
Mobile Collaborative Augmented Reality

Gerhard Reitmayr and Dieter Schmalstieg
Vienna University of Technology

{reitmayr|schmalstieg}@ims.tuwien.ac.at

Abstract

The combination of mobile computing and collaborative
Augmented Reality into a single system makes the power
of computer enhanced interaction and communication in
the real world accessible anytime and everywhere. This
paper describes our work to build a mobile collaborative
Augmented Reality system that supports true stereoscopic
3D graphics, a pen and pad interface and direct interac-
tion with virtual objects. The system is assembled from off-
the-shelf hardware components and serves as a basic test
bed for user interface experiments related to computer sup-
ported collaborative work in Augmented Reality. A mobile
platform implementing the described features and collab-
oration between mobile and stationary users are demon-
strated.

Keywords: Augmented Reality, Mobile Computing, Wear-
able Computing, Computer Supported Collaborative Work,
3D Interaction, Hybrid Tracking.

1. Introduction and related work

This work explores the combination of three exciting
emerging technologies:

• Augmented Reality (AR), enhancing a user’s percep-
tion of the real world with computer generated entities,

• Mobile computing, allowing users to access and ma-
nipulate information anytime and independent of loca-
tion, and

• Computer supported collaborative work (CSCW), al-
lowing the computer to be used as a medium for human
communication.

The combination of all three areas promises exciting new
applications of mobile collaboration. Users of mobile AR
can engage in spontaneous collaboration involving manip-
ulation - possibly construction - of complex 3D models. In
this paper, we present some technological advances in this

Figure 1. A user wearing the mobile Aug-
mented Reality kit.

direction. We begin by reviewing some fundamental issues
and related work on the combination of AR with mobile
computing and with CSCW.

1.1. Mobile Augmented Reality

Augmented Reality and mobile computing are often
mentioned together, as many mobile computing platforms
rely on some kind of head-up or head-mounted display to
provide continuous access to information, often coupled
with hands-free operation. The ultimate goal is to make the
mobile computer a part of the user’s normal daily life [23].
Augmented Reality as a user interface for mobile comput-
ing is particularly powerful when the computer has access
to information on location and situation, so it can provide
contextual information. A prominent example that served
as an inspiration to our approach is Columbia’s ”Touring
Machine”, which is used as a mobile multimedia informa-
tion system [6] and journalistic tool [10].



head

hea
d

b
o

d
y

b
o

d
y

world world

Figure 2. Influence of head and body rotation
on the location of head-, body- and world-
stabilized displays.

In mobile AR, three different presentation mechanisms
have been identified [2]: Head-stabilized, where informa-
tion is fixed to the users viewpoint, Body-stabilized, where
information is fixed relative to the users body position, and
World-stabilized, where information is registered with real
world locations (see figure 2).

Applications of AR in mobile computing often follow
a distinction between augmentation in a far field that is
world-stabilized and a near field that is typically either
head-stabilized or - less often - body-stabilized (see figure
3). There are also applications using a mixture of both ap-
proaches. In the far field both 2D and 3D annotations are
common [1, 12]. In the near field there is a preference of
2D or simple 3D information that can only be browsed or
navigated but not directly be manipulated [6, 14, 25]. There
are also applications mixing and connecting annotations in
both fields [10].

far field near field

real object

v
ir
tu
a
l
a
n
n
o
ta
ti
o
n

virtual objects

Figure 3. Far field objects may be world-
stabilized and rendered monoscopic. Near
field objects can be directly manipulated.

Lack of accurate world referenced tracking systems for
the users location make direct interaction with virtual ob-

jects hard or impossible. Therefore world-stabilized anno-
tation is easier to achieve in the far field because the tracking
of the users position and orientation need not be as accurate
as in the near field. Also the performance of mobile com-
puters did not allow reasonable stereoscopic rendering with
satisfying performance until recently. Either 3D objects that
are positioned further away from the user were used or the
user was limited to indirect interaction, as both strategies
do not require stereoscopic rendering. With the recent ad-
vances in portable computer systems, we will show that ap-
plications with rich direct manipulation of 3D objects in the
near field are becoming feasible.

1.2. Collaborative Augmented Reality

One of the main disadvantages of desktop CSCW ap-
plications are functional and cognitive seams that separate
users from each other and from their tools [11]. AR re-
moves these seams by embedding computer-based tools
in the users’ real environment [4]. In collaborative AR,
co-located users can experience a shared space that is
filled with both real and virtual objects. Moreover, three-
dimensional interaction opens up new application areas
such as collaborative computer aided design.

Different display platforms can be used to establish a
collaborative AR, e.g. optical see-through HMDs in our
own Studierstube [21, 22] system, video see-through HMDs
in the Shared Space work [3], or hand-held displays in
Transvision [19]. Other approaches constrain collabora-
tive AR to special active surfaces [20] or used it in a het-
erogeneous environment, e.g. EMMIE [5] or metaDesk
[26]. Finally, collaborative AR can also enhance remote
presence, e.g. through video conferencing [2] or mixed in-
door/outdoor user interfaces [9].

However, with the exception of the mobile portion of [9]
all these systems work in tethered stationary environments,
and only allow a limited degree of spontaneous collabora-
tion, a restriction that we aim to overcome.

1.3. Contribution

In this paper we explore the possibilities of a mobile 3D
workspace for collaborative augmented reality. Our system
is a descendant of the Studierstube AR platform and is char-
acterized by the following properties:

• A mobile platform allows full stereoscopic real-time
display. A freely configurable tracking system allows
fusion of arbitrary sensors that complement each other
to provide 6DOF manipulation of 3D objects in the
near field, i.e. within arm’s reach. With our 3D user
interface management system, users can arrange mul-
tiple arbitrary 3D applications around their body and
carry them along.



• Multiple users can naturally collaborate in an aug-
mented shared space. Instantaneous collaboration can
be established as users wearing the system meet. We
demonstrate collaboration between a mobile and a sta-
tionary user that is established as the mobile user walks
into the Studierstube lab. The underlying distributed
system transparently synchronizes graphical and appli-
cation data and even streams running 3D applications
on the fly to newly joining members of a workgroup.

Several challenges need to be addressed to realize the de-
scribed situations. Distributed applications need real time
synchronization of shared data to present the same state to
all users. Stationary and mobile tracking systems vary con-
siderably, still the delivered data has to be exchanged be-
tween the different platforms and integrated. Limited ca-
pabilities of mobile platforms may require applications to
provide degraded versions of their content. All of these pa-
rameters need to be negotiated instantly when the mobile
user joins a shared space.

While the current system is definitely a prototype and
can be improved in many ways, it demonstrates the poten-
tial of merging AR, mobile computing, and CSCW, yielding
mobile collaborative augmented reality.

2. Application scenarios

A mobile collaborative AR system has as many appli-
cations as there are reasons to have a conversation. Some
of the actual scenarios we are investigating are given here.
As can be expected, they are typically concerned with 3D
CSCW applications.

Meeting in indoor environment. Multiple users meet
in a lab or conference room to discuss and work together
with the aid of augmented reality. Some users may work
with local stationary devices including projection walls and
workbenches while others bring their own mobile equip-
ment along. Depending on the users’ preferences, all de-
vices may share content and reference coordinates, or they
may be separated.

An important feature is that the number of participat-
ing components (and users) may change at runtime. Thus,
late-comers may enter the shared information space, bring-
ing with them their own devices, which automatically log
into the distributed system and synchronize with the ongo-
ing session.

Meeting in outdoor environment. Imagine two architects
meeting outdoors to discuss a building project at location.
Both users are equipped with a mobile wearable workspace
kit, providing them with access to their sketches, notes and
modeling tools. As the two architects approach each other,
their kits connect, setting up a virtual ”place” in which col-
laboration is possible. The users can now show each other

any data they have brought along, as well as modify existing
designs. They can also populate the planned location with
building ”impostors”, which are full 3D objects.

3. User interface

While the computational power for stereoscopic render-
ing and computer vision is becoming available in mobile
computer systems, the size and weight of such systems is
still not optimal. Nevertheless, our setup is solely build
from off-the-shelf hardware components to avoid the effort
and time required for building our own. On one hand this
allows us to quickly upgrade old devices or add new ones
and to change the configuration easily. On the other hand
we do not obtain the smallest and lightest system possible.

3.1. Hardware

The most powerful portable graphics solution avail-
able currently is a PC notebook equipped with a NVidia
GeForce2Go video chip. The device has a 1GHZ processor
and runs under Windows 2000. We also added a wireless
LAN network adapter to the notebook to enable communi-
cation with our stationary setup or a future second mobile
unit. It is carried by the user in a backpack.

As an output device, we use an i-glasses see-through
stereoscopic color HMD. The display is fixed to a helmet
worn by the user. Moreover, an InterSense InterTrax2 ori-
entation sensor and a web camera for fiducial tracking of
interaction props are mounted on the helmet.

The main user interface is a pen and pad setup using a
Wacom graphics tablet and its pen. Both devices are opti-
cally tracked by the camera using markers. The 2D position
of the pen (provided by the Wacom tablet) is incorporated
into the processing to provide more accurate tracking on the
pad itself. Figure 4 gives an overview of the setup. See sec-
tion 5 for details on tracking.

3.2. User interface management software

As our software platform we use Studierstube 2.1 [21],
a user interface management system for AR based on but
not limited to stereoscopic 3D graphics. It provides a multi-
user, multi-application environment, and supports a variety
of display devices including stereoscopic HMDs (for an ex-
ample, see section 6.2). It also provides the means of 6DOF
interaction, either with virtual objects or with user interface
elements registered with and displayed on the pad.

Applications are implemented as runtime loadable ob-
jects executing in designated volumetric containers, a kind
of 3D window equivalent. While the original stationary
Studierstube environment allowed a user to arrange multi-
ple application in a stationary workspace, our mobile setup



orientation tracker

web camera

see-through display

notebook pc

markers

pen

graphics
tablet

3D graphics USB

helmet

Figure 4. All components of the mobile setup
are commercial items: (top) hardware design
diagram, (bottom) picture of the components

with body-stabilized display allows to arrange 3D informa-
tion in a wearable workspace that travels along with a user.
Applications stay where they are put relative to the user, and
can easily be accessed anytime, aided by proprioception and
spatial memory [16]. This idea has been tried with 2D in-
terfaces [7], but our implementation has more resemblance
to the ToolSpaces of Pierce et al. [17].

Our user interface management system is also capable of
managing multiple locales, which can contain any number
of graphical objects. Locales are important for multi-user or
multi-display operation. For example, each mobile user will
require a separate wearable workspace that defines a distinct
locale (coordinate system). As one user moves about, a sec-
ond user’s locale will be unaffected, but the second user will

be able to see movement of the graphical objects contained
in the first user’s locale. For effective collaboration, it will
in most cases be necessary to add a third stationary locale,
that contains graphical applications that both users should
work with (see also section 6.2).

Support for multiple users requires our 3D user interface
management system to build upon a distributed graphics
platform, which is described in the following.

4. Distribution

4.1. Distribution runtime software

Our software development environment is realized as a
collection of C++ classes built on top of the Open Inventor
(OIV) toolkit [24]. At the core of OIV is an object-oriented
scene graph storing both geometric information and active
interaction objects.

Like Studierstube, most DVE systems use a scene graph
for representing the graphical objects in the application, but
many systems separate application state from the graphi-
cal objects. To avoid this ”dual database” problem [15],
we introduce a distributed shared scene graph using the se-
mantics of distributed shared memory. Distribution is per-
formed implicitly through a mechanism that keeps multiple
local replicas of a scene graph synchronized without expos-
ing this process to the application programmer or user. Our
OIV extension – Distributed Open Inventor (DIV) [8] – uses
OIV’s notification mechanism to distribute changes.

Our software system uses object-oriented runtime exten-
sion through subclassing. New node classes for OIV are
loaded and registered with the system on the fly. Using this
mechanism, we can take the scene-graph based approach to
its logical consequence by embedding applications as nodes
in the scene graph. Applications in Studierstube are not
written as monoliths linked with a runtime library, but as
new application classes that derive from a base application
node. Application classes are loaded as binary objects on
the fly during system execution, and instances of applica-
tion objects are embedded into the scene graph. Naturally,
multiple application nodes can be present in the scene graph
simultaneously, which allows convenient multitasking.

Application classes are derived from an application foun-
dation class that extends the basic scene graph node inter-
face of OIV with a fairly capable application programmer’s
interface (API). This API allows convenient management
of 3D user interface elements and events, and also sup-
ports a multiple-document interface – each document gets
its own 3D window. Multiple documents are implemented
through application instances embedded as separate nodes
in the scene graph. However, they share a common applica-
tion code segment, which is loaded on demand.



As the scene graph is distributed using DIV, so are the
applications embedded in it. A newly created application
instance will be added to all replicas of a scene graph, and
will therefore be distributed. The programming model of
making application instances nodes in the scene graph also
implies that all application specific data – i. e., data mem-
bers of the application instance – are part of the scene graph,
and thus are implicitly distributed by DIV.

4.2. Application migration

Migrating applications between different hosts is an im-
portant feature of a distributed virtual environment. Build-
ing on Studierstube’s distributed architecture and applica-
tions embedded as nodes in the scene graph, application mi-
gration is straight forward: All application state is encoded
in the scene graph through the application node and its con-
tained sub graph. Marshaling an arbitrary scene graph into
a memory buffer is a standard operation of OIV (SoWrite-
Action). The application is marshaled, so its complete live
state – both graphical and internal – is captured in a buffer,
and can be transmitted over the network to the target host
(using a reliable TCP connection), where it is unmarshaled
(SoDB::readAll) and added to the local scene graph, so it
can resume operation.

If the source copy is removed, the application will com-
pletely migrate to the destination host. For simple replica-
tion at the destination host, this step can be omitted. In both
cases the destination host must load the application’s binary
object module if not already present in memory (the binary
must either be available at the destination host, e. g., via
a shared file system, or must be sent along with the mar-
shaled application). Using migration, several scenarios can
be supported which are interesting for CSCW applications.

Late joining. When hosts are added to a Studierstube
session after the distributed system is already executing, it
is necessary to build a copy of the replicated application in-
stances at the new host. This is easily achieved through the
application migration mechanism described above using the
variant that does not delete the source application instance.

Early exit. The opposite operation to late joining of a
host is early exit, where one host stops operation of the dis-
tributed system while the remaining hosts continue to exe-
cute. In this case, no application migration is necessary, the
exiting host simply deletes its application instances.

5. Tracking

5.1. Tracking software

Mobile AR requires significantly more complex track-
ing than a traditional VR application. Unfortunately, we
have not found an existing tracking software package that

allows for the high degree of customization we need, yet is
easy to use and extend. To overcome this situation,we have
developed OpenTracker [18], an open software architecture
for the different tasks involved in tracking input devices and
processing multimodal input data.

In a typical VR or AR application tracking data passes
through a series of steps. It is generated by tracking hard-
ware, read by device drivers, transformed to fit the require-
ments of the application and send over network connections
to other hosts. Different setups and applications may re-
quire different subsets and combinations of the steps de-
scribed but the individual steps are common among a wide
range of applications. Examples of such invariant steps are
geometric transformations, Kalman filters and data fusion
of two data sources. While experimenting, this sequence
may frequently be adjusted.

The main concept behind OpenTracker is to break up
the whole data manipulation into these individual steps and
build a data flow network of the transformations. Building
on this idea, OpenTracker offers the following:

• An object-oriented approach to an extensive set of sen-
sor access, filtering, fusion, and state transformation
operations

• Behavior specification by constructing graphs of track-
ing objects (similar in spirit to scene graphs or event
cascades) from user defined tracker configuration files

• Distributed simulation by network transfer of events at
any point in the graph structure

• Decoupled simulation by transparent multi-threading
and networking

• both a time-based and event execution based model

• application independence

The framework’s design is based on XML, taking full ad-
vantage of this new technology by allowing to use standard
XML tools for development, configuration and documen-
tation. For example, figure 5 was automatically generated
from the XML based tracker configuration file used for the
experiments described in section 6.1.

Through its scripting capability (XML tracker configu-
ration files) as well as easy integration of new tracking fea-
tures, OpenTracker encourages exploratory construction of
complex tracking setups, as will be shown in the following.

5.2. Tracking configuration

The tracking of the user and the interaction props is
achieved by combining data from various sources. The
OpenTracker component receives data about the users head



EventVirtualOrientationTransform

RefRef Ref

EventOrientationTransform

InterSenseSource

StbSink

Data Base

DynamicTransformation

EventVirtualTransform

EventVirtualTransform

EventTransform

Ref

ARToolKitSource
ptag.tag

StbSink

DataData BaseBase

DynamicTransformationDynamicTransformation

Default Position Button

Merge

EventTransform

Ref

EventTransform

Default

Merge

EventVirtualTransform

ARToolKitSource
pen1.tag

EventVirtualTransform

ARToolKitSource
pen2.tag

EventVirtualTransform

ARToolKitSource
pen3.tag

EventVirtualTransform

ARToolKitSource
pen4.tag

EventVirtualTransform

ARToolKitSource
pen5.tag

Data Base

DynamicTransformation

Ref

EventTransform

WacomGraphireSource

ConsoleSource

StbSink

Data Base

DynamicTransformation

EventTransform

TestSourceoptical pen

graphics tablet

optical pad

orientation sensor

HMD location

relative transform

Paths for :

Data Base

DynamicTransformation

Figure 5. The data flow graph for the mobile tracking setup was automatically generated from the
XML description

orientation from the InterTrax2 sensor to provide a coordi-
nate system with body stabilized position and world stabi-
lized orientation.

Within this coordinate system the pen and pad are
tracked using the video camera mounted on the helmet and
ARToolKit [13] to process the video information. Because
the video camera and the HMD are fixed to the helmet the
transformation between the cameras and the users coordi-
nate system is fixed and determined in a calibration step.

The pad is equipped with one marker. This is enough
for standard operation, where the user holds it within her
field of view to interact with 2D user interface elements dis-
played on the pad. The pen, however, is equipped with a
cube featuring a marker on the five sides that are not oc-
cluded. This allows to track the pen in almost any position
and orientation. Moreover whenever the user touches the
pad with the pen the more accurate information provided
by the graphics tablet is used to set the position of the pen
with respect to the tablet.

The data flow graph describing the necessary data trans-
formations is shown in figure 5. Round nodes at the top
are source nodes that encapsulate device drivers. The round
nodes at the bottom are sinks that copy the resulting data to
the AR software. Intermediate nodes receive events con-
taining tracking data, transform it and pass it on, down-
wards. An important type of transformation is the relative
transformation that takes input from two different devices

and interprets the location of one device relative to the lo-
cation of the other (called the base).

Different colors denote paths through the graph that
describe how the tracking data for different devices are
processed. Relative transformations are marked by cross
stripes in the color of the two paths connecting. For ex-
ample, the optical pen path describes the five markers that
are each transformed to relate the pen point location. This
information is merged, then further transformed. After an-
other merge with data from the graphics tablet, it is once
more transformed to the reference system established by the
orientation sensor.

Similarly, the optical pad path describes the computation
to obtain the location of the pad. As a side effect, the opti-
cal pad information is used at one step to transform the 2D
information from the graphics tablet path to the actual pen
position which is subsequently merged with the pure optical
information.

Finally the white HMD location path is used to provide
information about the head location. The TestSource node’s
task is to provide a constant value which is then transformed
by the orientation sensors.

We would like to note that using a visual XML editor,
this complex configuration was created without writing a
single line of code.



Figure 6. A user interacting with the paint ap-
plication : (top) selecting the desired drawing
color on the pad, (bottom) after moving the
application window to another position.

6. Experiments

To illustrate the possibilities of the described system, we
set up two different situations outlined in the following re-
port. They use only simple demonstration applications but
show the important properties such as direct manipulation
and collaboration between users.

6.1. Mobile user

The mobile setup in the configuration described in sec-
tion 3 is already capable of providing a workspace located
around the user. This space moves along with the user, but
its orientation is world stabilized, due to the use of the orien-
tation tracker to establish head rotation (section 5). Within
this workspace the full set of functions of the Studierstube
framework is available. The user can place several applica-
tions and carry them around with himself. He can interact
directly using the pen with displayed 3D objects or manip-

ulate 2D user interface elements on the pad.
Figure 6 shows some pictures of a user interacting with

a simple 3D painting application. Using 2D interfaces pre-
sented on the pad the user selects the painting color. Then
he grabs the brush, shown as a red sphere, and paints the
object in the selected color. He can also manipulate the 3D
window itself, e.g. place it somewhere else in the personal
workspace.

6.2. Mobile/stationary collaboration

This setup investigates the collaboration between a mo-
bile and a stationary user. Both users share a locale for com-
mon collaborative applications.

The stationary user is tracked using a tethered magnet-
ical tracking system driven by a dedicated tracking server
that communicates the tracking data to the other hosts via
a multicast group. The users display, a stereoscopic Sony
Glasstron HMD, is driven by a desktop PC rendering host.
The mobile user is equipped with the setup described in sec-
tion 3. A third rendering host featuring a video camera was
used to render a third person view over a video image to
document the setup. Figure 7 displays the configuration.

Mobile PC

Desktop PC

Cam.

Desktop PC

access point

LAN

L
A

N

Figure 7. In the mobile/stationary interaction
setup, three host computers connected to dif-
ferent input and output devices share a 3D
scene via the network

While the stationary user’s tracking is straightforward,
the mobile user has to be correctly registered within the sta-
tionary users coordinate system to use the same locale as
the stationary user. This is achieved by an additional optical
marker that is placed within the environment. Its position
within the reference frame of the magnetic tracker is regis-
tered. This establishes an anchor for transforming the loca-



optical reference frame

marker in
magnetic

marker in optical

magnetic reference frame

props in optical

Figure 8. Several coordinate reference frames
are used to register mobile user in the station-
ary setup

tions generated by the optical tracking of the mobile user to
the magnetic reference frame. Figure 8 gives a schematic
overview of the involved coordinate systems.

An OpenTracker standalone server running on the mo-
bile unit tracks the anchor markers location relative to the
camera. Inverting this location information yields the cam-
eras location relative to the marker. Using this informa-
tion and the registration data of the marker it computes the
users location and subsequently that of the interaction props
within the magnetic tracker reference frame and sends it to
the other hosts via a second multicast group. Note that all
three hosts receive tracker data from both multicast groups
(optical/inertial and magnetic) and use OpenTracker com-
ponents to combine the data for correct display and interac-
tion of all tracked elements.

All three hosts use Studierstube to render the users view.
They are configured individually for the different needs of
the output devices (e.g. the Sony Glasstron uses a field-
interleaved stereo video signal, whereas the Virtual IO-
Glasses device uses a line-interleaved stereo signal). Each
run an instance of the shared chess application and use the
tracking data communicated via the two multicast groups to
render the users actions properly.

The application migration features described in section
4.1 allow the mobile user to enter the workspace and late-
join the running chess game. The current state of the appli-
cation is streamed to the mobile kit upon connecting to the
local network and the kit becomes another host participating
the ongoing session.

Figure 9 shows the scene from a third person view. It
was generated by the third host, rendering a view over a
video camera background. On the table, behind the board
one can see the Wacom pad and the notebook driving the
mobile users view.

Figure 9. A game of AR Chess demonstrates
collaboration of the stationary user (left) and
the mobile user (right) as seen by the "docu-
mentation camera" user

6.3. Performance

During these experiments we achieved a display frame
rate of 10 fps and a tracking frame rate of about 6 fps for
the optical tracking. We found that the sum of the frame
rates was limited by computational power to about 16 fps.
Therefore we needed to fine tune the systems performance
by limiting the optical tracking rate or the display rate. We
choose to limit the optical tracking frame rate to enhance
the quality of the displayed environment.

7. Conclusions and future work

We describe a mobile collaborative AR setup that fea-
tures stereoscopic rendering and direct manipulation of the
augmented objects. An advanced user interface manage-
ment system allows the user to work with different applica-
tions presenting 2D and 3D user interfaces at the same time.
A personal workspace surrounding the user allows her to or-
ganize the applications spatially and to directly interact with
them in a natural way.

The distribution features allow collaboration between
users on different hosts. Situations such as late-joining
and migrating of applications between hosts are supported.
These are important for naturally integrating mobile users
into collaborative work situations.

A flexible tracking software component allows to build
complex and hybrid tracking setups by the means of writ-
ing a configuration file. Thus other devices can be easily
included to further enhance the quality of tracking.

The current systems hardware is very much a prototype



– many improvements are possible. One problem is that
tracking of the interaction props is still too inaccurate and
slow to provide unencumbered and natural use. While the
monoscopic principle of ARToolKit used to track the props
has the advantage that it is modest in the required resources
(a single web cam is sufficient), a dedicated stereo tracking
system, possibly with its own computing appliance, may
greatly enhance tracking quality. We also incorporate more
wireless devices as they become available (e. g., Bluetooth
input devices).

Also the system software needs to address further chal-
lenges. Automatic adaption to the available tracking sys-
tems and negotiable platform capabilities are aspects that
are not present yet.

Future applications for this system will include location
aware computing to provide augmentation at world refer-
enced locations. A mobile user may walk around a build-
ing and collect data from such ”special” locations or change
application parameters at location. This requires interaction
with applications fixed to the location and data transfer be-
tween the mobile users workspace and the world referenced
locations.

Collaboration including mobile platforms generates sit-
uations where users late-join a session and therefore are
in the need of being updated to the current state of ap-
plications. A mobile user may also bring an instance of
an already running application into the session, requiring
to provide options to synchronize the state of different in-
stances. When a user wants to leave a collaborative session,
he should be provided with options to take a copy of the ap-
plications with him. Research into providing user interfaces
for such situations is part of planned future work.

Acknowledgments

This project was sponsored by the Austrian Science Fund
FWF under contract no. P14470-INF. Many thanks to Ivan
Viola and Matej Mlejnek for their contribution to the im-
plementation and work on the setup, Gerd Hesina for his
work on the distributed system, and Hannes Kaufmann for
helping out during production of this paper.

References

[1] R. Behringer, C. Tam, J. McGee, S. Sundareswaran, and
M. Vassiliou. A wearable augmented reality testbed for nav-
igation and control. In Proc. ISAR 2000, pages 12–19, Mu-
nich, Germany, October 5–6 2000. IEEE and ACM.

[2] M. Billinghurst, J. Bowskill, J. Morphett, and M. Jessop.
A wearable spatial conferencing space. In Proc. ISWC’98,
Pittsburgh, Penn., USA, October 19–20 1998.

[3] M. Billinghurst, S. Weghorst, and T. Furness. Shared space:
An augmented reality interface for computer supported col-

laborative work. In Proc. of Collaborative Virtual Environ-
ments Workshop ’96, Nottingham, Great Britain, September
19–20 1996.

[4] M. Billinghurst, S. Weghorst, and T. F. III. Wearable com-
puters for three dimensional CSCW. In Proc. ISWC ’97,
Cambridge, Massachusetts, USA, October 13-14 1997.

[5] A. Butz, T. Höllerer, S. Feiner, B. MacIntyre, and C. Besh-
ers. Enveloping users and computers in a collaborative 3d
augmented reality. In Proc. IWAR’99, pages 35–44, San
Francisco, CA, USA, October 20–21 1999. IEEE.

[6] S. Feiner, B. MacIntyre, T. Höllerer, and A. Webster. A tour-
ing machine: Prototyping 3D mobile augmented reality sys-
tems for exploring the urban enviroment. In Proc. ISWC’97,
pages 74–81, Cambridge, MA, USA, October 13–14 1997.

[7] S. Feiner and A. Shamash. Hybrid user interfaces: Breeding
virtually bigger interfaces for physicall smaller computers.
In Proc. UIST’91, pages 9–17, November 1991.

[8] G. Hesina, D. Schmalstieg, and W. Purgathofer. Distributed
open inventor : A practical approach to distributed 3D
graphics. In Proc. ACM VRST’99, pages 74–81, London,
UK, December 1999.

[9] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hall-
away. Exploring MARS: developing indoor and outdoor
user interfaces to a mobile augmented reality system. Com-
puter & Graphics, 23(6):779–785, 1999.

[10] T. Höllerer and J. Pavlik. Situated documentaries: Embed-
ding multimedia presentations in the real world. In Proc.
ISWC’99, pages 79–86, San Francisco, CA, USA, October
18–19 1999.

[11] H. Ishii, M. Kobayashi, and K. Arita. Iterative design
of seamless collaboration media. Comm. of the ACM,
37(8):83–97, August 1994.

[12] S. Julier, M. Lanzagorta, Y. Baillot, L. Rosenblum, S. Feiner,
and T. Höllerer. Information filtering for mobile augmented
reality. In Proc. ISAR 2000, pages 3–11, Munich, Germany,
October 5–6 2000. IEEE and ACM.

[13] H. Kato and M. Billinghurst. Marker tracking and HMD
calibration for a video-based augmented reality conferenc-
ing system. In Proc. IWAR 99, San Francisco, USA, October
1999.

[14] S. Long, D. Aust, G. Abowd, and C. Atkeson. Cyber-
guide: Prototyping contextaware mobile applications. In
Proc. CHI’96, 1996.

[15] B. MacIntyre and S. Feiner. A distributed 3D graphics li-
brary. In Proc. ACM SIGGRAPH ’98, pages 361–370, Or-
lando, Florida, USA, July 19–24 1998.

[16] M. R. Mine, F. P. Brooks, Jr., and C. H. Sequin. Mov-
ing objects in space: Exploiting proprioception in virtual-
environment interaction. In Proc. ACM SIGGRAPH ’97,
pages 19–26, 1997.

[17] J. S. Pierce, M. Conway, M. van Dantzich, and G. Robert-
son. Toolspaces and glances: Storing, accessing, and retriev-
ing objects in 3D desktop applications. In Proc. 1999 Sym-
posium on Interactive 3D Graphics, pages 163–168, 1999.

[18] G. Reitmayr and D. Schmalstieg. OpenTracker – an open
software architecture for reconfigurable tracking based on
XML. In Proc. IEEE Virtual Reality 2001, pages 285–286,
Yokohama, Japan, March 13–17 2001.



[19] J. Rekimoto. Transvision: A hand-held augmented reality
system for collaborative design. In Proc. VSMM’96, pages
18–20, Gifu, Japan, September 1996.

[20] J. Rekimoto and M. Saitoh. Augmented surfaces: A spa-
tially continuous workspace for hybrid computing. In Proc.
CHI’99. ACM, 1999.

[21] D. Schmalstieg, A. Fuhrmann, and G. Hesina. Bridging mul-
tiple user interface dimensions with augmented reality. In
Proc. ISAR 2000, pages 20–29, Munich, Germany, October
5–6 2000. IEEE and ACM.

[22] D. Schmalstieg, A. Fuhrmann, Z. Szalavari, and M. Ger-
vautz. Studierstube – an environment for collaboration in
augmented reality. In Proc. of Collaborative Virtual Envi-
ronments Workshop ’96, Nottingham, UK, September 19–20
1996.

[23] T. Starner, S. Mann, B. Rhodes, J. Levine, J. Healey,
D. Kirsch, R. Picard, and A. Pentland. Augmented reality
through wearable computing. Presence, Special Issue on
Augmented Reality(4):386–398, 1997.

[24] P. Strauss and R. Carey. An object oriented 3D graphics
toolkit. In Proc, ACM SIGGRAPH’92. ACM, 1992.

[25] B. H. Thomas, V. Demczuk, W. Piekarski, D. H. epworth,
and B. Gunther. A wearable computer system with aug-
mented reality to support terrestrial navigation. In Proc.
ISWC’98, pages 168–171, Pittsburgh, USA, 1998.

[26] B. Ullmer and H. Ishii. The metaDESK: Models and proto-
types for tangible user interfaces. In Proc. UIST ’97, pages
223–232, Banff, Alberta, Canada, October 1997. ACM
Press.


