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Peridot is an experimental tool that allows designers to create user interface components without 
conventional programming. The designer draws pictures of what the interface should look like and 
then uses the mouse and other input devices to demonstrate how the interface should operate. Peridot 
generalizes from these example pictures and actions to create parameterized procedures, such as 
those found in conventional user interface libraries such as the Macintosh Toolbox. Peridot uses 
visual programming, programming by example, constraints, and plausible inferencing to allow 
nonprogrammers to create menus, buttons, scroll bars, and many other interaction techniques easily 
and quickly. Peridot created its own interface and can create almost all of the interaction techniques 
in the Macintosh Toolbox. Therefore, Peridot demonstrates that it is possible to provide sophisticated 
programming capabilities to nonprogrammers in an easy-to-use manner and still have sufficient 
power to generate interesting and useful programs. 

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Programming; 
D.2.2 [Software Engineering]: Tools and Techniques--wer interfaces; H.1.2 [Models and Prin- 
ciples]: User/Machine Systems---human factors; 1.2.2 [Artificial Intelligence]: Automatic Pro- 
gramming-program synthesis; 1.3.6 [Computer Graphics]: Methodology and Techniques 

General Term: Human Factors 

Additional Key Words and Phrases: Constraints, direct manipulation, plausible inference, program- 
ming by example, user interface design, user interface management systems, visual programming 

1. INTRODUCTION 

Peridot is a new, experimental tool for creating graphic, highly interactive user 
interfaces. One of the primary goals of Peridot is to allow these interfaces to be 
created by nonprogrammers. To achieve this, Peridot uses the techniques of 
visual programming, programming by example, constraints, and plausible infer- 
encing. Peridot was developed as part of the author’s Ph.D. dissertation. Previous 
papers have presented an overview of Peridot [31] and a detailed discussion of 
the handling of the mouse [26]. A full report on Peridot is also available [28]. 
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This paper focuses on the programming aspects of Peridot and how programming 
capabilities are provided to nonprogrammers. 

Peridot stands for Programming by Example for Real-time Interface Design 
0 bviating Typing and is a working prototype implemented in Interlisp-D on the 
Xerox 1109 DandeTiger workstation. Peridot can create many types of interac- 
tion techniques (sometimes called “widgets”), which are the low-level components 
of user interfaces. This includes most kinds of menus, property sheets, light 
buttons, radio buttons, scroll bars, two-dimensional scroll boxes, percent- 
done progress indicators, graphic potentiometers, sliders, iconic and title line 
controls for windows, and many others. Thus, Peridot can create almost all of 
the Apple Macintosh [53] interface, as well as many new interfaces, such as those 
that use multiple input devices concurrently. Peridot also has created its own 
user interface. 

Two of the most important components of the design for highly interactive 
user interfaces are the graphic presentation and the way the graphics change due 
to the mouse and other input devices. Unfortunately, previous tools for creating 
user interfaces have not adequately addressed these components. In order to 
allow the graphic parts of the user interface to be easily specified, Peridot allows 
the user interface designer to draw a picture of what the user interface should 
look like using a special drawing package. In order to specify how the user 
interface should work with the mouse, Peridot allows the designer to move the 
mouse and toggle its buttons. While this is happening, Peridot creates code that 
allows the interface to be used with actual application programs. The code 
produced is not simply a transcript of the designer’s actions, however, because 
this would not provide sufficient functionality. For example, a pop-up menu 
might be designed with a particular set of strings, but the same code should work 
for any list of strings. Therefore, Peridot creates parameterized procedures, where 
parts of the interface can depend on the values of the parameters. For example, 
the size of the menu might be adjusted to fit exactly around the strings. Peridot 
uses some simple artificial intelligence techniques to infer how the graphics and 
mouse should change based on the actual values for the parameters. 

In order to allow interaction technique procedures to be created in a direct 
manipulation manner 1431, Peridot has the designer provide example values for 
each parameter. For instance, when creating a menu, the designer provides an 
example list of strings to be displayed in the menu. Using a technique called 
programming by example, Peridot generalizes from the given examples to create 
a general-purpose procedure. Since programs are created using graphic tech- 
niques, Peridot can also be classified as a visualprogramming system. Constraints, 
which are relationships that are maintained automatically by the system, are 
used in two ways in Peridot. Graphic constraints tie various graphic objects 
together so that when one changes the others will be updated automatically. Data 
constraints are used to ensure that graphic objects are updated whenever any 
special variables, called active values, are updated. 

2. RELATED WORK 

Because the programming of user interfaces is difficult and expensive, there has 
been a growing effort to create tools to help with this task. Sometimes, the tools 
are simply a library of low-level procedures that create the components of the 
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interface. There may be procedures that display menus, on-screen buttons, scroll 
bars, etc. In this case, the library is usually called a “user interface toolkit,” and 
the primary example of this is the Macintosh Toolbox [l]. 

Some user interface tools also help with the creation and management of these 
low-level components. These higher-level tools are often called user interface 
management systems (UrMSs) [29, 36, 401. Some UIMSs have concentrated on 
managing the sequencing (or syntax) of the user interface; that is, what operations 
are available at each point in the interface and what happens after each operation 
is specified. In SYNGRAPH [37] the designer uses a BNF to specify the grammar 
of the interaction. Other systems [20,21,52] have used state transition diagrams 
for specifying the sequence of actions. These syntax-based approaches are most 
useful for creating user interfaces where a large amount of syntactic parsing is 
necessary or when the user interface has a large number of modes. However, 
most modern, highly interactive systems attempt to be mostly “mode-free” [50], 
so these UIMSs have not been successful for them. 

Therefore, many UIMSs allow some part of the presentation of the user 
interface to be specified graphically. For example, Menulay [lo] allows the 
designer to place text, graphic potentiometers, iconic pictures, and light buttons 
on the screen and to see exactly what the end user will see when the application 
is run. The interfaces that Menulay can create are essentially a series of mostly 
static frames, where the parts that can be manipulated by the user are pro- 
grammed by hand in advance. Thus, Menulay allows the designer, who does 
not need to be able to program, to lay out the interface on the screen. Similar 
systems include Trillium [18], vu [44], DialogEditor [ll], and the NeXT Interface 
Builder. 

These systems are limited to using graphic techniques for specifying the 
placement and size of picture and user interface elements (e.g., where menus are 
located and what type of light button to place where). Some systems, such as 
Squeak [12], allow the properties of user interface elements themselves to be 
programmed textually, but Peridot is the only system that allows both the 
appearance and the dynamic behavior of the elements to be specified in a graphic, 
nontextual manner. Peridot supports this by incorporating ideas from a number 
of visual-programming and programming-by-example systems. 

As mentioned above, visual programming is the use of graphics to create 
computer programs [25]. Programming by example is when the system generalizes 
from example values provided by the user. Many visual-programming and 
example-based-programming systems have been designed to provide non- 
programmers with programming capabilities. For example, Rehearsal 
World [16] uses the metaphor of a stage to allow the user to create teaching 
programs by connecting together preexisting “actors” (which are represented by 
pictures). 

The visual programming systems that are most relevant to Peridot also use 
programming by example. The seminal system is Pygmalion [45], which supports 
programming using icons. SmallStar [17] allows the end user to program a 
prototype version of the Star office workstation. When programming, the user 
simply enters program mode, performs the operations that are to be remembered, 
and then leaves program mode. The operations are executed in the actual user 
interface of the system, which the user already knows. Since the system does not 
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use inferencing, the user must differentiate constants from variables and ex- 
plicitly add control structures (loops and conditionals). This is performed 
after the demonstration is completed by editing a textual representation of the 
program. 

Peridot extends this idea by using inferencing to avoid the need for the textual 
program representation; the system guesses the generalizations from the exam- 
ples. Many previous systems that tried to infer from examples were not successful 
because the domain was too general. For example, one system [42] tried to 
generate LISP programs from examples of input/output pairs. Autoprogrammer 
[3] is typical of a class of programming-by-example systems that attempt to infer 
general programs using examples of traces of the program execution. The user 
gives all the steps, and the programs try to determine where loops and condition- 
als should go as well as which example values should be constants and which 
should be variables. Programming by example has been more successful in limited 
domains, such as generating editor macros [35] and simple transformations on 
pictures [ 241. 

Another important component of Peridot is the use of constraints [22], which 
are relationships among objects and data that must hold even when the objects 
are manipulated. Peridot uses two kinds of constraints. Graphic constraints relate 
one graphic object to another, and data constraints ensure that a graphic object 
has a particular relationship to a data value. 

The idea of graphic constraints was first used in Sketchpad [48]. Thinglab [4, 
51 and its descendants [6] extended the ideas in Sketchpad to provide generalized 
programming with constraints. Juno [34] uses constraints in a drawing program. 
Constraints in Peridot and in some other systems, including Apogee [19] and 
GROW [2], are one directional. This means that for any property there can be 
at most one formula that calculates its value. Other systems, including Sketchpad, 
Thinglab, Juno, CONSTRAINT [51], and Magritte [15], use multiway con- 
straints, which means that there can be multiple formulas for a property or that 
constraint expressions can be solved for any of the objects referenced. Multiway 
constraints usually require a complex constraint satisfaction algorithm that often 
cannot operate quickly enough for highly interactive user interfaces [7], whereas 
one-directional constraints, as in Peridot, use a much simpler, real-time algorithm 
(described in Section 6). 

Data constraints ensure that a graphic object has a particular relationship to a 
data value. An example of a data constraint is that the diameter of a circle is the 
same as the value of a global variable, so the size of the circle will change if the 
variable is set. These are used in the Process Visualization System [14], which 
was influenced by “triggers” and “alerters” in database management systems [8]. 
They are also similar to the “Control” values in GRINS [38], except that they 
are programmed by example rather than textually and can be executed immedi- 
ately without waiting for compilation. 

The data constraints in Peridot can only be connected to active values. Active 
values are like parameters to a procedure, except that when their value changes 
the graphics that depend on them are automatically redisplayed based on the 
new value. Active values have been used in artificial intelligence systems and 
environments, such as Steamer [47], KEE [41], and LOOPS [46]. 
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3. OVERVIEW OF PERIDOT 

When creating an interface with Peridot, the designer must first name the 
procedure that will be called by the application to cause the interface to appear. 
This procedure can have parameters, which are used for aspects of the interface 
that change from call to call, but do not change while the interface is running, 
such as the strings in a menu. Constraints will ensure that the interface appro- 
priately reflects whatever values for the parameters are supplied. Procedures also 
have active values associated with them for the parts that do change while 
running, such as the particular string that the mouse is over. A data constraint 
will ensure that the feedback graphics, such as a reverse video rectangle, shows 
the item that the active value refers to. 

Figure 1 shows a typical configuration when running Peridot. The window 
shows the parameters to the procedure and an example value for each parameter. 
Below the parameters are the active values used by the procedure. The menu on 
the left is used for giving all of the Peridot commands. This menu is divided into 
two sections with the most common commands on the top. The center window 
shows the resulting user interface. The bottom window is used for printing error 
messages and for prompting the designer. The window on the right shows the 
code that Peridot is creating for this procedure. This window is mainly for 
debugging, since it is not necessary for the designer to view the code or to use 
the code to perform any operations in Peridot. The normal window configuration, 
in fact, does not even display this window, as shown in Figure 2b. 

While the designer is creating a user interface, Peridot is continuously trying 
to guess how the various pieces are related to each other and how to generalize 
from the examples. Because any inferencing system will occasionally guess 
incorrectly, Peridot uses three strategies to protect against incorrect inferences. 
First, Peridot always asks the designer if guesses are correct by printing a message 
in the prompt window; second, the results of the inferences can be immediately 
seen and executed, and third, the inferences can be undone if they are in error. 

4. EXAMPLE OF PERIDOT IN ACTION 

The best way to demonstrate how easy it is to create a user interface with Peridot 
is to work through an example. Here, a property sheet will be created. Other 
examples are available in other papers [26, 28,311, but it is easiest to appreciate 
how easy Peridot is to use by seeing a videotape [27] or live demonstration. 

To start Peridot the designer presses in the Peridot logo window, and the 
Peridot prompt window is displayed (Figure 2a). In this window the designer 
types the name of the procedure, the names for all parameters and active values 
for this procedure, and an example value for each. Peridot then displays the 
menu and windows shown in Figure 2b and allows the designer to begin drawing 
the picture. In Figure 2b, the designer has created a gray rectangle to represent 
a “drop shadow” for a button. In Figure 2c the designer has drawn a black 
rectangle to represent the background of the button, and Peridot has noticed 
that this rectangle seems to be the same size as the gray rectangle, offset by a 
constant nine pixels. In the prompt area, it is asking the designer to confirm this 
constraint. The designer types y for “yes,” and Peridot immediately adjusts the 
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Welcone to Peridot 
Please type a name for the procedure you will create [e.g.: MyMenu] PropSheet 
HOW many argumnts do you wnt for PropSheat? [e.g. 11 1 

Now type the name of argment t 1 for PropSheet [e.g.: Items] Items 
Now you will type an exanrplc value for each a~gtment. Remember to USC parentheses if you want. a 
e.g.: (Replace Move Copy) and *" If you went to include a space (e.g. "Single item"). 

Please type an example v?l1ue for Items 
[e.g.: (Replace Nave Copy)] (Bold Italic StrikeThrOUQh Undsrline SuperscrIpt SubscriPt Inverted) 

1lSC 

If you want any values that cd" change at run time (called active valuer) then type them next. 
You will probably want at least 1 active value to hold the return value. 
How many active values do you want for PropSheet? [e.g. I] 1 

NOW type the name of active value X 1 for PropSheet: [e.g.: CurrentChoice] 

(b) 

Fig. 2. A sequence of snapshots during the creation of check boxes using Peridot. 

black rectangle to be exactly the same size as the gray one (Figure 2d). If the 
gray rectangle’s size were now changed, the black rectangle’s size would change 
also, since a graphic constraint has been established that keeps both rectangles 
the same size. 

Next, the designer draws a white rectangle inside the black one (Figure 2e), 
and Peridot correctly infers that this rectangle should be evenly nested inside 
the black one. In Figure 2f the designer has selected the first element of the 
parameter “Items,” which is the string “Bold,” and has used that as the string to 
display. Peridot infers that it is centered to the right of the white rectangle. The 
code that is produced for this string refers to the first element of the first 
parameter, whatever that is, rather than to the constant string “Bold,” so that 
any value used for the parameter will be displayed. 
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OUSE-ExcePtlot? 

(d) 

Fig. 2. (Continued). 
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(e) 

kcd u,th URT) offser horIzontally by 10 

Fig. 2. (Continued). 
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MOUSE-Excsptlon 

04 

Fig. 2. (Continued). 
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Bold 

StrikeThrough 

Under1 Ine 

II 

Subscript 

Inverted 

he Dray rectangle QrayRcct0042J (nwked wftl, WRT) and 
t 

:q;;;: 

hs Way csctangls GreyR0ct004:Cnpy6046] (marked “4th dn N) ::::::: 

the Inirlal valus IS 261 and Lhe subscqent values ~111 be offset by 
::::::: 
::::::: 

40. ::::::: I, ,., 

(3 

StrikeThrough 

(3 

Fig. 2. (Continued). 
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(W 

Fig. 2. (Continued). 

Next, the designer selects all the objects created so far and specifies that they 
should be copied to a new position (Figure 2g). Peridot asks if it should look for 
constraints from the new copy to the old one, but this is not necessary since it is 
going to be part of an iteration. Next, the designer edits the second string to refer 
to the second element of the parameter (Figure 2h). At this point, Peridot notices 
that the designer has used the first two elements of a list in the interface, and 
asks whether the rest of the elements of the list should be displayed in the same 
way, as part of an iteration over all the elements of the list. The designer confirms 
this, and the rest are immediately shown (Figure 2i). In order to perform this 
conversion, Peridot has to determine which graphic objects should participate in 
the loop and how they should change in each cycle. Now the presentation aspects 
of the property sheet are finished. 

Next, the designer places the iconic picture of a check mark centered inside 
one of the boxes (Figure 2j). This is used to show which items are selected. 
In order to demonstrate that this should be selectable by the mouse, the “sim- 
ulated mouse” icon is used (see Figure 2k). The real mouse cannot be used, 
since it is used for giving Peridot commands [31]. The nose of the simulated 
mouse is placed over the check mark with the middle button down, and the 
MOUSEDependent command is given. Since there is only one active value 
(Selected-Props), Peridot guesses that the check mark should depend on this 
active value. Since the example value of that active value is a list, Peridot guesses 
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Margin Bell 

Key Click 
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XON/XOFF 

WrapAround 

NewLine 

Parity 

Local Echo 

Screen Saver 

Smooth Scroll 

(1) 

Fig. 2. (Continued). 

that multiple items are allowed and that a check mark should appear for each 
one in the list. The designer is asked to confirm these guesses in the prompt 
window. Peridot then shows the check marks displayed in the boxes next to Italic 
and Underline, since these are the current value of Selected-Props. Finally, the 
designer is asked whether pressing the middle button should toggle, set, or clear 
the selected object, and the designer types t for toggle. The user interface is now 
complete, and either it can be tested with the simulated mouse, or else Peridot 
can be put into “Run Mode” and the real mouse can be used. 

The PropSheet procedure that has been created can now be used outside of 
Peridot as part of application programs. It is parameterized as to the list of items 
that are displayed, so it can be called with an entirely different list of strings, 
even if that list has a different number of elements (Figure 21). 
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5. LANGUAGE FEATURES 

Because Peridot creates user interface procedures, it operates as a code generator. 
This section discusses some of the features of the language it can generate. 
Sections 6-9 discuss how constraints, programming by example, and visual 
programming are used to allow nonprogrammers to create sophisticated user 
interface procedures using Peridot. 

The code generated by Peridot has a number of conventional parts: straight- 
line code, iterations, conditionals, and parameterized procedures. 

5.1 Straight-Line Code 

As the user is drawing objects, Peridot creates LISP code that will draw them 
for application programs. If the user edits an object, the code that generates it is 
modified. If properties of objects are fixed and unchanging, then their values will 
be constants. If the properties are to change at run time based on parameters to 
the procedure or end-user input, they are controlled by constraints. If the objects 
themselves appear and disappear at run time, they must be enclosed in condi- 
tionals or iterations. 

A window can be displayed to see the code as it is generated (Figure 1). Unlike 
other systems, such as Juno [34], users are not allowed to edit this text code, 
since they are assumed not to be programmers, but it would not be difficult to 
provide this, if desired. 

5.2 Iterations 

Iterations are important because they allow Peridot to support variable-length 
lists and they relieve the designer from having to perform tedious, repetitive 
actions. As shown in the example, Peridot infers iterations when two items from 
a list have been used. 

There are two forms of iterations in Peridot. The most common form displays 
a copy of one or more graphic objects for each item of a list, as in the example of 
Figure 2i. If more sophisticated control is needed over the order of the items or 
over which ones should be displayed, a programmer would have to write a LISP 
procedure to filter the list and supply Peridot with a list of only the appropriate 
items in the correct order. 

The items in the list can be used to control any property of the graphic objects 
in the iteration, including the text of the strings (Figure 2i), the halftone patterns 
for rectangles (Figure 3a), the heights for rectangles (Figure 3b), etc. 

The other form for iterations is to display a set of objects for a specific number 
of times. Of course, some properties of the objects may change in each cycle 
(usually including the position). This is mainly useful for displaying a line of 
identical objects (see Figure 4). To get this form of iteration, the designer creates 
two copies of the objects to be repeated, selects them, and then executes the 
Peridot Iteration command. 

Currently, iterations in Peridot can only be used when the items are in a single 
line (which can be horizontal, vertical, or even an arbitrary diagonal). It would 
be useful to extend Peridot to allow multiple lines of items, either as automatic 
wraparound or as nested iterations. If the data were presented as a single list, 
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Fig. 3. Iterations can be on any property of an object, for example, the halftone shades (a) or the 
heights for rectangles (b). 
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Fig. 4. Iteration for an integer number of times. 

the designer would have to specify when to go to the next row or column, for 
example, by the maximum number of items on a line or by the maximum size. If 
the data were presented as a two-dimensional list of lists, Peridot could infer the 
appropriate layout from three example items (a reference plus one item in each 
dimension). Another useful extension might be to allow an iteration to go through 
multiple lists in parallel. For example, the heights of the bars in a bar chart 
might depend on values in one list, and the colors of the bars depend on values 
in another list. These extensions would require a small addition to Peridot’s 
implementation, but its user interface would not have to change. 

5.3 Conditionals 

Conditionals in Peridot are used to support displayed feedback over one of a set 
of objects and to control an object blinking on and off. These “conditionals” are 
different from IF statements in conventional languages because they do not affect 
the flow of control. They are called “conditionals” here because they cause the 
display of an object to be conditional on a controlling variable. 
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Fig. 5. A menu created using Peridot. The horizontal dotted 
lines and the gray items are exceptions to the normal way the 
text is displayed. The feedback black rectangle will not appear 
over the gray item “Enlarge” or over the dotted lines. Turn Grid On 

Like iterations, conditionals can only test the value of an active value or 
parameter to the procedure. Designers who have used Peridot have found this to 
be intuitive, and it can support most of the desired functionality. 

Conditionals are created in a postfix style; that is, the designer first draws the 
graphic objects that are used as feedback when the conditional is true and then 
specifies what these objects should depend on. This allows the designer to use 
the standard drawing and editing commands to create the graphic objects. In 
Figure 21 the conditional objects are the check marks; and in Figure 5, the black 
rectangle, the check mark, the graying of “Enlarge,” and the dotted lines are all 
implemented with conditionals. 

The general form for conditionals is to display the graphic objects if the 
controlling variable has an appropriate value. If the graphic objects just blink on 
and off, then the controlling value can be T or NIL. The more common case is 
for the graphics to be displayed over one or more objects in an iteration. Here, 
the controlling value chooses which items of the iteration the value should be 
displayed over, either by index (e.g., the third item) or by name (the item 
containing the string “Reduce to Fit”). The variable can also be either a single 
value, where only one object can be selected, or a list of values, to allow multiple 
selection. The example value supplied by the designer is used by Peridot to guess 
which of these kinds of control is desired. Of course, the designer is queried to 
confirm the guess, since they can be ambiguous [28]. 

An interesting idea is to try to extend conditionals to handle many other kinds 
of optional or changing behavior. For example, conditionals might support 
parameters that control the way that the interface works and looks. A parameter 
might determine whether the items in a menu are left justified or centered, and 
another parameter might determine whether the left or middle mouse button is 
used in the interaction. In these cases, both possibilities would be demonstrated, 
and Peridot would prompt for the parameter or active value that would determine 
which one to use. This would allow Peridot’s conditionals to be more like a 
general if-then-else programming construct. The Tinker system [23] has a similar 
facility, although there the code for each branch of the conditional must be 
entered textually rather than demonstrated. 
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Another extension would be to use conditionals to handle exceptions to an 
iteration. For example, in Figure 5, to attain the dotted lines requires an extra 
parameter that tells Peridot where to put them. A better scheme would be for 
the lines to appear whenever the iteration variable takes a special value (maybe 
“-” in this case). These could easily be inferred by example, since the cases that 
Peridot might notice are easily identified (such as that the iteration element has 
a particular value, that the value has a different type than the other elements, or 
a numerical property such as that the item is greater than zero). The exception 
mechanism might even be used to handle the automatic line breaks for the 
multiline iterations discussed in Section 5.2. Providing these extensions would 
not significantly change Peridot’s user interface. 

5.4 Parameters and Return Values 

An important property of the code that Peridot generates is that the procedures 
are parameterized. In fact, they look like normal procedures that one might find 
in a conventional toolkit. As shown in Figure 2a, the designer specifies the names 
of the parameters before the interface is built. Since the procedures are imple- 
mented in LISP, the parameters are not typed. 

This provision for parameters is the most significant difference between 
Peridot and other graphic user interface tools. Other systems, including NeXT’s 
Interface Builder, vu [44], and DialogEditor [ 111, only allow the designer to 
specify a fixed set of values for the menus and buttons. 

To specify a return value for the procedure, the designer must use the Add- 
Return-Stmt command. This requires that an active value be selected and allows 
the procedure to be exited based on the setting of this active value. A menu pops 
up that asks the designer whether the procedure should exit when the active 
value is set, when it is set with a value different from its old value (i.e., when it 
changes value), when it is set with a particular value, or when an interaction that 
uses this active value is complete (e.g., when the mouse button is released) [26]. 
Although this does not seem like many choices, it is sufficient to support most 
interaction techniques, including stopping when the mouse presses on a particular 
area (such as the STOP icon in Figure 6), and to make pop-up menus that go 
away when an item is selected or when the user releases outside the menu. 

6. GRAPHIC CONSTRAINTS 

One important reason that Peridot is more complicated than a conventional 
drawing package is that it must deal with the parameterization of the procedures. 
This implies that Peridot must know how various graphic parts of the interface 
change with different values for the actual parameters. For example, the pop-up 
menu of Figure 7a was defined with one set of strings, but must also work for a 
different set as shown in Figure 7b. Here, Peridot must know that the size of the 
shadow and outline rectangles must change based on the width of the widest 
string and the sum of the heights of all the strings. 

As shown in Figures 2c and d, these graphic relationships are normally inferred 
automatically as the user interface is drawn. Section 8.2.1 discusses the inferenc- 
ing aspects of Peridot. It is also possible to specify explicitly the relationships by 
selecting two objects and providing an arbitrary arithmetic expression that relates 
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Fig. 6. Two views of an interface created entirely by Peridot. The various parts (icons, scroll bars, 
title string, decorations) are all constrained to the shadow rectangle, so they stay the appropriate size 
and position when the window changes size. The picture inside the window can be scrolled horizontally 
or vertically either by pressing and moving the indicator boxes in the scroll bars or by pressing on 
the arrows. The window’s size can be changed by pressing on the icon at the upper right, and the 
position can be changed by pressing on the icon at the lower right. The window is destroyed and the 
user interface procedure exits when the user presses on the icon at the upper left. An application 
program is called to display the picture inside the window whenever any of the scroll areas are used 
or the window changes size, but all of the interactions are handled entirely by Peridot and were 
created by demonstration without programming. 

their properties. To make it easier on the designer, a special command is provided 
to make some property (e.g., the width) of two objects be offset by a constant 
amount. The designer simply selects the two objects, and Peridot asks whether 
the current offset between the two objects should be used. If not, the designer 
can type in a new value. 

After a relationship is either inferred or explicitly specified, Peridot creates a 
graphic constraint so that the relationship will be maintained if the picture is 
edited or if different parameters are used at run time. The constraints used in 
Peridot differ markedly from constraints in previous systems because they are 
simple and efficiently implemented. The primary reason for this is that only one- 
directional constraints are necessary. The reverse relationship is saved at design 
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Fig. 7. Peridot needs to know that the sizes of 
the white, black, and gray rectangles depend on 
the actual strings to be displayed. The list of strings 
is passed as a parameter to the menu display 
procedure. 

(b) 

(4 (b) 

Fig. 8. Originally, in (a), the gray rectangle depends on the black 
rectangle. When the gray rectangle is later made to depend on the 
string (b), the black rectangle is made to depend on the gray rectangle. 

time in case the designer edits the picture. For example, when creating the button 
shown in Figure 8, the first step is to create the black and then the gray rectangles, 
as shown in Figure 8a. At this point, the gray rectangle’s size and position depend 
on the size and position of the black rectangle. Next, the designer adds the string, 
and Peridot infers that the size of the gray rectangle should depend on the size 
of the string. Since constraints are only one directional, this would remove the 
constraint that connected the gray and black rectangles. Peridot notices this and 
asks the designer if the constraint should be reversed. The question is asked 
because it is often the case that the user wants to remove or change the constraints 
rather than reverse them, in order to change the way the picture looks. If the 
designer confirms that the constraints should be reversed, then the previous 
constraint is removed and the reverse asserted. In Figure 8b, this will cause the 
size of the black rectangle to depend on the size of the gray rectangle. 

The dependencies of an object’s attributes are often cascaded. For example, in 
Figure 7, the LEFT position of the white rectangle depends on the LEFT position 
of the black rectangle, which, in turn, depends on the LEFT position of the gray 
rectangle. Peridot is careful to reverse all the necessary constraints so that the 
interface stays consistent. 

In addition, the dependencies may go forward in the drawing order as well as 
backward. Normally, when an object is drawn, it depends only on objects drawn 
previously, so the numerical values of their attributes are available when the 
object is drawn. However, if a relationship has been reversed or the user explicitly 
edits an attribute to depend on some object, an object may be drawn before the 
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object it depends on is drawn. For example, the width of the gray rectangle 
depends on the width of the string in Figure 8, but the rectangle is drawn before 
the string. The drawing order of objects cannot be changed, however, since newer 
objects can obscure older 0bjects.l Therefore, the calculation order must be 
different from the drawing order. 

Fortunately, it is easy to handle these cases with an efficient, recursive, one- 
pass algorithm. The “Field” function, which returns attributes of objects, uses 
the value of the attribute if it has been calculated. If it has not been calculated, 
then it evaluates the appropriate constraint. This may recursively call Field, but 
no attribute will ever be evaluated more than once because cycles are not allowed. 

The code to create the rectangles and strings in Figure 8 might look like the 
following: 

(CreateRectangle ’ BlackRectOOOl 
BLACK 
30 ;x 
40 iY 
‘(PLUS 10 (Field GrayRect0002 WIDTH)) ;width 
‘(PLUS 10 (Field GrayRect0002 HEIGHT))) ;height 

(CreateRectangle ’ GrayRect0002 
Gray 
‘(PLUS 5 (Field BlackRectOOOl LEFT)) P 
‘(PLUS 5 (Field BlackRectOOOl BOTTOM)) ;y 
‘(PLUS 6 (Field String0003 WIDTH)) ;width 
‘(PLUS 6 (Field String0003 HEIGHT))) ; height 

(CreateString ’ String0003 
“Confirm” 
‘(PLUS 3 (Field GrayRect0002 LEFT)) ;x 
‘(PLUS 3 (Field GrayRectOOOZ BOTTOM))) ;y 

The time complexity of this algorithm is clearly constant per object (i.e., linear 
in the number of objects). 

The one-directional graphic constraints in Peridot have proved to be sufficient 
for handling all the relationships that occur in user interface elements. Operations 
that appear to require two-directional constraints are usually handled in Peridot 
using active values. For example, if there were two graphic sliders that both 
modified the same value, a system like ThingLab [5] would have two-directional 
constraints that would keep each slider the size of the other one. In Peridot, 
however, each slider would depend on a single active value, and when either 
slider was manipulated with the mouse, the active value would be set, so both 
sliders would be adjusted. This technique eliminates the need for multidirectional 
constraints in most cases. This still will not handle the case, however, where the 
sliders represent different values, like the classical Fahrenheit to Celsius con- 
verter. Peridot’s constraints cannot be used in this case. Fortunately, this 
situation does not arise in the low-level user interface elements that Peridot is 
designed to create, so multidirectional constraints have not proved necessary. 
Application procedures attached to different active values can be used to imple- 
ment this kind of high-level relationship, if necessary. 

’ This is often called the “painter’s algorithm.” 
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7. DATA CONSTRAINTS 

Peridot uses active values with data constraints to control any values that can 
change at run time, and these have proved to be powerful, efficient to implement, 
and easy for the designer to use. As described earlier, active values are like 
parameters to the procedure except that, when they change at run time, graphics 
are updated immediately. 

Active values can control objects in many ways. The value can be a number 
that varies in a range, such as the scroll bar in Figure 9; it can control where 
marks are shown, as in the property sheet of Figure 2 and the menu of Figure 5; 
it can contain the position of an object being dragged with the mouse; etc. In 
fact, any property of an object can be made to depend on an active value. 

Active values can be set by the application program at any time to update the 
graphics. For example, an application program might update the active value 
controlling the size of the indicator in the scroll bar of Figure 9 if the percentage 
of the file that is visible changes. In addition, application routines can be attached 
to active values, and these will be called when the active value changes. Therefore, 
active values are also used to pass information back to the application programs. 
This provides an appropriately abstract interface to the applications, since they 
can deal in their own high-level units (e.g., 0 to 100 for the percentage of the file 
seen in Figure 9, and the string names of the font properties in Figure 2k) and 
can be totally independent of how these values are represented graphically or set 
by input devices. Therefore, the graphics can be changed arbitrarily, and the 
application code is not affected. 

While the user interface is being designed, the active values are displayed on 
the screen in the top Peridot window (Figure l), and the displayed value is 
updated when the value changes. This makes the system more understandable, 
since the state of the system is always visible; the designer does not have to try 
to remember the values of the variables. Another factor that makes active values 
easy to use is that the designer can type in new values for the active value using 
the FixActive command. This can be used to check that the graphics change 
appropriately. 

Another advantage of active values is that they easily support multiprocessing. 
Different processes in the application program can update independent active 
values, and the appropriate updates will happen in parallel.2 Since input devices 
are implemented using active values, it is also trivial to support multiple input 
devices active at the same time, such as one in each hand [9]. 

Data constraints are efficiently implemented in Peridot. Each active value 
keeps a list of the graphic objects that depend on it and the application procedures 
to call. When the active value is updated, Peridot simply runs through these lists 
and performs the appropriate actions. In LISP all variable assignment is per- 
formed using functions (such as SETQ and SET). Similarly, to set an active 
value, an application simply calls the Peridot function SETActive. Currently, 
SETActive directly calls any application procedures attached to active values, 

’ Applications must deal with any issues of synchronization and mutual exclusion using the standard 
mechanisms built into Interlisp [54]. This has not proved to be a problem with the interface elements 
created using Peridot, since the various input devices usually control independent parts of the 
interface (e.g., one device controls the size, and the other controls the position). 
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Fig. 9. Six views of the same scroll bar. The indicator changes 
size based on the percentage of the file seen. The user can press 
on the arrows or slide the indicator to move around in the file, 
but the size of the indicator is controlled by an application 
program. 

but it would be possible to use message passing, remove procedure calls, or many 
other mechanisms to implement this connection in a distributed environment. 
The only requirement is that the implementation be fast enough so that appli- 
cation programs can be called in inner loops of mouse tracking to provide filtering 
on the feedback. Naturally, the implementation of the connection between the 
active values and the graphics is hidden from both application programs and 
the designer. 

8. PROGRAMMING-BY-EXAMPLE ASPECTS 

As described earlier, Peridot requires that the designer provide examples of 
typical values for the parameters and active values of the procedure. These values 
are used to display the user interface while it is being designed. In addition, 
Peridot automatically guesses from the examples the appropriate graphic con- 
straints and control structures, and how actions depend on the mouse. 

Allowing the designer to work on example data while developing an interface 
with Peridot is a crucial component and one of the primary contributors to 
Peridot’s success. Otherwise, the designer could not see what the interface would 
look like. (What would be displayed while designing a menu if there were no list 
of strings?) The examples allow Peridot to use direct manipulation techniques 
so that the design process is concrete, rather than abstract. The interface seems 
more like a paint program, such as Apple MacDraw, than a programming system. 

The motivation for this style is that people make fewer errors when dealing 
with specific examples rather than abstract ideas [45]. The programmer does not 
need to try to keep in mind the large and complex state of the system at each 
point of the computation if it is displayed on the screen. In addition, errors are 
usually visible immediately. 

The following subsections discuss in detail how Peridot uses programming by 
example. 
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8.1 How Examples Are Used 

Many PBE systems require the user to provide multiple examples in order to 
generate code. In some cases, Peridot infers code from single examples. This 
is possible because the designer is required to explicitly give a command to 
cause Peridot to perform the inferencing. For example, the designer issues the 
MOUSEDependent command to tell Peridot to look at the mouse position and 
to infer the generalization for the operation. For iterations, however, the designer 
is required to give two examples, and Peridot can therefore usually infer the need 
for an iteration without an explicit command from the user. For example, in 
Figure 2h, Peridot guesses that an iteration is needed, since there are two sets of 
buttons and since two elements of the parameter Items have been used. 

Peridot also allows the designer to demonstrate conditionals that display 
special graphics and that serve as exceptions to the normal way the mouse 
dependencies work. For example, some items of the menu might be shown in 
gray if they are illegal, and horizontal lines might replace certain items (as in 
Figure 5). The designer can demonstrate that special actions should happen when 
the mouse is over these areas. For example, the reverse video feedback rectangle 
in Figure 5 will not appear over the items shown in gray or over the lines. These 
are sometimes called “negative examples,” since they show the system what not 
to do. The conditions under which these exceptions can happen in Peridot are 
fairly limited, but the graphic response that is shown for exceptions is totally 
under the control of the designer. 

8.2 How lnferencing Is Used 

In order to make Peridot easier to use, it automatically guesses certain relation- 
ships. This frees the designer from having to know when and how to specify 
these relationships. Peridot uses simple condition-action rules [ 131 to implement 
these guesses. This approach is called plausible inferencing or abduction in the 
artificial intelligence literature. The condition part of the rules determines 
whether the rule seems to apply in the current context. As shown in the example 
of Section 4, if the condition passes, then the designer is asked whether to apply 
the rule or not using an English message attached to the rule. If the designer 
answers “yes,” then the action part of the rule is applied, which changes the code 
of the procedure in order to add a graphic constraint. 

The rules in Peridot are simple-much simpler than those used in typical 
artificial intelligence systems. Furthermore, there are only about 60 rules used in 
Peridot. The goal was to see if simple mechanisms would be sufficient, which 
seems to be true. Much of the complications of true rule-based “expert systems,” 
such as learning, explaining, and backtracking, are not needed when there are 
only a few rules. 

Peridot uses rule-based inferencing in four ways: to infer the graphic con- 
straints that relate one object to another, to infer when control structures are 
appropriate, to infer how to create the control structures, and to infer how the 
mouse should affect the user interface. 

8.2.1 Inferring Graphic Constraints. As shown by the example in Section 4, 
Peridot infers how the various graphic objects are related to each other. Previous 
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systems that have used constraints, such as Thinglab [5] and Juno [34], have 
required that the constraints be explicitly specified by the user. This has made 
these systems difficult to use. Previous picture beautification systems, such as 
PED [39], automatically infer a form of constraints, but these systems are not 
popular because they guess incorrectly too often and because it is difficult to 
determine what the program has done and to repair any damage. One reason 
that Peridot is more successful is that it guesses correctly more frequently, since 
it only needs to deal with the relationships that are typical in user interfaces, 
rather than all possible relationships that might be used in a general drawing. If 
the designer wants other relationships, they can be explicitly specified, or if they 
occur frequently, a programmer can easily add them to the rule set. Another 
reason for Peridot’s success is that it assumes that guesses will occasionally be 
incorrect. Therefore, it always reports to the designer the rule that it is planning 
to apply and allows the designer to confirm or prevent its application. This gives 
the designer confidence that the system is not mysteriously doing strange and 
possibly erroneous things. In addition, the results of the inferences are always 
immediately visible (the objects redraw themselves after every rule is applied), 
so the designer can view the results and see whether they were correct or not. 

Another benefit of inferring graphic constraints is that they allow the designer 
to draw the picture quickly and sloppily, and then Peridot automatically “beau- 
tifies” the picture by enforcing the constraints. This technique seems to be faster 
than using gridding or than explicitly specifying constraints, even though Peridot 
occasionally guesses incorrectly. Designers who have used Peridot feel that this 
benefit outweighs the disadvantages of taking the time to answer the questions 
and to correct the occasional erroneous inferences. 

The rules that Peridot applies are specific to the types of objects drawn. For 
example, it is more likely for a string to be centered at the top of a rectangle 
than it is for another rectangle to be. Some of the rules specify all of the 
properties of an object. Examples of these are that a rectangle is the same size 
as another rectangle, that it is nested inside the other rectangle, or that a string 
is centered vertically to the right of a rectangle. Other rules only constrain some 
of the properties of an object. For example, one rule might cause the width and 
left of a rectangle to be constrained by another rectangle, and another rule may 
constrain the top and height by a string. These two rules are used by the feedback 
black rectangle in Figure 5. Other rules that constrain only some properties of 
objects are that they have the same size (which does not constrain the position) 
or that one is centered inside another (no constraint on the sizes). In general, 
there are constraints for most of the simple relationships found in typical user 
interfaces. There are currently 50 rules, and these are all listed in [28]. Of these, 
16 were added based on user testing. Since most of the additional rules were 
added from the initial users and no new rules were needed for later users, it is 
expected that few new rules will be needed in the future. 

The rules are expressed as simple LISP expressions, with a test, a constraint, 
and a message string for prompting the user. The tests naturally have thresholds 
built into them, so the user does not have to draw the graphics exactly. When 
the user draws or edits an object, Peridot goes through the rules in order, trying 
each test. The order is determined by the types of the objects, by the specificity 
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of the rule (the rules that constrain all of the properties of the object are checked 
first), and by which ones seemed to be the most common. Reference [28] shows 
the ordering for all the rules. 

The message part of the rule is the string used to prompt the user for whether 
to apply the rule or not, as shown in Section 4. If the designer answers “yes,” 
then the constraint is applied. If the constraint has parameters, such as how far 
apart the objects should be, the designer can answer “almost” and supply a new 
value for the parameters. If the designer answers “no,” then other rules are 
attempted. For graphic constraints, Peridot almost always infers the correct rule 
within three guesses, and about 80 percent of the time, it is correct on its first 
guess. 

8.2.2 Inferring Control Structures. Unlike most recent example-based pro- 
gramming systems, Peridot automatically infers when control structures such as 
iterations are appropriate. The criterion for these inferences in Peridot is 
straightforward. Iterations are inferred whenever the first two elements of a list 
are used, as shown in the example (Figure 2h). To create a dependency on an 
active value or a parameter, the designer must explicitly select an element of 
these in the upper window and then specify which property of the object depends 
on the selection. Peridot automatically keeps track of these dependencies and 
looks for uses of consecutive elements. 

Conditional control structures are automatically inferred when objects depend 
on the mouse, as discussed in Section 8.2.4. In addition, the designer can explicitly 
specify that either a conditional or an iteration is desired by executing commands 
from the menu. 

After Peridot decides that a control structure is necessary, it must then decide 
what graphic objects participate in it. As shown in the property sheet of Figure 
2i, multiple graphic objects may be drawn in each cycle of an iteration (here, the 
black, white, and gray rectangles and the string are repeated in each cycle). To 
make the determination easier, Peridot requires that objects be drawn in the 
same order in each cycle. Clearly, the designer will have to be careful to create 
objects in the correct order, but the Copy command does this automatically. 

There are other restrictions on inferred iterations in the current implementa- 
tion. First, the two sets of objects must be created contiguously. This makes it 
significantly easier to determine how many objects to include in the cycle. Another 
requirement is that the element that comes from the list must be the last item 
drawn in each cycle. Again, this makes it easier on the implementation, since it 
can simply count the items in between the two items that come from the list. If 
the element is not the last item drawn (e.g., in Figure 2h, if the string had been 
drawn before the white rectangle), Peridot will still notice that an iteration is 
desired, but it will not be able to identify automatically which elements participate 
in the iteration. In this case, a message is printed, asking the designer to select 
all the items that are part of the iteration. Users of Peridot have not even noticed 
either of these restrictions, and the restrictions would not be hard to remove if 
it would be appropriate. 

8.2.3 Differentiating Variables from Constants. After the objects that partic- 
ipate in a control structure are identified, Peridot must determine which prop- 
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erties of the objects are constant and which change. For example, in the property 
sheet of Figure 2i, Peridot determines that the text value of the string and the y 
value of the rectangles and the strings should change in each cycle of the iteration, 
but the rest of the properties remain constant. 

It has been found with previous systems that inferring variables from constants 
is difficult, but Peridot’s simple mechanism has been successful. Again, this is 
due to the limited domain; graphic objects in user interfaces change typically in 
simple ways. 

Peridot compares each pair of objects and determines which attributes change 
and which are constant. For the attributes that change, Peridot only detects 
straightforward differences, for example, 

-changing by a fixed amount (e.g., the y position of the rectangles in Figure 2i): 
The difference between the values is added to each subsequent cycle; 

-depending on the item of the list (e.g., the string names in Figure 2i): Each 
cycle uses the next item from the list; and 

-using the same relationship between the pair for all subsequent items (e.g., in 
the menu of Figure 5, the first string is at the top of the rectangle, so it will 
have a special constraint, but each subsequent string is under the previous 
string): The constraint in all items after the first is made to refer to the 
corresponding item in the previous cycle. 

Peridot can easily determine which one of these to use by looking at the values 
of the properties. This simple strategy makes the inferencing straightforward. If 
Peridot detects that a control structure is plausible, but it cannot calculate how 
to change the objects, the designer is notified. 

The major complication in generating the code for the control structures is 
ensuring that the constraints refer to the correct objects. When the designer 
creates the example drawing, the inferred graphic constraints refer to the partic- 
ular example objects. When these are generalized into a control structure such 
as an iteration, however, Peridot must ensure that the constraints refer to the 
appropriate objects. For example, in Figure 2i each of the strings must be centered 
on the right of the correct corresponding rectangle. To solve this problem, Peridot 
generates the object names when the iteration is executed at run time, and then 
constructs the constraints based on these generated names [28]. 

The automatic inferencing of graphic constraints (Section 8.2.1) might also be 
classified as differentiating variables from constants, since the properties of 
objects that have constraints can change and those that do not have constraints 
retain their original constant values. 

8.2.4 Inferring Mouse Operations. Another form of control structure that 
Peridot infers is how the mouse should affect the graphics. This includes which 
objects should be affected by the mouse, and when and how they should change. 
When the designer gives the MOUSEDependent command, Peridot looks under 
the simulated mouse to determine which objects are affected and where the mouse 
should be for the operation to be active (as shown in Figure 2k). 

The designer specifies when the operation should happen by toggling the state 
of the buttons on the simulated mouse. The interaction can start after single or 

ACM Transactions on Programming Languages and Systems, Vol. 12, No. 2, April 1990. 



Creating User Interfaces l 169 

multiple buttons presses (e.g., double-clicking) and either on the down or up 
transition of the button. 

Next, Peridot infers which object should be affected by the mouse. Usually, it 
is the object under the simulated mouse’s nose (as in Figure 2k), but otherwise, 
the designer can select the appropriate object or objects that serve as the feedback 
graphics. 

Then, Peridot infers how the objects should change with the mouse. The 
possibilities are 

(1) to choose one or more out of a set of objects (e.g., controlling which objects 
are selected in the property sheet (Figure 2k) or menu (Figures 5 and 7), 

(2) to move in a fixed range (e.g., the scroll bar of Figure 9), 
(3) to move or change size freely (e.g., to control window placement and size 

(Figure 6), or 
(4) to blink on and off in place. 

Peridot guesses which of these is appropriate by looking at the constraints on 
the graphic objects that are affected by the mouse. For example, the check mark 
in Figure 2j is centered inside an object that is part of an iteration, so Peridot 
guesses that it should pick items out of the iteration. If the object is constrained 
to move inside another object, then Peridot guesses that it should operate as a 
range like a scroll bar. Otherwise, Peridot guesses that the object should either 
blink on and off or move freely. 

Peridot also needs to know where the interaction should operate. This is 
usually the object under the mouse’s nose (but ignoring the feedback object). If 
that object is a member of an iteration, however, Peridot asks the user if the 
operation should perform whenever the mouse is over any of the elements of the 
iteration. In Figure 2k the check-mark interaction works for any of the boxes, 
not just the example one it was demonstrated over. 

In order to confirm all of these inferences, Peridot asks the designer a series 
of questions after the MOUSEDependent command is selected. Some additional 
questions allow the designer to specify information that cannot be inferred from 
the demonstration. This includes which active value is affected by this interac- 
tion, and whether the operation should operate continuously while the mouse 
button is held down (i.e., have the feedback follow the mouse while the button is 
depressed, as in a menu) or only perform once when the button goes down. 
Another question determines whether the interaction adds the item under the 
mouse to the selected set, removes it, or adds it if it is not there and removes it 
if it is (toggle). In Figure 2k the designer used toggle, which is the default. 

Including confirmation of the inferences, creation of an interaction requires 
answering about eight questions, all with single-letter responses. Peridot almost 
always is correct in the guesses for interactions, since there is a small number of 
possibilities for each choice and these are easy to identify from the demonstration. 

Once all of the properties have been determined, code is generated that causes 
a special “interactor” object to be created at run time. This object will wait for 
the appropriate start event when the mouse is over the correct object and will 
then set the active value appropriately, which will cause the feedback to move. If 
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desired, the designer can add application notification procedures or filters to this 
active value. 

9. VISUAL PROGRAMMING ASPECTS 

Peridot qualifies as a visual-programming system, since it uses graphic techniques 
to create programs. The techniques used by Peridot are significantly different 
from most other visual-programming systems, however, because Peridot also uses 
programming by example. Many other visual-programming systems have not 
been successful because the graphic presentation of the program is not sufficiently 
abstract to overcome the disadvantage that the graphic form takes significantly 
more physical space to display [25]. In Peridot, however, the graphic form of the 
program is exactly the user interface that the designer is creating, so this is 
clearly well matched with the designer’s needs. Also, the graphic user interface 
generally takes less room to display than the associated code. Another advantage 
in Peridot is that the system is not trying to address general-purpose program- 
ming, as in many other visual-programming languages. Therefore, more special- 
ized techniques can be used. 

Some parts of the user interface are not fully visible in Peridot. For control 
structures, the designer only sees the result, and there is no indication whether 
the objects were created due to an iteration or a conditional. This does not seem 
to be a problem, however, since it is usually obvious to the end user where the 
control structures are. In addition, it is generally not necessary for the designer 
to remember which graphics come from control structures and which do not, 
since the iterations and conditionals are created and maintained automatically 
by Peridot and since the individual objects in them can be selected directly and 
edited. 

Mouse dependencies are even more abstract and do not appear in the normal 
graphic display. The designer must either exercise the interface or give a com- 
mand to have the interactors listed in order to know what has been created. The 
listing appears in the prompt window and shows the name of each interactor, 
which active value it uses, and which objects it operates over. Since the design 
time is short and the procedures are small, the designer does not forget what has 
been created, so the listings are seldom needed. 

In general, the disadvantages of having to learn a special language that 
describes the control structures and mouse dependencies seem to outweigh the 
problem of not having a visual representation of these structures, so one is not 
used in Peridot. 

One of the problems of many visual-programming systems is that they cannot 
handle large programs due to a lack of modularization. In Peridot this is not a 
problem, since parameterized procedures are created that can be combined into 
full interfaces. Each user interface element is defined separately and encapsulated 
in its own procedure, so the designer can create interfaces out of small, modular, 
well-structured pieces. 

10. EDITING PROGRAMS 

Since Peridot is designed to be a prototyping tool, it is imperative that it support 
easy editing of all parts of the interface. When editing the graphic aspects, the 
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designer can simply select graphic objects and then give an editing command. 
These commands allow the objects to be erased, copied, or changed either by 
using the mouse or by typing in new values for the properties. It is easy to edit 
the graphic parts of the interface, as it is to change a picture in a drawing 
program such as Apple MacDraw. 

It is harder to edit control structures and mouse interactions, since they do 
not have visual representations on the screen that can be selected. Some systems 
have required the user to learn a textual representation for the actions in order 
to allow editing (e.g., [17]), but this is undesirable because a language might be 
too hard for nonprogrammers to learn. Therefore, Peridot uses more direct 
techniques. 

For editing control structures, the designer can simply select any graphic object 
and give an editing command. If that object is part of a control structure, Peridot 
will inquire whether a modification to the control structure itself is desired or 
whether there should be an exception to the normal way the control structure 
works. Exceptions are discussed in Section 8.1. 

If the designer specifies that the control structure itself should be edited, then 
Peridot returns the display to the original objects from which the control structure 
was created. For an iteration, this is the original two sets of elements, and for a 
conditional, it is the original one element. For example, if the designer decides 
to change the size of the boxes in Figure 2i, Peridot would first return the display 
as in Figure 2h before allowing the edits. Now the designer can use all the normal 
editing commands to change the picture as desired. When editing is complete, 
then the Iteration or Conditional command is given to reinvoke the control 
structure. 

This technique is used for three reasons. First, it is easier to ensure that the 
designer’s edits always make sense. Otherwise, if the designer changed the fourth 
item of a list, what would this mean? Second, if multiple items are generated by 
the control structure, the designer might make intermediate edits (such as 
deleting an object from one group) that would cause Peridot to be unable to show 
the control structure consistently. Third, the list controlling the iteration or 
conditional might have only 1 or 0 items in it when the designer performed the 
edit, in which case there would not be two groups of objects for iterations or one 
for a conditional, so there would be nothing for the designer to select. Returning 
to the original two groups of objects allows the designer to have full freedom to 
edit in any way desired, using all the conventional editing commands. 

It is even harder to edit mouse interactions because there is nothing to select. 
Peridot provides two ways to edit interactions. First, an interaction can be 
redemonstrated, and Peridot will inquire if the new interaction should replace 
the old one or run in parallel. Running in parallel is often used, since it is 
common to provide two different ways to produce the same effect. For example, 
in the scroll bar in Figure 9, pressing on the arrows or moving the indicator up 
and down affects the same active value. 

The second way to edit interactions is to select an active value and give the 
DeleteInteractions command. Peridot then prints in the prompt window a de- 
scription of each interaction that affects that active value, and asks if it should 
be deleted. 
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Any system that allows editing will have a certain “grain,” finer than which, 
the items must be reentered from scratch. For example, drawing packages rarely 
allow a rectangle to be edited into a circle (keeping some of its properties); 
instead, the rectangle must be erased, and a circle drawn instead. Similarly, the 
grain chosen in Peridot for mouse interactions is one entire interaction. Since 
individual interactions are small (e.g., setting an active value when the left mouse 
button goes down over a menu item), this should not be burdensome. A complex 
interface, such as the scroll bar in Figure 9, is typically constructed from a 
number of small interactions, each of which takes only a few seconds to define. 
The added complexity for the designer of learning extra editing commands does 
not seem appropriate, given the ease of respecification. If this turns out to be 
obnoxious to future designers, however, then it would not be too difficult to allow 
the various parts of the interaction (the active area, the buttons, the action, the 
exceptions, etc.) to be edited separately. 

11. USING PERIDOT-CREATED PROCEDURES 

There are three ways that user interface procedures created by a UIMS can be 
attached to application programs at run time, and Peridot supports all three. 
With UIMS control (also called external control) the user interface procedures 
call the application when the user gives a command. Peridot supports this by 
attaching application procedures to active values and calling the procedures when 
the active value changes, as discussed in Section 7. With application control (also 
called internal control) the application simply calls the user interface procedures 
when input is desired. This is the model of most user interface tool kits, such as 
the Macintosh Toolbox [l]. Peridot supports this by allowing the designer to 
specify conditions under which the user interface procedure should exit and 
return a value (as discussed in Section 5.4). The final type of control is called 
nixed, which is a combination of UIMS control and application control, and 
clearly Peridot supports this also. 

12. EVALUATION OF PERIDOT 

It is difficult to quantify formally the range of user interfaces that Peridot can 
create, since there is no comprehensive taxonomy of interaction techniques. 
Informally, it is easier to describe Peridot’s range by example: It can create 
menus of almost any form (with single or multiple items selected), property 
sheets, light buttons, radio buttons, scroll bars, two-dimensional scroll boxes, 
percent-done progress indicators, graphic potentiometers, sliders, iconic and title 
line controls for windows, dynamic bar charts, and many others. Thus, Peridot 
can create almost all of the Apple Macintosh interface (all but parts that use 
text input), as well as many new interfaces, such as those that use multiple input 
devices concurrently. For example, my advisers asked if Peridot could make a 
menu where the items move back and forth as they are selected (Figure 10a) and 
a window where pressing in different areas causes it to grow from different sides 
(like the X/10 uwm window manager), and Peridot was able to handle both. 
Other interesting effects that Peridot can provide is a button where the body of 
the button appears to go into the screen in “3-D” because it moves to cover its 
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Fig. 10. The graphic response to the mouse actions in Peridot is only limited by the 
creativity of the designer. In (a), text items move left and right, and in (b), number- 
pad buttons pretend to move in three dimensions. 
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shadow when pressed (see Figure lob), and animations between the initial and 
final forms. 

Peridot does not handle any keyboard input, but the ideas in Peridot could be 
extended to handle the keyboard and other types of input devices. Peridot-style 
demonstrational techniques cannot be used to create complex, data-dependent 
behavior, such as gridding and semantic feedback, so it is important to allow 
these to be specified another way. In Peridot, this can be handled using conven- 
tional LISP procedures that are attached to active values as filters. As it is 
currently implemented, Peridot also cannot handle objects that are created 
dynamically at run time. For example, Peridot cannot be used to draw or define 
the behavior of circuit elements that the end user will create from a palette 
(although the palette could be designed). Similarly, Peridot will not handle 
displays of trees or graphs or other application-specific data. Also, Peridot does 
not handle higher-level sequencing of the low-level user interface elements; that 
is, to get a submenu to appear after a menu item is selected, a LISP procedure 
must be written. 

In order to evaluate how easy Peridot is to use, an informal experiment was 
run where 10 people used the system for about 2 hours each. Of these people, 
five were experienced programmers, and five were nonprogrammers who had 
some experience using a mouse. The results of this test are encouraging. After 
about 1; hours of guided use of Peridot, the subjects were able to create a menu 
of their own design unassisted. This demonstrates that one basic goal of Peridot 
is fulfilled: Nonprogrammers are able to create user interface elements using 
Peridot. 

In addition, programmers will appreciate using Peridot to define graphic parts 
of user interfaces, since it is faster and more natural than conventional program- 
ming. As a small, informal experiment, six expert programmers implemented a 
particular menu using their favorite hardware and software environments. Some 
wrote the menu by hand, and others modified existing code. The results were 
that with Peridot the time to create the menu ranged from 4 to 15 minutes, but 
programming took between 50 and 500 minutes [28]. Therefore, using Peridot 
appears to be significantly faster. 

13. FUTURE WORK 

Unfortunately, the implementation of Peridot can no longer be run. We are 
building on the success of Peridot in two directions. First, we are creating a large- 
scale user interface development environment based on many of the ideas in 
Peridot. This new system, called Garnet [33], contains an object-oriented graphics 
system, a constraint system [49], a package that encapsulates the input handling 
[30], and a user interface editor called Lapidary [32]. The goals of Garnet are to 
demonstrate that the ideas in Peridot can be used to develop real user interfaces 
for actual programs, and to investigate new algorithms and techniques for 
specifying and implementing user interfaces using examples and constraints. 
Garnet will also try to overcome most of the limitations discussed in Section 12. 

Another direction is to investigate other applications for programming-by- 
example-style user interfaces. I believe that this technique can be used to provide 
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programming capabilities to nonprogrammers in many domains, including text 
formatting, business graphics, and data and scientific visualization. 

14. CONCLUSIONS 

Peridot uses constraints, programming by example, and visual programming to 
allow nonprogrammers to create user interfaces by demonstration. Unlike many 
previous attempts to use these techniques, they have been effectively used and 
efficiently implemented in Peridot. Graphic and data constraints are used to 
maintain important relationships, programming by example is used SO that these 
relationships can be automatically inferred from examples, and visual program- 
ming allows the designer to create the user interface graphically.and to see the 
interface as it develops. As the user interface is designed, Peridot creates reason- 
ably efficient code that can be used with actual application programs. Therefore, 
the user interface designer is not necessarily just prototyping; the actual end- 
user interface code can be produced, even by a nonprogrammer. 

The algorithms in the generated code are comparable to those that would be 
created by hand, and do not require any complex constraint-satisfaction tech- 
niques. The procedures that are created can have parameters and return values, 
just like the procedures normally found in interaction technique libraries. In 
addition, calls to application programs from within the user interface are appro- 
priately parameterized. Therefore, Peridot promotes structured design and cre- 
ates well-structured code (unlike many previous UIMSs). Peridot is the first user 
interface management system to provide all of these capabilities. 

Peridot also demonstrates that visual programming, programming by example, 
and constraints can be successfully integrated in practical, useful, and easy-to- 
use systems. One important challenge now is to find other application areas that 
can also effectively use these techniques. 
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