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ABSTRACT 
We can touch things, and our senses tell us when our hands 
are touching something. But most computer input devices 
cannot detect when the user touches or releases the device 
or some portion of the device. Thus, adding touch sensors 
to input devices offers many possibilities for novel 
interaction techniques. We demonstrate the TouchTrackball 
and the Scrolling TouchMouse, which use unobtrusive 
capacitance sensors to detect contact from the user’s hand 
without requiring pressure or mechanical actuation of a 
switch. We further demonstrate how the capabilities of 
these devices can be matched to an implicit interaction 
technique, the On-Demand Interface, which uses the 
passive information captured by touch sensors to fade in or 
fade out portions of a display depending on what the user is 
doing; a second technique uses explicit, intentional 
interaction with touch sensors for enhanced scrolling. We 
present our new devices in the context of a simple tax- 
onomy of tactile input technologies. Finally, we discuss the 
properties of touch-sensing as an input channel in general. 

Keywords 
input devices, interaction techniques, sensor technologies, 
haptic input, tactile input, touch-sensing devices. 

INTRODUCTION 
The sense of touch is an important human sensory channel. 
In the present context, we use the term touch quite narrowly 
to refer to the cutaneous sense, or tactile perception [16]. 
During interaction with physical objects, pets or other 
human beings, touch (physical contact) constitutes an 
extremely significant event. Yet computer input devices, 
for the most part, are indifferent to human contact in the 
sense that making physical contact, maintaining contact, or 
breaking contact provokes no reaction whatsoever from 
most software. As such, touch-sensing input devices offer 
many novel interaction possibilities. 

Touch-sensing devices do not include devices that provide 
active tactile or force feedback [22]. These are all output 
modalities that allow a device to physically respond to user 
actions by moving, resisting motion, or changing texture 
under software control. Touch sensing is an input channel; 
touch sensing allows the computer to have greater 
awareness of what the user is doing with the input device. 
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Fig. 1 Left: The TouchTrackball (a modified Kensington 
Expert Mouse) senses when the user touches the ball. 
Right: The Scrolling TouchMouse (a modified Microsoft 
IntelliMouse Pro) senses when the user is holding the 
mouse by detecting touch in the combined palm/thumb 
areas. It can also sense when the user touches the wheel, 
the areas immediately above and below the wheel, or the 
left mouse button. 

Of course, certain input devices (such as touchpads, 
touchscreens, and touch tablets) that require touch as part of 
their normal operation have been available for many years. 
In all of these devices, one cannot specify positional data 
without touching the device, nor can one touch the device 
without specifying a position; hence touch sensing and 
position sensing are tightly coupled in these devices. Yet 
once it is recognized that touch sensing is an orthogonal 
property of input devices that need not be strictly coupled 
to position sensing, it becomes clear that there are many 
unexplored possibilities for input devices such as mice or 
trackballs that can sense one or more independent bits of 
touch data (Fig. I). 

We present two examples of interaction techniques that 
match these new input devices to appropriate tasks. The 
On-Demand Interface dynamically partitions screen real 
estate depending on what the user is doing, as sensed by 
implicit interaction with touch sensors. For example, when 
the user lets go of the mouse, an application’s toolbars are 
no longer needed, so we fade out the toolbars and maximize 
the screen real estate of the underlying document, thus 
presenting a simpler and less cluttered display. By contrast, 
we use the touch sensors located above and below the 
wheel on the Scrolling TouchMouse to support explicit, 
consciously activated interactions; the user can tap on these 
touch sensors to issue Page Up and Page Down requests. 
Touch sensors allow this functionality to be supported in 
very little physical real estate and without imposing undue 
restrictions on the shape or curvature of the region to be 
sensed. We conclude by enumerating some general 
properties of touch sensors that we hope will prove useful 
to consider in the design of touch-sensing input devices and 
interaction techniques. 
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PREVIOUS WORK 
Buxton proposes a taxonomy of input devices [3] that 
draws a distinction between input devices that operate by 
touch (such as a touchpad) versus input devices that operate 
via a mechanical intermediary (such as a stylus on a tablet). 
Card, Mackinlay, and Robertson [5] extend this taxonomy 
but give no special treatment to devices that operate via 
touch. These taxonomies do not suggest examples of touch- 
sensing positioning devices other than the touchpad, 
touchscreen, and touch tablet. Buxton et al. provide an 
insightful analysis of touch-sensitive tablet input [4], noting 
that touch tablets can sense a pair of signals that a 
traditional mouse cannot: Touch and Release. Our work 
shows how multiple pairs of such signals, in the form of 
touch sensors, can be applied to the mouse or other devices. 

For the case of the mouse, we have already introduced one 
version of such a device, called the TouchMouse, in 
previous work [lo]. This particular TouchMouse 
incorporated a pair of contact sensors, one for the 
thumb/palm rest area of the mouse, and a second for the left 
mouse button. This TouchMouse was used in combination 
with a touchpad (for the nonpreferred hand) to support two- 
handed input. The present paper demonstrates the 
TouchTrackball and a new variation of the TouchMouse, 
matches these devices to new interaction techniques, and 
discusses the properties of touch-sensing devices in general. 

Balakrishnan and Pate1 describe the PadMouse, which is a 
touchpad integrated with a mouse [l]. The PadMouse can 
sense when the user’s finger touches the touchpad. The 
TouchCube [12] is a cube that has touchpads mounted on 
its faces to allow 3D manipulations. Rouse [21] uses a 
panel with 4 control pads, surrounding a fifth central pad, to 
implement a “touch sensitive joystick.” Rouse’s technique 
only senses simultaneous contact between the thumb on the 
central pad and the surrounding directional pads. Fakespace 
sells Pinch Gloves (derived from ChordGloves [ 17]), which 
detect contact between two or more digits of the gloves. 

Harrison et al. [7] detect contact with handheld displays 
using pressure sensors, and demonstrate interaction 
techniques for scrolling and for automatically detecting the 
user’s handedness. Harrison et al. also draw a distinction 
between explicit actions that are consciously initiated by 
the user, versus implicit actions where the computer senses 
what the user naturally does with the device. 

The Haptic Lens and HoloWall do not directly sense touch, 
but nonetheless achieve a similar effect using cameras. The 
Haptic Lens [23] senses the depression of an elastomer at 
multiple points using a camera mounted behind the 
elastomer. The HoloWall [ 181 uses an infrared camera to 
track the position of the user’s hands or a physical object 
held against a projection screen. Only objects close to the 
projection surface are visible to the camera and thus the 
HoloWall can detect when objects enter or leave proximity. 

Pickering [20] describes a number of technologies for 
touchscreens (including capacitive, infrared (IR) detection 
systems, resistive membrane, and surface acoustic wave 
detection); any of these technologies could potentially be 

used to implement touch-sensing input devices. For 
example, when a user grabs a Microsoft Sidewinlder Force 
Feedback Pro joystick, this triggers an IR beam sensor and 
enables the joystick’s force feedback response. 

Looking beyond direct contact sensors, a number of non- 
contact proximity sensing devices and technollogies are 
available. Sinks in public restrooms activate when the 
user’s hands reflect an IR beam. Burglar alarms and 
outdoor lights often include motion detectors or light-level 
sensors. Electric field sensing devices [26][24] can detect 
the capacitance of the user’s hand or body to allow 
deviceless position or orientation sensing in multiple 
dimensions. Our touch-sensing input devices also sense 
capacitance, but by design we use this signal in ;a contact- 
sensing role. In principle, an input device could incorporate 
both contact sensors and proximity sensors based on 
electric fields or other technologies. 

The following taxonomy organizes the various tactile input 
technologies discussed above. The columns are divided into 
contact and non-contact technologies, with the contact 
category subdivided into touch-sensing versus pressure or 
force sensing technologies. The rows of the table classify 
these technologies as either discrete (providing an on I off 
signal only) or continuous if they return a proportional 
signal (e.g., contact area, pressure, or range to a target). A 
technology is single-channel if it measures touch, pressure, 
or proximity at a single point, or multi-channel if it includes 
multiple sensors or multiple points of contact. The table 
omits the position and orientation-sensing properties of 
input devices as these are handled well by previous 
taxonomies [3][.5]. The table also does not a.ttempt to 
organize the various technologies listed within each cell. 

CONTACT 
Touch-sensing 1 Pressure / Force 

1 NON-CONTACT 
1 Proximity 

Touchpad 
touch tablet 
touchscreens 

(except IR) 
touch-based 

switches 
PadMouse [l] 

push button motion detectors 
membrane switch electro-magnetic 
Palm Pilot screen field sensor [l l] 

(pressure required) Light-level sensor 
supermarket floor Sidewinder force- 

mats feedback joystick 
car seat: weight (IR beam sensor) _ 

sensors for-airbag IR touchscreens 
TouchMouse Psychic Space [ 131 
TouchCube [ 121 (A grid of floor 
touch-sensitive tiles that can 

joystick 1211 sense which tiles 
Pinch Gloves a user is standing 

[17] on.) 
contact area pressure-sensitive 

(e.g. some touch tablet [4] 
touchpads & vector input 
touchscreens) touchscreen [9] 

torque sensor 
isometric joystick 

Multi-touch tablet wl 
pressure [ 151 

pressure sensors on 
handhelds [A 

Haptic lens (deform- 
ation at multiple 

aser rangefinder 
stud fillder 

ioloWall (181 
?eld-sensing 

devices [24][26] 

Table 1 : Classification of tactile input technologies. 
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TOUCH SENSING: HOW IT WORKS 
The touch-sensing input devices described in this paper 
employ the circuitry shown in Fig. 2, which senses contact 
from the user’s hand- no pressure or mechanical actuation 
of a switch is necessary to trigger the touch sensor. The 
“touch sensors” are conductive surfaces on the exterior of 
the device shell that are applied using conductive paint 
(available from Chemtronics [6]). The conductive paint is 
then connected internally to the touch sensing circuitry. 

The internal circuitry generates a 30 Hz square wave that is 
present on the conductive paint pad. The parasitic 
capacitance of the user’s hand induces a slight time delay in 
this square wave. When this time delay passes a critical 
threshold, a Touch or Release event is generated. A 
potentiometer (shown in the circuit diagram) allows 
adjustment of this threshold to accommodate conductive 
surfaces of various sizes; this only needs to be set once 
when the circuit is constructed (no calibration step is 
required for individual users). To provide a good coupling 
with the tactile feedback that the user feels, the capacitance 
sensors are set to generate Touch /Release events only and 
exactly when the user’s hand actually makes (or breaks) 
contact with the surface. Our current prototype sends the 
touch data to the host PC’s parallel port. 

vcc 
MOUSE-POWER 

To parallel pm 

pin 15 (SS) 

GND 9 
Pad 

74HC14 
se! 

D Q- 

>cik cr> O.IpF 

Ck 
74HC74 

T 
GND 

To pnralkl pm 

GND GND 

Fig. 2 Circuit diagram for a single touch sensor. 

When providing multiple touch sensors with the circuit 
described above, the 30 Hz square wave can pass through 
the user’s body and be picked up by another touch sensor as 
a false Touch or Release signal. Thus, to avoid interference, 
all devices that the user may be touching at a given time 
should be synchronized to the same square wave. 

Software Emulation 
One could attempt to emulate Touch and Release events 
from software based only on the events provided by a 
normal mouse. Although this approach may be “good 
enough” for some interaction techniques or to support 
situations in which a touch-sensing device is not available, 

it suffers from two significant drawbacks. First, one cannot 
distinguish a user holding the mouse still from a user that 
has let go of the mouse; this also implies that one cannot 
know with certainty that subsequent mouse motion occurs 
because the user just touched the mouse, or because the 
user moved the mouse after holding it stationary for some 
period of time. A second limitation of software emulation is 
that only a single Touch /Release event pair for the entire 
input device can be inferred in this way. Without using 
actual touch sensors, it is impossible to know precisely 
which part(s) of the input device the user is touching, or to 
integrate multiple touch-sensitive controls with a device. 

TOUCH-SENSITIVE INTERACTION TECHNIQUES 
We now discuss specific interaction techniques that use 
touch sensors to good advantage. These techniques can be 
broadly categorized as implicit techniques, which passively 
sense how the user naturally uses an input device, versus 
explicit techniques, which require the user to learn a new 
way of touching or using the input device. 

Implicit Actions Based on Touching an Input Device 
Touch sensors can provide applications with information 
about the context of the user’s work, at the level of which 
input devices the user is currently holding. Implicit actions 
use this information to improve the delivery and timeliness 
of user interface services, without requiring the user to 
learn a new way to use the input device. The user .can 
benefit from touch sensing without necessarily even 
realizing that the device senses when he or she touches it. 
The following section demonstrates how this style of 
implicit interaction can be used to support the On-Demand 
Interface, and presents initial usability testing results for 
this technique. 

The On-Demand Interface 
Limited screen real estate is one of the most enduring 
design constraints of graphical user interfaces. Display 
resolutions are creeping upward, but quite slowly when 
compared to advances in memory and processor speed. 
Current market research data suggest that 66% of PC users 
are still restricted to a 640x480 pixel display surface [ 191. 

The On-Demand Interface uses touch sensors to derive 
contextual information that can be used to make decisions 
about the relative importance of different parts of a 
graphical interface display. We use the touch sensors 
provided by the TouchTrackball and the Scrolling 
TouchMouse to determine changes to the current task 
context, and thus to dynamically shift the focus of attention 
between different layers or portions of the display. It may 
be possible to use traditional input events such as mouse 
motion or clicks to emulate some aspects of the On- 
Demand Interface, but given that the signals from the touch 
sensors are reliable, unambiguous, and require little or no 
overhead to use, we believe these provide a superior 
information source upon which to base the technique. 

For example, toolbars can make a large number of 
functions “discoverable” and easy to access for the user, but 
they have often been criticized because these benefits come 
at the cost of permanently consuming screen real estate 
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[14].  Although some toolbars do provide visual indications
of state (e.g. the current font and point size), most toolbars
display no useful state information when the user is just
looking at a document or entering text with the keyboard.

In the On-Demand Interface, when the user touches or
releases the TouchMouse, the toolbars fade in or fade out
on an as-needed basis using smooth alpha-transparency
animation’. Touching the mouse causes the tool bars to fade
in quickly, while releasing the mouse causes the toolbars to
fade out gradually. The end result is that when the user is
not actively using the toolbars, the screen appears simpler
and less cluttered, while the display real estate allocated to
the document itself is maximized (Fig. 3). In the current
prototype, we leave the toolbar slightly transparent even
when it is faded in so that the user can maintain awareness
of parts of the document that are underneath the toolbar.

We chose to use animations of alpha-transparency rather
than animated motion such as sliding or zooming. Motion
draws the user’s attention, and our design goal is for the
interface to change in a manner that is minimally
distracting. Fading in takes place quickly (over 0.3 seconds)
because the user may be grabbing the mouse with the intent
to select an item from the toolbar; fading out takes place
more gradually (over 2.0 seconds) because we do not want
to draw the user’s attention to the withdrawal of the
toolbars. The toolbars could appear instantaneously, but we
find that instantaneous transitions seem very jarring and
unpleasant, especially given that such a transition will
occur every time the user grabs the mouse.

Note that although it would be possible to fade out all
menus and toolbars, this may not always be appropriate.
Menus serve as reminder for keyboard shortcuts during text
entry, and some toolbars do provide visual indications of
state. However, one can distinguish the size of the toolbar
that is best for interaction with the mouse versus the size of
the toolbar that is necessary to visually display the desired
state information. As seen in Fig. 3, the On-Demand
Interface fades in a compact toolbar, scrollbar, and menu
representation while the toolbars fade out. During our
usability tests, most users did not notice or comment on this
change in appearance, although one user did mention that “I
would expect the Bold icon to stay in the same place.”

’ We implemented this prototype using a 3D graphics accelerator to
provide alpha-blending of texture maps; it is not a fully functional
implementation of Microsoft Word.

We also use the touch sensors on the wheel and on the
mouse button of the Scrolling TouchMouse  to support a
reading mode of interaction when the user engages the
wheel. Rotating the wheel on a standard IntelliMouse
scrolls the document line-by-line, and we have observed
that users will often keep their finger perched on the wheel
when they pause to read the document. Since the user does
not need the toolbars while using the wheel, the On-
Demand Interface senses initial contact with the wheel and
uses this signal to gradually fade out the toolbars and again
maximize the display real estate allocated to the document.
In our current design, a faint trace of the toolbars remains
visible while in reading mode so that the user can see where
the toolbars will appear upon return to normal mouse usage.
The interface reverts to normal mouse usage when the
user’s index finger returns to and touches the mouse button,
which quickly fades the toolbars back in. Although
accidentally touching the wheel and thus switching to
reading mode might seem to be a problem, during our
usability tests we found this was not a significant issue.
Regarding this point, one test user commented that “I like
that it fades back in kind of quick. So if you had
accidentally touched [the wheel] it’s no big deal.”

We use the TouchTrackball  to apply the On-Demand
Interface concept to the ToolGlass  technique [2], which
provides the user with a set of movable semi-transparent
“click-through” tools that are controlled with a trackball in
the nonpreferred hand. When the user touches the trackball,
the ToolGlass fades in quickly over 0.3 seconds; if the user
is also touching the mouse, the toolbars simultaneously
fade out (Fig. 4). When the user releases the trackball, after

the user is touching the mouse, the toolbars simultaneously
fade in (over 1.0 second). If the user clicks-through a tool
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to initiate a command with the ToolGlass, it fades out 
immediately (over 0.2 seconds) and does not fade back in 
unless the user moves the trackball or releases and touches 
the trackball again. 

Informal Usability Evaluation 
We conducted informal usability tests of the On-Demand 
Interface, which were intended to explore user acceptance 
of this technique and to identify usability problems with our 
current implementation. We recruited 11 users from an 
internal pool of administrative assistants for this study. All 
users were familiar with Microsoft Word but none had seen 
or tried our touch-sensing input devices before. 

For the testing, we implemented the On-Demand Interface 
technique in a prototype that fully supported the various 
fade in I fade out transitions in response to interacting with 
the input devices, but only supported limited interaction 
with the document itself (users could click and drag with 
the mouse to circle regions of text) and limited keyboard 
text entry (as the user typed, text actually appeared in a 
small separate box below the main window). Nonetheless, 
we feel that this functionality was sufficient to test the 
utility of the On-Demand interface concept, 

In particular, since we felt that trunsirions between the 
different task contexts recognized by the On-Demand 
Interface might result in usability problems, we tried to test 
interleaving of the various task contexts as much as 
possible. For example, we asked users to highlight a word 
with the mouse; then type in some text to replace this; then 
click on the Bold icon in the toolbar; then switch back to 
typing again, and so on. After performing several structured 
tasks of this sort, users were also encouraged to play around 
with the interface to get a more thorough feel for what they 
did or did not like. 

Test users were quite enthusiastic about the ability to see 
more of the screen during typing and scrolling tasks, while 
at the same time having the toolbar available on short 
notice. One user explained that “I like that [the toolbar] 
comes up quickly when you need it and you can control 
how long it stays up” and that “all the extra stuff isn’t there 
when I don’t need it.” Subjective questionnaire ratings on a 
1 (disagree) to 5 (agree) scale confirmed these comments: 
users reported that the TouchMouse was easy to use and 
that they liked seeing more of the document at once 
(average rating 4.5 for both questions). 

Most users also liked the fading animations that 
transitioned between screen layouts. Two users did feel that 
the transition from the toolbars to a “clean screen” for text 
entry was too slow. One user wanted the toolbar to slide 
into place instead of fading. However, it was clear that 
transitions between the toolbars and the “clean screen” 
were well accepted overall and were not the source of any 
significant usability problems; when asked if “switching 
between the keyboard and mouse is disconcerting,” users 
clearly disagreed (average rating 1.9). Users also felt that 
the touch sensors provided an appropriate way to control 
these transitions, offering comments such as “I really like 
the touch-sensitive - I really like that a lot.” 

As noted above, in this prototype we experimented with 
leaving the toolbars slightly transparent even when they 
were fully faded in to allow some awareness of the 
occluded portions of the document. We felt this was a 
useful feature, but all II users reported that they disliked 
the slightly transparent toolbar, and often in no uncertain 
terms: one user described it as looking “like a wet 
newspaper” while another simply stated, “I hate that!” 
Users clearly felt the display should always transition to 
fully opaque or fully invisible states. In retrospect, we 
realized that this dissatisfaction with semi-transparent 
toolbars on top of a text editing application perhaps should 
have been expected given that studies of transparent 
interfaces have shown text backgrounds lead to relatively 
poor performance [8], and we may not have chosen the icon 
colors, styles, or transparency levels with sufficient care. 

With regard to the TouchTrackball and ToolGlass, users 
also generally liked that the ToolGlass faded in when they 
touched the trackball: “That’s cool when the ball takes over 
the hand commands.” One user did comment that the 
appearance of the ToolGlass, and simultaneous 
disappearance of the toolbars, was the only transition where 
“I felt like too much was going on.” Perhaps the toolbars 
should stay put or fade out more slowly in this case. 
Interestingly, in contrast to the strongly negative response 
to the slightly see-through toolbars, most users had no 
problem with the semi-transparency of the ToolGlass; it 
was probably easier to visually separate the foreground and 
background layers in this case because the user can move 
the ToolGlass. For example, one user mentioned that “It’s 
good to see where an action would be and what it would 
look like.” A couple of users commented that using two 
hands “would definitely take some getting used to,” but in 
general users seemed to agree that that “using the trackball 
was easy” (average 4.3). 

The On-Demand Interface demonstrates a novel application 
of touch sensors that dynamically adjusts screen real estate 
to get unnecessary portions of the interface out of the user’s 
face. Since the initial user feedback has been encouraging, 
we plan to add these capabilities to a more fully functional 
application and perform further studies of the technique to 
determine if additional issues might arise with long-term 
use. We are also investigating the appropriateness of the 
technique for other interface components such as floating 
tool palettes or dialog boxes. 

Explicit Actions Based on Touch Sensors 
A second general class of interaction techniques uses touch 
sensors to allow an input device to express an enhanced 
vocabulary of explicit actions, but the user must learn these 
new ways of touching or using the input device to fully 
benefit from them. Clearly, such actions should have 
minimal impact on the way one would normally use the 
device, so that the new capabilities do not interfere with the 
user’s existing skills for controlling the input device. 

The Scrolling TouchMouse 
The Scrolling TouchMouse (Fig. 1, right) is a modified 
Microsoft IntelliMouse Pro mouse. This mouse includes a 
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wheel that can be used for scrolling, and an oblong plastic 
basin that surrounds the wheel. The wheel can also be 
clicked for use as a,middle mouse button. 

In the previous section, we described how several of the 
touch sensors on the Scrolling TouchMouse could be used 
for implicit sensing of the user’s task context. In this 
section, we describe the use of two touch sensors that we 
have added to the basin, one above and one below the 
wheel. In addition to the usual line-by-line scrolling 
supporting by rolling the wheel, these touch sensors 
enhance scrolling actions with several new behaviors: 

. Tapping: Tapping the top part of the basin triggers a 
Page Up command; tapping the bottom of the basin 
triggers a Page Down. The wheel is good for short- 
range scrolling, but is less effective for long range 
scrolling [25]; the tapping gesture provides an effective 
means for discrete scrolling at a larger scale of motion. 

l Roll-and-hold: This extends the gesture of rolling the 
wheel to support smooth scrolling. Rolling the wheel 
until the finger contacts the top touch sensor or the 
bottom touch sensor initiates continuous up scrolling or 
continuous down scrolling, respectively. The scrolling 
starts after a brief delay (0.15 seconds) to prevent 
accidental activation from briefly brushing the sensor. 

. Reading sensor: We already use the wheel touch 
sensor in the On-Demand interface to sense when the 
user begins a scrolling interaction. Since IntelliMouse 
users often leave their finger perched on the wheel 
while reading, an intriguing possibility is that dwell 
time on the wheel may prove useful as a predictor of 
how much time the user has spent reading content on a 
web page, for example. We have not yet tested the 
wheel sensor in this role. 

We performed informal evaluations with ten test users 
recruited from the Microsoft Usability pool; 3 of the 10 
users had previously used a mouse including a scrolling 
wheel. Test users were asked to scroll to various points 
within a long web page containing approximately 10 pages 
of content. For this informal study, we did not control the 
distances to the various scrolling targets, nor did we test the 
interleaving of scrolling with other common mouse tasks; a 
future study should address these issues. Our main goals 
were to observe user responses to the device, discover some 
potential usability problems, and see if touch sensors were 
effective for these kinds of interactions. 

Users found the tapping feature extremely appealing. When 
asked to respond to the statement “Paging up and down 
with the TouchMouse was easier than paging with my 
current mouse” user responses averaged a 4.6 (again on a l- 
5 scale). One user commented “I really like this, it’s pretty 
cool.. . just tap, tap, tap, done!” while another commented 
that “I didn’t really see a reason for the wheel. Just touching 
the gold [sensor] was easy enough.” One user did feel that 
“the tap surface should be larger.” 

Several users expected the tapping sensors to support an 
additional gesture that we currently have not implemented, 
the tap-and-hold. Tapping and then holding one’s finger 
would trigger a paging command followed by more rapid 
continuous up or down scrolling. One potential problem 
with the tap-and-hold is that simply resting one’s finger on 
the basin after tapping would now trigger an action. We 
plan to experiment with a tap-and-hold gesture to see 
whether or not it is genuinely useful. 

Problems with the device related to the wheel itself and the 
roll-and-hold behavior. When asked to respond to “I liked 
the way the wheel on the TouchMouse felt while scrolling,” 
user responses averaged a 3.2 (with 3 = neither agree nor 
disagree). Several difficulties led to this lukewarm 
response. Our touch-sensing modifications to the wheel 
made it slightly slippery and harder to turn; this problem 
also made it more likely that users would click the wheel by 
mistake, and due to a technical glitch, the roll-and-hold did 
not work correctly when this happened. Also, the 
“continuous” scrolling implemented in our prot.otype was 
jerky and moved too slowly. Users did not like this. 
Fortunately, these are not inherent problems and will be 
improved in our next design iteration. 

Despite the problems with the roll-and-hold mentioned 
above, users felt that overall “The TouchMouse was easy to 
use for scrolling” (responses averaged 4.1). Users also 
clearly liked the concept of having additional scrolling or 
paging commands on the mouse (responses averaged 4.8). 
In combination with the enthusiastic user response to the 
tapping feature, this demonstrates that the Scrolling 
TouchMouse successfully employs touch sensors, to support 
new functionality while occupying a minimum of device 
real estate, and without making the device look 
significantly more cluttered with physical buttons. 

PROPERTIES OF TOUCH-SENSING DEVICES 
We now consider the properties of touch sensors and touch 
sensing input devices in general. Based on our design 
experience, we feel these are useful issues to consider when 
designing touch-sensing input devices and interaction 
techniques, and hope that they may be suggestive of 
additional possibilities. 

Similarities between Touch Sensors and Touch Tablets 
Although the touch sensors that we use do not sense 
positional information, since the geometric arrangement of 
sensors is known ahead of time, one can’ potentially confer 
to the mouse properties that, in the past, have normally 
been associated with touch tablets. Thus touch sensors have 
some properties similar to those of touch tablets as 
enumerated by Buxton, Hill, and Rowley [4]. Fo:r example: 

l No moving parts: Touch sensors have no moving parts. 

l No mechanical intermediary: Touch sensors require no 
mechanical intermediary to activate them. 

. Operation by feel: Touch sensors can be arranged into 
regions that act like a physical template on a touch 
tablet. The user can feel the touch-sensing regions 
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(e.g., the Page Up / Down controls on the Scrolling 
TouchMouse) without looking at the device or at the 
screen. This can reduce the time that would be required 
to switch between devices or widgets on the screen. 

l Feedback: Touch sensors differ from traditional 
pushbuttons in the amount and type of feedback 
provided. Compared to a mouse button, for example, 
the user does not feel or hear a distinct “click” when a 
touch sensor is activated. For cases where a touch 
sensor is being used in an implicit role and is not being 
used to simulate such devices, however, such feedback 
may not be needed or even desired. 

Other Properties of Touch Sensors 
Touch sensors have a number of additional unique 
properties that can be useful to consider in the design of 
devices and interaction techniques: 

l Accidental activation: Because touch sensors require 
zero activation force, they may be prone to accidental 
activation due to inadvertent contact. In particular, 
when touch sensors are used to trigger explicit actions, 
care needs to be taken so that the user can rest his or 
her hand comfortably on the device without triggering 
an undesired action. Of course, for implicit sensing 
applications, “accidental” activation is precisely the 
property that makes touch sensors useful. 

l Flexible form factor: Unlike a touchpad, which 
generally requires a planar form factor, touch sensors 
can have an extremely flexible shape; curved surfaces, 
uneven surfaces, or even moving parts such as wheels 
and trackballs can be touch sensitive. Touch sensors 
also have a near zero vertical profile (assuming the 
touch-sensing electronics can be located elsewhere), 
which allows them to be used in tight spaces that may 
not readily accommodate a traditional pushbutton. 

. Unobtrusive: Touch sensors can be added to a device 
without necessarily making it look complex and 
cluttered with buttons. The user may not even have to 
be aware that the device incorporates a touch sensor. 

l Low overhead to disengage: Some input devices, such 
as a puck on a Wacom tablet, can provide In Proximity 
and Out Of Proximity signals when the puck is placed 
on or removed from the tablet. Although this pair of 
events is similar to the Touch and Release events 
generated by touch sensors, they are useful for 
different things. For example, removing one’s finger 
from a touchpad requires considerably less overhead 
than lifting a puck from a tablet. Thus, the proximity 
signals provided by a tablet and the touch signals 
provided by a touch sensor support logically distinct 
device states [lo]. 

l Deactivation from sofnyare: Touch sensors lend 
themselves to deactivation from software, because a 
touch sensor does not respond to user input with a 
physical “click.” Thus, unlike a pushbutton, a disabled 
touch sensor does not offer any false physical feedback 

when it is touched, which is useful if the user is in a 
context where the action is not valid or if the user does 
not want an added feature. 

l Additional physical gestures: Some gestures that are 
not captured well by pushbuttons, such as tapping or 
simply maintaining contact with a portion of the 
device, can be captured by touch sensors. A pushbutton 
that includes a touch sensor [lo] can capture these 
gestures, in addition to the traditional click and drag. 

Intentional Control vs. Cognitive and Physical Burden 
Touch-sensing and proximity-sensing technologies offer an 
inherent tradeoff in intentional control versus the cognitive 
and physical burden of an input transaction. The 
progression from button-click, to touch, to hand-near- 
device is potentially accompanied by a decrease in 
intentional control by the user, and hence increases the 
inferential burden (and error rates) of interpretation. This 
means that, although error rates can be minimized by good 
design, accidental activation will occur and thus actions 
triggered by touch or proximity sensors should have a low 
cost from errors of interpretation. 

Yet this apparent weakness is also a strength, as a reduction 
of intentional control also implies a potential decrease in 
the cognitive burden of making explicit decisions to 
perform an action. Thus, when used in an implicit role, 
touch sensing can provide enhanced device functionality 
with little or no added cognitive burden. Touching or letting 
go of the device is an inherent part of what the user would 
have to do anyway to use the input device, so nothing new 
has to be learned by the user in terms of operating the input 
device. Touch-sensing devices are capable of sensing the 
Touch and Release events that in a manner of thinking have 
always been available, but were ignored by traditional 
devices such as mice and trackballs. 

CONCLUSIONS AND FUTURE WORK 
The present work has demonstrated that touch-sensing is an 
orthogonal property of input devices that does not 
necessarily have to be coupled with position sensing. This 
observation suggests new possibilities for touch-sensing 
input devices, exemplified by the TouchTrackball and 
Scrolling TouchMouse presented herein. We have also 
described the hardware needed to actually build touch 
sensors in the hope that this will encourage other interface 
designers to experiment with our techni.ques and explore 
additional possibilities for touch-sensing devices. 

Touch sensors allow some properties that have normally 
only been associated with touch tablets to be integrated 
with other input devices such as the mouse. Thus, the 
touch-sensing mouse provides a set of design properties 
that neither traditional mice nor traditional touch tablets can 
match. Touch sensors also provide a number of other 
unique properties, perhaps the most important of which are 
(1) zero activation force, allowing implicit sensing of 
“accidental” contact, and (2) great flexibility of form factor 
which allows touch sensors to be applied to tight spaces, 
curved surfaces, or even moving parts. 
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When matched to appropriate interaction techniques these 
unique properties of touch-sensing input devices allow user 
interfaces to effectively support a number of new 
behaviors. Our initial usability testing results of the On- 
Demand Interface and the Scrolling TouchMouse 
demonstrate that touch-sensing devices can provide new 
behaviors that users find compelling and useful. 

9. 

10. 

However, much future work is still required. We need to 
refine and more formally evaluate the specific interaction 
techniques that we have described. Additional study is 
needed to better understand and characterize the strengths 
and weaknesses of touch sensors. Also, we feel that a more 
detailed taxonomy of touch sensing and proximity sensing 
devices could help to better understand and explore the 
design space. A good taxonomy of such devices should 
probably include both sensors and actuators. For that 
matter, a more unified treatment including au&o I/O 
(microphones and speakers), visual II0 (cameras and 
displays), and the haptic channels (tactile, force, and 
kinesthetic I/O) might be useful to describe a wider range 
of existing devices and suggest future possibilities. 
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