
CHI 97 * 22-27 MARCH 1997 PAPERS

The Design of a GUI Paradigm based on

Tablets, Two-hands, and Transparency

Gordon Kurtenbach, George Fitzmaurice, Thomas Baudel, and Bill Buxton

Alias I Wavefront

110 Richmond Street East

Toronto, Canada, M5C lP1

<gordo, gf, tbaudel, buxton> @ aw. sgi.com

1+416362-9181

ABSTRACT

An experimental GUI paradigm is presented which is based
on the design goals of maximizing the amount of screen
used for application data, reducing the amount that the UI
diverts visual attentions from the application data, and
increasing the quality of input. In pursuit of these goals, we
integrated the non-standard UI technologies of multi-sensor
tablets, toolglass, transparent UI components, and marking
menus. We describe a working prototype of our new para-
digm, the rationale behind it and our experiences introduc-
ing it into an existing application. Finally, we presents some
ot the lessons learned: prototypes are useful to break the
barriers imposed by conventional GUI design and some of
their ideas can still be retrofitted seamlessly into products.
Furthermore, the added functionality is not measured only
in terms of user performance, but also by the quality of
interaction, which allows artists to create new graphic
vocabularies and graphic styles.

KEYWORDS: two-handed input, toolglass, tablets, trans-
parency, marking menus, task integration, divided attention

INTRODUCTION

The basi~ components of a GUI reflect the characteristics or
subtasks of a user’s workflow. For example, in the drawing
domain, original interfaces like MacPaint have UI compo-
nents like a tool palette and scrollable drawing surface.
This roughly reflects the way an artist would work with
pencils and paper. The user moves between the palette and
drawing surface, drawing and changing their focus of atten-
tion (navigating) to different portions of the drawing. Since
selection from the tool palette, drawing and navigation are
frequent tasks, GUI designers make these functions readily
accessible generally by constantly displaying the UI wid-
gets for these functions.

While this design approach has been very successful it does
create some design tensions. First, it introduces a competi-
[ion for screen space between the UI widgets and the user’s
art work (Figure I). Second, it produces a dichotomy

Pwmiwion 10 make ~igil:tl/lvird copiesof;lll or pml ol’lhis makrial for
pwsonal or cimwwrm use is grantedwil]wut t& provided Illal ttIe copibw
arc not made or distributed fir profit or commercial advmlsge, the copy-
right notice, Ihe title oftlw publication and its date appear, and notice is

gIVCII llmt copyright is by permissiw of k? AC hf. Inc. To copy othemvise,
k-rrepul)lwh. to post w swwrs w 10 Iredisiribule to lists. requires specific
pcmmssicrnamt[or Iix

CHI 97. All;mul (iA [is.’\
Copyrighl 1997 .4C\l O-X979 I -W2-9/971J3 .,$3.5{1

between UI widgets and the artwork where a large majority
of the UI widgets exist around the edge of the artwork. The
first design tension could be addressed by a larger screen
with the cost being the expense of a larger display. How-
ever, as screen size increases the second design tension
becomes a problem. As the screen and artwork become
larger the distance a user must travel to/from a tool palette
or menu increases. This results in longer task times. Fur-
thermore, a user’s focus of attention must constantly change
from some point on the artwork to a UI widget at the edge
of the screen and then refocus on the artwork again. Divid-
ing attention in this manner requires additional time to
reacquire the context and can also result in users missing
some message from the system or some change in the art-
work performed by the system. We believe that this divided
attention problem significantly affects the quality of a user’s
interaction 1.

In addition to these design goals we also wanted to address
the issue of the quality of Input in a traditional GUI. Origi-
nal GUIS such as the Xerox Star and the Macintosh
assumed the mouse and keyboard to be the basic input
devices. A huge amount of the power of the traditional GUI
comes from the fact that the mouse allows continuous 2
dimensional input from one of the user’s hands. We were
interested in how providing continuous input for the other
hand would improve or affect the design of a GUI.

In this paper we describe an experimental GUI which
attempts to address these issues. We designed a GUI para-
digm (model of interaction) with the following design
goals:

Artwork: Maximize the amount of screen used for artwork

Focus: Avoid forcing the user to divert their visual atten-
tion from the artwork

Input: Increase the degrees of manipulation and comfort of
input.

These goals have driven much of the recent research in the
areas of two-handed input [3, 8, 9, 11], toolglass[2], trans-

1. This problem is not specific to artwork and in general applies
to any sort of application data. We use the term artwork in this
paper since our application domain is artists and artwork.

35

PAPERS CH 197 + 22-27 tvl ARCH 1997

I

Figure 1: A popular word processor with most toolbars turned on
(this is the default configuration). Note that only nine lines of text
can be displayed on a 800x600 screen

parency[7], marking menus[10], graspable UI [5] and
multi-sensor tablets. The work described in this paper is a
first attempt to integrate this research into single (albeit
prototype) application.

For the remainder of this paper we describe and analyze our
prototype GUI called T3. This name is derived from the
fact that the three major technologies used in our system
start with the letter “T” (tablets, two-hands, and transpar-
ency) and thus we refer to our system as T3. We provide an
overview of the prototype’s application functionality and
discuss how the combination of the technologies and
design concepts contribute to our three design goals. We
conclude the paper by describing our experiences introduc-
ing the paradigm into a full-featured professional graphics
application.

THE APPLICATION

T3 allows simple 2D graphics to be created and edited such
as circles, rectangles, triangles and polylines. Figure 2
shows the screen of T3 and some simple graphics. Our goal
was not to produce a full featured drawing program but
rather to provide enough functions to “outline” the experi-
mental paradigm. Many standard GUI features such as
object handles and a multiple selections mechanism were
left out. There were two rationales for leaving out some
obvious features. For some features, like selectlon handles,
we saw no problem using current GUI paradigms. For other
features, however, it wasn’t clear how to fit them into the
paradigm. These were left for future research. These issues
will be further discussed in the following sections.

INPUT DEVICES

Our prototype uses Wacom digitizing tablets and custom-
ized input devices to satisfy our design goals while at the
same time respecting practicalities for the end user (in
terms of cost, accuracy, and avoiding intrusive/immersive
solutions). The use of tablets has many design benefits
including: minimizes the onset of fatigue by allowing hand
and arms to operate and rest on the desk surface, minimal
device interference from working environment, familiar
and robust technology which is capable of small, wireless,
batteryless devices, and finally the ability to sense more
than one sensor on a tablet. These properties will be dis-
cussed in the following sections.

Otte Button Rotcztiot?-Set?.~itive Pucks and Tablets. We
chose to use two customized Wacom puck devices (one per
hand) for our input devices which contributes to our Input
design goal. The input devices used are shown in Figure 3.
The pucks used on both tablets sense both x and y position

● ���✎✎✍�✎ ✎

Figure 2: A screen shot of the prototypeof the T3 paradigm. All com-
mands are bcated in the toolglass which is show overfa ping some

%’simple artwork, The cursor to the right of the toolglass. he screen
resolution is 1280x1040.

and rotation. While Figure 3 shows two tablets, ideally, we
would have liked to use a single tablet but this was not
technically possible without sacrificing sensing rotation.

Although the pucks we used for T3 have four buttons on
each we decided our paradigm would be based on a single
button on each puck. We choose this simplification because
it makes explaining and learning the fundamental mapping
of input device states to function simple. Using two buttons
results in only four different possible combinations of but-
ton state. The intention was that a limited number of button
states would allow a user to quickly try all combinations
when exploring the interface. If we had used two buttons on
each puck this would have resulted in sixteen states. In this
case, learning and trying all combinations of buttons would
take a long time.

As mentioned previously, T3’s pucks also sense rotation.
We chose to sense this degree of freedom for several rea-
sons. First, two dimensional rotation of artwork and objects
in the artwork was a very desirable function. Second, the
hand grasp required to hold a puck affords rotation.

Another motivation for choosing one button per hand was
that we wanted it to be possible to substitute a stylus for the

Figure 3: Tha inputdevicesinT3. Twoteblatswithtwo rotation
sensin pucks.A pan shown on the n~ht can also be used

finstea of a puck. Just above the pen IS a device called a “flip-
brick,”

36

CH1 97 * 22-27 MARCH 1997 PAPERS

dominant hand puck. In this situation. pressure on the sty-
lus tip triggers the button press function. A stylus is espe-
cially effective if the artist is performing a freehand
drawing. Thus in T3, if the artist desires they can remove
the dominant hand puck from the tablet and replace it with
an stylus. Note that technically, a stylus can be built to
sense rotation, but doing this was beyond the resources of
our project.

Fundamental Input De~’iceMappings For every interaction
in the application we try to utilize two-handed techniques
which reflect how analogous tasks are perform in the every-
day world. The roles of the two hands reflect the asymmet-
ric dominant/non-dominant (D/ND) roles of our hands
characterized by Guiard [6]. This will be discussed in more
detail later. First we describe how the input devices control
the interface.

Each puck has one button and this results in four binary
states which map to four general behaviors:

00: No buttons pressed: D puck moves cursor, ND puck
moves a toolglass palette.

Of: D button pressed only: as in current GUIS the cursor
drags objects or carries out the function of the current tool.

10: ND button pressed only: the artwork pans according to
the movement of the non-dominate puck.

)1: Both buttons pressed: the artwork zooms in/out accord-
ing to the movement of the pucks relative to one another.
The metaphor is stretching the artwork by pulling it apart
by grabbing two locations. (zooming out is compressing the
artwork by pushing the two locations together).

Sensing rotation allows addition functions simultaneously
in each of these states:

00: No buttons pressed: The cursor and toolglass rotate
according to the rotation of the pucks.

01: D button pressed only: object being dragged can be
simultaneously rotate about the drag point. The current tool
can utilize the rotation as a tool parameter.

10: ND button pressed only: rotating the ND puck rotates
the artwork about the center of the drag point.

/1: Both buttons pressed: puck rotation not used.

UI WIDGETS

In contrast to most traditional GUI designs, we have no
statically displayed user interface control widgets. This
means we do not have scrollbars or a menu bar. The net
result is we are able to maximize the display space for art-
work instead of using the space for control widgets. In
replacement, we have a single, mobile tool palette based on
the tool glass design [2].

Tool Glass
As mentioned previously, when the ND button is not
pressed a ToolGlass tracks the ND puck. In effect a user has
a toolglass “in their hand” when they are not orienting the
artwork.

Moving the ToolGlass. Having the ToolGlass follow the
ND puck by in this manner contributes to our Input design

goal. Because humans are very skilled at having the one
hand follow or stay close by the other hand, this skill trans-
fers very effectively in T3. It is very easy to keep the Tool-
Glass always close to the cursor (which is being controlled
by the D puck). An artist does not have to constantly “pick-
UP!move! and put-down” the tool palette as required by tra-
ditional floating tool palettes.

Having the ToolGlass constantly track the ND puck also
contributes to our Artwork and Focus design goals. The
ToolGlass can easily be moved away so it does not interfere
with the artist viewing the artwork, thus in effect maximiz-
ing the artwork. Since the user can move the ToolGlass
without having to look at it, focus on the artwork can also
be maintained.

Transparency
One of the key features of the toolglass paradigm is the
ability to “click thru” toolglass button (for example, an
object’s color can be changed by clicking the cursor over
the red color button when the cursor is also over the object).
“Clicking thru” requires the “click thru” types of buttons in
a ToolGlass to be transparent (since it is important to see
what the click thru will be applied to). T3’s ToolGlass is
transparent for this reason. However, transparency also
contributes to the Artwork and Focus goals. Since the Tool-
Glass is transparent, even when it is over the artwork, some
of the artwork under the toolglass is still visible. This in
turn contributes to the Focus design goal since even if the
toolglass is covering the desired area of focus in the art-
work the user can still maintain their focus because some of
the artwork is still visible beneath the ToolGlass.

Transparency is not only used in the Toolglass, but also for
prototype shapes, and the click-hold cursor, described in
the next sections.

CREATING AND EDITING OBJECTS

Objects are created in T3 using a two-handed technique we
call “two handed stretches” which works as follows. The
artist moves the cursor over the ToolGlass button for the
desired object type (for example, the rectangle object in the
ToolGlass in Figure 4). The D button is then pressed. The
system immediately hides the ToolGlass. When the artist
drags the D puck a rectangle is swept out in the conven-
tional way, from the corner. Since the ND hand is free (the
toolglass being hidden), we can use it in the transaction, as
well. Thus, moving the ND puck stretches the rectangle
from the corner diagonally opposite to the corner which is
attached to the D puck. In effect, the artist has a hold of
both corners of the rectangle and this allows them to trans-
late, rotate and scale all at the same time. When the D but-
ton is released, the object is created and “dropped” on top
of the artwork. Lines, circles and rectangles can be created
with this technique.

.{.

Figure 4: Close up a toolglass palette and cursor m T3.

37

PAPERS CHI 97 * 22-27 MARCH 1997

Two-handed Stretches contribute to the Input design goal
by providing simultaneous control of’ tmnslation. scale and
rotation of an object. Tasks Iikc positioning and scaling a
circle to fit inside a box are substantially easier when con-
trolling both properties simultaneously, We have also found
the it allows artist to explore different placements, sizes and
rotations of objects more easily.

The two handed stretch interaction also supports our Art-
work goal. First, hiding the ToolGlass while the artist is
stretching the object helps display more artwork and allows
the artist to position an object without the ToolGlass inter-
fering with the overall appearance of the art. Second, when
an object is being created (before the artist releases the D
button) the object is transparent (when the button is
released the object is created in the current color). Like the
use of transparency in the Tool Glass, transparent proto-
types contribute to our Artwork goal.

Moving At-work Objects. In T3 the D puck also senses rota-
tion. This allows us to extend the GUI concept of dragging.
Not only can objects be translated in two dimensions but
they can simultaneously be rotated. Furthermore, the pivot
point of the rotation is defined by the point at which the
drag started. Because this mapping corresponds so closely
to everyday manipulation of objects, adding three addition
parameters to dragging (rotation angle and x, y rotation
point) is almost instantly learned. We believe that no longer
having to break these operations into discrete steps (move,
specific pivot point, and rotate) contributes to our Input
goal and reflects the notion of phrasing and chunking inter-
actions [4].

Our Artwork and Focus goals are also contributed to by this
design. In particular, rotation and setting the pivot point
require no graphical objects, so screen space for artwork is
conserved and in turn focus on the artwork is maintained
since the user does not have to go to a graphical widget or
menu item to invoked these functions.

COMMAND EXECUTION

In T3 we were concerned about supporting applications
with many functions. For example, PowerAnimator by
Alias I Wavef’rent. which is a professional 3D computer ani-
mation package has approximately 400 commands.
Roughly speaking, this means that we would have to fill our
ToolGlass with 400 elements. Clearly this is not possible or
desirable. What is desirable is some way of displaying only
a small set of commands but allowing the user quick access
to the undisplayed commands.

We accomplish this by embedding a hierarchic marking
menu [10] in the top of the ToolGlass palette which allows
the user to select among a set of possible toolglass “sheets”
(see Figure 5). Assuming our tool palette could comfort-
ably contain 10 commands, a two level menu hierarchy
with 8 items at each level (a total of 64 items in the menu)
would allow access to 64 different ToolGlasses or 640 com-
mands. Clearly. this is in the command count range of large
applications like PowerAnimator. Finally, changing sheets
can be done quickly by using marking menus’ ability to
select using quick marks.

Figure 5 shows the marking menu used in T3. Moving the
cursor over the “marking menu hotspot” in the ToolGlass
and pressing the D button, causes the menu to pop-up. The
menu contains the other ToolGlass palettes available in T3
(a total of 6). Changing ToolGlass palettes only requires a

,Ur,,e m C--&
G., de

Figure 5: A marking menu to access different toolglaas palettes can
be popped up from a hotspot at the top of every toolglass.

quick flip in the direction of the desired toolglass. Cur-
rently, the menu is not hierarchic, so only straight line
strokes are needed to select different ToolGlass palettes.

This design contributes to all three of our design goals. The
Artwork goal is contributed to in several ways. First, using
a pop-up menu only temporarily consumes screen space.
Also, there is even less impact on artwork if the user per-
forms a selection with a mark rather than by displaying the
menu. The menu items are also transparent so the artwork
can be seen beneath them. Since the user does not have to
go to the edge of the screen to change palettes Focus is
maintained. Finally, if the user is familiar with the layout of
the menu, they can quickly switch palettes by inputting a
mark. This contributes to our Input goal.

NAVIGATION: PANNING, ROTATING, AND ZOOMING

The ability to pan and rotate the artwork by pressing and
dragging the ND puck is based on our two-handed input
design concept described in the introduction. Specifically,
the ND positions and orients the artwork while the D hand
draws.

This design contributes to our Input goal and there are four
issues driving the design. The first issue concerns quick
task performance. First, using conventional scrollbars and
scroll arrows can be extremely inefficient in that they
required the user to move back and forth between the
scrollbar and the artwork. Second, orientation of the art-
work affects the efficiency of movement. For example,
Guiard reports that handwriting is 20% faster if the paper
can be manipulated by the ND hand [6].

The second issue concerns comfortable movements. While
re-orienting the artwork may sometimes have to do with
moving the working area to different (hidden) parts of the
artwork, it is also done for comfort reasons. We have
observed users moving artwork closer to what they deem is
a comfortable work area (e.g.; towards the middle of the
tablet as opposed to drawing in the upper corner of a tab-
let).

The third issue concerns quality of movements. We have
observed artists rotating the artwork so lines or curves can
be drawn with a movement that is easier to perform with
the arm. For example, rotation from the elbow affords large
smooth curves to be drawn but the resulting curves are hor-
izontal.To use the same technique to create vertical curves
relative to the artwork, the artwork is rotated.

The final issue is that the ability to orient the artwork must
always be immediately accessible. If the cost of re-orient-
ing the artwork is greater than the cost of working in an
uncomfortable position, artists will temporarily work in an

38

CH197 * 22-27 MARCH 1997 PAPERS

uncomfortable position. This is why we dedicated a button
to orienting the artwork.

By providing a physical device to control panning we elim-
inate the need for graphical scrollbars. This contributes to
the Artwork goal since standard scroll bars along the side
and bottom of the application window consume about 67c
of the window’s space. Further screen realestate is saved by
not requiring graphical gadgets for rotating and zooming
the artwork.

The disadvantage is that these features are not self-reveal-
ing. That is, there are no graphical elements that suggest
and remind the user how to accomplishing scrolling, rotat-
ing and zooming. In general, using graphical elements to
reveal functionality to the user has been the backbone of
the success of GUIS. However, our approach has been,
rather than making T3 “walk-up-and-use” we assume that a
new user must be given a small amount of instruction to
define the “fundamentals” before beginning to operate the
interface. The key observation here is that the “fundamen-
tals” then do not have to be self-revealing and hence we can
design these interactions to contribute to our three design
goals.

Finally, having a physical device to control panning, rotat-
ing and zooming the artwork contributes to our Focus goal.
The user does not have to divert attention from their art-
work to a scroll bar or other graphical widget to pan, rotate
or zoom. Visual focus can be (and must be) maintained on
the artwork to control the operation.

CURVE GUIDES

The T3 prototype supports the notion of curve guides. A
curve guide is a tool that emulates the way a ruler, french
curve or frisket is used in traditional paper-based illustra-
tions. That is, the curve guide is a “controlling element” or
“dynamic constraint” that is mostly managed by the ND
device and is used in conjunction with ink generation tools
being controlled by the D hand. This two-handed interac-
tion technique facilitates the production of curves.

In T3 we have defined a set of french curves and custom-
ized curves that can be used as a curve guide. Each curve
resides on a toolglass sheet (see Figure 6) which can be
positioned and rotated with the ND device. A scale widget
on the toolglass sheet allows the entire sheet (i.e., curve) to
be scaled, Note that all three aftine transformations (posi-
tion, rotation and scale) can be performed at the same time.
After the toolglass sheet has been positioned, the D device
is used to lay down ink by running the ink cursor along the

Figure 6: Cwve guide on a toolglass sheet

contour of the curve. The inking cursor is automatically
snapped to the contour of the curve.

This two-handed interaction technique touches all three
design goals. First, the artwork is always visible since the
curve guide toolglass sheet is transparent. Secondly, the
user’s focus can be maintained on the artwork since the tool
and artwork can be superimposed. The only diversion
occurs when the user must acquire the scale widget on the
toolglass sheet. Finally, Translate and rotate operations for
the sheet are always available through manipulation of the
input device.

MOVING TO THE REAL WORLD: STUDIOPAINT

Evaluating T3 presents a challenge. Since T3 is a toy appli-
cation, user testing under more realistic “real work” condi-
tions is not meaningful. However, it is important to note the
types of evaluation besides user testing that have already
occurred and their value. First, prior to the construction of
T3 many of the individual input techniques used in T3 have
been empirically evaluated [3, 4, 5, 7, 8, 10, 11] and have
shown advantage. Second, artists participated in the design
of T3, so user evaluation has been intrinsic in our design
process (for example, the ability to directly and fluidly pan/
zoom/rotate the artwork is derived directly from artist
requests). Third, as UI designers we evaluated the para-
digm. For example, can it handle a large number of func-
tions? How much of the interface can be learned by
discovery? Are the mapping of input devices to functions
consistent, etc. ?

User-testing under “real work” conditions would be a criti-
cal evaluation of a real application based on T3. However,
building a real application from scratch with new technol-
ogy is a huge task involving significant risk. We have cho-
sen to minimize our risk by incrementally adding T3
features into an existing application and evaluating.

Hence our approach is incremental and iterative (i.e., T3
prototype, portions of T3 into an appropriate existing appli-
cation and eventually a whole application based on T3).
What we describe in the remainder of this paper is the
increment from prototype to portions of T3 in a real prod-
uct. It is also critical to note that the process of trying to
integrate portions of T3 into an existing application is in
itself a realistic and valuable design evaluation. While this
is not a replacement for user testing it is a valuable metric
on the road to user testing, and is the subject of the remain-
der of this paper.

The application chosen was StudioPaint, a high end paint
system aimed at replacing paper based illustration in design
studios. StudioPaint suited our needs because the focus on
quality of interaction is particularly important. Typical
users have little or no training with conventional GUIS and
are ready to switch back to paper if they feel the product
does not suit their needs. StudioPaint also had some inter-
esting features from an experimental point of view. For
instance, it had been designed not to use any modal dia-
logues.

However, integrating T3 functionalities into an existing and
widely used program involved compromises. From the
technological point of view, some features could not be
implemented. For example, it was impossible StudioPaint
to rotate the artwork in real time, so we had to drop that
functionality rather than providing lower quality interac-
tion. We also couldn’t use our custom two tablet configura-

PAPERS CHI 97 * 22-27 MARCH 1997

.

)

G?.ck \
Figure 7: Typical setup for StudioPaint: the usual interactors:
menus and palettes are present, but mostly to convey status infor-
mation. Most of the workspace is used for the artwork.

tion. Fortunately, most Studio Paint users have
commercially available Wacom tablets. With these we
could sense both a puck and pen but rotation was not avail-
able.

Finally, the biggest challenge is to provide a smooth transi-
tion between the conventional GUI that users already knew
and the new T3 paradigm. We had to preserve all the tradi-
tional widgets, while allowing the user to evolve toward the
T3 paradigm at their own pace. To allow a user to maxi-
mize their artwork, UI widgets such as scribblers, menus
bars and tool palettes could be removed from the display
with a single command selection, and the setup is saved
across sessions. Figure 7presents the typical setup most art-
ists use when drawing with StudioPaint.

In hindsight, these limitations justified the need for our T3
prototype. If we had tried to implement the paradigm in
StudioPaint directly, we would have missed exploring some
of the paradigm’s most powerful and interesting features.

StudioPaint interface controls
The control portion of the interface (menus, palettes and
scroll bars) had to be replaced by their T3 equivalents.
However, we had to make sure we would provide enough
functionality right from the beginning for users to accept
and evolve towards the proposed workflow. For instance,
the ND hand was usually placed on the keyboard to issue
hotkey commands. Requiring the same hand to control the
puck introduces a competition between the puck and key-
board for the ND hand. The puck will win this competition
only if the frequently used commands available from the
keyboard are also available from the puck. To accomplish
this, we had to make our first compromise: the ND hand
device would make use of three buttons instead of one. This
worked as follows:

● The left button is used to invoke global commands: it
acts as a modifier allowing the D hand to access a mark-
ing menu that contains most of the functionality of the
main menu bar. As described earlier, marking menus can
be accessed as rapidly as keyboard hotkeys.

● The right button functions like the original T3 ND but-
ton: it allows navigation by panning the artwork with the
ND hand. This removed the need for scrollbars in Studio-
Paint.

● The middle button provides access to the tool palette. A
customizable palette called “the shelf’ can hold various

objects, like brushes, colors, curve templates and clip-
boards. This palette can be made semi transparent to
reduce obtrusiveness. Pressing the third button makes it
appear nearby the cument position of the pointer, so the D
hand can rapidly “dip” in the palette to choose items (see
Figure 12).

An obvious alternative to additional puck buttons would be
a toolglass sheet to replace keyboard commands. However,
a combination of problems discouraged us from imple-
menting toolglass sheets:

● It required a complex rework of the user interface soft-
ware architecture.

● In a paint program, click-through tools, the main fea-
tures of the toolglasses are of little use: it is rather
unlikely that an artist will use a “click-through brush” or
a color by selecting it and then directly start drawing. In
general, the artists need to rehearse their gestures before
actually inking the drawing.

● Artists found Curve Guides much more interesting than
generic toolglasses.

StudioPaint curve guides
Our implementation of curve guides in StudioPaint is much
more sophisticated than in T3. StudioPaint curve guides are
called “sweeps” which is a term used in design studios. The
sweeps in StudioPaint can be created with the set of stan-
dard drawing tools, similar to a MacDraw editor. The user
can create and editing shapes like rectangles, splines and
ellipses and then transform these shapes into sweeps. Like
the T3’s curves guides, a sweep becomes attached to the
ND hand and can be moved around on the artwork. How-
ever, it cannot be rotated. To compensate for this sweeps
have manipulation handles (see figure 8). When the D hand
grabs a handle of a “sweep”, two opposite corners of the
bounding box for the sweep become attached to either
hand, and the user can move, scale and rotate these shapes
with a “two-handed stretches” style of interaction.

Snapping Sweeps. Like in T3, sweeps can be used to con-
trol precisely the path of the ink while brushing freely
along a curve. When used with varying thickness or opacity
brushes, this allows the artist to give a more lively character
to their drawing, while “snapping” to very precise outlines
(see Figure 9). Finally, Sweeps can be stored on Studio-
Paint’s shelf, allowing the user to build their own sets of
reference curves.

Masking Sweeps. Sweeps can also be used as a moving
mask which artists commonly refer to as a “frisket”. Artist
report seldom using a real airbrush without some sort of
mask that allows them to produce “sharp edge” effects. The

El

❑

.,------, .,.
,,./-’

,/” , -“““-‘“ -
‘L“Y,,... .,,i

B!EiE?l
@==f+== m

....-.’-mm-- ----– ----- ‘.. ,-%,
“%

❑

Figure 8: A curve guide in StudioPaint. The four handles in
each corner allow the guide to be scaled and rotated. Like
T3, there is a hotspot for a marking menu (shown popped-
UP).

40

CHI 97 * 22-27 PVIARCH 1997 PAPERS

Figure 9. Brushing along a curve guide. The spline above the car was
placed along the upper edge of the car and used to trace along the
guide, with repeated, vatying width brush strokes.

“frisket” is usually held in the ND hand, and moved freely
to block the spray paint from the paper. This is used to cre-
ate various graphic effects (see Figure 10). Other paint pro-
grams, like Photoshop, usually provide these masking
features, but because they make use of only one continuous
input device, they can’t provide the seamless interaction
available with paper-based tools. StudioPaint’s sweeps,
however, begin to emulate the fluidity and spontaneity of
real airbrushes.

Figure 10: A masking sweep. An airbrush was appliedwith the
french curve masking the bumpers of the car. Note the “hardedge”
effectproducedby the mask.

Combination Sweeps Finally, the combination of both snap-
ping and masking introduces novel graphical effects that
cannot be produced with paper based illustration, and
would have been previously tedious to achieve with a paint
program. As shown in Figure 1I, a hard edge can be drawn
easily along a smooth predefine path, to produce a glow-
ing effect. These would have required multiple masking
effects, and cautious stroking if sweeps were not available.
However, one simple stroke is required when using a
sweep.

Marking Menus. Like T3, sweeps have a marking menu
embedded in a hot spot at the top center of the sweep’s
bounding box (see Figure 8). While the marking menu can
be used to change to another shape of sweep (like T3), in
addition to this it is used for commands that apply to the
current sweep. For example, there are menu items to turn
masking and snapping on and off, and to copy the currently
selected geometry into the sweep. In all. there are 12 menu
items that affect the current sweep.

An obvious design alternative would be to have the 12 but-
tons displayed on the sweep itself instead of 12 menu items.
However, there were three major reasons for not doing this.
First, adding buttons creates screen clutter. Second, the art-
ist would have to be careful while inking along the sweep
not to accidentally click on a button. Finally, since a sweep
can be an arbitrary shape, it was complicated to always find
a good place to put the buttons.

Pragmatic of two-handed input in StudioPaint
In T3 we supported both left handed and right handed art-
ists by simply having the user explicitly specify a prefer-
ence. In StudioPaint we discovered that many times artists
work together at the same workstation taking turns working
on the artwork. In this case, having to explicitly set the
handedness was irritating and quickly fell into not utilizing
the ND puck.

To overcome this problem, we developed a method for
automatically detecting the handedness of a user and to
instantly reconfigure StudioPaint. Because we use a puck
and a stylus, relative device positions can be detected and
are assigned respectively to the non-dominant and the dom-
inant hand. Then, we can infer the handedness of the user.
We use this information to choose where to pop-up palettes
or which anchor points to use when doing “two-handed
stretches” editing. Figure 12 shows an example.

Right handed
I

Left handed

FjpuckZylus &
Figure 12: The “shelf”tool palette is popped nearby the cur
rent cursor location when the user depresses the middle
puck button. The palette disappears when the button is
released. Note the implicit detection of the user’s preferred
hand.

o0’0

Puck

. In Studio-In T3, we used a separate tablet for each hand.
Paint we used a single tablet and we encountered the prob-
lem of the two hands (or the pen and puck) occasionally
colliding with one another when drawing along a sweep. To
cure this problem, we offset the attachment of the puck to
sweep such that the perimeter of the sweep does not over-
lap the footprint of the puck. Because we can automatically
detect handedness, we can intelligently offset the puck. For
example, for a right handed person the sweep is offset to
the right and above the puck. For a left handed person the
sweep is offset above and to the left.

Figure 11: Brushing along a curve guide with a mask set up:
the resulting effect, that of a hard ed e which follows exactly a
given contour, is very difficult to prcx$cewitha real airbrush.

41

PAPERS CHI 97 * 22-27 MARCH 1997

SUMMARY

Table I shows a summary of how the major features of the
T3 paradigm contributed to our three design goals of maxi-
mizing the artwork, minimizing diversion of visual focus
on the artwork and enhancing the quality of input. In addi-
tion it shows how the features were realized in StudioPaint.

TABLE 1.

I I I I I

T3 feature AFI I StudioPaint I
no peripheral UI yes yes ability to hide
widgets shelf, tool ar and

scrollbars
1

draglrotate objects yes yes yes I drag only

ND hand pans/ yes yes yes I panning only

rotates Art
marking menu to yes yes yes on sweeps
change tool oalette

1 1 1 1

D/ND hands yes yes yes no, performance
zoomimzartwork Ill I limitation I
toolglass palettes yes yes sweeps

resizable toolglass resizable sweeps

I button per hand yes 3 buttons on ND
hand

two handed yes yes yes not used
stretches
curve guides yes yes sweeps

Tools lock on cur- yes already had tool
sor modes

Transr)arency I ves I w I I used in sweeps I

CONCLUSIONS

In general most features of T3 contribute to all three design
goals. We feel this is a result of the general approach of
replacing graphical widgets with physical widgets
(devices). This, in turn, provides more room for the art-
work. Furthermore, if the choice of physical devices is
done carefully, the user can operate these devices without
having to look at them, thus allowing them to stay focused
on the artwork. Finally, if the devices sense manipulations
that we are very skilled with, complex manipulations (like
simultaneous scaling, translation and rotation) can be per-
formed thus contributing to the quality of input.

T3 is an interesting paradigm not because it provides new
functions to users (for example, the ability to scroll and pan
artwork is not a new function) but because it provides a
higher quality way of performing the functions. This is
analogous to the desktop paradigm which didn’t provide
new tunctions (for example, the ability to organize files
wasn’t a new function) but provided a higher quality way of
performing those functions. In this paper we have tried to
describe what we believe are the design principles contrib-
ute to this notion of quality.

Our implementation of T3 into StudioPaint has shown us
that providing artists with new ways of interacting with
application data (i.e., the sweeps) encourages them to cre-
ate new graphic vocabularies and styles of illustration. In a
sense, by enhancing the UI the functionality of the applica-
tion becomes enriched.We have already observed this phe-
nomenon in the “Ligne Claire” mark-based spline editing
technique [1].

FUTURE RESEARCH

Work continues on the concepts surrounding T3. We are
mainly focusing on applying these concepts to other appli-
cation domains like 3D modelling and computer animation.

We are also beginning to gather usage experiences from
automotive graphics artists using StudioPaint and its T3
features. Currently, StudioPaint with T3 features has not yet
been released. However, we are already collecting reactions
from our beta users. Initial results are encouraging.

ACKNOWLEDGEMENTS

We gratefully thank Azuma Murakami and Yasuhiro
Fukasaki at Wacom technology for supplying inspirational
ideas, tablets, and the custom pucks.

REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

lo.

11.

Baudel, T. A Mark-based Interaction Technique for
Free-Hand Drawing. Proceedings of the ACM
UIST’94 Conference on User Interface Software and
Technology, 185-192.
Bier, E. A., Stone, M. C., Fishkin, K., Buxton, W.,
Baudel, T., A Taxonomy of See-Through Tools. Pro-
ceedings of the ACM CHI ’94 Conference on Human
Factors in Computing Systems, 358-364.
Buxton, W., & Myers, B. A., (1986) A study in two-
handed input. Proceedings of the ACM CHI’86 Con-
ference on Human Factors in Computing Systems,
321-326.
Buxton, W. (1986) Chunking and phrasing and the
design of human-computer dialogues. Information
Processing ’86 Proceedings of the IFIP 10th World
Computer Congress, 475-480.
Fitzmaurice, G. W., Ishii, H., Buxton, W., Bricks: Lay-
ing Foundations for Graspable User Interfaces. Pro-
ceedings of CH1’95, (Denver, CO), ACM Press, 442-
449.
Guiard, Y. (1987). Asymmetric Division of Labor in
Human Skilled Bimanual Action: The Kinematic
Chain as a Model. Journal of Motor Behavior, 19(4),
486-517.
Harrison, B., Kurtenbach, G., Vlcente, K. (1995) An
Experiment Evaluation of Transparent User Interface
Tools and Information Content. Proceedings of the
ACM UIST’95 Conference on User lnte~ace Software
and Technology, 81-90, ACM.
Kabbash, P., Buxton, W., and Sellen, A., (1994) Two-
Handed Input in a Compound Task. Proceedings of the
CH1’94 Conference on Human Factors in Computing
Systems, 417-423,
Kabbash, P., MacKenzie, 1.S. & Buxton, W. (1993).
Human performance using computer input devices in
the preferred and non-preferred hands. Proceedings of
ACM lnterCHl ’93. Amsterdam, 474-481.
Kurtenbach, G., Buxton, W. (1993) The limits of
expert performance using hierarchical marking menus.
Proceedings of CHI ’93 Conference on Human Factor
in Computing, 482-487.
Leganchuk, A., Zhai, S., Buxton, W., Bimanual Direct
Manipulation in Area Sweeping Tasks. Submittedfor
publication.

42

