Wearable Computing Meets Ubiquitous Computing:
Reaping the best of both worlds

Bradley J. Rhodes, Nelson Minar and Josh Weaver
MIT Media Lab
20 Ames St., Cambridge MA 02139
{rhodes | nelson | joshw}@media.mit.edu

Abstract

This paper describes what we see as fundamental
difficulties in both the pure ubiquitous computing and
pure wearable computing paradigms when applied to
context-aware applications. In particular, ubiquitous
computing and smart room systems tend to have dif-
ficulties with privacy and personalization, while wear-
able systems have trouble with localized information,
localized resource control, and resource management
between multiple people. These difficulties are dis-
cussed, and a peer-to-peer network of wearable and
ubiquitous computing components is proposed as a so-
lution. This solution is demonstrated through several
implemented applications.

1 Introduction

Ubiquitous computing and wearable computing
have been posed as polar opposites even though they
are often applied in very similar applications. Here
we first outline the advantages and disadvantages of
each and propose that the two perspectives have com-
plementary problems. We then attempt to demon-
strate that the failing of both ubiquitous and wear-
able computing can be alleviated by the development
of systems that properly mix the two. This concept
is demonstrated by the description of several appli-
cations that have been developed using Hive, a dis-
tributed agent architecture that supports peer-to-peer
messaging for creating decentralized systems

1.1 Ubiquitous Computing

When Mark Weiser coined the phrase “ubiquitous
computing” in 1988 he envisioned computers embed-
ded in walls, in tabletops, and in everyday objects. In
ubiquitous computing, a person might interact with

hundreds of computers at a time, each invisibly em-
bedded in the environment and wirelessly communi-
cating with each other [1]. Closely related to the ubig-
uitous computing vision is the more centralized idea
of smart rooms, where a room might contain multiple
sensors that keep track of the comings and goings of
the people around [2].

Many applications have been demonstrated in ubiq-
uitous computing and smart rooms. Some of these
have concentrated on intelligent configuration of an
environment based on who is in the room. For exam-
ple, air conditioners and lights might automatically
turn off when no one is in the room, or blinds may
open and close depending on natural light levels in the
room [3]. Other applications have implemented what
is called prozimate selection interfaces, where objects
that are nearby are automatically easier to select. For
example, a print command might automatically de-
fault to the nearest printer [4]. In a similar vein is the
presentation of contextual information, where infor-
mation or annotations about a particular location or
object are automatically displayed to a person when
she enters an area. Finally, systems have been created
that watch a user’s location and actions and store that
information in an automatic diary [5].

1.2 Problems with ubiquitous computing

In the purest form of ubiquitous computing, all
computation is contained in the environment rather
than on the person. This extreme has several prob-
lems.

e Privacy issues: Probably the most important
problem is that ubiquitous computing environ-
ments pose serious privacy risks. By watching
everything a user does these systems have the po-
tential to leak all our actions, preferences, and lo-
cations to others unknown to us, now or in the
future. Unfortunately it seems to be a truism

that the most useful information is also the most
personal. For example, several experiments at
Xerox PARC, EuroPARC, and the Olivetti Re-
search Center used active badge systems to sup-
port location-based information and collabora-
tion. In these systems, participants wear badges
that broadcast their location to sensors positioned
in each room [6]. The researchers suggested a
combination of both technical and social mecha-
nisms to help address this problem. However, as
Foner points out [7], sometimes good security and
a strong corporate privacy policy is not enough
to protect a person’s privacy. Central databases
are a prime target for subpoena, and the more
places that sensitive information resides the more
potential places there are to compromise that in-
formation. Finally, there are always situations
where someone should not trust the environment
to keep her information secure. One case is in
the customer-provider relationship, where we al-
ready have seen a large interest in logging cus-
tomer profiles and buying habits to increase sales.
Another case is when entering a hostile environ-
ment. For example, if a businessman is entering
a competitors company to negotiate a contract,
he probably would not like all his personal pro-
file information to automatically be uploaded to
their system where it might be viewed to gain an
unfair advantage.

e Difficulty with personalized information:
The second problem is that it is often difficult to
maintain personalization of ubiquitous computing
system. In the worst case, every time a new per-
son joins a work-group or community her personal
profile needs to be added to every device. Even
if all the devices and environments on a campus
share a personal profile database, profiles need to
be updated every time she moves to a new site.

1.3 Wearable computing to the rescue (?)

The wearable perspective suggests that instead of
putting sensors and cameras in the room, put them
on the person. In the purest form, the wearable user
would do all detection and sensing on her body, re-
quiring no environmental infrastructure at all.

Wearables offer a solution to most of the problems
mentioned above. Because the wearable always trav-
els with the wearer, personal profiles never need to
be transfered to a new environment. And because a
wearable might stay with a user for many years her
profile can automatically evolve over time. Further-

more, wearable computers are an inherently more pri-
vate location for sensitive data because it never needs
to leave the person. If the data is never transmit-
ted it becomes much harder to intercept, and the dis-
tribution of personal profiles across several wearables
(possibly owned by many entities, each with a vested
interest in keeping his own data private) makes them
a less convenient target for compromise, subpoena, or
strong-arm tactics.

Of course, one might still infer a person’s location
by the fact that a room’s resources are being controlled
by a particular network address. Traffic analysis is a
serious threat to privacy, and the TCP/IP protocols
have no features for anonymity. At the application
level, a possible solution is bunching together many
requests in a scheme such as Crowds [8]. At the net-
work level, Chaum Mixes such as the Onion Routing
system [9] show promise. Of course, the physicality of
wearable applications may make traffic analysis unnec-
essary if an eavesdropper is at the end resource itself.
For example, if my office light receives a request to
light up, it is not hard to surmise that I am at work
no matter how anonymous the request was. However,
since this requires an eavesdropper at the end resource
(i.e. at my office light) there is still no central point of
attack. Finally, sometimes privacy leaks are inherent
in the application itself. For example, an application
that shows where a person is on a map has no choice
but to reveal that information; that’s its job. Our goal
is not to maintain total privacy, but rather to design
a system whereby personal data is distributed on a
need-to-know basis.

Many wearable systems have been demonstrated
that act very similar to smart rooms and ubiquitous
computing. For example, wearables have been used
to create proximate selection interfaces for room con-
trol [10] as well as personalized room controllers for
the disabled [11]. Wearable systems have also been
used to help create automatic diaries of a user’s state
over time, both for health monitoring applications and
video diaries [12][13]. Finally, many applications exist
that present context-based information such as tour-
guides [14][15] and general notes related to a user’s
context [16] [17]. In these systems location is sensed
on the wearable either by GPS (for outdoors) or in-
doors by location beacons. The location beacons are
essentially the same as the active badges used in ubig-
uitous computing, except that instead of being worn
by a person to broadcast his identity they are placed in
rooms to broadcast locations [18][10]. Similar systems
have used paper labels that are recognized through
machine vision to recognize a location or object [19]

Table 1: Features provided by Ubicomp vs. Wearables

Feature Ubicomp | Wearables
Privacy X
Personalization X
Localized information X

Localized control X

Resource Management X

[20], while still others recognize objects or locations
without any tagging or infrastructure at all [21][22].

1.4 Problems with wearable computing

Wearable systems are well suited to providing pri-
vacy and personalizations, but they tend to lack in
other areas:

e Localized information: Just as smart rooms
are ill-suited for personalized information, wear-
able computer systems have trouble maintaining
localized information. For example, if informa-
tion about a single location gets updated then
every wearable needs to be given the new infor-
mation. Furthermore, is it often difficult for a
wearable system to sense information beyond the
user’s local area.

e Localized control: If a wearable is used to con-
trol a resource off the persons body, such as a
stereo, big screen display, or air conditioner, it
is often much easier to design the system with
the resource-specific drivers in the device itself.
When low-level control is left to the wearable it
tends to produce higher demands on the wear-
able’s CPU and wireless network and necessitates
that the wearable have code to control each kind
of device that might be discovered.

e Resource management: Wearables are also
not well suited to managing resources among sev-
eral people. When more than one wearable user
wants to use the same stereo, for example, of-
ten it is desirable to have a more intelligent sys-
tem than simply allowing the last request to take
precedence.

1.5 Having your cake and eating it too

In this paper we argue that by properly combin-
ing wearable computing and ubiquitous computing, a

system can have the advantages of both. This synthe-
sis is demonstrated by several applications that have
been developed using Hive, a distributed agent archi-
tecture that links programs running on wearable com-
puters, desktop computers, and “things that think”
[23]. While the details of Hive are beyond the scope
of this paper, a brief description is in order. For a
more thorough discussion, see the citation [24].

2 Hive

Hive is a distributed agents platform, a decentral-
ized system for building applications by networking
local resources. The key abstraction in Hive is the
software agent: applications are built out of an ecol-
ogy of multiple agents interacting over the network.

From a programmer’s perspective, each Hive agent
is a distributed Java object and an execution thread.
However, Hive agents also implement the following
properties:

e Agents are autonomous: Agents can be sent
into a system and entrusted to carry out goals
without direct human micro-management.

e Agents are proactive: Because agents have
their own threads, they can act independent of
other running agents. They encapsulate compu-
tational activity.

e Agents are self-describing: an ontology of
agent capabilities can be used to describe and
discover available services. Hive agent descrip-
tions consist of both a syntactic description (rep-
resented by the Java class of the agent) and a
semantic description written in the Resource De-
scription Format (RDF). RDF is in turn encoded
in the eXtensible Markup Language (XML).

e Agents can interact: Agents can work together
to complete a task. Hive agents can communicate
both through an asynchronous event / subscriber
mode and through Java RMI (Remote Method
Invocation). Agent communication is completely
peer-to-peer, so an agent might both send and
receive at different times.

e Agents can be mobile: Agents can move from
one physical device to another.

Along with agents, the Hive architecture defines
“shadows.” Shadows are the low-level drivers for the
physical resources of a particular object. For secu-
rity, only local agents can access a particular shadow.

All remote agents that wish to access local resources
must go through local agents. Finally, Hive defines
the concept of a “cell” which encapsulates a group of
agents. The cell is essentially a Java process that im-
plements an environment within which the agents op-
erate. Generally there will be one cell per local object
or wearable computer, though this is not a hard and
fast rule. Agents are free to communicate and move
between cells. Hive also provides a graphical interface
to view and manipulate agent interactions. The in-
terface is itself just one more Hive agent that receives
and displays agent events.

2.1 Agent Discovery

In mobile applications such as those described
above it is particularly useful to be able to identify
what resources are available in a given area, or with
a given set of criteria. Hive supports the discovery of
new agents through two kinds of lookups. Agents can
be queried both based on their syntactic description
and on their semantic description. Semantic descrip-
tions include information such as a resource’s owner
or the room it lives in.

Using this infrastructure, several agents have been
created to make resource finding simple for wear-
able computer users. For example, a “resource finder
agent” has been created that receives location events
and produces sets of agents whose semantic descrip-
tion matches that location. These agent sets can then
be winnowed further by other resource finder agents
that are looking for specific services like stereo equip-
ment or large-screen monitors. For more information
on agent discovery in Hive, see the cited thesis [25].
To bootstrap the initial list of cells, a resource finder
agent contacts a known master cell-listing agent. The
creation of new agents are announced to subscribing
agents in the form of events, or a special cell-managing
agent can be queried.

2.2 Hive with wearables

In our system, each wearable computer is simply
another Hive cell in a decentralized Hive network.
The peer-to-peer relationships of Hive are a primary
difference between our model and the client-server
model used by Hodes [10] and by Kortuem [26]. We
have found this more symmetric architecture espe-
cially useful when implementing applications such as
the “Where’s Brad?” agent described below, where
the wearable user is not the primary recipient or user
of information. Sometimes the wearable is the inter-
face to an external service, sometimes the wearable

is a service provider for an agent in the environment
(or on another wearable), and sometimes the wearable
and environment are interacting.

Hive itself is a Java program. For the wearable
side, it runs on the Lizzy wearable computers devel-
oped by Thad Starner [27], with the Digital Roam-
about wireless system for network connectivity. To
gather location information, several rooms in the me-
dia lab have been equipped with the “locust” location
beacons [28]. These beacons are based on a 4MHz PIC
16C84 micro-controller and measure about 1”7 by 3”.
The original locusts communicated via infrared, but
our current ones have been modified by Alex Loffler
of British Telecom to broadcast via RF. This makes
it possible to cover an area with fewer beacons, and
obviates the need to place them in line-of-site of a
wearable. The range varies depending on other equip-
ment in a room, but one or two beacons will usually
cover a small room adequately.

Ul Serwer Agents

Locust
E‘ P wom

VAR
2|

Figure 1: A screen-shot of the Hive user interface,
showing connections between several agents. In this
configuration, events flow from the locust shadow (far
left), to an agent that converts the beacon to a loca-
tion, to a resource finder agent. Resources for a given
location are then passed to a DJ-finder agent and a
display-finder agent.

3 Applications

The applications listed below have been imple-
mented and are currently running on the Lizzy wear-

able and in the lab. The applications range from the
useful to the whimsical, and have been chosen to dis-
play a range of requirements, including privacy, per-
sonalization, localized resources, and scarce resource
management. The applications are listed starting with
those that emphasize the wearable. The list continues
through applications that use both wearable and the
environment, and ends with those that primarily em-
phasize the environment. Next to the name of each ap-
plication, the salient features demonstrated are listed
in parentheses.

3.1 Automatic diary (privacy)

One of the simplest applications is an automatic
event logger. As a user walks between rooms, the
shadow in charge of receiving RF locust beacons au-
tomatically sends the new location to its subscribers
on the wearable’s Hive cell. One of these agents sim-
ply writes the current location to disk. Whenever the
wearable user types in a note or idea, that note is au-
tomatically timestamped and tagged with the location
in which that note took place [16]. Unlike ubiquitous
computing automatic diaries (e.g. [5]), the user’s lo-
cation never leaves the wearable.

In this agent, all computation occurs on the wear-
able. No computation occurs in the environment, ex-
cept in the transmitting location beacons.

3.2 Proximate selection of a big-screen
display (privacy, localized resources)

Sometimes a wearable user wants to project a dis-
play on a large screen for others to view. With this
application, typing a single chord on the chording key-
board automatically puts the current Emacs buffer
onto the nearest screen, where it can be edited by
multiple people.

When the user enters a new room a resource
finder agent automatically looks for any display agents
within the room. If one is found, the display agent is
queried for its X-windows screen name, which is then
written to a file. The screen name is then used by
XEmacs to display the file.

In this application most computation still occurs on
the wearable. However, the screens that are available
for a given location are maintained in that physical
location. If a display name changes or a new one is
added, the only information that needs to be updated
is in the room itself.

3.3 Theme music (privacy, personaliza-
tion, localized resources)

One of the original inspirations for this work was
that the primary author wanted to have theme mu-
sic played whenever he entered his office. We have
therefore implemented a room automation system in
the form of a theme-music agent. Whenever a wear-
able user enters a room, this agent tries to find a DJ
agent that runs on a computer hooked up to a stereo
for that room. If it finds one, and if the DJ isn’t cur-
rently playing music, it sends the URL of a an MP3
file containing the user’s personal theme music (for ex-
ample, the “Inspector Gadget” theme). This music is
then played, usually to the annoyance of everyone else
in the room.

This is the first agent described that actually per-
forms negotiation with a localized resource. The wear-
able keeps track of private information (the user’s loca-
tion) and personalized information (the theme music).
At the same time, the DJ agent maintains resource in-
formation like whether music is already being played.
It also maintains final control over the local hardware
(the stereo), as will be seen in the next agent descrip-
tion.

3.4 DJ (privacy, personalization, local-
ized resources, resource manage-
ment)

As is implied by the theme-music agent, people
might not want their DJ agent to play music when-
ever someone enters the room, or only want certain
kinds of music played, or want to make sure that no
one hogs the DJ with his own taste in music. For
this reason, the DJ agent implements resource man-
agement policies to insure fairness. In the default case,
a DJ takes requests sequentially and plays one request
for each agent that has a song. Thus people’s requests
will be played in a round-robin fashion, one request
per person.

It is difficult to do resource management in a com-
pletely decentralized, wearable-only system, and so it
is extremely convenient to let the DJ itself do the man-
agement with the resource it controls. At the same
time, the DJ needn’t know who is in the room, nor
need it keep profiles of favorite songs for people who
might visit the room. This information is kept on indi-
vidual wearables. When a DJ-finder agent finds a DJ
agent it automatically sends a play-list of song URLs.

3.5 Remembrance Agent (privacy, per-
sonalization, localized information)

An earlier version of an entirely wearable-based re-
membrance agent (RA) has been described in previous
publications [16]. In the old version a user’s location
and other contextual information was used as a query
into her personal note files to proactively bring up in-
formation that may be useful in her current environ-
ment. This version worked well for making suggestions
from personal data because all the database was stored
on the wearable itself, where it was easily personalized
and kept private. However, for the reasons discussed
earlier it was difficult to maintain information about
the environment in the database. In the combination
ubiquitous / wearable computing system, users can
integrate personal and localized data seamlessly. An
early version of this combined system was used with
an augmented reality system for the Media Lab’s 10th
anniversary open house in 1995 [19].

As an example, imagine a wearable that acts as a
tour guide at a museum. As the visitor moves through
various exhibits, extra information about each site is
presented on her wearable. Because this information
is location specific, it is more easily maintained if it
resides in the museum databases and is only sent to
a visitor’s wearable she enter the exhibit area. How-
ever, other information is personal: the fourth-grader
would like to know how this exhibit is related to the
worksheets he did last week, while the anthropologist
would like to know how an exhibit relates to her dis-
sertation. In the new system, resource agents associ-
ated with an exhibit provide varying levels of detailed
description to the RA. These descriptions can be pre-
sented to the visitor as exhibit-specific information,
but can also be used as more info for the query into
the personal remembrance agent. In this way, the mu-
seum can update exhibit information in its database,
while visitors can keep personal data locally on their
own wearable computers, and both can be presented
in a context-sensitive manner.

In this application, information and computation
are shared equally between the wearable and the envi-
ronment. Personal information is still kept private on
on the wearable, as is the visitor’s location. Localized
information is kept in the environment where it can
be updated easily.

3.6 Context-aware alert filtering (pri-
vacy, personalization, localized infor-
mation)

The message filtering agent receives alerts, commu-
nications, and other information that might interest
a wearable user and filters based on the wearer’s con-
text and personal profile. For example, if the wearer is
at the media lab, messages relating to the lab appear
on his or her head-mount display. These messages
include requests to play doom death-matches and au-
tomatically generated messages announcing food has
been left in the lab kitchen. When outside the lab,
these messages are not displayed. The agent also fil-
ters based on a personal profile. For example, an-
nouncements of incoming emails can be filtered to only
show personal mail or mail mentioning certain key-
words. Negative keyword lists can also be used, for
example, to filter out announcements of Indian food
in particular.

This application also shares computation and in-
formation between the environment and the wearable.
Personal profiles are kept on the wearable where they
can be updated easily, transported to new environ-
ments, and where they can be kept private. Contex-
tual filtering is also done at the wearable so the con-
textual cues being used (e.g. location) can be kept
private. However, triggered information like the ar-
rival of food are processed in the environment since
they are outside the sensor range of the wearable.

3.7 “Where’s brad?” agent (privacy, per-
sonalization, localized resources)

While the agents described so far are services
mainly for the wearable user, the architecture makes
it easy for the wearable to act as a service provider as
well. The “Where’s brad?” agent runs on a computer
anywhere at the media-lab and produces a map that
shows the current location of a wearable user. This
agent uses the same resource discovery tools as do the
agents on the wearable, except now instead of finding
agents associated with a location they find agents as-
sociated with a particular person. The amount of dis-
closure is controlled at the wearable end. For example,
the wearable can decide to only allow certain agents
to subscribe to location information, or can only re-
veal certain info to certain people. This privacy policy
might not simply be a hierarchy of increasing access.
For example, a user might want a policy where cowork-
ers will his location if he is within the workplace, but
will only see a “not here” if he is outside. Friends and

family may see more detailed information outside of
work, but only see an “at work” otherwise.

This agent primarily emphasizes information being
displayed in the environment, for people other than
the wearable user. However, because a person’s loca-
tion is provided by agents running on his own wear-
able, he can still maintain fine-grained control over
sensitive information.

4 Related Work

While we have our own take on implementation,
the applications described in this paper were deliber-
ately chosen to be similar in function to common ap-
plications found in ubiquitous and wearable comput-
ing. These systems have been described earlier in the
paper. In part because of the difficulties cited earlier,
others have also designed hybrid wearable / ubiquitous
computing systems. Of particular note are Kortuem
[26] and Hodes [10] who both describe wearable sys-
tems that discover room resources and automatically
download interfaces to control them. However, both
of these systems follow a client-server model, which
makes them less suited for applications where control
rests more in the environment and less on the wear-
able. This work is also related to toolkits for building
context-aware applications such as the context-aware
toolkit developed at Georgia Tech [29].

The Hive infrastructure is also closely related to
several several distributed agent architectures, the
closest being Sun’s Jini system [30]. Both Hive and
Jini are Java-based agent architectures, both rely on
RMI distributed objects and mobile code, and both
systems represent, devices and capabilities on the net-
work, proxying if necessary. However, there are some
design differences that make Hive more flexible than
Jini for these particular kinds of applications. One is
that Jini does not have the conceptual split between
shadows (trusted controllers of local resources) and
agents (possibly untrusted, possibly mobile code that
communicates with shadows and other agents). This
split gives Hive a useful abstraction barrier similar to
device drivers in an operating system. Hive also has
a more location-dependent model of computation. In
Hive, an agent’s cell can indicate where the agent is
physically, what resources it has access to, etc. Jini
focuses mostly on services; the actual place a service
is hosted on is not a major part of the Jini model. For
a more detailed comparison between Hive, Jini, and
other agent architectures, see the citation [24].

5 Future Work

The interfaces to almost all the applications de-
scribed are implicit rather than explicit; the user can-
not choose an action other than the default action in
a given environment. For many applications, a combi-
nation of explicit and implicit interfaces is necessary.
For example, the user might need fine-control over a
slide projector, or want to specify a different play-list
for a DJ agent. Negotiating interface requirements is
still an open research issue, especially when different
users may have different interface hardware.

Another open research topic is making service dis-
covery scalable. Currently agents are filtered using se-
mantic and syntactic descriptions, but the initial set
of Hive cells to query for potentially useful agents is
provided by a central server. This works fine for our
small-scale system, but will not scale to hundreds of
cells in the world. Models include hierarchical struc-
tures as used for Domain Name Service (DNS) [31],
or location beacons that include a bootstrapping ad-
dress for downloading service information [10]. How-
ever, both methods constrain service discovery along
a constrained and pre-determined dimension such as
service name or physical location. They do not lend
themselves to free-form service discovery along several
potentially shifting dimensions.

6 Conclusions

We have presented what we see as fundamental dif-
ficulties in both pure ubiquitous and pure wearable
computing paradigms. In particular, ubiquitous com-
puting and smart room systems tend to have diffi-
culties with privacy and personalization, while wear-
able systems have trouble with localized information,
localized resource control, and resource management
between multiple people. By implementing several ap-
plications that span this space of requirements we have
tried to show how a peer-to-peer network of wearable
and ubiquitous computing components, with proper
information flow, can help solve these difficulties.

Acknowledgements

Special thanks go to the rest of the Hive team:
Matthew Gray, Oliver Roup, Raffi Krikorian, and to
Pattie Maes. Thanks also go to our sponsors at Mer-
rill Lynch and British Telecom, to Thad Starner, Rob
Poor, and Alex Loffler for their work on the Locust
room beacons, and to Chris Wren for his food-alert
system.

This paper is dedicated to the memory of Mark

Weiser.

References

[1] M. Weiser, “Some computer science issues in
ubiquitous computing,” Communications of the
ACM, vol. 36, no. 7, pp. 75-84, July 1993.

[2] A. Pentland, “Smart rooms,” Scientific Ameri-
can, April 1996.

[3] S. Elrod, G. Hall, R. Costanza, M. Dixon, and
J. Des Rivieres, “Responsive office environ-
ments,” Communications of the ACM, vol. 36,
no. 7, 1993.

[4] B. Schilit, N. Adams, and R. Want, “Context-
aware computing applications,” in Workshop
on Mobile Computing Systems and Applications,
Santa Cruz, CA, December 1994, pp. 85-90,
IEEE Computer Society.

[5] M. Lamming, P. Brown, K. Carter, M. Eldridge,
M. Flynn, and G. Louie, “The design of a human
memory prosthesis,” The Computer Journal, vol.
37, no. 3, pp. 153-163, 1994.

[6] R. Want, A. Hopper, V. Falcao, and J. Gibbons,
“The active badge location system,” ACM Trans.
on Info. Sys., vol. 10, no. 1, pp. 91-102, January
1992.

[7] L. Foner, Political Artifacts and Personal Pri-
vacy: The Yenta Multi-Agent Distributed Match-
making System, Ph.D. thesis, MIT Media Labo-
ratory, 1999.

[8] M. Reiter and A. Rubin, “Anonymous web tran-
sations with crowds,” Communications of the
ACM, vol. 42, no. 2, pp. 32-48, February 1999.

[9] D. Goldschlag, M. Reed, and P. Syverson, “Onion
routing,” Communications of the ACM, vol. 42,
no. 2, pp- 39-41, February 1999.

[10] T. Hodes, R. Katz, E. Servan-Schreiber, and

L. Rowe, “Composable ad-hoc mobile services
for universal interaction,” in Third ACM/IEEE
International Conference on Mobile Computing,
Budapest, Hangary, September 1997.

[11] D. Ross and J. Sanford, “Wearable computer as

a remote interface for people with disabilities,”
in First International Symposium on Wearable

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Computers, Cambridge, MA, 1997, pp. 161-162,
IEEE Computer Society.

J. Healey and R. Picard, “Startlecam: A cyber-
netic wearable camera,” in Second International
Symposium on Wearable Computers, Pittsburgh,
PA, October 1998, pp. 42-49, IEEE Computer
Society.

S. Mann, “Smart clothing: The wearable com-
puter and wearcam,” Personal Technologies, vol.
1, no. 1, pp. 2127, 1997.

G. Abowd, C. Atkeson, J. Hong, S. Long,
R. Kooper, and M. Pinkerton, “Cyberguide: A
mobile context-aware tour guide,” ACM Wireless
Networks, pp. 3:421-433, 1997.

S. Feiner, B. MacIntyre, and T. Hollerer, “A
touring machine: Prototyping 3D mobile aug-
mented reality systems for exploring the urban
environment,” in First International Symposium
on Wearable Computers, Cambridge, MA, Octo-
ber 1997, pp. 74-81, IEEE Computer Society.

B. Rhodes, “The wearable remembrance agent: A
system for augmented memory,” Personal Tech-
nologies Journal Special Issue on Wearable Com-
puting, vol. 1, no. 4, pp. 1:218-224, 1997.

J. Pascoe, “Adding generic contextual capabili-
ties to wearable computers,” in Second Interna-
tional Symposium on Wearable Computers, Pitts-
burgh, PA, October 1998, pp. 92-99, IEEE Com-
puter Society.

J. Ioannidis, D. Duchamp, and G. Maguire, “Ip-
based protocols for mobile internetworking,” in
ACM SIGCOMM Symposium on Communica-
tions, Architecture, and Protocols. 1991, pp. 235—
245, ACM Press.

Thad Starner, Steve Mann, Bradley Rhodes, Jef-
frey Levine, Jennifer Healey, Dana Kirsch, Ros-
alind W. Picard, and Alex Pentland, “Augmented
reality through wearable computing,” Presence,
vol. 6(4), 1997.

J. Rekimoto and K. Nagao, “The world through
the computer: Computer augmented interaction
with real world environments,” in The 8th An-
nual ACM Symposium on User Interface Software
and Technology. November 1995, pp. 23-36, ACM
Press.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

T. Jebara, B. Schiele, N. Oliver, and A. Pentland,
“DyPERS: Dynamic Personal Enhanced Reality
System,” in 1998 Image Understanding Work-
shop, Monterrey, CA, November 1998.

T. Starner, B. Schiele, and A. Pentland, “Vi-
sual contextual awareness in wearable comput-
ing,” in Second International Symposium on
Wearable Computers, Pittsburgh, PA, 1998, pp.
50-57, IEEE Computer Society.

Neil Gershenfeld, When Things Start to
Think, Henry Holt & Company, 1999, ISBN:
0805058745 http://www.media.mit.edu/physics/
publications/books/ba/.

Nelson Minar, Matthew Gray, Oliver Roup, and
and Pattie Maes Raffi Krikorian, “Hive: Dis-
tributed agents for networking things,” Submit-
ted to ASA/MA °99. http://hive.media.mit.edu/,
1999.

M. Gray, “Infrastructure for an intelligent
kitchen,” M.S. thesis, MIT Media Lab, 20 Ames
St, Cambridge MA 02139, May 1999.

G. Kortuem, 7Z Segall, and M Bauer, “Context-
aware, adaptive wearable computers as remote in-
terfaces to ‘intelligent’ environments,” in Second
International Symposium on Wearable Comput-
ers, Pittsburgh, PA, October 1998, pp. 58-65,
IEEE Computer Society.

T. Starner, “Lizzy: MIT’s wearable com-
puter design 2.0.5,” http://wearables.www. me-
dia.mit.edu/projects/wearables/lizzy/, 1997.

T. Starner, D. Kircsh, and S. Assefa, “The locust
swarm: An enviromentally-powered, networkless
location and messaging system,” in First Interna-
tional Symposium on Wearable Computers, Cam-
bridge, MA, 1997, pp. 169-170, IEEE Computer
Society, http://wearables.www.media.mit.edu/
projects/wearables/locust/.

Daniel Salber, Anind Dey, and Gregory Abowd,
“The context toolkit: Aiding the development of
context-enabled applications,” in CHI ’99. May
15-20 1999, ACM Press.

Ken Arnold, Ann Wollrath, Bryan O’Sullivan,
Robert Scheifler, and Jim Waldo, The Jini Spec-
ification, Addison-Wesley, 1999.

P.V. Mockapetris and K. Dunlap, “Development
of the domain name system,” in ACM SIG-
COMM ’88, August 1988.

