
Tinmith-evo5 - An Architecture for Supporting Mobile Augmented Reality Environments

Wayne Piekarski and Bruce H. Thomas
Wearable Computer Laboratory

School of Computer and Information Science
University of South Australia

Mawson Lakes, SA, 5095, Australia
{wayne, thomas}@cs.unisa.edu.au

Abstract

This paper presents a summary of a new software archi-
tecture we have developed, known as Tinmith-evo5, which is
designed as one possible methodology for writing complex
AR applications. While software for 2D environments is very
mature, in the 3D case there is still missing software support
that we are attempting to address.

1 Introduction

Over the last few years, we have developed a number of
augmented reality applications, such as the example Tinmith-
Metro application [3] shown in Figure 1. This paper presents
an overview of the architecture we have developed for sup-
porting mobile augmented reality environments. We have
brought together many ideas from a variety of different sys-
tems in order to implement Tinmith-evo5, and used this to
implement complex user interfaces for virtual environments.

Simple AR and VR applications require support for 3D
tracking devices and head mounted displays for input/output,
and a renderer with a scene graph for the graphics. However,
writing complex user interfaces and modelling applications
requires more complex architecture, and so we desired a
system with the following features: objects passing values
using a data flow methodology, distributed processing and
information sharing, libraries of reusable objects to imple-
ment high level applications, abstraction objects for trackers
and other hardware, design for research and not novice pro-
grammers, rapid prototyping of code, and architecture that
does not pay performance penalties for unused features.

For traditional 2D desktop environments, many stable de-
sign methodologies, toolkits, libraries, and input devices are
available. Since virtual environments, and augmented reality
in particular, are relatively new fields, the same support is not
as mature for implementing applications in these areas. A
number of toolkits exist for the implementation of VEs, such
as Alice, World Toolkit, Coterie, and VR Juggler, which are
discussed extensively in [1]. However, these toolkits do not
focus on all the aspects required to implement a VE, leaving
much to the programmer to decide on. Low level libraries,
such as Java3D and Open Inventor, provide 3D rendering
and scene graphs, but no higher level support. Figure 2
shows an example of the levels of functionality provided in

Tinmith-evo5, and the previously mentioned systems only
cover a subset of these. We desire much higher level frame-
works that provide more human-oriented functionality, such
as user interaction techniques. We propose our system as one
possible solution, tailored toward our requirements outlined
previously.

2 Tinmith-evo5 architecture

With our previous work, such as [2], we discovered that
having large procedural software processes communicating
exclusively using IPC was wasteful of resources, and so we
set about producing a new more efficient design. This design
contains features we know are important from our previous
work, while making the other expensive features optional.

The overall design of the system is based on a data flow
model, with objects processing some data and then making it
available to others, similar to an Observer/Observable pat-
tern. We decompose the application down into hundreds of
simple objects that perform a specific task. The architecture
was implemented with high performance being a major de-
sign requirement, as portable computers tend to have limited
resources.

2.1 Low level architecture implementation

In order to implement the architecture, we identified a
number of layers to support high level applications, as shown
in Figure 2. Objects were written for this structure, and can
be connected together to form other system components and
applications.

At the lowest level, the data flow model is implemented
using dynamic callback pointers that can be added and re-
moved during execution. Higher level code supports speci-

Figure 1 – External view of building model,
showing situational awareness gadgets,
with user interface menus and controls

Application Support
Menu driver, Event handler, Dialogs, Selections

3D / 2D Render
Scene graph, CSG ops, Manipulation

Interface / Transform
Coordinate systems, Trackers, Transformations

Low Level & I/O
Support code, Callbacks, Serialisation, I/O libs

Application Implementation
Tinmith-Metro, Custom models and menus

Figure 2 - Tinmith-evo5
library layering

fying connections between objects by name, and the ability
to change these transparently. When the code executes a
source object commit method, the callback methods are exe-
cuted, allowing the destination object to process this new
value. Since we use function calls and pointers by default for
object communications, there is little overhead when con-
necting many objects.

When possible, the system is executed as a single mono-
lithic Unix process, with no internal threads. In the optimal
case, sensor data enters the system and is processed sequen-
tially, as most objects are waiting for others to complete. For
tasks requiring parallel processing, these objects can be off-
loaded to a separate process or thread, and then use tradi-
tional IPC to synchronise the data, with a performance pen-
alty. Therefore, a process is a container for objects to execute
within, and it is easy to move objects from single to multiple
execution containers.

To connect remote processes, a serialisation object can be
transparently inserted between two separated objects, con-
verting the binary C++ object into a neutral network format.
The objects are unaware the data is being transported over a
network or shared memory, as they are just talking to another
plug-in object. The code for serialisation and callbacks is
generated using a custom program called TCC, which parses
C++ class definition files – in contrast to other systems that
generate code from definition files. Communications can be
performed using fast UDP, or reliable TCP, depending on the
requirements, and is efficient for small systems. Large scale
distribution with thousands of clients (such as DIS) would
require multicasting, which we do not currently support. One
important feature is that there is no single marshalling point,
which some systems require, and are a major performance
bottleneck and single point of failure.

To facilitate easy connection of objects and referencing
them in other parts of the system, we implement an object
repository that allows objects to be stored and retrieved based
on a key similar to a Unix hierarchical path name. The high
level object code uses these path names rather than pointers
to facilitate much of the dynamic nature of the system. Each
object in the system is stored with a reference name, so
global system-wide pointers can be avoided.

The object store is used throughout, including the run-
time configuration system. Each object can be serialised to
and from disk, and so at system start up these objects are
created automatically and made available before the applica-
tion starts. The run-time system stores values such as gadget
colours and locations, strings, and debugging controls, with
the ability to edit them during execution, and the program
immediately reading the changes, all without the support of
an interpreted language. While interpreted languages allow
some flexibility in changing trivial code during execution,
many architectural or other major changes still require a re-
start of the system. We feel our solution is useful because we
have the speed benefits of a compiled language, while al-
lowing some run time flexibility.

2.2 High level application support

Using the previously described low level architecture, it is
possible to use these features to build components for the
implementation of complex user applications.

Since tracker devices are an important part of VE systems,
we have implemented inherent support for these. We differ-
entiate between relative and absolute devices, combining
them together using operators to resolve locations of com-
plex articulated structures. Internally, values are stored using
LLH, UTM, and ECEF coordinate systems in a variety of
datums, as there is no single standard or appropriate type of
coordinates to use. Internal processing is performed to allow
the system to operate over large distances and varying loca-
tions without compromising the accuracy of the values.

One major component is the rendering system, which is a
full hierarchical modelling system similar to Open Inventor
or Java3D, with a scene graph of objects and transformation
nodes, all handled by the object repository. It also contains an
integrated real-time constructive solid geometry engine, al-
lowing arbitrarily complex shapes to be constructed and
carved from simple input primitives. Using the scene graph,
it is possible to easily interface with other standard protocols
such as DIS, allowing our system to share data with others,
as demonstrated with our previous system in [2].

Currently, we have developed user interface components
(known as Tinmith-Hand) that allow users to control the
CSG modelling system using a pair of 3D tracked gloves.
This interface is designed to allow users to walk outside and
construct models, in an intuitive fashion, which match real
world structures. The gloves are used to control a finger-
mapped menu, with the structure contained inside the run-
time object store. The model in Figure 1 was completely
generated using these techniques, implemented in the Tin-
mith-Metro application [3].

3 Conclusion

This paper has introduced the Tinmith-evo5 design, an ar-
chitecture that provides a uniform approach to implementing
complex virtual environment applications. This paper dem-
onstrates one possible method of implementing simple object
oriented applications that perform a variety of complex tasks,
such as user interaction techniques and 3D modelling.

4 References
[1] Bierbaum, A. and Just, C. Software Tools for Virtual Reality

Application Development. In SIGGRAPH98 Course 14 - Ap-
plied Virtual Reality, Orlando, Fl, July 19-24, 1998.

[2] Piekarski, W., Gunther, B., and Thomas, B. Integrating Virtual
and Augmented Realities in an Outdoor Application. In 2nd
Int'l Workshop on Augmented Reality, pp 45-54, San Francisco,
Ca, Oct 1999.

[3] Piekarski, W. and Thomas, B. Tinmith-Metro: New Outdoor
Techniques for Creating City Models with an Augmented Real-
ity Wearable Computer. In 5th Int'l Symposium on Wearable
Computers, Zurich, Switzerland, Oct 2001.

