Indoor navigation using a diverse set of cheap, wearable sensors

Andrew R. Golding and Neal Lesh.
MERL - A Mitsubishi Electric Research Laboratory
201 Broadway, Cambridge, MA 02139
{golding,lesh}@merl.com

Abstract

We apply machine-learning techniques to the task
of context-awareness, or inferring aspects of the us-
er’s state given a stream of inputs from sensors worn
by the person. We focus on the task of indoor navi-
gation, and show that by integrating information from
accelerometers, magnetometers, temperature and light
sensors, we can collect enough information to infer
the user’s location. However, our navigation algorith-
m performs very poorly, with almost 50% error, if we
use only the raw sensor signals. Instead, we intro-
duce a “data cooking” module that computes appropri-
ate high-level features from the raw semsor data. By
introducing these high-level features, we are able to re-
duce the error rate to 2% in our example environment.

1 Introduction

Context-awareness — the ability to detect aspects
of the user’s internal or external state — is essential
for many applications of wearable computing (Pascoe,
1998). Applications include automated tour guides
that augment the user’s view of whichever attraction
she is currently looking at (Feiner et al., 1997; Long
et al., 1996); and systems that use different modes
of communication depending on whether the user is
engaged in a conversation (Clarkson and Pentland,
1998). In this paper, we apply machine-learning tech-
niques to the task of inferring aspects of the user’s
state given a stream of inputs from sensors worn by
the person. We are especially interested in integrating
information from the diverse set of cheap, wearable
sensors that are now available, including accelerome-
ters, temperature sensors, and photodiodes.

We have focused on indoor navigation, the task of
interactively guiding the user to a desired indoor des-
tination. For example, the user may be looking for
a certain conference room in a convention center, or
a train in a large underground train station. This
task requires, minimally, that the computer be aware
of the person’s location. Global Positioning Systems
(GPS) cannot provide this information indoors or in

crowded urban areas. One might, instead, use active
badges (Want and Hopper, 1998; Lamming and Fly-
nn, 1994) or beacon architectures (Long et al., 1996;
Schilit, 1995), but installing and maintaining such sys-
tems involves substantial effort and expense.

Instead, we have explored the other extreme of
not modifying the environment and using machine-
learning techniques to infer a person’s location from
naturally-occurring signals in the environment. These
include characteristic magnetic fields from steel beams
in the walls, fixed arrangements of fluorescent lights,
and temperature gradients across rooms. Addition-
ally, the user herself provides distinctive acceleration
patterns by walking up or down staircases, or riding
an escalator or elevator. Figure 1 shows our initial
research prototype. The user wears a “utility belt”
which holds several sensor boards and a battery. The
outputs from the sensors plug into a laptop, which
performs the actual navigation function.

A central challenge that arises in this application,
and is likely to arise in related ones, is that the raw
sensor signals are unsuitable for use as direct inputs
to a machine-learning algorithm. The reason is that
there is too great a distance between the raw signal-
s and the high-level inference that we wish to make.
To address this, we introduce a “data cooking” mod-
ule that computes high-level features from the raw
sensor data. These high-level features do not add
new knowledge to the system; they simply reformu-
late existing information into a form that the machine-
learning algorithm can use more effectively. Introduc-
ing these high-level features improved performance on
the indoor-navigation task dramatically. Currently,
we handcraft a set of appropriate high-level features;
however, we are interested in algorithms for discover-
ing useful features through search.

The main contributions of this paper are to show
that (1) by integrating information from diverse sen-
sors, we can collect enough information to perform
context-aware tasks such as indoor navigation, and
(2) “cooking” the low level sensors is necessary in or-

Figure 1: Initial prototype of wearable navigation sys-
tem. User wears a “utility belt” which holds the sensor
boards and a battery. The outputs of the sensors feed
into a laptop on which the navigation program resides.

der to make the information they contain accessible to
machine-learning algorithms.

The rest of this paper is organized as follows. In
Section 2, we describe the hardware platform and sen-
sors we have been using. In Section 3, we describe our
navigation algorithm. In Section 4, we describe our
experiments. Section 5 discusses related work, and
Section 6 concludes.

2 Hardware

The guiding principle in choosing sensors was that
they be small, lightweight, low-power, cheap, and
preferably non-directional — all properties intended
to increase practicality for a wearable application. We
currently have four types of sensors:

e 3D accelerometer: Detect the user’s accelera-
tion in three dimensions. Implemented using t-
wo 2D accelerometer boards (ADXL 202 EB from
Analog Devices, Inc).

e 3D magnetometer: Detect magnetic fields in
three dimensions. Our magnetometer (Honeywell
HMC2003) uses three permalloy magnetoresistive
transducers to measure the strength and direction
of a magnetic field.

e Fluorescent light detector: Works by extracting
the 60 Hz component of the signal from a pho-
todiode aimed at the ceiling. Responds primarily
to fluorescent lights, which flicker at this rate.

e Temperature sensor: Measures ambient room
temperature. (We used TMP37 GT9 from Ana-
log Devices, Inc.)

The sensors are mounted on several circuit boards
and attached to a utility belt worn by the user. This
arrangement (approximately) fixes the orientation of
the sensors with respect to the user, circumventing
problems of orientation drift (for the accelerometers
and magnetometer), and aiming directional sensors as
needed (the light sensor is aimed at the ceiling).

The analog outputs of the sensors are fed into an
A/D card (PCM-DAS 16/330 from ComputerBoards,
Inc) which plugs into a PC/MCIA slot on the lap-
top. Our navigation program resides on the laptop
and samples the digitized signals roughly every 50 m-
sec.

3 Navigation System

Given the view of the world provided by the sensors,
the task of the navigation system is to (1) Learn a
model of the world at training time, and (2) Use this
model to infer the user’s location at run time.

The structure of the navigation system is shown in
Figure 2. The data acquisition module reads a tu-
ple of sensor readings roughly every 50 msec, convert-
ing the input voltages into canonical units. The data
cooking module augments these raw readings with
computed features; for example, one computed feature
is the variance of the user’s Z acceleration. The
remaining two modules, data modelling and navi-
gation, perform the two tasks stated above: learning
a model of the world at training time, and using this
model to infer the user’s location at run time.

The following sections describe the modules in
greater detail. We first describe the representation of
the world that our navigation system uses, and then
discuss the data acquisition, data modelling, and nav-
igation modules. Because the data-cooking module is
best understood in the context of how the navigation
algorithm works, it is presented last.

Sensor s @

Testing

Navi gat i on
Wi | e (next sensor readi ng):
e Mitiply in new sensor

proteti i ti es
: \/7 o Redistribute prob. nass

according to tramsition fn

E . end

Figure 2: Structure of navigation system. The system
samples the sensors roughly every 50 msec. At train-
ing time, it uses the sensor readings to learn a model of
the world. At testing time, it infers the user’s location
from the sensor readings.

3.1 Representation

We formulate the navigation problem in terms of
the “world” in which the navigation system will oper-
ate. Figure 3 shows the environment used for the ex-
periments reported here. It contains five “locations”:
office, arch, upstairs, downstairs, and ping pong room.
We put “locations” in quotes because a location does
not correspond to a point in the world, but rather to a
transition between points. For example, the upstairs
“location” corresponds to the transition from the bot-
tom of the stairs to the top (it could more properly be
called the “going upstairs” location). This allows us
to distinguish between upstairs and downstairs, which
occupy the same physical space. A location such as
the office corresponds to starting in the office door-
way, walking around inside the office, and returning
to the doorway.

3.2 Data acquisition

The data acquisition module is responsible for con-
tinually reading tuples of sensor readings, and convert-
ing them into canonical units. A tuple is read roughly
every 50 msec. Table 3.2 lists the 9 sensors currently
in use and their canonical units of measurement.

Table 1: Sensors read by the data acquisition module.
Sensor Description Units

Left X acc. Acceleration to user’s right G
(measured at user’s left hip)
Left Y acc. | Acceleration forward G
(measured at user’s left hip)
Right X acc. | Acceleration to user’s right G
(measured at user’s right hip)
Acceleration upward G

(measured at user’s right hip)

Right Z acc.

Comp. X Component of magnetic field | gauss
pointing to user’s right

Comp. Y Component of magnetic field | gauss
pointing forward

Comp. Z Component of magnetic field | gauss
pointing upward

Temp. Ambient room temperature degrees

(F)
Lights Strength of 60 Hz component | volts

of overhead lights

3.3 Data modelling

The navigation system needs a model of the world,
or, more particularly, a model of what its sensor sig-
nals look like throughout the indoor environment.

Training proceeds as follows: the user is given a
set, itinerary to traverse through the environment. He
proceeds along the itinerary, clicking a handheld but-
ton once when entering and once when leaving each
location. In this way, the system is kept informed of
the user’s true location in the world. In addition, the
system samples the sensors every 50 msec, as usual,
and performs its customary conversion to canonical
units and augmentation with computed features (de-
scribed below). The result is a set of training data
in the form of a sequence of augmented sensor tuples,
each accompanied by a training label that specifies the
location at which it was collected.

From these labelled tuples, the data-modelling
module learns a model of the world. The data-
modelling module lumps together all readings for a
given sensor at a given location, and constructs a dis-
tribution of these readings. The gross characteristics
of the location show up in the shape of the distribu-
tion. For example, the magnetism of the arch will
show up in the Compass Z distribution as an elevated
mean and standard deviation compared to the Com-
pass Z distribution of other locations. The overal-
1 model of the world produced by the data-modelling
module takes the form of a set of distributions over
the possible values of the sensors — one distribution
for each (sensor, location) pair.

Ofice Arch

Downst ai rs

Ustairs

P ng pong room

Figure 3: Example indoor environment consisting of five “locations”: office, arch, upstairs, downstairs, and ping

pong room.

The remaining question is what type of distribution
will best model a set of sensor readings at a location.
We tried two types: gaussians and histograms. Gaus-
sians are appropriate under the assumption that the
observed sensor values were generated by the cumula-
tive effect of numerous random processes. Histograms
test this assumption by modelling the data without
making any assumptions about the type of distribu-
tion; the trick with histograms, of course, is choosing
an appropriate bin width. We used a cross-validation
approach, which starts by splitting the set of observed
sensor values into a training set and a holdout set.
The intuition is that an appropriate bin width will
have the property that if we form a histogram out
of the training set using that bin width, then the his-
togram will be highly predictive of more data from the
same distribution — namely, the holdout set. Thus
our approach is to try a variety of bin widths, and
to select the bin width w that maximizes the proba-
bility of the holdout set, where the probability of the
holdout set is calculated using a histogram probabili-
ty density function constructed from the training set
with bin width w.! Figure 4 shows examples of both
gaussian and histogram distributions for the data for
four sensors collected at the arch. Informally, it can
be seen that the gaussian approximation is reasonably
well-justified in most cases. We have therefore used
gaussian models in the work reported here.

IMore specifically, we used leave-one-out cross-validation;
that is, given n sensor values to model, we did n iterations,
designating each value in turn as the (singleton) holdout set,
and the remaining n — 1 values as the training set. The prob-
abilities of the holdout set from all iterations were combined
by taking the product. We chose this style of cross-validation
because we found that it outperformed other styles (e.g., 2-way
cross-validation) on synthetic datasets.

3.4 Navigation

The navigation system brings two types of knowl-
edge to bear on the task of inferring the user’s location.
First, it has knowledge of the distribution of signal val-
ues throughout the environment, as learned at train-
ing time. For example, if it observes large Compass Z
values, it can infer that the user is likely to be at the
arch. Second, the system has dead-reckoning knowl-
edge — rough knowledge about the user’s change in
position from one time step to the next, as inferred
from accelerometer and compass readings.

The navigation algorithm incorporates these two
types of knowledge in an iterative, Markov-model-like,
two-step algorithm, as seen in Figure 2. The algorith-
m starts with some initial probability assigned to each
location. Each time a sensor tuple is read, the algo-
rithm incrementally updates the probabilities.

The first step of the update incorporates the sen-
sor information. This is done using Bayes’ rule.
Let the augmented tuple of sensor readings be S =
(s1,...,8n). Then for each location ¢, we calculate
the posterior probability that the user is now at that
location (given that we have observed the new sen-
sor readings) using Bayes’ rule with the conditional
independence assumption:

o)
H P(Szw) P((sl,,sn>)

1<i<n

Pl|(s1,.-.,8n)) =

The P(s;|¢) terms are calculated using the model
learned at training time for the ith sensor at location £.
The prior probability, P({), is the probability assigned
to location ¢ before the update. The P({s1,...,Sn))
term is omitted; instead, we scale the probabilities for
all locations to sum to 1.

|
/ | \L\ ot \/J ww

-37 —-.04 -1.493 1.31
RaccH Comp Y

b

E3.35 7331 0 .36
Temp Lights

Figure 4: Gaussian (dashed) and histogram (solid) models of the data for four sensors collected at the arch. The
bin width was set separately for each histogram using a leave-one-out cross-validation procedure.

The second step of the update incorporates the
dead-reckoning information. This step attempts to
transfer probability mass in the same direction and
distance that the user moved since the last sensor read-
ings. For example, if we had perfect dead-reckoning
information that the user moved east by 5 feet, then
we would transfer 100% of the probability mass from
each location to the location 5 feet to the east of it. In
practice, of course, we have only rather vague dead-
reckoning information, and thus we are reduced to
spreading out the probability mass in a less focused
manner. In particular, our current dead-reckoning
information consists simply of footstep detection.?
When a footstep is detected, we spread out probability
mass from a location by retaining some fraction pstay
of its probability at the location itself, and distribut-
ing the remaining (1 — pstay) fraction of its probability
equally among all adjacent locations. The value pgtay
is the probability that a single footstep will not carry
the user outside of her current location, and is esti-
mated from training data.

3.5 Data cooking

The preceding sections describe our basic algo-
rithms for training and running the navigation system.
If we apply them to the raw (unaugmented) tuples of
sensor readings, however, they perform rather badly.
We can, however, improve the performance to high
levels (see Section 4) by introducing computed fea-
tures that add no new information at the knowledge
level, but simply reformulate the existing information
into a form in which it can be used more effectively.
Below we discuss the specific problems that we identi-
fied with using the raw sensor readings for navigation,
and the computed features that we developed to ad-
dress these problems.

2We detect a footstep iff the the Z acceleration is greater
than 0.05 G after being less than 0.05 G for at least 250 msec.

One problem that quickly became apparent was
that of overcounting evidence due to excessive inde-
pendence assumptions in the Bayesian update part of
the navigation algorithm. Not only are all features in
a tuple assumed to be conditionally independent, but
consecutive tuples are assumed independent as well.
Thus if the user stands under a light, we find that the
algorithm quickly comes to believe she’s in whichever
room was best-lit during training. The solution is to
add a computed feature that triggers only when the
lights go from off to on, rather than responding when-
ever the lights are on.

A second problem concerns absolute versus relative
measurements. Sensor readings are often subject to
drift for various reasons; for example, an accelerom-
eter may shift around somewhat on the utility belt,
thereby changing the perceived value of gravity (which
nominally has a Z acceleration of —1 G). Clearly it is
bad for the navigation algorithm to depend on the
absolute Z accelerations that are read. To address
this, we compute a feature which, for each accelerom-
eter, reports the delta between the current value and
a running average of the last, say, 10 minutes’ worth
of readings.

A third problem arose in the context of the Z ac-
celeration sensor: we observe that when a user walks
down stairs, the amplitude of the oscillations in the
Z acceleration increases. This effect does in fact show
up if one looks at the distribution of Z acceleration val-
ues for the downstairs location: the distribution has a
wider shape than the Z acceleration distributions for
other locations. However, this is still not enough of a
clue for the navigation algorithm to latch onto easily.
If we make the information about wider shape avail-
able directly, however, by adding a computed feature
for the wariance of the Z acceleration, then the al-
gorithm becomes able to discriminate the downstairs
location reliably. Figure 5 displays the raw Z acceler-

ation feature together with the variance of Z accelera-
tion feature. The latter, cooked feature is much more
obviously correlated with walking down stairs.

A final problem concerns noisy or unreliable sensor
distributions, a difficulty which occurs frequently in
the navigation domain. For example, the Compass Z
sensor often hovers in an intermediate range indicat-
ing a fairly weak magnetic field. Such a value is not
particularly indicative of any location; yet the value
will inevitably turn out to favor one location over an-
other (perhaps by a small amount). Incorporating this
kind of evidence into the calculation is never good; it
introduces noise, and the noise does not always bal-
ance out across locations. There are several ways to
clean up such evidence; the approach we have adopted
is to establish an in-bounds range for each sensor. If a
sensor value falls outside this range, it is ignored (i.e.,
not used to perform Bayesian updates). For example,
the Compass Z in-bounds range is above 1.2 gauss or
below —1.2 gauss. If a weak Compass Z value, such as
0.3 gauss is read, it is discarded. That is, the algorith-
m does not use this reading of the Compass Z sensor
in the Bayesian update step. Currently the ranges
are set by hand, but we are considering methods for
setting or adjusting them automatically.

4 Experiments

We were not able to develop a single metric by
which to measure the performance of the navigation
algorithm. One possible metric is the percentage of
time that the navigation algorithm “knows where it
is”, i.e., that the location it reports as most likely is,
in fact, the location it is in. However, not all errors
seem equally important. For example, when one first
enters an office, it seems reasonable for the navigation
algorithm to not immediately report that it is in the
office. This error seems less significant than, for ex-
ample, suddenly reporting that it is going downstairs
in the middle of a visit to an office.

We divide each visit to a location into a header
and a body. The header is the time from the point the
person enters a location until the navigation algorithm
first reports that it is in any location other than the
one it was reporting at the very beginning of the visit.>
The body is the remaining time spent in that location.
We measure three aspects of the performance of the
navigation algorithm: (1) the average length of the
header, (2) the number of errors, i.e., the number of
times the algorithm changes the location it is reporting

3However, if the navigation algorithm reports the same lo-
cation throughout a visit or is already reporting the correct
location at the beginning of a visit, then the header size is 0.

Table 2: Performance results.

high-level | restricted | time until | errors error
features ranges first guess | per visit | rate
yes yes 4.8 secs 0.3 2%

yes no 2.0 secs 2.6 33%
no yes 3.4 secs 10.1 52%
no no 2.1 secs 10.5 49%

to a wrong answer, and (3) the error rate, i.e. the
fraction of time (within the body) that the algorithm’s
prevailing guess is wrong.

We trained the navigation algorithm a total of
28 visits to the locations in our test environment and
tested the algorithm on a set consisting of 19 visits. A
typical visit to a location lasted about 20-30 second-
s. We handcrafted the set of high-level features and
ranges used by our navigation algorithm on some of
the training data, prior to collecting the test data.

As shown in Table 2, our navigation algorithm had
very low error rates when we used both the cooked
features and the restricted ranges on the features, al-
though it took an average of almost 5 seconds to rec-
ognize a location once the person entered it. The al-
gorithm’s performance degraded to unacceptably high
error rates if we turned off the computed features or
the restricted ranges, or both. These results show that
the machine-learning algorithm could not use the raw
signals effectively, unless the information they contain
was reformulated in terms of the computed features.

The performance of our system degrades even fur-
ther if we do not make use of the history of sensor
readings, but try to guess the location of the user on-
ly based on the current sensor readings. Although not
shown in the table, without the extra features or the
ranges, the navigation algorithm using only the cur-
rent sensor readings has a 55% error rate and makes
52 errors, on average, per visit. With the extra fea-
tures and the ranges, but only using the current sensor
readings to guess where it is, the algorithm has a 49%
error rate, and an average of 5.5 errors per visit.

5 Related work

While we have focused on the task of inferring state
information about the user by combining information
from the available sensors, much previous work has
investigated the desirability of obtaining this informa-
tion. Pascoe (1998), for example, generally considers
the value of context-aware computing, and describes
a case study of incorporating GPS information into
a system that assists a field worker who is observing

Upstairs
A

Downst ai rs
A

Fing pong room
PN

0. 090
0.081
0.072
0. 063

0. 054 Z accel eration

0. 045

Acceleration (G)

0. 036

0. 027

0.018

0. 009 Vari ance(Z accel erati on)

Ti me

Figure 5: The Z acceleration feature (black) versus the Variance(Z acceleration) feature (gray). The features are
shown over time as the user walks upstairs, downstairs, and into the ping pong room. Variance is computed over

the last 100 readings.

giraffes. Feiner et al. (1997) and Long et al. (1996) de-
scribe automated tour guides that augment a person’s
view of the attractions that they are viewing. Ertan
et al. (1998) and Ram and Sharf (1998) describe sys-
tems that provide navigational assistance for visually
impaired people.

Our work is close in spirit and objectives to work
being done by the Technology for Enabling Awareness
group (http://www.omega.it/research/tea) which is
developing hardware and software to enable portable
devices, such as loptops, to have a higher degree of
awareness of their user’s context such as location and
activity. Additionally, previous work has made use
of the diverse variety of sensors that are available,
using them to detect a variety of aspects of the us-
er’s internal and external state. For example, Picard
and Healey (1997) describe how to use wearable sen-
sors to detect the wearer’s affective patterns such as
expressions of joy or anger. Similarly, Myrtek and
Brugner (1996) investigate the correlations between
physiological parameters (heart rate, physical activi-
ty) and psychological parameters (excitement, enjoy-
ment). Additionally, van Someren et al. (1998) use

actigraphy (processed accelerometer readings) for de-
tailed and long-term measurement of hand tremors
to help Parkinson patients manage their symptoms.
Blood et al. (1997) compare three wearable sensors for
the task of detecting when a person is sleeping. Teich-
er (1995) shows correlations between levels of activity
and mood disorders and attention-deficit hyperactivi-
ty disorder.

Finally, previous work has used video and au-
dio sensors to provide context-awareness for wearable
computers. Starner, Schiele, and Pentland (1998)
tackle the problem of indoor navigation using the out-
put of two cameras worn on the heads of MIT stu-
dents playing a game called Patrol. They use Hidden
Markov models (HMMs) with a small number of states
trained on a feature vector derived by sampling vari-
ous regions from the images returned by the cameras.
They obtained encouraging results (82% on their scor-
ing system, which is not directly comparable to ours),
and discuss possible improvements such as incorporat-
ing optical flow or inertial sensors in order to decide
when to process frames. Similarly, Clarkson and Pent-
land (1998) train an HMM on an audio signal to detect

whether or not a person is engaged in a conversation
so as to decide how to notify them of an incoming
message. In contrast, we have focused on combining
evidence from different sensors rather than optimizing
one source of evidence. Additionally, our algorithm-
s model the world directly (i.e., one state for every
location) and thus produce a probability distribution
over all possible locations. Of course, the work we
have described in this paper is complementary with a
video- or audio-based one. For example, we could use
video or audio as additional sensors. We chose not to
in our initial design because we suspected the video
images would vary wildly based on the orientation of
the person in the rooms.

6 Conclusion

The work reported here addresses the problem of
enabling a wearable computer to be context-aware —
that is, to take into account aspects of the user’s inter-
nal or external state. We focus on the task of indoor
navigation, where the particular aspect of the user’s
state that is of interest is the user’s physical location.
By affixing a diverse set of cheap, wearable sensors
to the user, including accelerometers, magnetometer-
s, and temperature sensors, and applying machine-
learning techniques, we find that we are able to in-
fer the user’s location quite accurately in a simplified
office environment. However, this high accuracy was
obtained only when we augmented the representation
with “cooked” versions of the original sensor readings;
the raw sensor readings were too low-level to be used
directly to perform the high-level inference. Two con-
clusions emerge: (1) By obtaining high accuracy with
our cooked representation, we have demonstrated that
our approach of integrating information from a diverse
set of low-level sensors is adequate to obtain enough
raw knowledge to perform context-aware tasks such as
indoor navigation; and (2) The raw sensor values must
be “cooked” appropriately to put the knowledge in a
form that is accessible to machine-learning algorithms.
Currently, we have handcrafted the definitions of our
cooked features; a direction for future work is to de-
velop methods for discovering such feature definitions
automatically or semi-automatically.

Acknowledgements

This project would not have been possible without
the help of Darren Leigh, who designed and built the
hardware sensors, as well as being a good all-around
source of ideas. We would also like to thank Bill
Yerazunis and Baback Moghaddam for their helpful
thoughts and comments on the project.

References

Blood, ML., RL. Sack, DC. Percy, and JC. Pen. 1997. A com-
parison of sleep detection by wrist actigraphy, behavioral
response, and polysomnography. Sleep, 20(6):388-95, June.

Clarkson, B. and A. Pentland. 1998. Extracting context from
environmental audio. In Proc. of the second international
symposium on wearable computers, pages 154-155, October.

Ertan, S., L. Clare, A. Willets, H. Tan, and A. Pentland. 1998.
A wearable haptic navigation guidance system. In Proc. of
the second international symposium on wearable computers,
pages 164-165, October.

Feiner, S., B. MacIntyre, T. Hollerer, and A. Webster. 1997. A
touring machine: Prototyping 3D mobile augmented relatiy
systems for exploring the urban environment. In Proc. of
the first international symposium on wearable computers,
October.

Lamming, M. and M. Flynn. 1994. Forget-me-not: Intimate
computing in support of human memory. In FRIEND21:
international symposium on next generation Human inter-
face, pages 125-128.

Long, S., R. Kooper, G.D. Abowd, and C. G. Atkeson. 1996.
Rapid prototyping of mobile context-aware applications: the
cyberguide case study. In Proc. of the second ACM inter-
national conference on mobile computing and networking,
November.

Myrtek, M. and G. Brugner. 1996. Perception of emotions in
everyday life: studies with patients and normals. Biological
Psychology, 42(1-2):147=—-64, January.

Pascoe, J. 1998. Adding generic contextual capabilities to wear-
ables computers. In Proc. of the second international sym-
posium on wearable computers, pages 92-99, October.

Picard, R.W. and J. Healey. 1997. Affective wearables. Per-
sonal Technologies, 1:231-240.

Ram, S. and J. Sharf. 1998. The people sensor: A mobility
aid for the visually impaired. In Proc. of the second inter-
national symposium on wearable computers, pages 166-167,
October.

Schilit, W. 1995. System architecture for context-aware mobile
computing. Ph.D. thesis, Columbia University.

Starner, T., B. Schiele, and A. Pentland. 1998. Visual contex-
tual awareness in wearable computing. In Proc. of the sec-
ond international symposium on wearable computers, pages
50-57, October.

Teicher, MH. 1995. Actigraphy and motion analysis: new tools
for psychiatry. Harvard Review of Psychiatry., 3(1):18-35.

van Someren, EJ., BF. Vonk, WA. Thijssen, JD. Speelman,
PR. Schuurman, M. Mirmiran, and DF. Swaab. 1998. A
new actigraph for long-term registration of the duration and
intensity of tremor and movement. IEEE Transactions on
Biomedical Engineering, 45(3):286-95.

Want, R. and A. Hopper. 1998. Active badges and personal
interactive computing objects. IEEE Transactions on Con-
sumer Electronics, 38(1):10-20.

