.t. entire example spreadsheet. We
are now ready to define the row-wise containment score to quan-

tify how well A(Q) contains all the example tuples in 7', denoted
as scorerow (T | Q). The more individual tuples in the example
spreadsheet A(Q) contains, the higher should be the final score.
So, a natural way is to sum up containment scores for all the exam-
ple tuples in the example spreadsheet:

scorerow (T score(t max score(t | r).
Q)= S score(t | @) = 3 mpy score(t| )
eT teT

3

EXAMPLE 2. We compute the score scorerow (T | Q) of PJ
query Q in Figure 2(b)-(iii) w.r.t. the example spreadsheet T in
Figure 2(a). Recall that cell similarity scorece; (t[i] | r[j]) is how
many terms in t[i] appear in r[j] if non-empty, and O otherwise.
For each row in T, the most similar row in A(Q) is shaded with
the same color (yellow, pink and green for the three rows). The
single tuple containment scores are 2, 1, and 1 respectively. So,
scorerow (1" | Q) = 4. Similarly, the score between the same exam-
ple spreadsheet and PJ query in Figure 2(b)-(ii) is 2+ 1+ 2 = 5.

Tolerating errors. Naturally, the scoring function should have the
following property: higher the number of errors in the example
spreadsheet with respect to the output of a PJ query Q, lower the
score of (). The above score score;ow satisfies this property. For
example, the example spreadsheet in Figure 2(a) has 2 errors in the
output of PJ query in Figure 2(b)-(ii) (Rick and Julie in column A
do not appear in column Supplier.SName for the first two exam-
ple tuples), while it has 3 errors in the output of PJ query (iii) (one
term missed for each example tuple). From Example 2, we see that
(ii) has a higher score score,qw than (iii). However, it penalizes re-
lationship and domain errors equally. Relationship errors are more
common, so we want to penalize them less than domain errors. We
next introduce column containment score for that purpose.
Column containment score. We define column containment score
that penalizes only domain errors. Subsequently, we will put it
together with the row containment score score,ow to penalize the
two classes of errors differently. A cell in column ¢ € col(T) in
an example spreadsheet 7" has a domain error in a PJ query @ iff it
has one term not occurring in the mapped column ¢(¢) of the join
tree J of Q. The column-wise containment score that quantifies
how well the cells in each column ¢ € col(T’) are contained in the
mapped column ¢(¢) will penalize only domain errors.

For each cell in the example spreadsheet 7', we first find the most
similar cell in the mapped column ¢(¢) of the join tree 7 of Q. We
sum up the similarities between cells paired in this way to obtain
the column-wise containment score:

scorecol(T | Q) Z Z max Scorecen(t[l] [ r[o(D)]), @)

i€col(T) teT reJlet

where let 7 [¢(i)] be the relation 7'[¢] is mapped to in database D.

EXAMPLE 3. We compute the column-wise containment score
scorecol of the PJ query Q in Figure 2(b)-(ii) w.rt. the example
spreadsheet T in Figure 2(a). Column A in T is mapped to col-
umn Supplier.SuppName (in the database in Figure 1) through
@. Only one (Rick) out of the three terms in T.A appears in Sup-
plier.SuppName. For each of the other two columns in T, both
terms can be found in the corresponding column in the database.
So scorecol(T' | Q) = 5. Similarly, the column-wise containment
score of the PJ query @ in Figure 2(b)-(iii) is 3+2+2 = 7. In con-
trast to Example 2, now (iii) has a higher score than (ii) because
(iii) has no domain errors while (ii) has 2 domain errors.

Putting it together. We obtain the final relevance score score(T |
Q) of a PJ query Q w.r.t. an example spreadsheet 7" by taking a lin-
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ear combination of row-wise and column-wise containment scores.
We introduce a parameter 0 < a < 1 to control the relative penalty
of the two classes of errors. Similar to prior work, we also penal-
ize PJ queries with larger join trees as the relationship among the
mapped columns in J is looser. We penalize it with a factor of
1+ 1n(1 4 In|J]), where | 7| is the number of relations in 7.

score(T | Q) =

1+In(1+In|J|)

&)
Minimality and scores. In Proposition 1 below, we show why we
are interested in finding only minimal PJ queries (Definition 3).

PROPOSITION 1. Consider a user-given example spreadsheet
T and a PJ query Q = (J,C, ¢) in a database D. If property i) in
Definition 3 is not satisfied, let R be a degree-1 relation in J with
no column in T mapped to it. Define a smaller 7' = J — R and
Q' = (TJ',C,¢). We have score(T | Q) < score(T | Q").

If property ii) is violated, let © be a column in T s.t. no term in
T'[i] appears in the database column R[j] it is mapped to. We can
remove the column 1 from T' to get a smaller example spreadsheet
T, and remove the column R|[j) from the projection C and the map-
ping ¢: let C' = C — {R][j]} and ¢’ be the range-restriction of ¢
byC', i.e, ¢'(i) = (i) iff (i) € C' and undefined otherwise. Let
Q" =(J,C',¢"). We have score(T | Q) = score(T" | Q).

3. SYSTEM ARCHITECTURE

The S4 system architecture is depicted in Figure 4, with two ma-
jor components: offline index building and online top-k ranking.

3.1 Offline Index Building

First, we have the directed schema graph G(V, &) in memory,
which keeps schema-level information about the database D, in-
cluding names of relations/columns (in V), and foreign keys (in &).

Secondly, for the purpose of PJ query enumeration and evalu-

ation (computing their scores), we build two types of in-memory
indexes that are extensions to inverted indexes in traditional IR.
o Column-level inverted index. Given a term w, index inv(w) re-
turns all the database columns where w appears in at least one row.
® Row-level inverted index. For a term w and a column R[¢] in
relation R, inv(w, R[]) returns all rows in R, where w appears in
column ¢, and its term frequency in each cell.

Finally, the PJ queries need to be executed and scored without
accessing the database in disk. Attivio Active Intelligence Engine
uses a similar index to perform “query-time join” [24]. We call it:
o In memory (key, foreign key) snapshot of the database. We have
the primary-key column and foreign-key columns of each row in
each relation of the database materialized in memory.

3.2 Online Top-k Ranking

We adopt a PJ-query enumeration-ranking framework for on-
line top-k ranking. Our system processes a user-specified example
spreadsheet in two steps as follows to output the top-k PJ queries.

a - scorerow (T | Q) + (1 — @) - scorecol (T | Q)

PJ query enumeration. The set of minimal PJ queries, denoted as
Q, for the example spreadsheet could all be candidate answers for
the top-k. The component, PJ Query Enumerator, generates this
set of PJ queries. We adapt the CN generation algorithm described
in [13] for this component. Since the generation of Q¢ (without
computing their scores) can be done by accessing only the schema
graph and column-level inverted index, it is quite efficient. More-
over, we compute an upper bound of its score for each PJ query
in Qc. This upper bound can be also computed efficiently without
executing any join. More details about the generation of Q¢ and
upper-bound score computation will be given in Section 4.1.
PJ query ranking. Taking PJ queries in Q¢ as the input, the main
contribution of this paper is about how to identify those with the
top-k highest scores from Qc. To this end, PJ Query Evaluation
Component evaluates some queries in Q¢ to get their scores. By
evaluating a PJ query, we mean executing the query to compute its
score w.r.t. the example spreadsheet. Because our scoring model
quantifies how well the example spreadsheet is contained in the out-
put of join and projection of a PJ query, to get the row containment
score, we need to at least examine rows which either completely
or partially contain the example tuples in the output. This process
requires to execute joins and thus is the bottleneck in online top-k
ranking. Details about the evaluation of PJ queries will be given in
Section 4.1 (basic version) and Section 5.1 (cache-aware version).
Caching-Evaluation Scheduler finds a strategy that specifies: i)
which queries to be evaluated to get the top-k, ii) the order of eval-
uations, and iii) how to use the in-memory Sub-PJ Query Cache
to speedup the evaluations. We focus on this scheduler in the rest
part. We present a baseline strategy in Section 4 without utilizing
the cache and a more efficient cache-aware strategy in Section 5.

4. BASELINE EVALUATION STRATEGY

In Section 4.1, we first introduce the basic operators in our eval-
uation strategy: how to enumerate all candidate PJ queries Q¢ for
an example spreadsheet and compute their upper-bound scores and
exact scores. We also analyze their costs. For interactive speed, it
is affordable to enumerate Q¢ first and compute the upper-bound
scores but it would be too expensive to compute the exact scores
for all queries in Qc¢. To design more efficient approaches, in Sec-
tion 4.2, we study what is the minimal set of queries we have to
evaluate to get the top-k given those upper bounds. We end this
section with a worst-case optimal baseline strategy in Section 4.3.

4.1 Basic Operators in Evaluation Strategy

Before introducing our evaluation strategies, we give more de-
tails about the basic operators in our system and analyze their costs.

4.1.1 Enumerating Minimal PJ Queries Qc

For a user-specified example spreadsheet 7', we utilize the di-
rected schema graph G(V, £) and column-level inverted index to
generate Qc. For each column 7T7i] in 7', we first find all the
columns C; in D which contain at least one term in 7°[¢], called can-
didate projection columns. C; is essentially the union of inv(w)’s
for all terms w’s in T[i], i.e., Ci = U, epy inV(W).

Consider the example table in Figure 2. The candidate projection
columns for column A are: Customer.CustName, Orders.Clerk
(containing all the 3 terms in A) and Supplier.SuppName (con-
taining only the first term, Rick). For column B, there is only one,
Nation.NatName (containing both terms in B). And for column
C, Part.PartName (contains both terms) is the only one.

Given candidate projection columns C;’s generated in the above
process, to enumerate Qc, we can pick one column from each C;
to form C and mapping ¢, and generate directed Steiner trees to get



J that connect to relations in C, using the CN generation algorithm
described in [13]. It is important to note that all PJ queries violating
i) and ii) in Definition 3 are pruned during the enumeration.

4.1.2 Computing Upper Bounds of Relevance Scores

It can be shown that the score of a PJ query Q w.r.t. T, score(T" |
Q), can be upper bounded by its column-wise score scorecor for
any value parameter «.. This simple but effective upper bound can
be computed in a light-weight way, without executing any join in
. We will use this upper bound frequently in the rest of this paper.

PROPOSITION 2. (Upper Bound of Score) Forany 0 < o < 1,

scoreco1 (T | Q)
score(T'| Q) < T 0@ + 7))
It suffices to show that scorerow (T | Q) < scorecoi(T | Q) to
prove Proposition 2. The intuition is that, in score;ow (7" | Q), each
row in 7" is matched to the most similar row in the output relation
A(Q), while in scoreco1(T' | @), each cell in T" is matched to the
most similar cell in the corresponding column of A(Q). The latter
has a weaker constraint in matching so it produces a higher score.

£5core(T | Q). (6)

Computing score and column containment score scoreco;. To
compute the upper bound score, it suffices to compute the column
containment score scoreco1 in Equation (4). To compute scorecol,
for each term w appearing in column ¢ of 7', suppose column ¢ is
mapped to column j of a relation R, we need to scan inv(w, R[j])
once to compute the cell similarity score(t[s] | r[5]) for each cell
t[é] in T and each cell r[j] in R. Then scoreo can be computed
directly as in (4). Refer to Algorithm 1 for more details.

1: Initialize cell similarities scorecen1 to be O for all entries.

2: For each column ¢ of T": it is mapped to R[j] of relation R
3:  Foreach tuple t € T and each term w in ¢[¢]

4: Retrive row-level inverted index inv(w, R[j]);

5 For each row r € inv(w, R[j]): scorecen(t[d] | r[j])++
6: Compute scoreco1(T" | Q) from scorecen as in (4).

7: Compute score(T | Q) as in (6).

Algorithm 1: Computing scoreco1 (T | Q) and score(T | Q)

PROPOSITION 3. Consider an example spreadsheet I’ and a PJ
query Q = (J,C, ¢) in a database. For each column i in T and
each term w in the column T'[i], suppose i is mapped to a column
R][j] in a relation R of J, let l, = |inv(w, R[j])| be the number
of rows in R that contain w in the column R[j), i.e., the size of
row-level inverted index inv(w, R[j]) for term w in column R[j].
Algorithm 1 computes Score and scoreco) in O(ZweT lw) time.

4.1.3 Evaluating PJ Queries for Relevance Scores

We now introduce how to evaluate PJ queries, i.e., to compute
the exact relevance score score(T | Q). According to (5), the only
missing part is the row containment score scorerow (7' | Q).

Computing score and row containment score score,ow. As in
(3), for each example tuple ¢ in 7', we need to find the most similar
row in the output relation A(Q). Indeed, we can first execute the PJ
query @, for example, sending it as a SQL query to the database (as
in [22]), and then examine each row in the output relation A(Q).
To utilize our in-memory indexes and compute the scores more ef-
ficiently, we design an execution plan for () using hash joins. More
details are in Appendix B.1. Follwoing is its complexity.

PROPOSITION 4. Consider an example spreadsheet I’ and a PJ
query Q = (J,C, ¢) in a database. For each term w in T, let l,,
be defined as in Proposition 3. For each relation R in J, let | R| be
the number of rows and d 7 (R) be the degree of R in J. We can
compute score(T | Q) in O3 pe 7 |R|-dg(R)+32, cr lw) time.

B Enumeration + upper bound computation M Evaluation

High 0.28% 99.72%

Medium 99.11%
Low

1 100 1000

Time (usec.)
Figure 5: Average running time of “query enumeration + upper
bound computation” v.s. “query evaluation” per PJ query

4.1.4 Cost Analysis

It is quite common to enumerate candidate database queries in
previous keyword search literature [5, 13, 12, 15]. Similarly in our
case, we only access the schema graph and column-level inverted
index to enumerate Q¢ (no need to execute any actual join).

Now, comparing the complexity of computing upper bounds of
scores (Proposition 3) with computing exact scores (Proposition 4),
we find that the additional cost, O(}_ r | R|-d7 (R)), to compute
the exact score is truly the bottleneck. In the worst case, this cost is
proportional to the total number of rows in all relations involved in
a PJ query. On the other hand, the cost, O(>_, o1 lw), to compute
the upper bound is only proportional to the number of rows that
contain keyword terms in projection columns of the PJ query.

Figure 5 compares i) the time for query enumeration plus upper
bound computation (orange bars), with ii) the time to compute ex-
act scores via query evaluation (blue bars), on average per query.
We generate 50 example spreadsheets for CSUPP dataset and di-
vide them into three buckets (H, M, L) based on the frequency of
terms in the dataset (from highly frequent to lowly). Please refer
to Section 6.1 for more details about the setting. All PJ queries are
generated for those example spreadsheet, and for each, we compute
both the upper-bound score and the exact score. The experimental
result also shows that query enumeration plus upper bound compu-
tation requires a negligible fraction of the overall processing time.
So, in the rest part, we assume that Q¢ can be enumerated first for
each given example spreadsheet and score is associated with each
query in Qc generated in the query enumeration step.

4.2 Minimal Evaluation Set

From both theoretical and experimental analysis in the last sub-
section, we find that the bottleneck in our PJ-query enumeration-
ranking framework is to evaluate candidate PJ queries in Qc, i.e.,
to execute PJ queries and compute their exact scores; and on the
other hand, we can enumerate all PJ queries in Q¢ and compute the
upper bounds of scores for all of them quite efficiently. Now the
major challenge translates to that of evaluating as few PJ queries
in Qc as possible to get the top-k with highest scores, given that
an upper bound of score is associated with each one in Qc.

In the rest of this paper, we will write score(T" | Q) as 5core(Q)
and score(T" | @) as score(Q) if T is clear from the context.

Given the set of queries in Q¢ and their upper-bound scores, we
now analyze what is the minimal (sub)set Omin C Qc of queries
we have to evaluate to get the top-k with the highest scores in O¢.
Let Qc = {Q1,Q2,...,Qn}, where Q;’s are ordered by their
upper-bound scores score((1) > ... > score(Qn ). Intuitively, if
we evaluate queries in Qc in this order, we can terminate if

topy {score(Q1), ... ,score(Q;)} > score(Qit+1), @

where top,{...} is the k-th largest number in the set, we can as-
sert that the top-k queries are among {Q1,...,Q;}. Let ¢* be the
minimal index ¢ that satisfies the termination condition in (7), let

Qmin:{QlaQ2a-"7Qi*}gQC~ (8)



We can show that, informally, if based on only the upper-bound
information Score, Omin, called minimal evaluation set, is the min-
imal subset of queries in Q¢ we have to evaluate to get the top-k.

PROPOSITION 5. (Optimality of Omin) Given a set of PJ queries
Qc and upper bounds SCore of their scores. Any multi-step ranking
algorithm to find queries with the top-k scores in Qc has to evalu-
ate all queries in the set Qmin (in (8)) to compute their scores.

The formalization of the class of multi-step ranking algorithms
and the proof of this proposition are given in Appendix C.

4.3 Worst-Case Optimal Baseline Strategy

Based on the upper bounds of scores and the optimality of Qmin
introduced in the above two subsections, we have a simple but
“worst-case optimal” strategy BASELINE described in Algorithm 2.

The idea is to evaluate queries Q1,@2,... in Qc one by one
(to get the exact scores) in the descending order of upper-bound
scores. Recall that upper-bound scores (line 1) can be computed
efficiently and are associated with all queries in Qc, as discussed
in Sections 4.1.2 and 4.1.4. For each Q;, we use the operator in-
troduced in Section 4.1.3 to compute its true score (line 4). If after
we finish evaluating Q;, (7) is satisfied, then we can terminate and
output the current top-k among the evaluated PJ queries.

Input:
Output:

queries in Q¢ and upper bounds of their scores
top-k PJ queries in Q¢ with the highest scores

: Sort queries in Q¢: score(Q1) > ... > score(Qn).

: Initialize Qyopk < 0.

: Fori =1to N do

Evaluate @; to compute score(Q);).

Let Qtopk ¢ Qtopk U {Qi}s if | Qtopk| > k., keep only
queries in Qopk With the top-k highest scores.

If termination condition (7) is satisfied, exit the loop.

: Output Qtopk-

Do

RN

Algorithm 2: Baseline Evaluation Strategy: BASELINE

It is not hard to show that BASELINE evaluates only queries in
Omin and thus is worst-case optimal for finding top-k.

THEOREM 1. (Correctness and Optimality) BASELINE correctly
finds the PJ queries with the top-k highest scores among Qc, and
evaluates only queries in the minimal evaluation set Qmin.

Disadvantages of the baseline. BASELINE strategy in Algorithm 2
is worst-case optimal in terms of the number of PJ queries it eval-
uates. But the evaluation cost (or, response time) can be poten-
tially improved significantly. BASELINE has several disadvantages.
First, this baseline algorithm does not utilize frequent common
subexpressions in Qc. Indeed, we can cache the output relations
of some subexpressions so that they can be re-used for more than
one PJ query Q¢. Secondly, as we do not have infinite memory, to
maximize the benefit we get from caching, we need to make the de-
cisions of which subexpressions to be cached and when, for a batch
of PJ queries. BASELINE examines queries in Q¢ one-by-one, so
such decisions cannot be made wisely. The strategy we introduce
in Section 5 improves BASELINE from the above two angles.

S. OPTIMIZING CACHING-EVALUATION

We introduce our cache-aware optimization techniques in this
section to overcome the disadvantages of BASELINE. The goal is
still to find PJ queries with the top-k scores in Q¢ w.r.t. the user-
given example spreadsheet 7. We will first discuss how to eval-
uate a PJ query. i.e., compute its score, when output relations of

some sub-parts of it are cached, together with a cost model which
quantify the cost of such cache-aware evaluation, in Section 5.1.
We then formulate the cache-evaluation scheduling problem, i.e.,
an abstract version of the task to be solved by caching-evaluation
scheduler in Section 5.2. Core technical challenges we resolve here
are: to determine the order of PJ queries in Q¢ to be evaluated,
which sub-PJ queries to be cached, and for how long, with the goal
of minimizing the evaluation cost, or maximizing the benefit we get
from caching. We show that it is NP-hard. Section 5.3 introduces
a near-optimal solution to this problem. We will discuss how to
extend our approach for incremental computation in Section 5.4.

5.1 Cache-Aware Evaluation of PJ Queries

Recall that the evaluation of scorec is light-weight without ex-
ectuing any join of relations as discussed in Section 4.1.2. So here,
we focus on computing scoreroyw of a PJ query @ w.r.t. T'.
Caching sub-PJ queries in evaluation. Let’s formally define a
sub-PJ query of (), and discuss how to evaluate PJ query () if the
output relations of some sub-PJ queries of () have been cached.

DEFINITION 4. (Sub-PJ Query) Q' = (J',C’, ¢¢r) is said to
be a sub-PJ query of a PJ query Q = (J,C, @), iff J' is a subtree
of J; C' C C is a subset of columns from relations in J' which
the columns in T' are mapped to; and ¢¢r is a range-restriction
of ¢ by C', i.e., ¢cr (i) = &(i) iff (i) € C' and is undefined iff
(i) € C —C'. Wedenote Q' = Q if Q' is a sub-PJ query of Q.

Two types of subtrees are considered here: i) J' is a subtree of
J rooted at some internal node, containing all leaves below; and
ii) a type-i) subtree plus the parent of its root.

Figure 3 shows two sub-PJ queries Q' (left) and Q% (right) of
the PJ query @ in Figure 2(b)-(i).

We have a sub-PJ query cache M in our system, which tem-

porarily stores the output relations of some sub-PJ queries in a bud-
geted amount of memory. The execution plans of PJ-queries can be
easily extended to take advantage of the cached output relations of
sub-PJ queries: for a PJ query @ and a set of cached sub-PJ queries
in M, instead of starting from the leaves of (), we start from the
output relations of maximal sub-PJ queries of @) in M and follow
the execution plan of Q afterward. Q’ is said to be a maximal sub-
PJ query of Q in M, iff Q" < @Q and there is no Q" whose output
relation is cached in M such that Q" < Q” =< Q. Intuitively,
we want to utilize the output relations cached in M as much as
possible. More details are given in Appendix B.2.
Cost model of evaluation. We do not have unlimited memory
to cache every single sub-PJ query. So our scheduling-evaluation
scheduler needs to determine which sub-PJ queries to be cached
and for how long, so as to maximize the benefit we obtain from
caching, or equivalently, to minimize the total evaluation cost. To
this end, a cost model needs to be introduced.

We define cost(Q) to be the cost of evaluating a (sub-)PJ query
Q, without utilizing the cache, and cost(Q, M) be the cost of eval-
uating  when a set of sub-PJ queries M have their output relations
in the cache. We abuse the notation M a bit — we use it to denote
both the set of sub-PJ queries as well as their cached output rela-
tions. Details about the cost model can be found in (12)-(13) in
Appendix B.3, which is calibrated to the execution plans we use.

5.2 Caching-Evaluation Scheduling Problem
We are given a set of PJ queries Qc = {Q1, Q2, ..., Qn},
ordered by their upper-bound scores Score(Q1) > score(Q2) >
... > score(@Qn). Let T(Q;:) be the set of all sub-PJ queries of
Qi and T(Q) = Ug,co T (Qi) for a set of PJ queries Q C Qc.



We first introduce a general framework of our caching-evaluation
strategies to find the top-k answers from Qc, and then define the
caching-evaluation scheduling problem to find the best strategy.
Operators. To utilize output relations of sub-PJ queries shared by
multiple PJ-queries in Q¢, we maintain a cache M of size at most
B. Three types of operators are allowed:

a) Evaluate(Q, M): to evaluate a PJ query or a sub-PJ query
@ using output relations cached in M, and get its relevance
score score(T" | Q) (for Q € Qc) and output relation A(Q).

b) Add(Q, M): to store the output relation A(Q) in M.
¢) Delete(Q, M): to delete A(Q) from M.

The size of M, denoted as | M|, is the amount of memory we need
to keep the output relations of (sub-)PJ queries in M. We want to
ensure that, at any time, | M| could be at most B.
Caching-evaluation schedule and termination condition. Ini-
tially, the cache M is empty, and for every PJ query QQ; € Oc
we only know its upper-bound score. We want to apply the above
three types of operators in some order on PJ queries in Q¢ and their
sub-PJ queries. The goal is that, at some point, the set of evaluated
queries, denoted as Qg, satisfies: Qg 2 Qmin, i.€., the top-k have
been found. Note that Qmin is not known in advance.

Objective. Each type-a operator Evaluate(Q, M) (Q is either a
PJ query from Q¢ or a sub-PJ query) has a cost, cost(Q, M), as
defined in (13) in Appendix B.3. The goal is to minimize the total
evaluation cost of type-a operators. Each type-b/c operator also has
a cost but it is negligible compared to type-a’s cost.

Problem statement (CACHE-EVAL SCHEDULER) Given a set of
PJ queries Qc = {Q1, Q2, ..., @n}, with their upper-bound
scores Score(RQ,) > score(Q2) > ... > Score(Qn), wrt. an
example spreadsheet T', a sequence of operators in type-a,b,c are
chosen to be executed and the objective is to:

minimize E

Op. Evaluate(Q,M)’s executed

cost(Q, M)

s.t. M has size at most B at any time, and
eventually O O Omin.

THEOREM 2. (Hardness) Even when the set Qmin is known, the
CACHE-EVAL SCHEDULER problem is NP-complete, with \Qc| +
|T(Qc)| as the input size, where | T (Qc)| is the total number of
sub-PJ queries of queries in Qc.

5.3 A Near-Optimal Strategy

We will introduce a near-optimal strategy, FASTTOPK, for the
CACHE-EVAL SCHEDULER problem. It is based on two heuristics:
guessing the minimal evaluation set and caching critical sub-PJ
queries. We will also analyze the theoretical guarantee on perfor-
mance it provides, in terms of the evaluation cost.

5.3.1 Guessing The Minimal Evaluation Set

The first challenge is that the minimal evaluation set Qmin is
unknown to us. Our strategy BASELINE (Algorithm 2) examines
only queries in Omin because it evaluates queries one by one, but
Omin is known only after it terminates. Ideally, if we know Omin
in advance, we can find frequent sub-PJ queries in Qmin (the ones
contained by many PJ queries), and cache their output relations so
that they can be re-used multiple times in the evaluation. Indeed,
we can consider all queries in Q¢ in one batch, but since Qmin is
usually a small subset of Qc, sub-PJ queries that are frequent in
Q¢ may not be frequent in Qmin or even do not exist in Qmin — SO

our decision of which sub-PJ queries to be cached based on their
frequencies in Q¢ is likely to be sub-optimal.

We note that Qmnin is a “prefix” of Qc, and can be uniquely
specified by the index 7™ as in (7)-(8). So our heuristic to resolve
this challenge is to create a few batches By, B1, Ba, . .. of queries
in the order of Q1,Q2, ..., Qi,. .. to approximate Qmin. We will
optimize the cache-evaluation schedule for queries in each batch.
After we finish evaluating each batch of queries in B;, we check
the termination condition (7), and eventually we stop at B~ after
evaluating queries in Qg = Bo U B1 U...UBj* O Qmnin. On one
hand, we want to create as few batches as possible, i.e., 7* is small,
so common sub-PJ queries across different queries can be found in
one batch and we can cache and re-use their output relations; and
on the other hand, we do not want to evaluate too many additional
queries that are not in Qmin, i.e., Qg — Qmin is small.

The following batch-forming strategy balances the two concerns.
The first batch of queries to be evaluated is Bo = {Q1,...,Qx},
as ;s are ordered by the upper-bound scores and By has the least
number of queries we have to evaluate to get the top-k. After fin-
ishing evaluating this batch, if the termination condition in (7) is
not satisfied, we will consider the next batch with a slightly larger
number of queries: B1 = {Qr41,- .., Qr(1+¢) }- Again, if the ter-
mination condition is satisfied, we can stop and output the top-k;
and otherwise, we consider the next batch. In general, the jth batch
is Bj = {Qr1+e)i-141,- - - » Qr(14¢) }» for some constant e > 0.

This high-level procedure is outlined in Algorithm 3. Recall the
discussion in Section 4.1, upper-bound scores can be computed ef-
ficiently and are associated with all queries in Q¢ (line 1). The
loop (lines 4-9) forms batches one-by-one as described above. The
value of ¢ in line 7 of every loop is the index of the last PJ query
evaluated up to now, so line 9 can check the termination condition
in (7) to see whether the top-k have been found.

Input: queries in Q¢ and upper bounds of their scores
Output:  top-k PJ queries in Q¢ with the highest scores

1: Sort queries in Qc: score(Q1) > ... > score(@Qn).

2: Initialize Qtopk < 0.

3: Let the first batch be By + {Q1,...,Qk}, % « k,and j + 0.
4: Do

5: BatchEval(B;) to get score(Q)’s for all € B;.

6: Let Qtopk <~ Qtopk U B],

keep only queries in Qtopk With the top-k highest scores.

7: Leti < k(1 +¢)? and then j < j + 1.

8:  Form next batch: B = {Qi+1, Qit2,- -+, Qrite)i}-

9: While (top, {score(Q1), .. .,score(Q;)} < score(Qi+1))
10: Output Qyopk.-

Algorithm 3: Near-Optimal Strategy: FASTTOPK

Suppose the algorithm terminates with ¢ = ¢enq. In Section 5.3.3,
we will utilize the fact that i* < 4ena < #°(1 + €), where i* =
| Omin| is the least number of PJ queries any strategy has to eval-
uate, to give a performance guarantee of our strategy. Intuitively,
based on this fact, we have that the size of Qg, the set of queries
evaluated by FASTTOPK (Algorithm 3), is at most (1 + €)|Qmin]|-
So FASTTOPK does not examine too many additional queries that
are not in Qmin. To bound the total evaluation cost, we can also
show that there are at most O(log; , . (|Qmin|/k)) batches.

The only missing building block in FASTTOPK (Algorithm 3) is
now the subroutine BatchEval(1;) in line 5.

5.3.2  Caching Critical Sub-PJ Queries

Let’s focus on the subroutine BatchEval(B3;). We want to eval-
uate a batch 3; of queries using operators in type-a/b/c, so that the
total cost is minimized. The basic idea of our approach for this




subroutine is to partition queries in a batch ; into groups, such
that each group of PJ queries share at least one heavy-cost sub-PJ
query, called critical sub-PJ query. The output relation of this sub-
PJ query is cached in M if its size is no more than the budget B.
We will later show that this seemingly simple heuristic has strong
theoretical/practical performance guarantee.

Critical sub-PJ query. Let 7 (Q;) be the set of all sub-PJ queries
of Qi, and T(B;) = UQ,;GB_j T(Q:). A sub-PJ query Q* €
T(Q;) is said to be critical to Q; in B;, if i) Q is shared by
more than one query: there exists Q; € Bj s.t. i’ # i and
Q" € T(Qy#)NT(Qs); and il) Q™ has the highest cost, cost(Q™),
among those in 7 (Q;) satisfying condition i).

It is intuitive that the output relation of a critical sub-PJ query
is worth caching in M, because it can benefit the evaluation of at
least one PJ query in B, as condition i); and it has the highest cost
among all such sub-PJ queries of a PJ query, as condition ii), so that
we can benefit the most from caching it. We describe this heuristic
for BatchEval(B;) more formally in Algorithm 4.

Input: queries in a batch B; and cache budget B
Task: get score(QQ) by evaluating every Q € B;

1: Sort the M sub-PJ queries in 7 (B;) as:
cost(Q1) > cost(Q1) > ... > cost(Qy).
: While B; is not empty
Clear M using type-c operators Delete.
4: Pick Q" = argmax g7, {cost(Q’) |
Q) < B A Jin #1d2: Q" € T(Qiy) NT(Qir)}-
5:  If no such Q* can be found, evaluate
all the remaining queries in 13; and terminate.
6: Let Critical ' (Q*) « {Q: € B; | Q* € T(Q:)}.
7:  Execute Evaluate(Q*, M) and Add(Q*, M).
(evaluate Q™ and store its output relation in M)
8: Foreach Q; € Critical™*(Q*) do
9: Evaluate @Q; using M: call Evaluate(Q;, M).
10:  Let B; < B; — Critical 7' (Q*).

N

Algorithm 4: BatchEval(B;): strategy for evaluating a batch of
queries for their scores while minimizing the cost

In line 1, all sub-PJ queries of Q@ = (J,C,¢) € B; can be
enumerated efficiently by retrieving the rooted subtree at each node
in J. As discussed in Appendix B.3, the cost of each sub-PJ query
Q! can be computed efficiently from (12) by summing up the sizes
of relations in )} and row-level inverted indexes for columns in the
projection of Q. For each iteration (lines 2-10), the critical sub-PJ
query @™ in B; with the highest cost and output relation of size no
more than B is picked (line 4). Since we are focusing on foreign-
key joins, we will use the number of rows in the root relation of @Q’
multiplying the number of columns in the output relation as the size
of the output relation, |.A(Q")|. The set of queries in B; containing
Q* as a sub-PJ query is put into a set Critical ™" (Q™) is (line 6).
We first evaluate and cache the output relation of Q™ in M (lines 7).
Then all queries having Q™ as its sub-PJ query are evaluated to get
their scores using M (lines 8-9), and removed form B; (line 10).
After that, the cache M is cleared up (line 3).

EXAMPLE 4. Consider a batch of three PJ queries, B; = {Q1,
Q2, Qs}, where Q1-Qs are depicted in Figure 2(b)-(i), (ii), (iii),
respectively. Two sub-PJ queries Q' and Q5 of them are shown in
Figure 3 (left and right, respectively). Both are contained in two
queries Q1 and )3, so could potentially be critical sub-PJ queries
to Q1 and Q3. If Q5 has the largest cost cost(Q%) among all such
sub-PJ queries, then Q% is a critical to both Q1 and Q3, and line 4
will pick Q* = Q%. We have Critical " (Q*) = {Q1,Q3} C B,

in line 6. Our strategy FASTTOPK would cache A(Q%) in M first
(line 7), and then use it to evaluate Q1 and Q3 (lines 8-9). After
that, only Q2 is left in B; and will be evaluated as in line 5.

Although this subroutine is applied for each batch independently
in Algorithm 3 to find the top-k in Qc, we will later show that it
has an overall performance guarantee, using the fact that the total
number of batches is small (the last value of j in Algorithm 3).

THEOREM 3. (Putting Together and Correctness) FASTTOPK
strategy (Algorithm 3 with subroutine BatchEval as Algorithm 4),
correctly finds the queries in Qc with the top-k highest scores.

5.3.3 Performance Analysis

We will start with the time complexity of our strategy FAST-
ToPK, and then analyze its approximation ratio.
Time complexity. The online response time of our system is de-
termined by i) time spent on generating PJ queries in Q¢ and their
upper bounds, ii) spent on evaluating PJ queries, and iii) spent op-
timizing the scheduling of caching and evaluations (FASTTOPK
strategy). i) is negligible compared to ii) (analyzed in Section 4.1.4).
ii) is modeled as the objective in our CACHE-EVAL SCHEDULER
problem and the goal of FASTTOPK is to reduce it as much as
possible. The purpose of the following theorem is to show that,
excluding the time spent on executing operators in type-a/b/c, the
time spent by FASTTOPK on iii) is negligible compared to ii).

THEOREM 4. (Time Complexity) Given a set of PJ queries in
Qc and their sub-PJ queries T (Qc) with costs and upper-bound
scores associated, the time complexity of FASTTOPK is O(N +
Man(Smax + 10og Man)) (excluding the running time of operators
in type-a/b/c chosen by FASTTOPK to be run), where N = |Qc| is
the number of PJ queries in Qc, Man = > co., [T (Q:)| here
is the total number of sub-PJ queries of queries in Qc, and Smax is
the max size of a join tree J of a PJ query in Qc. Because of the
definition of a sub-PJ query, we have May = O (Smax - N).

Performance ratio. FASTTOPK strategy (Algorithms 3-4) provide
a feasible solution (a scheduling of operators in type a/b/c) to the
CACHE-EVAL SCHEDULER problem. We now compare the cost of
this strategy with the cost of the optimal solution (which is hard to
be found as shown in Theorem 2).

For a set of PJ queries @ = {Q;}, let costror(Q) be the total
cost of evaluating queries in Q one by one without caching:

costror(Q) = Z cost(Qi).
Q;eQ

Let costopT(Q) be the cost of evaluating all queries in Q using
the optimal strategy in the CACHE-EVAL SCHEDULER problem.

Let costsor.(Q) be the cost of evaluating all queries in Q using
our FASTTOPK strategy in Algorithms 3-4.

THEOREM 5. (Performance Ratio) Given PJ queries in Q¢ with
upper-bound scores associated, the strategy FASTTOPK in Algo-
rithms 3-4 evaluates a set of PJ queries QF s.t.

|Qmin| S |QE| S (1+5)|Qmin|7 (9)
and the benefit from caching
costror(Qr) — costsor(Qr) (10)

1 ‘Qmin|
2@ (costTOT(QE) —log, ;. < k:

) ~cost0PT(QE))

where c is the number of columns in T.



Informally, the above theorem gives guarantees for our FAST-
ToPK strategy from two aspects: i) it does not evaluate too many
additional PJ queries in additional to the necessary ones in Qmin,
as in (9); and ii) costror(Qgr) — costsor(Qg) is the benefit we
obtained from caching, and is lower bounded by the gap between
the total cost and the cost of the optimal strategy (RHS of (10)).

5.3.4 Heuristics for Further Improvement

Our strategy can be further improved. Although not improving
the performance ratio in Theorem 5, the following two heuristics
are effective to improve its performance in practice.

The first heuristic is as follows. Consider each iteration of lines 3-
10 in Algorithm 4, only one output relation (the one of Q) is
cached in M. Indeed, if there is still room in M, it will always
be beneficial to cache more sub-PJ queries to speed up the evalu-
ation of queries in Critical ' (Q*). So our heuristic here is to or-
der queries in Critical ~*(Q*) in such a way that “similar” queries
(sharing common sub-PJ queries) are consecutive. While we eval-
uate these queries one-by-one in this order, the standard LRU re-
placement algorithm is applied to insert and replace output rela-
tions of sub-PJ queries in M — but note that we never replace
the output relation of Q* until finishing evaluating all queries in
Critical 7' (Q™). Such an order can be formed as follows. Starting
with any query in Critical ~*(Q*), in each step, we pick the query,
which shares the most sub-PJ queries with the last one but is not
in the order yet, to be the next one in this order. Repeat until all
queries are placed in the order.

The second heuristic is an extension to our termination condition
in (7). We call it the skipping condition. During the execution of
FASTTOPK, we maintain the current kth highest score for all the
queries that have been evaluated. In line 9 of Algorithm 4, before
we evaluate Q;, we first check whether its upper-bound score is
higher than the current top-k score — if not, we can safely skip
the evaluation of ();. This heuristic is particularly powerful and
necessary for the last batch of queries in Algorithm 3, as this batch
is usually large and contains queries not in Omin.

5.4 Incremental Computation

Our strategy can be easily extended for incremental computa-
tion. The incremental version of our end-to-end system task is:
suppose we have found the top-k PJ queries for a user-given ex-
ample spreadsheet 7', after one or more cells in 7" are updated —
the updated example spreadsheet is denoted as 7" — how to find the
top-k PJ queries for T” by re-using the evaluation results for 7.

If the user adds/deletes a column in 7', we re-start and generate
a completely new caching-evaluation schedule using FASTTOPK
(Algorithms 3-4), because in this case, the set of PJ queries, Qc’,
to be evaluated for 7" are different from Q¢ for 7.

We focus on speeding up the case when the set of columns in 7T’
are unchanged, but some rows are updated (with one or more cells).
In this case, Qc’ may have large overlap with Q¢ and thus evalu-
ation results for Q¢ can be re-used. The basic ideas are to derive a
tighter upper bound of score(T” | @) based on the unchanged part
of T and to schedule the incremental part of evaluation for Qc’
carefully. Refer to Appendix A.1 for more details.

6. EXPERIMENTAL EVALUATION

We present an experimental study of the techniques proposed in
this paper. We evaluate and compare three algorithms.
e NAIVE: evaluates all the enumerated PJ queries in Qc;
e BASELINE (Algorithm 2): as described in Section 4.3;
o FASTTOPK (Algorithms 3-4): as described in Section 5.

We compare the performance of the three algorithms, and evalu-
ate their sensitivity with respect to various parameters (Section 6.2).
We also conduct a user study to evaluate the effectiveness of our
scoring model (Section 6.3). Additional experiments about incre-
mental computation are deferred to the appendix.

6.1 Settings of Experiments

We have implemented all the algorithms using C++/CLI (Com-

mon Language Infrastructure) on a Windows 8.1 machine with an
Intel i7-4770 CPU at 3.4GHz with 16GB RAM.
Datasets. We use two datasets to evaluate the system performance:
CSUPP and AdventureWorks. Our primary dataset, CSUPP, is a
real-life database containing information related to customer ser-
vice and IT support from a Fortune 500 Company. It has a size of
95GB. AdventureWorks, ADVW for short, is a synthetic database
with information related to sales, purchasing, product management
and contact management with size 300MB [2]. Although ADVW
has a small size, we use it for its realistic and complex schema (93
primary key-foreign key edges compared with 63 in CSUPP), and
also scale up its dimension/fact tables by creating new rows.

# Relations | # Columns | # Text Columns | # Edges
CSUPP 105 1721 821 63
ADVW 71 650 104 93

For the user study, we use the real database IMDB [4] with in-

formation about movies, because our judges are more familiar with
the movie domain compared with CSUPP or ADVW.
Index building. To build the inverted indexes, we tokenize each
cell in each text column in the database. We discard tokens con-
taining non-alphanumeric characters and those with more than 15
characters. For each token, we construct a list consisting of column
identifiers (which uniquely identifies a column across all columns
in the database) of all columns containing it. This forms the column-
level inverted index. For each token in each column, we construct a
list consisting of the row identifiers (which identifies the row within
the relation) of all cells containing it in the column. This forms the
row-level inverted index. We also build an in-memory (key, foreign
key) snapshot as discussed in Section 3.1. We store all indexes in
memory. Table 1 shows the index sizes. For both databases, the
total index size is about 7% of the database size.

Inv. index (MiB) | (key.fk) snap. (MiB) Tokens

CSUPP 4759.7 1237.4 6434684

ADVW 6.86 12.57 125083

Table 1: Index sizes

Example spreadsheet (ES) generation. We manually choose 10
semantically meaningful join queries with 6 or more text columns.
We execute them and project the results on all the text columns
involved. We generate an ES with m rows and n columns by (i)
randomly choosing one of the semantically meaningful join queries
and (ii) randomly choosing m rows and n columns from its output.
We keep only the first token of the cell and all cells of the ES are
non-empty. We use m = 3 and n = 3 in all our experiments.

To simulate real-life inputs, we introduce relationship errors in
the ESs (default is 2 errors). To introduce a relationship error, we
randomly select a cell of an ES generated above and replace it with
the value of another cell in the same column in the join query’s
output. As before, we keep only the first token of the chosen cell.

We generate 50 ESs for CSUPP and 450 ESs for ADVW. We
divide the 50 ESs for CSUPP into 3 buckets, namely low, medium,
and high, based on the sizes of row-level inverted indexes of terms
in the ESs (from lowly frequent to highly frequent). There are 25,
15, and 10 ESs in the three buckets, respectively. This is to test how
our approaches are sensitive about the frequency of terms.



Description Symbol | Ranges and default values
Param. in scoring model 0.5,0.6,0.7,0.8,0.9,1.0
k in top-k 5,10, 20, 50, 100

Batch increase factor
Cache size (MiB)
# relationship errors

0.2,0.4,0.6,0.8,1.0,2.0
100, 200, 500, 1000, 2000
0,1,2,...,(m—1)*n
Table 2: Parameters we vary in our experiments along with
their description, value ranges, and default values (underlined)

o | ol

6.2 System Performance

We compare the algorithms by: (i) execution time and (ii) num-
ber of PJ query-row evaluations (times PJ queries are evaluated on
rows in the ES). (ii) indicates the benefit of using upper bounds
score of scores for early termination. (i) indicates the combined
benefit of caching shared sub-PJ queries and early termination.

In our experiments, we vary the 5 parameters in Table 2. Unless
otherwise specified, we use the underlined default values. We use
CSUPP as the dataset in Exp-I to IV, and ADVW in Exp-IIV.
Exp-I: Comparing FASTTOPK with NAIVE and BASELINE. Fig-
ure 6 shows the average execution times (in log scale) of the three
algorithms for each of the three ES buckets (low, medium and
high). The execution time here is partitioned into query “enumer-
ation + upper bound computation” and “evaluation” (evaluating PJ
queries to compute their scores). Figure 6 shows that the “enumer-
ation + upper bound computation” part takes a tiny fraction of the
overall execution time for all the three approaches.

We used default values of the 5 parameters shown in Table 2
for this experiment. FASTTOPK outperforms NAIVE by factors of
11, 10 and 5 for the low, medium and high buckets respectively.
NAIVE often takes several minutes to return answers, and it can
be found from Figure 6 that the crucial bottleneck is query evalu-
ation to compute scores. Such inefficiency motivates the problem
addressed in this paper for interactive query discovery.

The improvement of execution time in BASELINE and FAST-
ToPK is the combined benefit gained from using the upper bounds
score for early termination and caching shared sub-PJ queries.

Without using the upper bounds, NAIVE has to go through and
evaluate all the PJ queries enumerated in Qc; but with the help
of the upper bounds, BASELINE and FASTTOPK can terminate as
soon as the condition in (7) is satisfied. Figure 7 plots the num-
bers of queries evaluated by the three approaches. The significantly
smaller numbers of queries evaluated by BASELINE and FAST-
ToPK explain their faster execution time compared with NAIVE.

In Figure 6, FASTTOPK outperforms BASELINE by factors of
5, 3 and 1.5 for the low, medium and high buckets respectively.
This shows the benefit gained from solving the problem of caching-
evaluation scheduling by our FASTTOPK strategy.

Exp-II: Vary cache size. Figure 8 shows execution time of the two
algorithms for the low/high ES buckets. FASTTOPK outperforms
the BASELINE for all cache sizes. Higher the cache size, more the
sharing, larger the gap. With a cache size of B = 2GiB, FAST-
ToPK outperforms BASELINE by a factor of 6X for the low-cost
ESs and by 3.7X for medium-cost ESs. The gap is smaller for high-
cost ESs; FASTTOPK outperforms BASELINE by a factor of 2.3X
for B = 2GiB. It is because the results of many of those common
sub-PJ queries are too large to fit in the cache. We need a larger
cache to obtain the full benefit of sharing for high-cost ESs and get
speedups. The trend for the medium ES bucket is similar.

Exp-III: Vary parameter «. Figure 9(a) shows the execution
times of the two algorithms with different values of c.. Since (1—a)
is the weight on the column containment score scoreco; and the up-
per bound score is proportional to scoreco1, smaller values of «
imply tighter upper bound scores and thus faster early termination.
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e
=

Baseline I:_
FastTopK |:-

FastTopK ’7.

Time (sec.)
=
~ &6 8
ave [N
g Baseline [-
Naive [
FastTopK I:-
Naive [

Baseline

Medium High
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Figure 7: Amount of queries evaluated by NAIVE (without using up-
per bound score), BASELINE (using score), and FASTTOPK (using Score)

Hence, the number of PJ query-row evaluations and the execution
time of both algorithms increase in a. FASTTOPK outperforms the
BASELINE by a factor of 3.5X for all values of . While they eval-
vate almost the same number of PJ queries, FASTTOPK performs
better due to caching shared outputs of common sub-PJ queries.
Exp-IV: Vary k. With increase in k, both approaches evaluate
more PJ queries before they terminate, and thus need more exe-
cution time. They perform almost the same number of PJ Query-
row evaluations. But, due to shared evaluation, FASTTOPK outper-
forms BASELINE by a factor of 3-4X for k‘s as in Figure 9(b).
Exp-V: Vary number of relationship errors. We generate differ-
ent sets of ESs with different numbers of relationship errors (vary-
ing from O to 5). Higher the number of errors, lower the final scores
of the top-k PJ queries. A lower kth highest score delays the sat-
isfaction of the termination condition. So the number of PJ query-
row evaluations increase significantly with the number of errors.
Overall, FASTTOPK outperforms BASELINE by a factor of 2-6X.
Exp-IV: Vary e. We find that FASTTOPK is robust to €. There is
negligible change in execution time as we vary € from 0.2 to 2.0, so
we omit the plot in the paper. One would expect the performance
to suffer when e is high (say, 2.0) since FASTTOPK would evaluate
many PJ queries outside the minimum evaluation set. However, due
to both cache-evaluation scheduling and the skipping condition, it
does not incur much more cost of evaluating such PJ queries.
Exp-IIV: Scale up dimension tables and fact tables. In this ex-
periment, we start with the original ADVW database and scale it
up to create databases with different statistical properties.

First, we scale up the dimension tables by creating new rows
containing the same values as existing rows (but different row iden-
tifiers). We do not modify the fact tables, i.e., the new rows are not
referenced by any fact rows. Figure 10(a) shows that the average
execution time (over 450 ESs) of FASTTOPK increases slowly as
we increase the scale factor (# new rows created for each existing
row) from 1 to 2000. This is due to increase in cost of retrieving
rows from the row-level inverted index. There is no increase in join
cost (hash lookups) as the fact table is unchanged.

Next, we scale up the fact tables by creating new fact rows that
reference the same dimension table rows as existing fact rows. We
do not modify the dimension tables. This is to test the case that rela-
tions with a huge number of tuples and relatively few unique values
in certain columns. Figure 10(b) shows the average execution time
of FASTTOPK as we increase the scale factor (# new fact rows cre-
ated for each existing fact row) from 1 to 50. The execution time



—e—Baseline —e—FastTopK —e—Baseline —e—FastTopK

w
[0
S
o

~— —

100 200 500 1000 2000 100 200 500 1000 2000
Cache size (MiB) Cache size (MiB)

Time (sec.)
N w
o o

Time (sec.)
(=] = N
oV E UuNWUW
=
o

(a) Execution time for “low” bucket (b) Execution time for “high” bucket
Figure 8: Varying cache size B for ESs in “low”/*high” bucket

15 —e—Baseline —e—FastTopK 20 —e—Baseline —e—FastTopK
- — 15
i <> 10
E s E
= —— " T ° F 5 /
0 0
05 06 07 08 09 1 5 10 20 50 100
Alpha k

(a) Varying score weight « (b) Varying k
Figure 9: Varying « and £ for ESs in “medium” bucket

increases at a much faster rate (superlinear) compared with the first
case. This is due to increase in join cost (hash lookups), although
the inverted index retrieval cost does not change. This also shows
that the join cost dominates the overall cost of query processing.
Finally, if we scale up the dimension tables and the fact tables
simultaneously, we have a combined effect of both on the perfor-
mance. For the space limit, we do not include those results here.

6.3 User Study

We have conducted a user study in IMDB to evaluate the effec-
tiveness of our scoring model. We use the IMDB database for this
study as our judges are more familiar with the movie domain com-
pared with CSUPP or ADVW. For the fairness of evaluation, we
generate ESs from a source different from IMDB. We use HTML
tables extracted from the web [8]. We select HTML tables about
movies by creating a list of movies and checking for overlap of the
subject column of the table with that list. We generate 52 ESs from
randomly selected rows and columns of randomly selected movie
HTML tables. For each ES, we compute the top-10 PJ queries and
present it to the three judges via a web-based user interface.

We have all the human judges get familiar with and agree on
the organization of the IMDB database, and give them access to
each original HTML table, so that they can mark each PJ query
as relevant or non-relevant to an ES. Different subsets of ESs are
assigned to different judges. On average, judges marked 2.3 results
as relevant per ES. The overall mean reciprocal rank (MRR)' is
0.79; it shows that the relevant result(s) typically appear at the top.

To study the effectiveness for varying characteristics of the ES,
we divide the 52 ESs into 3 buckets high (highly frequent terms),
medium, and low, based on posting list sizes of the terms in the
ESs. The MRRs for the high, medium and low buckets are 0.87,
0.78 and 0.71, respectively. The MRR is quite stable across all the
buckets; the MRR values are slightly lower for the low and medium
buckets due to presence of a few ESs containing foreign language
movies (which are not well-covered by IMDB) in these buckets.

7. RELATED WORK

Our work is most related to query discovery using example tu-
ples [25, 18, 27, 22]. These works can be divided into two cat-
egories: those that discover queries whose output is exactly the
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user-provided table [25, 27] and those that discover queries whose
output contains the user-provided example tuples [18, 22]. None
of the above works allow approximate containment and top-k rank-
ing based on the degree of containment. This gives rise to unique
challenges (exploiting common subexpressions while terminating
early) which does not arise in these previous works.

Our work is also related to the vast body of work on keyword
search in databases [5, 12, 6, 15, 14]. Some of these works perform
top-k ranking and early termination [12, 15]; some of them return
answers incrementally [14]. However, the input and output is quite
different: they take keyword search queries as input and return in-
terconnected tuple structures (i.e., tuples connected via foreign key
references) that contain some or all the keywords. Since the rank-
ing objects are different, our problem requires a new scoring model,
and thus new upper bounds of scores and early termination algo-
rithms need to be invented. Specifically, none of those approaches
exploit common subexpressions while still terminating early.

Top-k ranking and early termination techniques have been an
area of intense research [20, 10]. These techniques compute a light-
weight upper bound score for each object, and evaluate them (i.e.,
compute the exact score) in the descending order of upper bound
scores to terminate early. They do not consider sharing computa-
tion among the evaluation of different objects.

While sharing some similarity with the line of works on multiple-
query optimization (e.g., [19, 21] for traditional databases, and, re-
cently, [9, 26] in MapReduce environment), our problem needs to
be tackled with significantly different techniques. There are two
major differences. First, multiple-query optimization problem is
to evaluate all queries/jobs in a given set, while our problem is to
find the top-k£ — one aspect of our objective is to evaluate as few
queries as possible. Secondly, multi-query optimization techniques
consider optimize only for cost and have no budget constraints. As
we have only a budgeted amount of memory and the number of
possible PJ queries is large, our system needs to determine when
to insert output relations into the cache and when remove/replace
them with new ones wisely. While our PJ queries have a more re-
strictive form (i.e., with only foreign-key join tree and projection),
our caching scheme is much more flexible — this leads to a different
technical problem (caching-evaluation scheduling).

8. CONCLUSION AND FUTURE WORK

In this paper, we proposed and studied the problem of discover-
ing top-k project join queries which approximately contain a user-
given set of example tuples in their outputs. The main technical
challenge is to share results of common subexpressions among the
PJ queries and still terminate early. We formalize the problem as
the caching-evaluation scheduling problem, show its hardness, and
develop a near-optimal solution. Our experiments demonstrate that
our solution is both efficient and effecitive in finding the top-k.

Our ranker captures some classes of errors; extending it to other
types of errors (e.g., spelling errors and fuzzy matching) and eval-
uating its quality on real enterprise users are open challenges.



9. REFERENCES

[1] https://docs.google.com/spreadsheets/.

[2] https://msftdbprodsamples.codeplex.com/releases.

[3] https://www.office.com/start/default.aspx.

[4] http://www.imdb.com/interfaces.

[5] S. Agrawal, S. Chaudhuri, and G. Das. Dbxplorer: A system for

keyword-based search over relational databases. In /CDE, 2002.

[6] G.Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan.

Keyword searching and browsing in databases using banks. In /CDE,

2002.

J. Brutlag. Speed matters for google web search (2009):

http://services.google.com/fh/files/blogs/google_delayexp.pdf.

[8] M.J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and E. Wu.

Uncovering the relational web. In WebDB, 2008.

1. Elghandour and A. Aboulnaga. Restore: Reusing results of

mapreduce jobs. PVLDB, 5(6):586-597, 2012.

[10] R. Fagin, A. Lotem, and N. Naor. Optimal Aggregation Algorithms
for Middleware. J. Comput. Syst. Sci., 66(4), 2002.

[11] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer. Some simplified
np-complete problems. In STOC, 1974.

[12] V. Hristidis, L. Gravano, and Y. Papakonstantinou. Efficient ir-style
keyword search over relational databases. In VLDB, 2003.

[13] V. Hristidis and Y. Papakonstantinou. Discover: keyword search in
relational databases. In VLDB, 2002.

[14] G.Li, S.Ji, C. Li, and J. Feng. Efficient type-ahead search on
relational data: A tastier approach. In SIGMOD, 2009.

[15] Y. Luo, X. Lin, W. Wang, and X. Zhou. Spark: top-k keyword query
in relational databases. In SIGMOD, 2007.

[16] M. Mayer.
http://glinden.blogspot.com/2006/1 1/marissa-mayer-at-web-20.html.

[17] E. Millar, D. Shen, J. Liu, and C. K. Nicholas. Performance and
scalability of a large-scale n-gram based information retrieval
system. J. Digit. Inf., 1(5), 2000.

[18] L. Qian, M. J. Cafarella, and H. V. Jagadish. Sample-driven schema
mapping. In SIGMOD, 2012.

[19] P.Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and
extensible algorithms for multi query optimization. In SIGMOD,
2000.

[20] T. Seidl and H. Kriegel. Optimal multi-step k-nearest neighbor
search. In SIGMOD, 1998.

[21] T. K. Sellis. Multiple-query optimization. ACM Trans. Database
Syst., 13(1):23-52, 1988.

[22] Y. Shen, K. Chakrabarti, S. Chaudhuri, B. Ding, and L. Novik.
Discovering queries based on example tuples. In SIGMOD, 2014.

[23] A. Singhal. Modern information retrieval: A brief overview. IEEE
Data Eng. Bull., 24(4):35-43, 2001.

[24] T. Smith, W. Johnson, R. Tamm-Daniels, and S. Probstein. Querying
joined data within a search engine index. US Patent No. 8073840,
2011.

[25] Q. T. Tran, C.-Y. Chan, and S. Parthasarathy. Query by output. In
SIGMOD, 20009.

[26] G. Wang and C. Chan. Multi-query optimization in mapreduce
framework. PVLDB, 7(3):145-156, 2013.

[27] M. Zhang, H. Elmeleegy, C. M. Procopiuc, and D. Srivastava.
Reverse engineering complex join queries. In SIGMOD, 2013.

[7

—

9

—

APPENDIX
A. EXTENSION AND DISCUSSION

A.1 Incremental Computation

Let 7" = T°"YUT"™, where T°' is the set of unchanged rows
that are identical to the ones in 7', and 7™V is the set of new rows
or updated rows in 7”. Recall that O C Qc is the set of PJ queries
that have been evaluated for T'. For the new set of queries, Qc¢’,
generated by the PJ query enumerator for 7", can be partitioned
into Oc’ = QM U Qc™¥, where Q¢ = Qc’ N Qg and
Q¢ = Q¢’ — Qg. For each query in 0, since it has been

M FastTopK-Inc m Baseline-Inc M FastTopK-NInc
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2

=
«n

Time (sec.)
O
U'|

Figure 11: Execution time for mcremental input [row, column]

evaluated for 7', we keep and re-use its score w.r.t. rows in oM.
and for each query in Q¢"®", since it is new or unevaluated before,
we need to (re-)evaluate it for every row in 7. We will discuss
how to utilize the “partial scores™ of queries in Qc°' to get better
upper bounds of scores, and how to take the incremental changes
into consideration when scheduling caching-evaluation.

Improved upper-bound scores for Qc°9. For a query Q €
Qc°!, a better upper bound of its score can be computed as a com-
bination of its old score w.r.t. rows in 7°'¢ and column-wise score
w.r.t. the rest part of 7”. For any 0 < o < 1, we have

scorecol (1Y | Q)
1+ In(1+1In|J|)
< score(T" | Q) (the one defined in Proposition 2).

score(T" | Q) < score(T° | Q) + (11

Note that score(T°'¢ | Q) in (11) is known, as @ has been evalu-
ated for rows in T°'“. score.o1 can be computed as in Section 4.1.2.
Compared to score, RHS of (11) is a better upper bound of score,
and thus implies a smaller minimal evaluation set Q. ;, for T”. So
our strategies terminate more quickly using this upper bound.

Incremental caching-evaluation scheduling. We only need to
modify our cost model so that the incremental updates can be au-
tomatically considered in our strategy FASTTOPK (Algorithms 3-
4). In our current cost model (12)-(13) in B.3, we need to eval-
uate each query Q@ = (J,C,¢) for every row in T. The new
cost model to handle updates will take into consideration the num-
ber of rows in 7" we need to evaluate ) on. i) For a (sub-)PJ
query Q € T(Qc®) — T(Qc™™), we only need to evaluate
it for rows in 7"V, so we define cost’(Q) = |T™%| - cost(Q)
and cost’ (Q, M) = |T™V| - cost(Q, M); ii) for a (sub-)PJ query
Q € T(Qc™™) — T(Qc), we need to evaluate it for all rows
inT", so we define cost’'(Q) = |T”| - cost(Q) and cost’ (Q, M) =
|T’| - cost(Q, M); and iii) for a (sub-)PJ query Q@ € T(Qc°) N
T(Qc™Y), we create two copies of it — the one belonging to queries
in Qc°' is associated with cost as i) and the one belong to queries
in Q""" is associated with cost as ii). Such a weighted cost model
is applied in FASTTOPK to get updated top-k PJ queries.

Experimental Results

We generate complete 3 X 3 example spreadsheets in CSUPP as
described in Section 6.1. We simulate incremental input by starting
with the completely filled-out first row and then adding one cell at a
time from the complete example spreadsheet (i.e., 6 cell additions).
Our simulator adds cells row-by-row, from left to right. We average
our results over the 50 example spreadsheets.

We evaluate three approaches for incremental input:

(i) FASTTOPK-NINC: always treating an example spreadsheet
as a new one and applying FASTTOPK on it;

(ii) FASTToPK-INC: described in Section 5.4 and above; and

(iii) BASELINE-INC: extending BASELINE using the same ideas
as FASTTOPK-INC without caching-evaluation scheduling

Refer to Section 6.1 for the settings of experiments. Figure 11
shows the execution times of the three algorithms for the 6 cell ad-
ditions via row-wise typing. FASTTOPK-INC significantly outper-
forms both BASELINE-INC and FASTTOPK-NINC. FASTTOPK-
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NINC performs poorly since it does not use previously computed
scores for the unchanged example tuples. This is especially true
for the first few cells in a new row (e.g., [2,0], [2,1]). In these
cases, the incremental approaches evaluate the PJ queries only for
the changed example tuple (only a few terms) while FASTTOPK-
NINC evaluates them for both changed and unchanged example tu-
ples. BASELINE-INC suffers as it does not share results of sub-PJ
queries as in the non-incremental case.

A.2 Generalizing Cell Similarity

We can extend cell similarity to perform IR-style relevance rank-
ing as in [23]. For example, we can define cell similarity to be
higher if there is an exact match between an example tuple cell and
output row cell (as opposed to the latter only containing some terms
of the former). And we can incorporate terms weights (based on in-
verse document frequency and document length) in cell similarity.

We can also extend cell similarity to handle spelling errors, syn-
onyms, and fuzzy matching. For example, to handle fuzzy match-
ing, we can built the inverted indexes (both column-level and row-
level) on n-grams as terms instead of words [17]. When processing
an example spreadsheet, we split each cell into n-grams (instead
of words) and retrieve the inverted indexes corresponding to those
n-grams. For spelling errors, we can simply replace a term in the
example spreadsheet with a list of similar terms (within certain edit
distance), look up them in our inverted indexes, and take the union
of posting lists. Synonyms can be handled similarly.

A.3 AND v.s. OR Semantics

Our definition of PJ queries (Definition 2) requires that every
column in the example spreadsheet is mapped to some column in
the database. We can relax this constraint by allowing that only
a subset of the example spreadsheet columns is mapped to the set
of database columns, i.e., simply ignoring some example spread-
sheet columns. Consider a PJ query Q = (7, C, ¢), this relaxation
changes our mapping from “¢ : col(T") — C” to “¢ : col(T) —
C U {L}”. When a column ¢ in the example spreadsheet 7" is
mapped to L, this column does not correspond to any column in
the output relation of (). We call our old column mapping, AND-
column mapping, and the new relaxed one, OR-column mapping.

Our approaches can be extended to handle OR-column mapping
easily. A simple extension is as follows. For a user-given example
spreadsheet T with ¢ columns, our system can create 2° example
spreadsheets 1o, 11, . .., Toc_1, each of which consists of a subset
of columns of 7. We then process them using our FASTTOPK
strategy one by one. The 2 top-k resulting lists are aggregated to
generate the overall top-k. Since c is small in practice, the cost
of this approach is affordable. A more direct way is to enumerate
all PJ queries under this OR semantics. To this end, we can apply
the Candidate Network Generator in [12] to generate an extended
set of candidate PJ queries in Qc ™, each of which has a subset of
example spreadsheet columns mapped to its projection. Then both
of our strategies BASELINE and FASTTOPK still work on Q¢ ™.

Experimental Results

Refer to Section 6.1 for the settings of experiments. We use CSUPP
dataset and corresponding example spreadsheets to compare FAST-
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TopPK with AND-column mapping (the one described in the main
body of this paper) with the extended version of FASTTOPK with
OR-column mapping (the simple extension described above).

Figure 12(a) shows the average set difference between the re-
sult sets with AND and OR-column mapping for the 50 example
spreadsheets for various values of k. For smaller values of k, there
is almost no difference between the two result sets. For example,
the top 10 results are identical for 49 out of the 50 ESs. It means
that, even when we allow OR-column mapping in PJ queries, the
top ones are likely to have all the columns in example spreadsheets
mapped to their projections (AND semantics).

Figure 12(b) shows the average execution times of the two ap-
proaches. Note that “enumeration’ here means “query enumeration
+ upper-bound score computation”. The OR-semantics implemen-
tation is only a bit slower than the AND-semantics one since the ex-
ecution time for the 7; created from the biggest subset of columns
in T (i.e., the entire example spreadsheet) dominates the execution
time. This shows that our system can be easily adapted to support
OR-semantics whenever necessary, e.g., when the system returns
an empty result for some user-specified example spreadsheet.

Figure 13 plots the number of PJ queries enumerated and evalu-
ated in AND and OR semantics. NAIVE evaluates all the PJ queries
enumerated in both semantics. We can find that, in the AND se-
mantics, less PJ queries are enumerated than in OR because of
stronger constraints in the column mapping ¢. Using upper bounds
score, the number of PJ queries actually evaluated by FASTTOPK
is much less than the total number of queries enumerated.

B. COMPUTING EXACT SCORES

B.1 Execution Plan for PJ Queries

We need to execute the PJ query ) and, for each tuple ¢ in the ex-
ample spreadsheet, examine every row in the output relation A(Q)
to compute the terms max,c 4(q) score(t | r) in (3). We utilize
the (key, foreign key)-snapshot of the database (discussed in Sec-
tion 3.1), and select a pre-optimized plan to execute () in memory.
Our execution plan for () borrows ideas from hash joins:

Stage I (scanning row-level inverted indexes to score cells): For
each term w in each cell ¢[¢] € T, suppose column ¢ is mapped to
column j in a relation R in the database D through ¢, we retrieve
the row-level inverted index inv(w, R[j]) to compute cell similar-
ities scorecen(t[i] | r[j]) (as lines 1-5 of Algorithm 1) for rows
r € R. scorecen is then associated to primary keys of rows in R.
Stage II (bottom-up hash joins): Starting from the leaf relations
in J, the primary key of each row, associated with cell similarities,
is inserted into a hash table if cell similarity is non-zero in at least
one cell — after that, a leaf relation is called evaluated.

Recursively, Stage II-A (scan/hash lookup): for each relation
above, if all of its children relations have been evaluated, we can
start to scan its rows in the in-memory (key, foreign key)-snapshot
of this relation, and for each row, look up all foreign keys (in dif-
ferent columns) in the corresponding hash tables popped up from
the children relations to conduct the foreign-key joins. Stage II-B
(building hash table): Then, the primary key of each row in the
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join output with nonzero cell similarities (in at least one cell) is put
into a hash table. After that this relation is called evaluated.

Stage III (computing scores): After the root relation is evaluated,
we get the output relation A(Q), with cell similarities associated in
each row of A(Q), and then we can compute the row containment
score as in (1)-(3). Note at at each relation, we only need to keep
primary/foreign key columns and columns in the projection C. O

The above evaluation plan can be executed either for () with one
row of T', or with all rows of 7" together.

Figure 14 shows the execution plan for the PJ query in Fig-
ure 2(b)-(i) on the first row of the example table in Figure 2(a).
A rectangle node represents the operation to retrieve row-level in-
verted indexes and compute cell similarities in Stage-I. A circle
node represents the operations (scanning, hash lookups, and build-
ing hash table) we perform on a relation (labeled beside) in Stage-
I1, after all of its children are evaluated. For example, on the Orders
node, we lookup foreign key Orders.Custld of each row in the hash
table built by the node Custmer, and then build a hash table with
Orders.Old (key in the hash table) and cell similarities on column
Customer.CustName and column Nation.NatName. On the root
node Lineltem, we need to look up two foreign keys Partld and Old
in the hash tables popped up by its two children Part and Orders,
respectively. Operations are performed in the order of (D), @, ©®),

@, ®, ®, D, ® to compute the final score.
B.2 Speedup Execution using Cache

The execution plans of PJ-queries can be easily extended to take
advantage the cached sub-PJ queries: for a PJ query @ and a set of
cached sub-PJ queries in M, instead of starting from the leaves of
@, we start from the output relations of maximal sub-PJ queries of
Q in M and follow the execution plan of @ afterwards.

For example, Figure 3 shows two sub-PJ queries @ (left) and
Q% (right) of the PJ query Q in Figure 2(b)-(i). Intuitively, the exe-
cution plan of a sub-PJ query Q' < (Q is a subtree of the execution
plan of @Q. For example, the dotted polygon and the dashed polygon
in Figure 14 are the execution plans of Q7 and Q%, respectively.

In the execution plan of @ in Figure 14, if both Q) and Q5 are
materialized in M, we can start from their output relations in M
and execute only the operations 3), @, ©), and ® (only the join
with Part is needed in ®)). If a even larger one Q% (rooted at
Orders), whose plan is the shaded polygon in Figure 14, is cached,
we can start from the output relations of Q7 and Q5 (Q% is no more
a maximal one) and execute only the operation ().

B.3 Cost Model for Computing Exact Scores

For the PJ-query Q = (J,C, ¢) w.rt. T, there are three ma-
jor operators involved in our execution plan in B.1: i) retrieving
row-level inverted index; ii) scanning a relation while doing hash
lookups; and iii) building a hash table. The running time of each
of these operators is constant. So a natural and light-weight cost
model of the execution plan for () is to count the number of oper-

ations ii) and iii) executed on tuples in the relations of J and the
number of tuples retrieved from inverted indexes. For a (sub-)PJ
query @, define the cost of evaluating Q) as:

cost(Q) =) |Rl-ds(R)+ Y > linv(w, T[6(D)])]. (12)

REV(J) i€col(T) weT][i]

The first component on the RHS of (12) quantifies the total number
of hash lookups/inserts: dz(R) is the degree of relation R in 7,
as for each tuple in R, the number of hash lookups is equal to the
number of children of R in J, and for every relation except the
root relation in R, we need to build a hash table by inserting tuples
in this relation. The second component quantifies the number of
tuples we need to retrieve from row-level inverted indexes: here let
J[¢(2)] be the column which ¢ is mapped to in a relation of 7.

More generally, we have a set of sub-PJ queries cached in M.
The cost of the execution plan for Q when we reuse output relations
of sub-PJ queries in M is defined to be:

cost(Q, M) = cost(Q) — Z cost(Q),  (13)

maximal Q' eM
Q'=Q
as the output relations of maximal sub-PJ queries Q' of Q in M
can be directly retrieved from M and reused.

Both cost(Q) and cost(Q, M) can be computed efficiently. In
(12)-(13), |R|, the number of tuples in R, and |inv(w, J[¢(4)])].
the length of a row-level inverted index, can be gotten in constant
time. So the total time is O(V(J) + # terms in T').

C. PROOFS

Proof of Proposition 1. For the first part (property 1)), since no col-
umn in 7" is mapped to R, by excluding R from (), the column con-
tainment score is unchanged, i.e., scoreco1(T" | Q) = scoreco1(T" |
Q). So it suffices to prove scorerow (T | Q) < scorerow (T | Q).
Consdier the output relations .A(Q) and A(Q'), for any t € A(Q),
we have t € A(Q’), because Q' has less key-foreign key con-
straints in joins. So from (1), we have, for each ¢t € T, score(t |
Q) < score(t | Q). Then the conclusion follows from (3)

For the second part (property ii)), scoreco1 (T | Q) = scorecor (T”
| Q") is also obvious as no term in the removed column T'[i] ap-
pears in the removed R[j]. It suffices to prove score;ow (1" | Q) =
scorerow (1" | Q'). Comparing @ with QQ”, their join trees are the
same and the projection in Q" is a subset of the projection in Q. So
the output relation A(Q") is essentially the projection of A(Q) on
C’. And since the column R[j] excluded in Q" contains no term in
the spreadsheet column 7'[¢], the above claim follows. O
Proof of Proposition 2. From (5), it suffices to show score,ow (7’ |
Q) < scorecol(T' | Q). Putting (2) into (3), and comparing it with
(4), we can derive this relationship. O
Proof of Proposition 3. For each term w in a column ¢ of T, if
T'i] is mapped to R[j], we need to scan the row-level inverted in-
dex inv(w, R[j]) — the term in (4), scorecen (t[¢] | 7[¢()]), is ob-
tained by aggregating the results for different terms. The total cost
is dominated by O(3_,, o Iw), .., lengths of inverted indexes. O
Proof of Proposition 4. Again, the row-level inverted indexes need
to be scanned to compute the terms scorecen (t[i] | 7[¢(¢)]) in (2).
To compute the terms max,.c 4(g) score(t | r) in (3), we need to
scan the output relation A(Q) at least once. The complexity of
generating .A(Q) using the hash-join execution plan introduced in
Appendix B.1is O(3 " g/ [R] - d7 (R)). O
Proof of Proposition 5. Let’s first define the class of algorithms,
called multi-step ranking algorithms. A multi-step ranking algo-
rithm takes i) a set of PJ queries Qc, and ii) upper bounds score



of their scores, as input. In each step, it picks one or more PJ
queries in Q¢ with unknown scores and evaluates them, i.e., com-
putes score(Q); based on the known scores, it continues to pick the
next one or more PJ queries to evaluate, until the fop-k of known
scores is larger than the max of upper-bound scores of queries with
unknown scores. The following proof follows from [20].

Recall Omin = {Q1,Q2,...,Qi+} C Qc, and ¢* is the min-
imal ¢ s.t. top,{score(Q1),...,score(Q;)} > score(Qi+1) >
score(Qiq2) > ... > score(Qn). We prove this proposition via
contradiction. Consider any multi-step ranking algorithm that eval-
utes a set of PJ queries Q' and claims that all queries with the top-k
scores in Q¢ have been found in Q'. Pick any Q, € Omin — Q.
Let Q4 be the PJ query in Q" with the kth highest score, i.e.,
score(Qq) = top, {score(Q) | Q € Q'}.

i) If score(Qp) > score(Qq): Since the algorithm has not eval-
uated @Qp, the adversary can set score(Q,) = Score(Qp). Then
score(Qp) > score(Q,) = top,{score(Q) | @ € Q'}, s0 Qp is
missed from the top-k and the output of the algorithm is incorrect.

i) If score(@p) < score(Qq): Consider the set of top-k PJ
queries in Q’, Qo = {Q | score(Q) > score(Qq)} N Q.
We have Qi € {Q1,Q2,...,Qp 1}, because for any Q €
Qtopk» We have 5core(Q) > score(Qp). Then it follows that
top, {score(Q1), ..., score(Qp—1)} > score(Q,). Note that p <
¢*, and thus it contradicts with the minimality of 7.

Both i) and ii) lead to contradiction, so we have Qumin C Q'. O
Proof of Theorem 1. To prove the correctness, we only need to
show that if (7) is satisfied, the top-k are among Q1, Q2, .. ., Q;.
This is true, because, from the way how @);’s are ordered in (7) and
BASELINE, for any j > 4, we have score(Q;) < score(Qi+1).

The second part, it evaluates only queries in Omin, is trivial. O

Proof of Theorem 2. Given a sequence of type-a,b,c operators, to
check whether it is a feasible solution, we only need to check when
it eventually evaluates all PJ queries in Omin and, at any time, the
cache size it uses is no more than B. So when O, is known,
the problem is in NP. We use a reduction from the HAMILTONIAN
PATH problem to show CACHE-EVAL SCHEDULER is NP-hard.

Consider a HAMILTONIAN PATH instance: given a undirected
graph G(V, E), whether there exist an ordering of all vertices v1,
Va2, ..., un EV (V]| =n)s.t (vi,vi41) € Efori=1,...,n—1.
This problem is NP-complete even in a restricted class of graphs,
where every vertex has degree equal to three [11]. Now let’s con-
struct an instance of our CACHE-EVAL SCHEDULER problem. For
each vertex v € V, create a PJ query @, in Qmin. For each edge
e = (v,u), create a sub-PJ query Q%"" and let Q5" be a sub-PJ
query of both @), and Q.. So for each created PJ query Q,, we
have the set of all sub-PJ queries of @, to be 7(Q.) = {Q5" |
e is incident on v}. Finally, let |A(QS"?)| = B for every e € F,
i.e., at any time, we can only keep the output relation of one sub-PJ
query in our cache; and let cost(Qi“b) = (' be equal for every
e and cost(Q,) = C- be equal for every v € V. To prove the
NP-hardness, it suffices to show such a claim: there is a Hamilto-
nian path in G if and only if there exists a sequence of operators to
evaluate Qmin With cost no more thann - Cy — (n — 1) - C1.

To prove the claim, we need to transform a path into a sequence
of operators and vice versa. A subpath v;—1v;v;+1 in the Hamilto-
nian path corresponds to: when evaluting Q,,, ,, we put Qs“b Lvs)
in cache and reuse it to evaluate Q,,; and after that, we clear the
cache and put Q?‘;?UI_ 1) in cache. Details are omitted here. ad
Proof of Theorem 3. The correctness follows directly from The-
orem 1. The set of PJ queries FASTTOPK evaluate is always a
superset of those evaluated by BASELINE (i.e., all queries in Qmin
have been evaluated when FASTTOPK terminates). O

Proof of Theorem 4. The second part, Man = ©(Smax - N), is
directly from our definition of sub-PJ queries.

For the overall time complexity, we focus on Algorithm 4 first.
For each sub-PJ query @', we need O(smax) time to get cost(Q")
and | A(Q’)|, which are used in lines 1 and 4. So we need a total of
O(M - smax) time for all sub-PJ queries. Sorting all sub-PJ queries
in line 1 needs O(M - log M) time. The remaining question is
how to get Q* and Critical 7! (Q*) efficiently (lines 4, 6, and 8).
Note that B; is the set of unevaluated PJ queries. For each sub-PJ
query Q’, we keep a hash set HS(Q’) of unevaluated PJ queries
it belongs to. For each PJ query @), we also keep a list LT'(Q) of
sub-PJ queries it contains. So after a PJ-queriy @ is evaluated, each
HS(Q') can be updated in constant time if Q’ is a sub-PJ query of
Q. To get Q" in all iterations, we only need to scan all sub-PJ
quries Q1, . . ., Q) in order and check whether |H.S(Q")| > 1 for
each. Critical ™' (Q*) can be directed retrived from HS(Q*). So
the time complexity of Algorithm 4 is O(M (Smax + log M)).

In Algorithm 3, the additional time besides invoking Algorithm 4
is at most O(N - (log N + log k)) (soring plus keeping the top-k).

So from zlogz 4+ ylogy < (x + y)log(xz + y), we have the
overall time complexity is O(N 4+ Man(Smax + log Man)). a
Proof of Theorem 5. The first part (9) is directly from the defini-
tion of Omin and the way we construct batches in Algorithm 3.

To prove the main result (10), we first prove, for each batch B

costror(B)—costsor (B) > 2—(122 (costroT(B) — costopr(B)) .

(14)
That is, the cost saved by FASTTOPK is no less than 1/ 2¢? of the
optimal save. Summing up (14) for all batches B = By, B1, .. .,
since they are disjoint and UB; = OQg, we have

costrorT(9Qr) — s, costsor(B;) (15)

1
>— 9¢2 (COStTOT(QE)
FASTTOPK works batch-by-batch, so we havei) > costsor(B;)
J

= costsorL(Qg). Since B; C Og, we have ii) costopr(B;) <
costopT (Qr). And it is obvious that iii) the total number of batches
processed by Algorithm 3 is at most log; . (|Qmin|/k). Our per-
formance ratio (10) follows from (15) and i)-iii).

The only missing part is the proof for (14). Let the batch of PJ
queries B = {Q1, ..., Qxn}. Suppose in the optimal solution,

<Zcost )—cost(Qs, M7), (16)

QleB

EB]. COStopT(B]')) .

costror(B)—costopr (B

where M is the status of cache before Q); is evaluated. From (13),

cost(Qs) — cost(Qi, M]) = Z cost(Q").  (17)
maximal Q'EM:
Q=@

On the other hand, in Algorithm 4, when Q); is to be evaluated, we
have cache M; = {Q™} (lines 8-9), where Q" is the most costly
sub-PJ query among those in {maximal Q' € M} | Q" < Q;}
based on its selection (line 4). There are at most ¢ maximal sub-PJ
queries for Q; (as there are at most c leaves in the join tree), so

cost(Q;)—cost(Q;, M 1)>l (cost(Q;) — cost(Qi, M7)). (18)

Among all PJ queries in B, in the worst case, a fraction = 5. of them
can benefit as much as (18) from the cache. So putting (18) back to
(16), we can obtain (14). The proof can be completed. O



