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In high-dimensional data domains, the performance of conventional tree-based access struc-
tures is occasionally outperformed by simple sequential scans. To this end, the introduction of
approximation-based methods helped speed-up queries by providing compact representations of
stored data. Approximation methods exploit vector quantization to index data mainly presumed
to follow a uniform distribution. In real-world environments however, we mostly encounter both
skewed data and query distributions. To address this dual challenge, we propose DiVA that combines
the selective use of an approximation approach with an indexing mechanism to organize data sub-
spaces in a high fan-out hierarchical structure. Moreover, DiVA reorganizes its own elements after
receiving application hints regarding data access patterns. These hints or policies trigger the restruc-
turing and possible expansion of DiVA so as to offer finer indexing granularity and improved access
times in subspaces emerging as ‘hot-spots’. The novelty of our approach lies in the self-organizing
nature of DiVA driven by application-provided policies; the latter effectively guide the refinement
of DiVA’s elements as new data arrive, existing data are updated and the nature of query workloads
continually changes. An extensive experimental evaluation using real data shows that DiVA reduces
up-to 64% of the total number of I/Os if compared with state-of-art methods including the VA-file,

GC-tree and A-tree.

Keywords: self-organizing indexing methods; accessing skewed multidimensional data and queries; vector
approximation techniques

Received 27 April 2015; revised 1 September 2015
Handling editor: Fionn Murtagh

1. INTRODUCTION

Numerous applications in the fields of earth and space sciences,
data analysis, scientific computing, multimedia retrieval,
bio-informatics, among others, operate on multidimensional
data [1–7]. To efficiently evaluate similarity-based queries,
data objects from such domains are typically mapped into data
vectors in n-dimensional spaces. To speed-up query evaluation
in high-dimensional and large-volume datasets, specialized
index methods have been proposed [8–14]. These indexing
schemes use a set of feature vectors, representing objects in the

original domain and a distance function to perform similarity
searches. The two most common similarity search operations
in such domains are the Range (i.e. ‘retrieve all objects within
a distance from a query object’) and the k-Nearest-Neighbor
(k-NN) queries (i.e. ‘retrieve the k-closest objects to query
object’).

In high-dimensional spaces, tree-based indexing methods
employed to evaluate similarity queries are ineffective [8].
This is due to the fact that index performance deteriorates
rapidly as the number of dimensions increases. This renders
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simple linear scan an efficient approach [15, 16]. This ‘curse
of dimensionality’ problem has led to the introduction of
approximation-based access methods [9, 17–21] whose aim is
to reduce search costs by performing sequential scan on com-
pact and approximate representations of data. In this context,
vector quantization techniques, e.g. VA-files [15], are effective
as they employ scans on approximate quantized data to partially
lift the curse of dimensionality. By and large, most of the so far
proposed vector quantization techniques assume uniformly dis-
tributed data. Thus, to overcome this drawback pre-processing
data methods have been proposed as a way to ‘smooth’ skewed
data so that approximation-based methods can work more effi-
ciently [22, 23]. Nevertheless, not only skewed data but also
clustered query distributions are frequently encountered in
real-world settings [24, 25].

To curtail I/O costs originating from fruitless sequential
scans in large datasets, a number of techniques [26–28] have
attempted to leverage on hierarchical-based data partition-
ing structures. For instance, the A-tree [26] avoids large areas
of the search by introducing the concept of virtual bound-
ing rectangles (VBRs); they are tightly packed quantized
minimum-bounding rectangles (MBRs). The IQ-tree [27]
employs MBR in a three-level tree-structure that points to com-
pressed representations of data vectors. The space partitioning
employed by the GC-tree [28] provides higher indexing detail
in areas of dense data distribution. Overall, the combined use
of hierarchical space partitioning and data quantization has
shown promise where traditional tree-based and simple approx-
imation approaches do not perform well. Nevertheless, these
methods are limited by their predefined and fixed heuristics
set at index construction time. Moreover, these heuristics do
ignore application requirements and possibly changing access
patterns.

To addresses the above limitations, we present DiVA that
blends two key characteristics as it:

(i) combines the selective use of an approximation
approach with an indexing mechanism to manage data
subspaces in a high fan-out hierarchical structure and

(ii) works in conjunction with application-provided ‘hints’
(or policies) and exploits changing query workloads to
reorganize itself.

DiVA employs an adaptation mechanism that helps either
‘zoom’ (or ‘dive’) into its structure and provide access to
objects with progressively increasing granularity, or restructure
the index in order to more rapidly materialize queries in certain
areas. External to DiVA software components termed observers,
realize application-specific policies that drive DiVA’s adapta-
tion mechanism. We describe two such policies: the first seeks
to reduce query turnaround time by decreasing the overall I/O
overhead, while the second favors specific groups of users.

We present a thorough experimental evaluation of our pro-
posed DiVA method using a range of real and synthetic datasets.

Our results show that DiVA outperformed well-known compet-
ing methods in terms of I/Os. For clustered high-dimensional
spaces, DiVA achieves a notable improvement, while for uni-
formly distributed spaces, it yields performance comparable
with its best competitor. In summary, in this paper we make the
following contributions:

(i) we propose the DiVA indexing method that decouples
index expansion from the rest of its query evaluation
operations. DiVA is driven by application-specific poli-
cies registered while the index is kept on-line. In this
way, the index may rapidly adapt to changes in the data
distribution, or address changes in querying patterns
that may require fine-granularity access to different sub-
spaces. High-level application-specific requirements
are allowed to help the index tuning.

(ii) DiVA selectively adapts its indexing granularity in spe-
cific subspaces. This is achieved by its hierarchical and
highly compact structure;

(iii) DiVA uses multiple segments of approximated data
that are sequentially scanned during the query eval-
uation. This strategy allows efficient storage of an
arbitrary large number of approximations in each node,
thus achieving good performance in high-dimensional
datasets;

(iv) a prototype-based evaluation shows that DiVA outper-
forms a number of previously proposed access methods
for high-dimensional data.

The rest of the paper is organized as follows: in Section 2, we
review the related work. In Section 3, we formalize the main
features of DiVA; Sections 4 and 5, describe how applications
may dictate policies to guide the expansion and restructuring
of DiVA. Section 6 discusses our experimental evaluation and
Section 7 offers our conclusions.

2. RELATED WORK

Many indexing schemes for multidimensional data have been
proposed [29, 30] so that queries such as range and k-NN are
handled efficiently. Tree-based indexing methods attempt to
speed-up query evaluation by visiting only fraction of their
search space. To maintain the property that data objects under
the same branch ‘lie’ within the same bounding rectangle or
sphere, such methods deploy rather expensive updates; the
effect of a single such update can affect the entire structure
through repetitive nodes splits all the way to the root. The
X -tree [31] attempts to reduce such costs by minimizing the
overlap of bounding rectangles through the creation of spe-
cialized nodes that extend the capacity of overload nodes.
The SS-tree [32] and SR-tree [8], respectively, use spheres
and the combination of rectangles and spheres as bounding
shapes to represent nodes. There is a similar line of structures
whose operation is based on the distance of index objects to
selected reference points. The M -tree [33] is a height-balanced
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partitioning approach that organizes objects based on their
distance to reference objects associated to nodes. The iDis-
tance [34] uses a B+-tree to index the distances of objects to
reference objects. The Omni-Family [35] extends the idea to
other index structures such as the R-trees. To minimize overlap-
ping among sibling nodes, some indexes employ partitioning
methods that generate non-overlapping cells. In this respect, the
Grid-file [36] organizes cells that adapt to changing data object
distributions while the K-D-B-trees [37] address diverse data
distributions through space partitioning. Lastly, the hybrid-tree
combines the advantages of both space and data partitioning
approaches [38].

All above approaches suffer from the ‘dimensionality
curse’ [17, 39, 40]. Under fairly common conditions and as
dimensionality increases, sequential scan eventually outper-
forms all space partitioning and clustering methods [15]. The
VA-file was proposed as an alternative method for indexing
datasets in n-dimensional space. The VA-file is an array of
vector approximations with each approximation being a quan-
tized, compact representation of an original data vector. The
VA+-file [22] uses Karhunen–Loeve Transformations (KLT)
and a scheme of flexible bit allocation among dimensions to
efficiently differentiate vectors through pre-processing of data.
Data vectors are pre-processed so they become more uniformly
distributed among the n dimensions. The higher the standard
deviation of data over a dimension is, the more bits are allocated
for the quantization of dimension at hand.

The IQ-tree [27] uses a directory of bounding rectangles to
limit the number of approximations read. Prior to its creation,
the IQ-tree examines the entire dataset to produce its opti-
mized directory up-front. The VQ-index [41] divides space into
Voronoi cells according to queries received in order to produce
approximate answers. The data vectors of each cell are com-
pressed using vector quantization and are placed in a single
file; only pertinent such files are accessed during querying. The
GC-tree [28] partitions index space so that cells containing
clustered data are identified and further indexed in the lower
tree levels. Here, the cubic cells produced are mapped to disk
pages. Cells containing clusters are split into more fine grained
cells while sparsely populated cells are packed together into
virtual pages.

The A-tree [26] seeks to combine the advantages of both
VA-file and SR-tree [8]. An A-tree is a hierarchy based on VBRs
that are derived from MBRs with quantization. In general, an
MBR is enclosed within a VBR so that no vectors are dropped
during quantization. VBR stored in the inner-tree nodes are rep-
resented in relation to their ascendant MBR so as to maximize
storage efficiency. Due to their smaller size, numerous VBR
can be packed in a data block and thus, the fan-out of A-tree is
increased; due to this property, the A-tree node layout resem-
bles that of VA-file while the presence of bounded rectangles
underlines influence from the SR-tree.

In specific application domains, the quality of results may
be traded in favor of faster response times [41–44]. Hence,

indexing methods that use locality sensitive hash (LSH) has
been proposed. LSH groups data vectors into bins which in
turn help materialize k-NN queries and it does produce approx-
imate query results [45–47]. LSH functions produce similar
hash-values for close-by data vectors and so help efficiently
generate approximate solutions to similarity queries. Approx-
imate results may also be provided through dimensionality
reduction methods [48]. We consider dimensionality reduction
methods largely orthogonal to the indexing approaches. As a
matter of fact, dimensionality reduction can serve as a valuable
pre-processing step for indexed data; nevertheless, it can by no
means replace indexing. In similar spirit, in [49] bloom filters
are used to trade accuracy for performance.

Unlike the above hash-based mechanisms [45–47, 49, 50],
DiVA provides exact answers to both range and k-NN queries.
In contrast to VA-file, DiVA offers multiple levels of progres-
sive index granularity through its hierarchical organization.
DiVA differs from most tree-based counterparts in that a node
may store an arbitrary high number of approximations which
are sequentially scanned. In [26–28], tree nodes are mapped
into disk blocks. In DiVA, a node consists of files that sim-
ply grow allowing for almost unlimited fan-out, i.e. DiVA
delegates the allocation of more spaces for a node to the file
system.

It is worth pointing out that previous existing meth-
ods [18, 19, 26, 27, 41] heavily rely on static and/or predefined
rules (e.g. node utilization) to initiate the creation of new nodes
and/or reorganize their structures. In contrast, DiVA reorga-
nizes its structure on-the-fly according to application-provided
policies. As mentioned earlier, such policies are based on
query workload characteristics, application-provided hints and
features of the host computer system.

2.1. The VA-file and skewed data

DiVA treats the ‘dimensionality curse’ in the same way as the
VA-file, through vector approximations. While skewed data and
queries are efficiently handled by structural changes in the hier-
archy of its nodes. Here we describe the salient features of the
VA-file, and discuss how an unbalanced structure can address its
limitations.

As dimensionality of the dataset increases a serial scan is
eventually more efficient than space partitioning and cluster-
ing [15]. For each point (vector) in the n-dimensional space,
the VA-file produces an approximation vector that is ultimately
used to improve the performance of the sequential scan. To
construct these compact vector approximations, the space is
divided into 2b cells, with b being the bit length of each approx-
imation. Each VA-file vector belongs to a single cell and each
vector within a cell is approximated by the b bit representation
of the corresponding cell. When more than one vectors fall
within the same cell, the same representation is repeated in the
approximations array. In this manner, the same approximation
may appear more than once in the VA-file.
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The idea behind VA-file is to process queries in a 2-phase
filtering process: in the first phase, a sequential scan of all vector
approximations locates candidate cells. For each approxima-
tion, the lower and upper distance bounds are computed; in the
second phase, cells that are not pruned during the first phase
are further examined. The trade-off between cost and accuracy
of the sequential scan in the 2-phase filtering is controlled by
the parameter b. As b increases the space cells become smaller
and we expect them to include less approximations. Smaller
cells call for longer sequential scans (first phase) but less vec-
tors to be examined within during the second phase. Since
vector approximations are placed sequentially in the same file,
the VA-file achieves good performance when pages are placed
sequentially on the disk. The reason is that this approach makes
efficient use of cache and prefetch mechanisms available in the
current systems.

In light of clustered data however, large numbers of vectors
tend to fall within the same cell as they feature identical approx-
imations. Here, approximations offer limited capacity in differ-
entiating among the populous clustered data vectors that now
have to be all retrieved. Further more, the VA-file offers the same
index granularity (b bits) across the entire dataset. Thus, there is
no differentiation between ‘hot’ and ‘cold’ space areas.

To alleviate the above limitations, DiVA adopts a hierarchi-
cal structure where higher index granularity is offered through
lower level nodes. Such granularity adjustments accommodate
both skewed data as well as skewed queries. Quantization is
employed to produce vector approximations, which are stored
in nodes of a hierarchical structure. Extra nodes are used to
index particular space areas and bare significant resemblance
to VA-files. Each child node provides higher index detail over
a portion of the area indexed by its parent. The end structure is
an unbalanced tree (more levels are used to index ‘hot’ areas).
Balancing such structure would needlessly increase index gran-
ularity across the entire search space. Moreover, ‘hot’ areas
should be scanned first, to accommodate this the proposed
structure intentionally restructures itself in an unbalanced
form.

2.2. Earlier work on DiVA

A preliminary version of our work appeared in [51]. Compared
with this, the current extended version entails the following:

(i) in-depth discussions on several key architectural
aspects of DiVA: We present how the event-based
mechanism enables the implementation of multiple
application driven policies. Section 4.2 outlines the tun-
ing options of such adaptation policies. We also present
and evaluate the favoring groups of users (FGU) policy
(Section 5.2) that allows for specific users groups to be
favored over others.

(ii) detailed presentation of important core operations:
Sections 3.2 and 3.3 outline the data layout and the

way we manipulate bits in ways that help achieve the
sought performance. The behavior of DiVA’s internal
components is evaluated in Section 6.1.

(iii) in-depth discussions on the interface operations of the
proposed index. In addition to the k-NN algorithm, we
also present the implementation of the range search as
well as the vector insertion algorithm along with perti-
nent complexity analyses.

(iv) improved and comprehensive experimental evaluation
of our approach: Using prototypes we have developed,
we carried out a wide range of diverse experiments that
reveal both pros and cons of DiVA and other exam-
ined techniques. The latter include the competing
GC-tree [28] access method as well as the VA-file, the
VA+-file and the A-tree.

(v) comprehensive comparison with prior work in the area:
This related work section outlines a number of prior
research efforts and qualitatively compares how our
proposed DiVA approach advances the work through
its unique feature of ‘diving’ fast into query regions
of interest as well as its DiVA’s hint-based application
driven reorganization method.

3. THE DIVA INDEX

DiVA is a non-balanced hierarchical structure whose every node
resembles to the VA-file. An non-balanced structure was chosen
since in high-dimensional spaces, balanced structures generally
result in large, ineffective bounding volumes. Approximation
data are used to speed up the search within each node; every such
node also contains data vectors. This approach aims to combine
the good properties of VA-files in high-dimensional spaces with
DiVA’s hierarchical structure that offers enhanced refinement
indexing capabilities. Node creation and index maintenance
are controlled by application-specific policies. Finally, DiVA by
design carries out I/O operations using only forward file seeks
so as to better exploit the underlying storage subsystem.

3.1. Structure and operation of DiVA

Non-uniform datasets accessed via skewed query access patters
necessitate fine(r) index granularity in corresponding data sub-
spaces. DiVA uses a hierarchical structure of nodes whose every
successive level provides for greater indexing accuracy. A DiVA
node is similar to the organization of the VA-file and comprises
of two files:

(a) a file with approximations termed a-file and
(b) a file of records termed r-file holding data vectors or

pointers to other nodes.

Approximations stored in the a-file are produced through
quantization of the corresponding data vectors. This lossy
approximation process, introduces a degree of uncertainty in
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FIGURE 1. Sample of a DiVA structure in a 2D space.

the exact location of the original data vector. In essence, each
approximation represents a rectangular cell in the indexed
space. In Fig. 1, we present one such 2D space indexed by
DiVA. Each vector Vx belongs to a cell according to the prefix
of its coordinates. Thus, data vectors belonging to the same
cell, have also the same approximation. On the right side of
Fig. 1, we show the structure of DiVA. Cells C1, C2, C3 have
corresponding entries in the root node. Cell C4 does not appear
in the index since it does not contain any data vectors. For the
approximations of C2 and C3, there are two lists of data vec-
tors. The list corresponding to C2 contains data vectors V2, V3
and V4, while the list of C3 consists of a single vector. Cell C1
is further indexed by a second-level node. The approximation
of C1 in the r-file of the root node points to a record which in
turn points to a child node. The child node contains the approx-
imations of cells C1.1, C1.2, C1.3, C1.4 and the corresponding
data vector lists in the child node’s r-file.

Contrary to the VA-file, DiVA always stores each distinct
vector approximation only once, regardless of the number of
data vectors in the approximation cell. In effect, vectors of the
same cell are stored in a list of records formed inside the r-file.
For example, vectors V3, V2 and V4 are placed in a list for they
belong to cell C2.

A single record in the r-file may be either (a) a pointer to a
child node or (b) part of a list of data vectors. All entries in a
records’ list contain data vectors from the same space cell. The
same applies to all data vectors encountered by following a
pointer to a child node. Lower level nodes are used to further
divide a cell into multiple cells with higher granularity. For
instance in Fig. 1, cells C1.x are used to subdivide cell C1.

Each stored approximation has a corresponding record in
the r-file. In our current implementation, a record is an array
of dimension values. The size of the array is the same as the
number of dimensions (one value per dimension).1 By having
the nth approximation correspond to the nth record in the r-file,
we eliminate the need for pointers in the a-file which in turn
allows for tighter packing of approximations. The absence of

1 It is trivial to replace the above vector representation to any object as long
as we have away to extract the dimension values.

pointers from the a-file to corresponding records in the r-file
may demand an occasional record relocation during insertion.
During such a data vector insertion, any record already occu-
pying the corresponding position of the new approximation
has to be moved to the end of the r-file. Two pointers, stored in
each record, are used to connect the vectors of the same cell in a
circular doubly linked list. This doubly linked-list organization
renders the relocation of records a constant cost operation.

The structure of DiVA allows us to store an arbitrarily high
number of approximations per node. Yet, to guarantee the
uniqueness of approximations, during insertion, the entire a-file
has to be scanned. This insertion cost can be lowered by per-
forming batch insertions of data vectors; we have implemented
this batch insertion technique to speed-up our experimentation.

3.2. Approximations and data packing

DiVA enables us to provide higher indexing granularity for
specific areas of interest. Varying levels of vector quantization
allow us to adapt the indexing granularity. Each n-dimensional
data vector v is a sequence of coordinates {c1, . . . , cn−1, cn} and
in turn, for dimension i, each coordinate ci is represented by a
sequence of bits (bi

l, bi
l−1, . . . , bi

1) with l being the bit length of
the coordinate at hand. Starting from the root node, the most
significant bits of each dimension are used to construct the
approximations. Moving to lower levels in the index hierarchy,
more bits are used for the quantization process. The number
of bits used from each coordinate/dimension adjusts the index
granularity.

The root node approximations follow the form:

{(b1
l , b1

l−1, . . . , b1
r1

), (b2
l , b2

l−1, . . . , b2
r2

), . . . ,

(bi
l, bi

l−1, . . . , bi
ri
), . . . , (bn

l , bn
l−1, . . . , bn

rn
)}

where ri is the number of bits used to build the approximation
for the ci coordinate. Approximations of the above form have
a bit length m =∑n

i=1(l − ri + 1) and partition the indexed
space into 2m cells. A child node would provide higher gran-
ularity through approximations that use more bits than its
parent. That is done by choosing si ≤ ri, ∀i ∈ [1, n]. In produc-
ing the approximations at hand, the dimensions where si = ri

are ignored as no extra bits are used. Yet, we must have at
least one dimension contributing a minimum of at least one
additional bit. Thus, we require that ∃i ∈ [1, n] : si < ri. The
approximation of a child node is of the following form:

{(b1
l , b1

l−1, . . . , b1
s1

), (b2
l , b2

l−1, . . . , b2
s2

), . . . ,

(bi
l, bi

l−1, . . . , bi
si
), . . . , (bn

l , bn
l−1, . . . , bn

sn
)}

Each child node provides further indexing detail to a single
cell of the parent node. Data vectors stored in the child node
always ‘fall’ within the parent cell. Therefore, the most sig-
nificant bits per dimension of the produced approximations
are common for all approximations of the child node. These
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b8 b7 b6 b5 b4 b3 b2 b1 b8 b7

b6 b5 b6 b7 b6b8 b7 b8 b7 b8 b4 b5 b5 b4 b3

b5b6 b4 b3 b2 b1 b8 b7 b6 b5 b4 b3 b2 b1

Root Approximation Approximation Level 3Approximation Level 2

Dimension 1 Dimension 2 Dimension 3

parent of parent of 

FIGURE 2. A 3D, 8 bit vector along with approximations for the root and two children nodes.

common bits are stored only once, in the a-file of each node,
and are not repeated in every approximation. Consequently, the
aforementioned child approximations that are ultimately stored
are of the form:

{(b1
r1−1, b1

r1−2, . . . , b1
s1

), (b2
r2−1, b2

r2−2, . . . , b2
s2

), . . . ,

(bi
ri−1, bi

ri−2, . . . , bi
si
), . . . , (bn

rn−1, bn
rn−2, . . . , bn

sn
)}

The per dimension quantization steps may vary from node
to node and are decided upon node creation. DiVA can produce
suitable quantization steps by performing statistical analysis2

on the data and queries within the area of the node that is being
created.

In Fig. 2, we present a 3D data vector along with
approximations of three levels. For the first dimension, the
root approximation uses the two most-significant bits, the first
child approximation uses the third and fourth bits, while the
third-level approximation uses only the fifth bit. As Fig. 2
depicts, we concatenate bits of all three dimensions to form
the approximations of the three levels. The gradual increase
of the used bits in child nodes results in progressively smaller,
non-cubic, cells.

3.3. A rapid binary ‘within range’ operation

During a range query, the search algorithm has to be able to
rapidly determine whether a given data vector falls within
the query area. The implementation of this ‘within range’
operation largely depends on the shape of the query area. In
DiVA, we define the range query area as the area enclosed in
an n-dimensional rectangle, rectilinear to the coordinate axes.
A rectangle P is defined by providing two of its opposite ver-
tices, most commonly the vertices pmin and pmax, which are
the closest and farthest vertices to the origin, respectively.
The test to determine if a vector v is located inside a rectan-
gle P = (pmin, pmax), as given in Equation (1), requires 2n
comparisons:

inside(P, v) =
n⋂

i=1

pmin
i ≤ vi ≤ pmax

i (1)

2 Outlined in Algorithm 5.

DiVA has to determine if a vector falls within a query area
using only a vector approximation. Each approximation corre-
sponds to a cell, with a certain volume, in the indexed space. An
approximation cell is identified by a quantized vector va and has
length di, equal to the quantization step, in each dimension. An
approximation va can be entirely contained within a rectangle P
or partially overlap with P (Equations (2) and (3)). If an approx-
imation is contained in the query area P, we can safely conclude
that the original vector is within the same area.

contains(P, va) =
n⋂

i=1

pmin
i ≤ vai ≤ pmax

i − di (2)

overlaps(P, va) =
n⋂

i=1

pmin
i − di ≤ vai ≤ pmax

i (3)

The aforementioned checks (Equations (2) and (3)) requires
first unpacking the approximated data to reconstruct the coor-
dinates vai of the quantized vector. The reconstruction requires
a series of bitwise masking, shifting and XOR operations that
have a significant CPU overhead. To address this issue, we
develop a more relaxed yet faster predicate which can quickly
disqualify non-needed vector approximations. We call this
predicate ‘quick within-range’. The approximations that pass
this test have to be unpacked and checked using Equations (2)
and (3).

The quick within-range predicate is based on the principle
that the binary representations of all numbers within a certain
range, have a common prefix. Checking a binary number c for
a known prefix {pn, pn−1 · · · pk} requires one bitwise AND (⊗)

operation with a mask m = {1n, . . . , 1k , 0 · · · 0} to isolate the
most significant bits of c and a comparison of the result to the
value p = {pn, pn−1 · · · pk , 0 · · · 0}:

c⊗ m = p (4)

If Equation (4) holds true, then Equation (5) is also true. This
means that the binary operation of Equation (4) is equivalent to
that of (5):

n∑
i=k

pi2
i ≤ c ≤

n∑
i=k

pi2
i +

k−1∑
i=0

2i (5)
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Any number within a range [a, b] has the same prefix as
the longest common binary prefix of a and b. In other words,
some of the most significant bits of any number in that range
are known. By applying this property on the n inequalities of
Equation (3), we construct n bitmasks mi that isolate the com-
mon prefixes from the boundaries of each interval. We combine
these values in a vector m = (m1, . . . , mn) and by approxi-
mating vector m we obtain a mask ma = approximate(m).
When ma is applied on an unpacked vector approxima-
tion, it isolates the bits whose expected values are already
known. These bits are expected to have the same values with
qa = ma ⊗ approximate(px), where px is one of the vertices
of the query area. Finally, any packed approximation va can
be checked against Equation (6) using only a bitwise AND
followed by an equality operation.

va ⊗ ma = qa (6)

If Equation (6) is not true for a given vector approximation,
we can then rapidly conclude that the vector in question does
not overlap with the query area; thus, it is excluded from further
examination.

The effectiveness of the ‘quick within-range’ predicate
depends on the number of common bits in the two data points
defining the query range. In a query range with a mask of f bits
turned on and data distributed uniformly, we expect to find vec-
tor approximations that have to be unpacked with a probability
of 1/2f .

4. APPLICATION-DRIVEN DIVA
REORGANIZATION

Statistics along with heuristics are commonly used to pinpoint
‘hot’ areas in search spaces [26–28]. In practice however, index
granularity and performance of the corresponding structure are
predominantly affected by factors that become known at run-
time. These factors include dynamic characteristics exposed by
the application layer as well as features of the underlying hard-
ware. Hence, conventional approaches that predominantly use
data and query distributions to identify hot-spots are not always
effective [26–28]. As application requirements are impossible
to be known a priori, we introduce the notion of user-provided
policies that help decide when and how to reorganize DiVA.
These policies are realized within software components we call
observers.

An observer monitors DiVA’s operation and intercepts events
that occur during query evaluation. Using this information,
an observer helps realize a policy to identify highly contented
subspaces and guide index expansion and restructuring by pro-
viding ‘hints’. Figure 3 shows the interaction among observer,
index and application. Applications are expected to designate
an observer (and thus a refinement policy) that suits their needs.
We should indicate that DiVA can function under the combined

Policy Stats

results

queries

hints events

DiVA Structure

A
pp

lic
at

io
n

Observer

refine/
signaling

FIGURE 3. Interaction of DiVA elements with application layer.

regime of multiple policies through the simultaneous operation
of multiple observers.

Observers implement an interface through which DiVA can
let them know about events occurring during query evaluation.
Events that get reported include:

(a) start and end of query evaluation,
(b) time when a node is accessed,
(c) scan time of a record representing a cell,
(d) number of approximations and data vectors examined,
(e) number of candidates identified during an a-file scan and
(f) final set of results.

All above events are accompanied by a session ID so that statis-
tics of different user queries can be readily identified. A descrip-
tion of all events is provided in Section 4.1 where we present
DiVA’s range and k-NN search algorithms.

As index refinement is deemed costly, we allow the applica-
tion to determine the most suitable period during which DiVA
can carry out its reorganization. Once index refinement is trig-
gered, the observer identifies existing hot-spots thus far. DiVA
tunes its query performance so that traffic on such hot-spots can
be addressed.

The cost of sending/receiving events between DiVA and
an observer is the penalty incurred by a single C++ function
call. In general, we anticipate that an observer will be mostly
a light-weight process as it intercepts and stores simple facts.
Occasionally, when an application necessitates DiVA’s restruc-
turing the respective observer may have to carry out significant
processing to identify hot-spots. This lengthy operational costs
affects the time required to complete the reorganization in
question. As observers realize application-specific policies for
which DiVA remains agnostic, accurate overhead estimations
for the restructuring cannot be readily established. Anytime the
application seeks a new performance optimization, a respective
observer should be realized and register with DiVA; as soon as
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8 K. Tsakalozos et al.

the service of an observer is no longer of value, the application
may signal its termination (Fig. 3).

Below in Section 4.1, we describe the search DiVA algo-
rithms along with the events occurring during query evaluation.
Section 4.2 outlines two low-level refinement operations
that heavily influence and assist toward an effective query
evaluation process.

4.1. Algorithms

DiVA supports the full-range of lookup operations including
exact, range and k-NN queries. We present here the algorithm
to insert a data point as well as the range and k-NN search
operations. The exact query algorithm is similar to the data
insertion.

Insertion: The insertion of a data vector, as presented in
Algorithm 1, descends recursively into the hierarchical struc-
ture until it finds the node where the vector must be stored.
Initially, the algorithm computes the approximation of the new
vector using the quantization step designated for the node at
hand. Subsequently, the a-file is scanned for a match of the
produced approximation. This may result in three possible out-
comes: (a) the approximation exists and pertinent data vectors
are stored in the current node, (b) the approximation exists but
it corresponds to a child node with higher index granularity and
(c) the approximation does not exist in the a-file of the node
examined. In the first two cases, at least one data vector with
the same approximation has already been indexed. When the
approximation found corresponds to a list of records, the new
data vector has to be appended in the r-file as a new record of
the list at hand. This procedure, denoted as ‘append’ in line 7,
ensures that the list can be traversed by moving only forward in
the r-file. The latter results in reduced I/O seek overhead when
reading the list. When the approximation exists but the corre-
sponding record is pointing to a child, the insertion progresses
recursively in the child node (line 9). When an approximation
is not found in the current node, the data vector belongs to a cell
which is currently empty. Thus, the new vector has to be added
as a new entry in the node at hand. This requires appending
the produced approximation to the a-file and placing the data
vector to the corresponding position of the r-file.

When dealing with a large number of insertions, Algorithm 1
becomes inefficient as it has to traverse the hierarchical structure
for each insertion. We address this issue by introducing a batch
insertion procedure that takes as input a list of data vectors and
a node to insert the vectors to. We produce approximations for
all data vectors and place them in a hash-table. For each approx-
imation of the a-file, we perform a look-up in the hash-table and
a potential match is handled identically to the steps in lines 6–10
and 16–21 of Algorithm 1. The above approach greatly reduces
cost as a large number of vectors can be inserted within a node
in a single pass through its a-file.

Deleting a data vector has the same cost as the insertion. How-
ever, deleting data vectors cause the respective approximations

Algorithm 1 Insertion
Input: n: Starting insertion node
v: Data vector to insert

1: va := approximate v using quantization of n
2: for approx ∈ {approximations in a-file of n} do
3: if approx = va then
4: pos := position of approx in a-file of n
5: rec := record in r-file of n at position pos
6: if rec is a data vector list then
7: append v in list of rec
8: else if rec points to child node with higher index

granularity then
9: call insert(rec.child, v)

10: end if
11: /*v is now inserted*/
12: return
13: end if
14: end for
15: /*approximation va not found in node n. Adding it.*/
16: append va in a-file of n
17: target := position of just appended va in a-file of n
18: if position target in r-file of n is occupied then
19: relocate record from position target to end of r-file of n
20: end if
21: store v at position target in r-file of n

within the a-files to point to empty records within the r-file.
Such stray pointers hamper the efficiency of the index. To
recover from this inefficient state, we need a compaction phase
that would eliminate the approximations pointing to empty
space cells. The cost of this operation is significant and depends
on the fragmentation ratio present in the r-file. Updating a sin-
gle data vector calls for a deletion and a reinsertion of the data
vector as new.

Range search: Algorithm 2 performs the DiVA recursive
range search. There are three distinct phases when searching
a node: first, the a-file is scanned, to locate candidate approxi-
mations (lines 3–9). Second, the records corresponding to the
candidate approximations are examined (while block between
lines 11–24). And third, children nodes are visited (for loop
in line 26). This three-phase algorithm ensures that all a-files
and r-files involved are accessed one at a time and in a record-
number ascending order; this reduces the I/O time by avoiding
costly random seeks.

During the a-file scan phase, all space cells, represented by
each approximation, are checked so as to identify those that
are within the range in question; this check exploits the ‘quick
within range’ predicate of Section 3.3. Candidate cells may
either partially overlap with the desired range or be entirely
contained in the query area. This information is exploited as fol-
lows: data vectors belonging to a cell entirely contained in the
query area are added to the results without any further check.
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DiVA 9

Algorithm 2 RangeSearch
Input: r: Query range
n: Starting query node
sessionID: The application level ID associated with the
submitted query
Output: R: Set of query results

1: O← ∅; C← ∅
2: sendEvent(rangeStart, sessionID, n.id, r)
3: for i ∈ [1, len(n.approx)] do
4: va← n.approx[i]
5: if r.overlaps(va) then
6: contained ← r.contains(va)
7: O← O ∪ {(i, contained)}
8: end if
9: end for

10: sendEvent(approxScan, sessionID, n.id, O, len(n.approx))
11: while O �= ∅ do
12: (i, contained)← min(O)

13: O← O− {(i, contained)}
14: rec← n.records[i]
15: sendEvent(recordRead, sessionID, n.id, i, rec)
16: if (rec.isVlist() and contained) or (rec.isVlist() and

r.contains(rec.vector)) then
17: R← R ∪ {rec.vector}
18: else if rec.isPointer() then
19: C← C ∪ {(rec.child, contained)}
20: end if
21: if rec.isVlist() and rec.hasNext() then
22: O← O ∪ {(rec.next, contained)}
23: end if
24: end while
25: sendEvent(recordScan, sessionID, n.id, C)
26: for all (child, contained) ∈ C do
27: if contained then
28: R← R ∪ allVectorsBeneath(child)
29: else
30: R← R ∪ rangeSearch(r, child)
31: end if
32: end for
33: sendEvent(rangeStop, sessionID, n.id, R)
34: return R

Set O in Algorithm 2 is populated with the record numbers of
candidate records that need to be visited. Each record num-
ber is annotated with a flag indicating if the corresponding
approximation is entirely contained within the query area. All
candidate records are accessed in a record-number ascending
order so that the r-file is scanned using only forward seeks.
That is achieved with the help of function min which in every
loop retrieves the record with lowest number from set O. If the
record examined is part of a data vectors list with consecutive
nodes, line 22 inserts in O the record number of the next record

in the list. This is done in order to ensure that records are visited
in the correct order. Upon reading a record that carries a data
vector, the vector is checked to determine if it is contained in
the query area. This check is omitted if the approximation cell
is marked to be entirely contained within the query area.

Records pointing to children nodes are kept in the C-set
and are recursively visited during the last phase of the algo-
rithm. In this phase, if a child node is known—with the help
of the flag contained—to lead to data vectors residing in a cell
entirely within the query area, the subtree under that child node
is added to the results without performing any further checks.
This is accomplished through the allVectorsBeneath call. If the
approximation of the child node is partially within the query
area, data vectors under this node are examined via a recursive
call to the range search algorithm.

Observers are informed of the progress of a range search
through the sendEvent calls in lines 2, 10, 15, 25 and 33;
the intercepted events indicate the start and finish of each
of the range search phases and also the accessing of a record
in the r-file. The first three input parameters of each such
call are:

(i) a string literal indicating the type of the message sent,
(ii) a session ID used to associate the query with an applica-

tion level activity and
(iii) the ID of the DiVA node that the algorithm examines

when the event is sent.

In addition to these three parameters, each sendEvent informs
the observer in use of several search internal metrics that com-
pute search efficiency statistics. More specifically, the event in

(i) line 2 provides the query,
(ii) line 10, dispatched after the first phase, includes

the approximations selected and the total amount of
approximations checked,

(iii) line 15 includes the record read and its position in the
r-file,

(iv) line 25 indicates the end of the records scanning phase
and also includes the child nodes that we have to visit,
and finally,

(v) line 33 marks the end of the query evaluation and also
includes a pointer to the results gathered.

k-NN Query: Algorithms 3 and 4 collaboratively perform the
DiVA k-NN search starting from the root and then progress-
ing through the nodes recursively. The results of the search,
together with potential matching record numbers, are kept in the
heap-based container H . Every visited node, is searched in two
distinct phases presented in Algorithms 3 and 4, respectively.
In Algorithm 3, the a-file of the node is scanned sequentially
to locate potential matching records. The recursive nature of
the algorithm necessitates the tagging of the record numbers
selected (recno) with the current node identifier (node-id), so
as to differentiate them from record numbers referring to other
nodes. Scanning the a-file is interrupted if the approximation of
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10 K. Tsakalozos et al.

Algorithm 3 k-NN Search
Input: k: Number of nearest neighbors
q: Query vector
H : Heap-like container of intermediate results
n: Node whose approximations to scan
sessionID: The application level ID associated with the
submitted query
Output: H : Heap-like container of results

1: sendEvent(knnStart, sessionID, n.id, q, k)
2: for va ∈ {approximations in a-file of n} do
3: if va.low(q) ≤ kthElement(H , k).up then
4: recno← position of va in a-file of n
5: H .insert(recno, va.up(q), va.low(q), id of n)
6: H ← trimDown(H , k)
7: if va.low(q)= 0 then
8: H ← k-NN DataScan(k, q, H , n, sessionID)
9: qva← approximate q using quantization of n

10: sendEvent(knnDepth, sessionID, n.id, recno,
va, H)

11: if closestBorder(qva, q) > kthElement(H , k).up
then

12: /*All k-NN were inside qva cell.*/
13: sendEvent(knnStopDepth, sessionID, n.id, H)
14: return H
15: end if
16: end if
17: end if
18: end for
19: H ← k-NN DataScan(k, q, H , n, sessionID)
20: sendEvent(knnStop, sessionID, n.id, H)
21: return H

the cell where the query vector belongs is encountered (line 7
Algorithm 3). This cell is likely to contain the nearest neigh-
bors of the query q, thus we choose to temporarily interrupt
the approximations scanning and proceed with examining the
relevant data vectors by issuing a call to Algorithm 4. After this
interruption, we cancel the scanning of the rest of the approx-
imations in the a-file if we are certain that there are no data
vectors closer than the ones gathered so far. We perform this
check by firstly, making sure that we have gathered at least k
results and secondly, by comparing the distance of the query
vector to closest border of the enclosing cell against the upper
distance of the thus far kth nearest neighbor to the query vector.
In Algorithm 4, the corresponding records are retrieved from
the r-file, starting from the ones with the greatest potential to
be closer to the query vector q. If a pointer to a child node is
found, a call to Algorithm 3 is issued, using the child node as
the starting query node. When Algorithm 3 ends, H contains
the data vectors that form the results of the query.

H holds two types of elements: (a) pairs of the type (recno,
node-id), where recno is the identifier of a potentially matching

Algorithm 4 k-NN DataScan
Input: k: Number of nearest neighbors
q: Query vector
H : Heap-like container of intermediate results
n: Node whose records to scan
sessionID: The application level ID associated with the
submitted query
Output: H : Heap-like container of results

1: sendEvent(dataScanStart, sessionID, n.id)
2: O← entries of H with id equal to that of n
3: while O �= ∅ do
4: (recno, low, up)← element in O with minimum recno
5: remove from H entry identified by recno and id of n
6: rec← record in r-file of n at position recno
7: sendEvent(recordRead, sessionID, n.id, rec)
8: if rec is part of a data vector list then
9: d ← dist(q, vector in rec)

10: if d ≤ kthElement(H , k).up then
11: H .insert(rec.vector, d)
12: end if
13: next← position of the next record in the data list of rec

14: if next > recno then
15: H .insert(next, up, low, n.id)
16: end if
17: else if rec points to child node with higher index

granularity then
18: H ← k-NN Search(k, q, H , rec.child)
19: end if
20: H ← trimDown(H , k)
21: O← entries of H with id equal to that of n
22: end while
23: sendEvent(dataScanStop, sessionID, n.id, H)
24: return H

record and (b) data vectors. For every element in H , regardless
its type, we compute its upper and lower distance bound from
the query vector q. For a data vector, the distance bounds coin-
cide with the distance of the vector itself from q. In the case of
a matching approximation, the span between lower and upper
distance bound is the result of the uncertainty introduced by
the lossy approximation process. Here the bounds computed
are passed along with the corresponding record number to the
container H in line 5 of Algorithm 3.

The elements in H are kept in ascending order based on their
upper bound distance. Any element whose lower distance bound
is less than or equal to the upper distance of the kth element can
be, or lead to, data vectors among the k nearest neighbors. Thus,
if xk is the kth element in H , all other items in the container H
must satisfy the following equation:

lowerBound(x) ≤ upperBound(xk), ∀x ∈ H (7)
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DiVA 11

Additionally, any item encountered that satisfies Equation (7), is
inserted in H (line 6 Algorithm 3 and line 20 Algorithm 4). Note
that, at any moment, more than k elements may exist in H .

As k-NN progresses, element insertion and removal may
cause the kth element in H to change, leading to the grad-
ual decrease of the upper distance bound of the kth element.
Consequently, a number of elements, that no longer satisfy
Equation (7) must be dropped from H . We refer to the process
of dropping these elements as the trim down operation. Over-
all, Algorithms 3 and 4 seek to minimize the number of record
reads by visiting as early as possible, the areas closer to the
query vector q.

Similar to the events dispatched during the range search, the
events of the k-NN algorithm also include a string literal, the
application-provided session ID and the node ID we are exam-
ining. In particular:

(i) The events of lines 1 and 20 of Algorithm 3 mark the
start and finish of the query evaluation, thus they include
the query details and the results. As our search performs
a depth first search in cells containing the query vector,
we provide two additional events to inform observers of
such activity.

(ii) Line 10 of Algorithm 3 sends an event indicating that a
‘dive’ is performed and we also mark the approximation
(cell) that caused the search in depth. In case this activ-
ity yields all k-nearest neighbors, we inform a pertinent
observer of the final results with the event in line 13.

(iii) In Algorithm 4, we have two events that mark the start
and finish of the data scan (lines 1 and 23) and an event
triggered each time we access a record (line 7).

The computational complexity of the k-NN search algorithm
is affected by the overhead added from observers processing
the events. However, we can estimate the complexity when
no observers are present. Given that (a) the average number
of approximations in a node is n, (b) the average number of
candidate records to be checked is m, (c) the average number
of branches to child nodes (fan-out) is c, (d) the probability of
ceasing the sequential scan of a node due to a depth first search
is p and (e) the cost of using the heap H is log(k) as we expect
it to host k elements, the computational complexity of the k-NN
search is as follows: In each node, we visit n(1− p) approxi-
mations and m(1− p) candidate records. The cost of placing
all approximations and records in the heap is (n+ m) log(k);
this is the cost of visiting a single node. To find the average
number of nodes, we first compute the probability of a record
pointing to a child node. This probability is c/n as all approxi-
mations are n and the number of pointers to child nodes is c. In
each DiVA node, we examine m(1− p) candidate records from
which (c/n)m(1− p) are, on average, pointers to child nodes.
Therefore, the overall complexity is:

O

(
c

m(1− p)

n
(m+ n)(1− p) log(k)

)
(8)

The above complexity analysis shows how we can improve the
effectiveness of DiVA’s search capabilities. First, we should try
to increase probability P so as to perform depth first searches on
hot areas. Second, keep c low by adding additional nodes only
for space areas we visit frequently.

4.2. Restructuring operations for DiVA

DiVA provides two low-level operations that help transform its
structure and so assist in a more efficient processing of queries:

(1) adding a new node: new nodes enhance the indexing
granularity of hot space areas. Space areas correspond
to approximations stored in DiVA’s a-files. These
approximations of hot areas must be specified in order
to increase the index granularity of the respective hot
area. Furthermore, the approximation must point to a
record (inside the r-file) that is a list of data vectors.
This list will be erased and all its data vectors will be
placed in the new node. The record that was pointing
to the list of data vectors will be updated to point to the
newly created node. Building the new node requires
setting the granularity of the index. This translates to
the quantization step (bits per dimension) that will
be used to build the new approximations. Both the
approximation—corresponding to the hot-spot—and
the quantization step of the new node have to be speci-
fied by the application-designated observer (discussed
in the next section).

(2) scan first hot-spot areas: to do so, the approximations
representing hot-spot cells must be moved toward the
beginning of the a-file. The performance gain from this
reordering stems from the fact that DiVA carries out a
depth first search when it encounters the cell where the
query vector belongs to (line 7 Algorithm 3). Placing
hot cell approximations near the beginning of the a-file
causes these hot-spots to be searched first, resulting
in the quick location of the results or a rapid decrease
of the search radius in k-NN queries. With this opera-
tion, we improve the probability P in Equation (8). In
Fig. 4, the length of the dashed-arrow corresponds to
the number of approximations scanned. When hot areas
are scanned earlier, DiVA may even skip searching the
remainder of the a-file (line 11 Algorithm 3).

Both of the above operations result into structural changes.
In the case of a new node addition, we need to compute the
approximations of the data points in the new node. When opti-
mizing for ‘hot’ areas, we need to update the data layout. The
performance penalty for such operations may be significant and
will affect not only the index but the operation of the system
serving the end-user applications as well. The structure opti-
mizations should be triggered when the application is idle or
willing to pay the penalty incurred. Specifying the frequency
of triggering such restructuring operations is out of the scope
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FIGURE 4. Moving the cell approximation of the query vector closer to the beginning of the a-file helps avoid long sequences of I/Os (as shown
in the original placement).

of this manuscript, as this tightly relates to the needs of each
specific application.

5. DIVA APPLICATION-PROVIDED REFINEMENT
POLICIES

In this section, we present two application-provided policies
that seek to optimize diverse aspects in DiVA’s operation: the
first policy reduces I/O overheads and offers wall-time results
that are competitive if compared with those obtained from con-
ventional indexing approaches [15, 22, 26, 28]. The second
policy favors queries of specific cohorts of users by appropri-
ately exploiting respective user-IDs. Policies can be developed
around the optimization of diverse aspects of the underlying
storage management/medium.

5.1. Policy 1: minimize turnaround time

In its operation, minimize turnaround time (MTT) takes
into account query workloads, data distribution, as well as
data access and processing times; the latter are exclusively
computer-system-specific. The observer that implements MTT
produces the hot-spots to be further indexed as well as the index
granularity each of the new nodes should display.

Identifying hot-spots: A hot-spot corresponds to a list of
records whose further indexing may reap performance benefits.
Frequently accessed lists are promising such candidates and
can be selected based on the query workloads they serve. Data
distribution and access-delays are used to rank lists according
to their indexing prospect and in doing so, MTT evaluates a
score for each such list of records; among those lists, the one
giving the highest score is selected for expansion. This Score
is projected as the difference between future (Future) and cur-
rent (Current) processing costs and/or overheads incurred by
operations taking place within the list of records in question:

Score = Current− Future (9)

TABLE 1. Statistics maintained by the MTT observer.

R Cost of accessing and processing a data record
s Cost of accessing and processing an approximation
l Length of records list
h Result hits in current records list
qs Number of queries accessing current records list
o Average initialization cost of node access

Table 1 shows the statistics collected during normal DiVA
operation through the respective emitted events. These statistics
are used in the evaluation of Score (9). The observer measures
the average time R required to access and process a single
record. Similarly, we obtain the average time s expended in
dealing with a single approximation as well as the initialization
cost o required for opening files hosting DiVA nodes. R, s and
o capture the I/O overhead and processing times required by
underlying computing system DiVA operates on. Three more
statistics, l, h and qs, are maintained on a per record list basis.
A list containing l records is scanned during the evaluation
of qs queries. The total number of records of the list at hand
that were part of the result in those qs queries is denoted as h
(hits). In fact, we maintain very few statistics as we are only
concerned about lists of records that are actually involved in
serving query workload(s). Out of these lists, we do not con-
sider at all those having a single data vector as any attempt for
further indexing would incur an overhead higher than reading
the vector itself. Thus, sparse data generate practically very few
statistics whereas clustered data require statistics only for the
cells enclosing a cluster. In what follows, we consider only a
single records list and so the statistics correspond to the record
list at hand.

Using the statistics of Table 1, the current list-scan cost for all
queries qs is:

Current = qs × R× l (10)

The estimation of the total future cost is:

Future = qs × (o+ Approx+ ProjReads) (11)
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DiVA 13

where o indicates the average delays of initializing internal
structures for accessing a node, Approx is the expected time
expended for scanning through the approximations that will
be created and ProjReads is the expected delay in reading the
records of the new node.

The time required for scanning the approximations Approx
is proportional to the number of new approximations as all of
them are typically examined during an a-file scan. Under the
assumption that in the new node each data vector will have
a corresponding approximation, we can estimate the delays
entailed in accessing and manipulating them (Equation (12)).

Approx = s× l (12)

ProjReads is an estimate of the per query delay entailed in
accessing the data vectors of the new node. The expected reads
consist of: (a) the data vectors that will be part of the results
(as estimated from previous query evaluations, h) and (b) some
additional vectors that will be read but not match the query
(misses), denoted as m in Equation (13). The non-matching
vectors (m) are estimated as follows: the hits of each query are
assumed to be inside an n-dimensional cube. Any time a new
node appears, it partitions the subspace containing this n-cube
in finer grained cells. The extra m elements read but dropped
from the results are expected to be in cells that intersect with
the surface of the n-cube. This is depicted in a 2D example in
Fig. 5.

Considering the above, the per query expected time cost for
reading records is:

ProjReads = R× (h+ m)/qs (13)

Providing an exact estimate of m would require us to access
all non-matching records within the subspace under examina-
tion. This is a costly operation as it would have to be repeated
for every list of records whose score needs to be computed. To
ameliorate this cost, our MTT-policy assumes that the data vec-
tors located within the subspace we examine are uniformly dis-
tributed. Under this assumption, we are able to swiftly estimate
m for all candidate record lists. The uniform data assumption is
lifted in a later stage where we have identified the list with the
highest score and we need to determine the bits per dimension

Cells disqualified
during search

Areas with misses 

Query area

FIGURE 5. A 2D area inside which a new node introduces partitions.
Results of a query are enclosed inside the inner dark square.

used in the creation of the vector approximations. However, for
now and under the uniformity assumption, we estimate the den-
sity D of data vectors within each cell as:

D = l

2vaBits
(14)

where vaBits is the bit length of each approximation in the new
node.

If B is the number of cells that intersect with the surface of
the n-cube enclosing the results, we expect on average only half
the volume of these B cells to reside within the n-cube. Con-
sequently, (B× D)/2 vectors residing in the aforementioned
B cells will not match the query. So, the following equation
becomes:

ProjReads = R× (h/qs + B× D/2) (15)

The edge e of the n-cube, can be expressed in terms of cells
if we consider the n-cube’s volume V to be proportional to the
number of hits per query:

V = en = h/(qs × D)⇒ e = n
√

h/(qs × D) (16)

Using e, we are able to estimate B, since B is essentially equal
to the surface of the n-cube:

B = 2nen−1 = 2n

(
h

qs × D

)(n−1)/n

(17)

With the help of Equations (10), (11), (12), (15), (17), the
Score of Equation (9) is computed for each vector list; the one
with the overall highest positive score is selected for further
indexing; negative scores trigger no further action.

Setting the quantization step: As soon as the highest scoring
record list is identified, MTT determines the per dimension
quantization step. The number of bits to be used for the approx-
imations of the new node is dynamically set according to
the standard deviation and dimensionality of the data being
indexed. More bits are used for high-dimensional spaces with
vectors displaying low deviation. The bit allocation among
dimensions follows a heuristic proposed in quantization theory
that is also used in [22]. More bits are assigned to dimen-
sions over which data have greater variance so as to maximize
the efficiency of the quantized approximations. Algorithm 5
outlines this heuristic. In each step, we assign one bit to the
dimension with the highest deviation and before assigning
the next bit, this deviation is halved. We derive σ by scanning
through all data vectors in the selected record list. At this stage,
we are only interested in the cost of accessing all elements of
one record list.

5.2. Policy 2: FGU

With FGU, we show how the separation between the struc-
ture’s reorganization policy from the rest of DiVA’s operations
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14 K. Tsakalozos et al.

Algorithm 5 Deciding the per dimension bits allocation
Input: dims: Number of dimensions,
B: Total number of bits,
σi: Standard deviation of data in dimension i
Output: bi: No. of bits assigned to dimension i

1: for i ∈ dims do
2: bi ← 0
3: end for
4: for k ∈ B do
5: z← arg_max(σi)
6: bz ← bz + 1; σz ← σz/2
7: end for

can serve application-specific needs. Often applications need
to adjust their performance based on criteria that cannot be
predicted in the context of an indexing method. A typical such
example is applications that differentiate the quality of ser-
vice delivered based on the privileges specific classes of users
have.

An observer implementing FGU reduces the I/O overhead
encountered in queries of specific user groups by exploiting the
‘scan first’ low-level operation of DiVA. With the ‘scan first’,
hot cells created by queries of those specific groups are moved
toward the beginning of the search operations (Fig. 4). As DiVA
carries out a depth first node traversal when it comes across the
cell the query vector belongs to (Algorithm 3), it would be ben-
eficial for that cell to be found in the early stages of scanning
the a-file of the root. In effect, the root serves as a space parti-
tioning directory through which queries are dispatched to proper
subspaces. FGU rearranges the cells of the DiVA’s root through
suitable ‘scan first’ operations.

To realize FGU operation, we need to store the access fre-
quency (f ) of each record (recno) of the root node that triggers
a depth first traversal. The access frequency is stored in a
per user-group (groupID) fashion. During normal operation,
the FGU-observer maintains a list of key-value pairs of the
following form:

〈key, value〉 = 〈(groupID, recno), f 〉
The FGU-observer exploits the session ID of Algorithms 2

and 3 to differentiate DiVA’s record access statistics among sep-
arate user groups. This is achieved by using the groupID as ses-
sion ID.

As soon as the application decides on refining DiVA (e.g.
when load is low), all records of DiVA’s root node are ranked.
The rank of a record i is computed by the following summation:

Ranki =
∑

g∈groupID

(wg ∗ f{g,i})

The weight wg assigned to the group g is application spe-
cific and is used to favor important user-groups over others.

Based on the above ranking, the FGU-based observer desig-
nates a favorable sequence of records in DiVA’s root node. This
sequence is applied through a series of ‘scan first’ operations
that the policy instructs DiVA to follow.

6. EXPERIMENTAL EVALUATION

We first examine DiVA in isolation so as to determine the impact
of the encoding used in the approximations as well as DiVA’s
effectiveness when a node is added in the structure. We then
compare DiVA against other multidimensional indexing meth-
ods. In order to fairly compare such methods with DiVA, we
deploy the MTT-observer that attempts to reduce the overall
I/O volume fetched, as is the case with most indexing methods.
We use both synthetic and real datasets while experimenting
with our prototype; real datasets consist of feature vectors from
an image database [52]. Using the real datasets, we show how
the second FGU-observer enhances query performance of
specific, user targeted, space areas.

When k-NN queries are involved, we evaluate DiVA against
Sequential Scan, the VA-file [15], the A-tree [26], GC-tree [28]
and an index we call VApfile. VApfile is our implementation
of the most important features suggested by the VA+file [22],
namely the KLT and a dynamic bits per dimension alloca-
tion scheme. Both these features enhance the effectiveness
of the VA-file when correlated data vectors are present in the
data distribution. However, applying the transformation in the
entire data space results in approximate query results. With
the exception of the A-tree, we have implemented in C++ all
indexing methods used in our experimentation. The A-tree is
implemented in C and its source code has been made publicly
available [53].

In all our evaluation scenarios, data points are vectors of
4-byte unsigned integers with an extent up to 232. Unless oth-
erwise stated, the VA-file and VAp file are set to create files that
are 12.5% the size of the original data, a value commonly used
in VA-files [15]. Four bits per dimension are also used for the
root node of DiVA. The A-tree uses the default value of 8 KB
per data page.

To eliminate caching effects and accurately measure the
impact of I/O, we flush caches prior to posting each query.
Cached data affect the adaptation policy of DiVA in the follow-
ing way: in low-dimensional spaces (less than 32) unpacking
approximations requires more CPU processing than data vec-
tors manipulation. So if both data and approximations reside in
memory, DiVA is more conservative in producing new nodes.
On the other hand, having data residing on disk favors node
creation. In this case, the I/O cost for accessing data vectors by
far exceeds that of accessing approximations, therefore DiVA
introduces more approximations in an attempt to trade CPU
processing time for reduced I/O.

We contacted all experiments on a 3 GHz Pentium 4 machine
with 2 Giga Bytes of main memory running Linux v.2.6.27.
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6.1. Evaluating DiVA in isolation

‘Quick Within Range’ predicate: As we discussed in
Section 3.2, DiVA greatly reduces CPU overhead by quickly
identifying that a vector approximation is not within a range
through a few binary operations. In Fig. 6, we measured the
impact of the ‘quick within range’ predicate on the CPU pro-
cessing time. During this evaluation, we perform a range query
in a 32D uniformly populated space and vary the amount of
indexed vectors. As shown, without the ‘quick within range’
predicate the required CPU time for the evaluation of a range
query is increased by a factor of 6.

New node addition: DiVA exploits the existence of hot
areas. By selectively adding new nodes, it refines its opera-
tional granularity and ‘dives’ into hot regions in the search
space. To show how DiVA’s structure is progressively refined
with additional nodes as suggested by the MTT-observer, we
force DiVA to create more nodes than it would normally do by
restricting the quantization step. In particular, DiVA is requested
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FIGURE 6. Performance gain provided by the ‘quick within range’
operation used in DiVA.

not to exceed the limit of 32 bits for approximations stored in
child nodes, while the root node approximations use 8 bits per
dimension. Thus, in the used 32D space, the root node approx-
imations are 32 bytes long. This space is populated by a single
cluster; it is on this cluster that we place all queries. The clus-
tered data follow a Gaussian distribution, so by changing its
standard deviation we show how DiVA reacts to different levels
of data density. Data with higher variance require more nodes
to be effectively indexed.

Figure 7 depicts how DiVA’s behavior is affected by the addi-
tion of new nodes; the graphs show that both CPU processing
time and I/O volume are dramatically reduced as more nodes
are added. We attribute this to the enhanced indexing provided
by the additional nodes that vastly lower the number of data
vectors read and processed. For both CPU (Fig. 7a) and I/O
(Fig. 7b), less than three nodes result into no performance gain,
since after each node creation the entire cluster is still stored
in a single record list of the leaf node. The number of nodes
needed to reduce the I/O and CPU cost of the query is relative
to the data density, as shown by the distributions with the three
standard deviations (500, 1000 and 2000). After creating a cer-
tain number of nodes, no further performance gain is expected
and thus, DiVA refrains from creating more nodes.

6.2. Synthetic dataset

Here, we create a synthetic dataset and measure the I/O perfor-
mance of DiVA and other indexing methods while varying the
following properties: (a) dimensionality, (b) volume of indexed
data and c) percentage of clustered data vectors. We employ the
MTT policy to drive DiVA’s expansion.

The space we use as the base case consists of 200 000 data
vectors featuring 32D. Out of the 200 000 vectors, 50 000 are
uniformly distributed and the rest are grouped into 30 clusters.
Members of each cluster follow the Gaussian distribution with
σ = 106. With this σ value, we seek to produce clusters that
will be indexed using a gradually increasing quantization step.
One-tenth of the clusters is considered hot and is targeted by
queries. The query load consists of k-NN queries with k = 100.
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FIGURE 7. Performance for clustered data when increasing the number of nodes in DiVA. (a) Processing time and (b) I/O.
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FIGURE 8. Dimensionality impact on indexing methods.

Dimensionality: We vary the data dimensionality from 4 to
96 and measure how DiVA fares in terms of I/O performance
(Fig. 8). Increasing dimensionality results in larger data vec-
tors, thus the total size of the indexed data increases. This trend
is common for all indexing methods of Fig. 8. For GC-tree the
trend is harder to identify. Query evaluation in the GC-tree
includes a phase of scanning all data approximations that
yields candidate data vectors. The approximations have a fixed
size regardless the number of dimensions. In this experiment,
this constant cost approximations scanning phase dominates
the GC-tree I/O. DiVA performs grouping of multiple vec-
tors under a single approximation, thus it manages to surpass
the VA-file performance. With respect to the A-tree and while
experimenting with its publicly available implementation [53],
we were able to evaluate its performance only up to 56D. As
shown, DiVA exhibits a clear advantage in the entire range of
dimensions tested.

Volume of vectors: More data vectors force DiVA to examine
more approximations on one hand; on the other, tree-based
indexes try to partition space so that less data are examined.
Therefore, at least in low-dimensional spaces, they are less
influenced by an increase in data volume. DiVA does combine
features from both sequential search and tree-based access
methods. In this evaluation, we increase the amount of indexed
data in such a way that the proportion between clustered and
uniformly distributed vectors stays the same. We also keep
the number of clusters in space fixed. Figure 9a shows the I/O
load for each index in this evaluation scenario. Thanks to their
hierarchical structure, both DiVA and the A-tree are able to skip
examining large volumes of data. Hence, they are less affected
by increase in data volumes, compared with the rest of the
tested indexes.

Clustered vectors: VA-file is known to perform well when
there are no clustered data [15]. DiVA on the other hand,
employs its hierarchical structure to efficiently index both

uniform and clustered data. Our approach is able to ‘dive in’
to areas of interest and effectively respond to queries targeting
cells with increased index granularity. Here, we vary the per-
centage of the clustered data while keeping the total number of
indexed vectors fixed to 200 000.

Figure 9b presents the I/O load performance of all indexes.
As data clustering increases, the VA-file is unable to exploit its
approximations and thus, more data vectors have to be exam-
ined. The KLT applied by the VAp file provides an advantage
over the VA-file as the cluster size increases. By having VA-file
like nodes, DiVA performs similarly to the VA-file in areas with
uniformly distributed data where no further indexing is desired.
Under uniformly distributed data, the A-tree performs better
than the VA-file but worse than DiVA. The A-tree produces 2.18
times more I/O than DiVA when only 15% of data vectors are
clustered. As more data are moved to the clusters, DiVA extends
its performance lead. In a setting of 90% clustered vectors, the
A-tree reads 3.3 times more bytes than DiVA.

6.3. Image feature vectors

The real dataset used during our evaluation consists of 200 000
feature vectors extracted from images using methods similar
to [54]. The dimensionality of this dataset can be adjusted by
altering the number of extracted features. The vector distribu-
tion produced clearly favors the VA-file: for each data vector
a unique approximation is created using the four most signifi-
cant bits from each dimension. In other words, the majority of
space cells produced by the VA-file contain a single data vector.
Thus, it makes little difference if KLT is used to treat data cor-
relation by the VApfile. Yet, as shown in Fig. 10a, there is still
room for improvement using DiVA. The VA-file is set to use
4 bits per dimensions and thus produce approximations 12.5%
the size of the data vectors (that use 32 bit per dimensions). A
VA-file of around 10% the size of the dataset is shown to be
most efficient. For DiVA, we assign only 2 bits per dimension
for the approximations of the root node and then we allow the
MTT policy to further refine the index operation by reserving
more bits for each new node. DiVA outperforms the VA-file
based indexes by as much as 64% for a query load consisting
of range queries. This is because with each new node DiVA
increases the number of approximations read while at the same
time reduces the number of fetched records that contain fea-
ture vectors (Fig. 10b). Due to the fact that approximations are
shorter than feature vectors and are hierarchically structured,
the overhead sustained by introducing more approximations
adds only 17% to the overall I/O overhead. At the same time,
the fewer record reads reduce the overall I/O by 41% for DiVA.

6.4. Favoring specific users

The real dataset is a sparsely populated space and the distance
among data vectors increases even further as dimensionality
increases. This is in favor of the VA-file and the GC-tree. In the
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FIGURE 9. Performance of indexing methods for synthetic datasets. (a) Processing time and (b) I/O.
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FIGURE 10. Range query evaluation of DiVA using real dataset. (a) I/O vs. dimensions and (b) I/O vs. dataset size.

VA-file, each data vector features a unique approximation while
the GC-tree uses approximations of fixed size regardless the
space dimension. In sparse spaces such as the one we have for
the real dataset, the bounding area specified by GC-tree’s LPC
approximations are enough to effectively locate a data vector.
Therefore, the I/O of the GC-tree remains unaffected by space
dimensionality as it is dominated by the scan of the fixed-sized
LPC approximations.

Using the FGU observer, we are able to further improve
the performance of DiVA when accessing specific hot areas.
Unlike the VA-file and the GC-tree, DiVA may skip scanning
approximations in case the requested nearest-neighbors have
already been encountered (Algorithm 3). For this to happen,
all vectors returned by a user query have to be contained in a
single cell. This can be easily attained either by using larger
cells—especially in the root node—or by limiting the number
of nearest neighbors a user can retrieve form a query. Here, we
elect to present the outcome of our evaluation when using k-NN
queries with k = 1 (i.e. more focused). This type of queries are
most effectively handled by the GC-tree especially as dimen-
sionality increases and space becomes sparsely populated.

We also keep the root node set in a way favorable to the VA-file
(i.e. size of approximations: 4 bits per dimension).

For this experiment, we assume that all user groups are of
equal importance thus all groups are assigned a weight (wg) set
to 1. Furthermore, user groups are interested in separate space
areas selected randomly at the beginning of our evaluation. We
use the FGU-observer to have DiVA monitor the query areas
of apparent interest to user(s) and then we restructure DiVA
so as to optimize its performance for these specific regions.
Figure 11a shows the I/O performance of the A-tree, the VApfile,
the VA-file, the GC-tree and DiVA as the number of dimensions
increases. DiVA configuration presented in Fig. 11b display
different levels of refinement. ‘DiVA Orig’. marks the perfor-
mance we get when no refinement ‘scan first’ operations are
applied at all, while ‘DiVA 100%’ designates the performance
rates we obtain after refining the index using the FGU policy
for all query regions. The ‘DiVA Orig’. configuration is able
to outperform the VA-file, since it has the advantage of scan-
ning only a portion of the approximations. The performance of
‘DiVA Orig’. is matched by the GC-tree for high dimensions in
the range we examine (over 85 dimensions).
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In the ‘DiVA 100%’ configuration, a query evaluation
involves reading only the first few approximations of the root
node’s a-file. One of these approximations belongs to the vec-
tor we are querying for. Figure 11b shows the I/O overhead
involved in reading approximations and records under differ-
ent refinement levels. Here, we show the collective overhead
involved in 10 different random k-NN queries on a 70D real
feature vector dataset. As the refinement level increases, the
overhead involved in accessing approximations decreases
rapidly while the record reads stay the same. This happens
as we gradually place hot approximations toward the begin-
ning of the root’s a-file while having almost on average one
approximation per record.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we propose DiVA that not only performs effi-
cient range and k-NN queries in high-dimensional clustered
data spaces but can also effectively deal with workloads of
fine-granularity queries that present spatial locality. Although
DiVA maintains a hierarchical structure, its node organization
heavily borrows from VA-file. Every DiVA node uses approx-
imated data to access data vectors within an n-dimensional
subspace, while the hierarchical structure provides increas-
ing levels of index detail. In this manner, DiVA offers fast
navigation (‘diving’) to query regions of interest and the struc-
ture of its nodes helps efficiently handle high-dimensional
vectors.

External-to-index software components, termed observers,
enforce application-specific policies when it comes to guiding
the expansion and restructure of DiVA. Such application-
originated policies that help drive the reorganization of DiVA
may take into account not only data and query distributions
but also characteristics of the underlying computing sys-
tem. We discuss two such policies that we have incorporated
into our detailed prototype. Experimentation with both real
and synthetic datasets shows that DiVA produces significant

improvements compared with competing methods such as the
VA-file, VA+-file, the GC-tree and the A-tree.

Our future work plans include: (a) the support for asyn-
chronous messaging between DiVA and the observer(s), (b)
the compaction of the records’ lists stored in the r-file so as to
reduce the disk seek operations and (c) the use of advanced
statistical models in determining the optimal index granularity
of hot space areas.
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