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ABSTRACT

Surface-Only Simulation of Fluids

Fang Da

Surface-only simulation methods for fluid are those that perform computation only on a surface

representation, without relying on any volumetric discretization. Such methods have superior

asymptotic complexity in time and memory than the traditional volumetric discretization approaches,

and thus are more tractable for simulation of complex fluid phenomena. Although for most computer

graphics applications and many engineering applications, the interior flow inside the fluid phases is

typically not of interest, the vast majority of existing numerical techniques still rely on discretization

of the volumetric domain. My research first tackles the mesh-based surface tracking problem in the

multimaterial setting, and then proposes surface-only simulation solutions for two scenarios: the

soap-films and bubbles, and the general 3D liquids. Throughout these simulation approaches, all

computation takes place on the surface, and volumetric discretization is entirely eliminated.
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Chapter 1

Introduction

Simulation of complex fluid phenomena has been an area of great interest in computer science

research. The demand to construct large and complicated splash scenes frequently arises from the

movie effects industry nowadays (such as the 4,000-feet wave in the feature film Interstellar), and

physically-based simulation tools are playing an irreplaceable role in creating the rich details of

computer generated imagery, which is prohibitively expensive if animated manually. The need for

understanding and predicting the mechanical behavior of fluids also occurs commonly in various

engineering fields such as hydraulic engineering. Due to the near zero resistance to shearing

deformation, fluid materials often exhibit large and complex motions that are not easy to model

analytically, making numerical simulation techniques indispensable tools for studying the fluid

behavior in scenarios where direct physical experiments are not feasible.

These applications demonstrate the strength of computer over man in numerical computation

tasks. However, as powerful as modern computers are in performing numerical computation, these

simulations are still not fast enough when high quality details are desired. Seeking new techniques

to improve the computation efficiency has been a major theme in computer graphics research. This

can be tackled from many angles such as developing more powerful hardware, optimizing the

computation code, and improving the solution algorithm. The last approach affords the greatest

potential by exploiting domain-specific knowledge and insight for fluid behavior. It is the focus of

this dissertation.

Pioneered by a few seminal papers towards the end of the twentieth century, fluid simulation

research has gained significant traction in the computer graphics community over the past two decades,
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and has heralded innovative techniques for each component of the simulation pipeline. The majority

of these simulation approaches take on the task of solving the Navier-Stokes equations head on,

discretizing the independent variable (the 3D velocity field) directly. Depending on the discretization

techniques (grids, tetrahedral meshes or particles), different approaches show strength in different

scenarios, but they all use geometric primitives to capture the concept of an infinitesimal volumetric

element, and thus have a DOF (degree of freedom) count proportional to the fluid volume, and

inversely proportional to the geometric resolution. This set of DOF is typically solved from a sparse

Poisson equation which captures the key property of common fluid materials, the incompressibility.

Therefore, most existing simulation approaches have the same asymptotic complexity with respect to

the result’s resolution.

Compared to the volume’s cubic scaling with respect to the resolution, the surface (interface

between different phases) area scales at a more favorable quadratic rate. In other words, if the

surface is the only desired output, then it may be possible to design algorithms with potentially better

asymptotic complexity. It is this philosophy that drove the development of new simulation techniques

in this dissertation.

1.1 Surface-Only Simulation

Throughout this dissertation I refer to a class of simulation techniques termed Surface-only simulation

techniques. In many fluid phenomena, there is a clear surface (or interface) separating different fluid

phases of distinct physical properties that do not mix or diffuse into each other. Examples of such

surfaces include the interface in a water-oil mixture, the soap film surface in a soap foam, or simply

the water surface in a pool of water. Very often each fluid phase in these multiple phase scenarios can

be assumed to be homogeneous and the interface turns out to be where the most interesting interaction

happens. From a computer graphics viewpoint, the interface is the only visually important element

of the final imagery, as it is where the most prominent optical effects such as reflection and refraction

occur. For many engineering applications, the interface is also the only aspect of the outcome that

is of interest in the engineering process under consideration (such as inkjet printing [Derby, 2010],

spray combustion [Faeth, 1977], and liquid-liquid extraction [Park and Blair, 1975]). Therefore, it is

natural to focus the computation power available at resolving the interface motion as accurately as
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possible. The motion inside the interior of the homogeneous phases, although potentially influential

on the evolution of the interface, is typically not sought after for its own sake.

There has been some exploration of surface-only simulation techniques, such as vortex filaments

[Weissmann and Pinkall, 2010], vortex sheets [Brochu et al., 2012; Pfaff et al., 2012], and potential

flow [Keeler and Bridson, 2014], among others, with distinct benefits: since there is no need to

allocate storage or computation resources for the fluid interior or exterior, greater efficiency becomes

possible. With the help of fast summation techniques such as the Fast Multipole Method [Greengard

and Rokhlin, 1987] or Particle-Particle Particle-Mesh method [Zhang and Bridson, 2014], these

techniques can generally achieve a time complexity linear in the surface size [Brochu et al., 2012;

Zhu et al., 2015], which is asymptotically optimal.

1.2 Challenges facing surface-only methods

Before any dynamics can be formulated, the first instrument we need for a surface-only simulation

framework is a surface tracking method. The most popular existing surface tracking techniques are

based on level sets [Sethian, 1999; Osher and Fedkiw, 2002], which inevitably relies on volumetric

discretization, usually in the form of a spatial grid. The alternatives are mesh-based surface tracking

techniques, which are known for preservation of volume and sharp details [Wojtan et al., 2011],

but have long been plagued by challenges in robustly handling topology changes (such as splitting

and merging). Not long before the work of this dissertation, several methods have been proposed

to deal with this issue [Campen and Kobbelt, 2010; Müller, 2009; Wojtan et al., 2009; Brochu and

Bridson, 2009], but they are all limited to two-phase scenarios. The general case where multiple fluid

phases swirl next to each other requires a more flexible representation and a more careful handling of

topology changes, due to the exponentially more complex topological configurations possible at the

vertices where more than two phases meet.

More challenges await in the formulation of dynamics: first and foremost, a surface-only

simulation technique must be able to encode into a surface representation all the necessary information

needed for the time evolution. For different fluid phenomena, different representations are suitable,

and the dynamics model must be formulated accordingly. In general, we cannot expect a surface

representation to be expressive enough to capture every possible 3D velocity field, and thus certain
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assumptions that restrict the potential velocities must be adopted. Fortunately, velocity fields in many

fluid phenomena relevant to computer graphics can be very well approximated by vector fields that

are harmonic (both incompressible and irrotational) on the interior, which is restrictive enough to

allow a surface representation to fully describe the volumetric velocity field. In this dissertation

I consider two particular scenarios: the first is the simulation of air flow around soap films (as in

bubbles and foams), and the second is the simulation of general 3D inviscid liquids. The reason why

the harmonic velocity field assumption is justified will be discussed in detail for each scenario.

1.3 Contributions

My research has made novel contributions in the following directions:

1. Improved mesh-based surface tracking technique in the multimaterial setting. In Part I of

this dissertation, I present Los Topos, the first non-manifold triangle mesh tracking method to

simultaneously maintain intersection-free meshes and support the broad set of multimaterial

remeshing and topological operations, including mesh splitting, merging, T1 and T2 transitions.

Los Topos is developed from improving the El Topo library [Brochu and Bridson, 2009] with

a more versatile and robust handling of complex topology and a less disruptive mesh-merging

operation. The robust T1 transition for arbitrary configuration around any given vertex

is achieved by introducing the concept of region graph which is a concise representation

of the vertex local topology, thus converting the topology classification problem into the

completeness of the region graph. No matter how complex the vertex local topology is, the

proposed resolution algorithm guarantees to resolve the irregular configurations in finitely

many steps. This work was published and presented at SIGGRAPH 2014 [Da et al., 2014b].

2. The first surface-only technique for simulating the air flow around soap films. Previous

techniques for simulating soap bubbles and foams either rely on volumetric discretization

(typically an Eulerian grid), or model the film by itself while ignoring the dynamics of the air.

Typical thickness of soap films is so thin that the air mass significantly outweighs the liquid

mass, rendering the latter physically inaccurate, while also making the former computationally

inefficient due to the high resolutions required to resolve the film in the transversal direction. In

Part II I present a surface-only method based on vortex sheets for simulating the air flow around
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soap films under surface tension force. By judiciously designing the surface representation, I

formulated the surface tension force into one simple time integration rule that is extremely easy

to implement and efficient to evaluate. This work was published and presented at SIGGRAPH

2015 [Da et al., 2015].

3. The first surface-only technique for simulating general 3D inviscid liquids. Although there

have been attempts to simulate liquid motion with surface-only techniques [Zhang et al., 2012;

Keeler and Bridson, 2014], these attempts are all limited to the specific phenomena they are

originally designed for, and none is flexible enough to be applied to general 3D liquid motion

such as water jets and splashes. This task has been traditionally accomplished by volumetric

techniques such as SPH or a Eulerian grid based method. In Part III of this dissertation, I

present a surface-only simulation framework for inviscid, uniform-density liquid undergoing

complex motion in 3D. To accomplish this goal, I propose a novel incompressibility projection

step for surface velocity fields based on Helmholtz decomposition, and a linear solve employing

the Boundary Elements Method for integrating external forces such as surface tension, gravity

and solid contact. This work was published and presented at SIGGRAPH 2016 [Da et al.,

2016].
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Part I

Multimaterial Mesh-Based Surface

Tracking
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Chapter 2

Introduction

Figure 2.1: Two-Droplet Collision: Using our multimaterial mesh-based surface tracker, two immis-

cible liquid droplets with different materials but identical physical properties impact symmetrically

in zero gravity under strong surface tension. The collision merges the droplets so that a new interface

separates the two liquids, and a non-manifold triple-curve is created where the two liquids meet the

ambient air.
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One of the most important building blocks of a surface-only simulation framework is a versatile

and robust surface tracking technique to capture the temporal evolution of dynamic interfaces. Such

interfaces, often employed in fluid animation and geometric modeling, separate distinct materials

that are deforming and undergoing topology changes. Mesh-based surface tracking techniques do so

by iteratively advancing a triangle mesh. They do not rely on any volumetric discretization such as

grids, and have been touted for their ability to preserve volume, mesh-scale detail, and sharp features

[Wojtan et al., 2011]. Robust strategies have been proposed to perform topological merging and

splitting: Boolean-like geometric operations [Campen and Kobbelt, 2010], hybrid implicit/explicit

approaches [Müller, 2009; Wojtan et al., 2009], and local zippering/pinching combined with robust

collision resolution [Brochu and Bridson, 2009]. These approaches are restricted to interfaces

separating exactly two material regions: an exterior and an interior.

Less explored in the graphics literature are multimaterial mesh interfaces, separating multiple

distinct materials. This introduces non-manifold triple- and higher-order junctions, expanding the

space of possible mesh entanglements, giving rise to new topological operations, and opening a rich

space of research problems.

Stepping into the multimaterial setting, we address a suite of nonmanifold mesh operations:

(1) merging of like materials, (2) splitting, (3) mesh improvement, (4) merging of different materials,

and the so-called (5) T1 and (6) T2 processes of foam dynamics [Weaire and Hutzler, 2001].

Operations (4)–(6), which arise only for multimaterial cases, will be the focus of our discussion.

We build on past work that addresses subsets of our goal. Multimaterial codes exist that support

some of these operations, but they ignore collisions. Those collision-aware codes noted above are

limited to manifold meshes. Alas, staggering or gluing available codes does not offer the best of both

worlds; it is unclear how to adapt known multimaterial operations for collision-safety. Furthermore,

merging in multimaterial settings—an outcome of considering both collisions and non-manifold

structure—has never been addressed.

To our knowledge, no triangle mesh-based surface tracking method simultaneously preserves

watertight intersection-free meshes, and supports the above suite of operations. Our contribution is to

develop such a unified, robust, multimaterial mesh-based surface tracking scheme, and demonstrate

its effectiveness.
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Chapter 3

Related Work

3.1 Multimaterial Surface Tracking Methods

Level set methods [Sethian, 1999; Osher and Fedkiw, 2002] are usually extended to multimaterial

settings by replacing the binary sign of the distance field with an integer material label [Losasso et

al., 2006; Zheng et al., 2006; Kim, 2010; Saye and Sethian, 2012]. In some methods one signed

distance field is used per region, while other methods reduce storage and computational costs by

using a single unsigned distance field for all regions. Reconstructing quality multimaterial surface

or volume meshes from this data is also of interest [Wu and Sullivan, 2003; Meyer et al., 2008;

Bronson et al., 2012]. Starinshak et al. [2014] discuss one challenge specific to multimaterial level

set methods—overlaps or vacuums at the triple junctions—which is typically corrected via projection.

By contrast, our non-manifold mesh-based approach explicitly tracks such triple-junctions, avoiding

vacuums/overlaps by construction. Previous work in mesh-based surface tracking has explored

trade-offs between explicit and implicit approaches in the standard two-material setting (e.g., [Du et

al., 2006; Wojtan et al., 2009]).

Particle-based surface representations augment each particle with a material label or color

[Müller et al., 2005; Solenthaler and Pajarola, 2008], or assign material properties to particles

directly.

Volume-of-fluid methods [Hirt and Nichols, 1981] store a volume fraction per cell, and their

multimaterial generalizations store a partition of unity (one fraction per material); various approaches

exist to reconstruct continuous interface geometry from this data [Dyadechko and Shashkov, 2008;
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Anderson et al., 2010].

Moving mesh or Lagrangian volumetric mesh methods [Quan and Schmidt, 2007; Pons and

Boissonnat, 2007a; Pons and Boissonnat, 2007b; Quan et al., 2009; Misztal et al., 2012] assign

material labels to each volume element. For example, for a tetrahedralization of space, the interface

is the subset of triangular faces bordering two differently labeled tetrahedra. Several recent works

address mesh quality maintenance [Wicke et al., 2010; Clausen et al., 2013]. Bronson et al. [2012]

demonstrated an application of their Lattice-Cleaving tetrahedral mesher to multiphase flows.

3.2 Triangle Meshes with Merging and Splitting

Mesh Surgery / Boolean Approaches. Topology changes are recognized as a challenge for surface

mesh evolution, or “front tracking” [Glimm et al., 1998; Glimm et al., 2000]. Colliding surfaces

entangle and must be stitched via mesh surgery or Boolean(-like) operations [Campen and Kobbelt,

2010; Zaharescu et al., 2011; Bernstein and Wojtan, 2013]. Existing two-phase solutions do not

map directly to the multimaterial setting, where new topological changes arise. For instance, the

collision of two different materials immersed in a third requires that a separating interface be

established; this interface is not a component of any existing surface. Bernstein and Wojtan [2013]

specifically highlight this limitation of their method, noting that a broader set of fundamentally

different topological operations may be required for some applications.

Hybrid Implicit Approaches sidestep the requisite mesh operations by converting colliding

regions into implicit (e.g., Eulerian) representations, either globally or locally, and then reconstructing

(e.g., via marching cubes) a new mesh [Glimm et al., 2000; Du et al., 2006; Bargteil et al., 2006;

Müller, 2009; Wojtan et al., 2009; Wojtan et al., 2010]. In computational physics the best known is

the FronTier package [Du et al., 2006]. These methods rely on a binary inside/outside classification,

and a multimaterial extension appears nontrivial.

Proximity-Based Merging locally stitches proximate meshes, maintaining an intersection-free

invariant via either conservative bounds on time step [Stanculescu et al., 2011] or robust post-

collision processing [Brochu and Bridson, 2009]. The reliance on a kernel of simple, local mesh

operations led us to extend this line of work to multiple materials, building on El Topo [Brochu and

Bridson, 2009].
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3.3 Triangle Mesh-Based Multimaterial Techniques

Surface Evolver [Brakke, 1992], a popular software package, is a great source of inspiration for

our work. The package uses an evolving non-manifold triangle mesh to find equilibria for myriad

variational problems. It supports the foam and film-like topological transformations arising in

many multimaterial settings, known as T1 and T2 processes (Chapter 5.4). We differ principally

in (1) considering collisions, which induce new merging-type topology changes, and (2) ensuring

intersection-safety throughout, which is difficult when topological transitions have special cases or

affect large mesh neighborhoods. We develop a new approach for T1 processes (Chapter 6) that

avoids special cases and, crucially, iteratively applies only a single local vertex operation.

Surface Evolver and related approaches have been applied to foam coarsening and grain growth

problems in material sciences, for which collisions are often unimportant [Weygand and Brechet,

1999; Wakai et al., 2000; Kuprat et al., 2003; Mora et al., 2008; Syha and Weygand, 2010]. Most

recently, Lazar et al. [2011] considered large-scale simulations of up to 100,000 distinct grains.

Authors in graphics have also studied constant mean curvature surfaces using related techniques [Pan

et al., 2012]. In general, these methods do not consider collision-induced merging or intersection-

safety, and apply topological operations with larger mesh stencils.

3.4 Surface Remeshing

Remeshing of surface meshes is a very broad topic, with many applications and goals. Alliez et

al. [2008] provide an overview of recent developments; we will briefly review work that is relevant to

our setting. We focus on incremental local remeshing, since it allows each remeshing operation to be

robustly checked for collision-safety [Brochu and Bridson, 2009]. Various authors have applied this

style of remeshing for surfaces undergoing gradual but large deformations (or mesh adaptation), and

high quality results have been achieved by considering anisotropy, curvature, and feature-detection

[Wicke et al., 2010; Jiao et al., 2010; de Goes et al., 2008; Clark et al., 2012; Narain et al., 2012;

Clausen et al., 2013]. We employ uniform resolution isotropic meshes with one particular choice

of feature detection; combining our method with more advanced remeshing strategies is a key

future direction. Several authors have also studied remeshing, subdivision, and fairing targeted

at non-manifold surfaces [Hubeli and Gross, 2000; Ying and Zorin, 2001; Zilske et al., 2008;
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Pellerin et al., 2011].
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Chapter 4

Multimaterial Mesh Representation

Two-material mesh-based methods rely on a binary inside/outside

classification of space. This classification may employ parity counting

of ray casts, which does not readily extend to multiple materials;

alternatively, it may employ a consistent orientation of mesh triangles:

each triangle’s vertex ordering and the right-hand rule define a normal

direction, which by convention points to the interior. If each triangle

is oriented consistently with its neighbors, and the mesh is watertight

and non-self-intersecting, we have a strict binary classification that

enables safe topological operations.

The non-manifold setting requires n-ary material classification,

so mesh normals do not suffice. Instead, we follow previous authors

[Brakke, 1992; Yuan et al., 2012] in giving each material a unique

integer label, and applying labels to the front and back of each triangle

(i.e., each half-face is labeled). In this analogous 2D polygon example,

colors indicate labels. The top image shows the represented material

regions (including the “exterior” orange region), while the bottom

image shows the corresponding mesh where edges each have two labels. This representation does

not require consistent triangle orientation, even for triangle-pairs sharing a manifold edge. Instead, it

requires consistent material labels: all half-faces bounding a closed region must be labeled identically.

Maintaining and exploiting this extended notion of mesh orientation allows us to preserve watertight
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regions.

Throughout, the term region refers to a closed volume of space, while material refers to a region’s

type, indicated by its labels. Thus, two regions may be composed of the same material, but a region

cannot consist of more than one material.
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Chapter 5

Method Overview

Beginning from an initially valid and non-self-intersecting multimaterial mesh, our overall approach

proceeds as follows. The client application proposes a set of vertex trajectories, which we process with

collision resolution techniques to recover an intersection-free state. We then perform merging, mesh

improvement, and splitting, ensuring that each operation maintains intersection-safety. Algorithm 1

lays out the structure of our method.

Algorithm 1 Multimaterial Mesh-Based Surface Tracking
Note: mesh is intersection-free after each checkmark (X)

while simulating do

Advance vertices to predicted positions (§5.1)

Resolve interpenetrations (§5.2) X
Perform topological merging (Chapter 8) X
Perform mesh improvement (§5.3) X
Perform topological separation (Chapter 6 and 7) X

end while

5.1 Computing Vertex Positions

We first ask the domain-application to advance the mesh vertices to their proposed positions. A

typical application will respond by time-integrating a physical equation or geometric flow, but

ultimately we are agnostic to the source of the motion. The proposed trajectory may induce mesh
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intersections.

5.2 Resolving Interpenetrations

Next, we perturb the proposed trajectory to a non-intersecting state. We apply exact continuous

collision detection (CCD) [Brochu et al., 2012], and resolve collisions using the method of Bridson

et al. [2002] as extended by Harmon et al. [2008]. Our enforcement of an intersection-free invariant

is crucial: subsequent steps rely on it to ensure that remeshing and topology changes are performed

safely and successfully, following the general strategy of Brochu and Bridson [2009]. Beginning

from the intersection-free state produced by collision-resolution, every proposed edit to the mesh

is checked for collisions and canceled if any would be introduced. That is, individual mesh edits

are treated as atomic operations that either complete in full or are canceled; at all other times

the mesh is intersection-free. Treating mesh edits atomically also implies that we should prefer

fine-grained local edits, since these can be more cheaply collision-checked and succeed more often

in the presence of tangled geometries.

5.3 Mesh Improvement

Strong mesh deformations necessitate remeshing to maintain triangle sizes and aspect ratios. We

apply an incremental, feature-preserving scheme based on that of Brochu and Bridson [2009], which

is collision-safe per the discussion above. Complete details are in Chapter 9.

5.4 Multimaterial Topology Changes

Multimaterial scenarios in 3D undergo new topological transitions that do not arise with only two

materials. We first discuss the 2D analogs to provide intuition (Figure 5.1).

Multimaterial Merging, discussed in Chapter 8, occurs when two distinct material regions

collide while immersed in a third; the middle region divides in two, and a new interface maintains

separation between the originally disjoint outer regions (Figure 5.1, top). This contrasts with the

usual two-material case, where colliding regions always have the same material, and merge into one.

T1 and T2 Processes are known from the literature on soap films and bubbles [Weaire and
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Figure 5.1: Multimaterial topology changes in 2D. Merging (top): Two material regions separated

by a third collide to yield a shared interface. T1 process (middle): Two regions that share a border

separate while the remaining pair become connected. T2 process (bottom): One region (cyan)

collapses away.

Hutzler, 2001], and can describe how air bubbles (i.e., materials) within a connected soap foam

can change their local connectivity under flow. In a T1 process two materials that originally share

a border separate from one another while two different neighbouring materials become connected

(Figure 5.1, middle). This forms a new interface while leaving the region count unchanged, and can

only occur with four or more materials. In a T2 process a region collapses to a point and disappears

as occurs commonly in convergent flows (Figure 5.1, bottom).

For a complete set of operations to support surface tracking, mesh splitting would be necessary as

well. However, in our framework, this is achieved automatically through the T1 process (generalizing

the concept above, if we have the same material in the red and blue regions and another material

in the yellow and green regions in Figure 5.1, top, the T1 process becomes what we intuitively

understand as the splitting of the originally vertically connected region into two).
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Chapter 6

T1 Processes

Two Dimensions We analyze the behavior of a 2D T1 process by distinguishing two types of

non-manifold mesh configurations: regular vertices with edge valences of two or three, and irregular

vertices with edge valences above three (Figure 6.1). Irregular vertices are related to the degenerate

case where two or more valence three (regular) vertices coincide, and infinitesimal perturbations

would eliminate the degeneracy. In applications, irregular vertices usually exist only transiently

or not at all. Meyer et al. [2008] discuss this notion in the context of multimaterial meshing,

dubbing our regular vertices “generic” (as in general position) and treating irregular configurations

by approximating with nearby regular ones. Similarly, Plateau’s laws [Taylor, 1976] in 2D prohibit

stable equilibria for soap films with valences above three [Weaire and Hutzler, 2001].

However, as illustrated by Figure 5.1, middle, a T1 process requires passing directly through

an irregular configuration: an irregular vertex is created by an edge collapse, and then separated or

resolved into two regular vertices. In the figure, this allows red and cyan regions to connect while

green and yellow regions disconnect. Without the explicit resolution mechanism we will propose,

the incident regions remain artificially glued together at this lingering irregular vertex, regardless

of the flow field. (By analogy with Lagrangian elastic simulations, this can be viewed as a kind of

non-physical “locking” effect. In both cases, insufficient degrees of freedom prohibit the intended

motion.)

A T1 process is perfectly reversible, so the separation direction must depend on the underlying

physics (e.g., Surface Evolver examines surface tension forces on vertices [Brakke, 1992]). For

generality, we allow this decision to be application-dependent; typically, we will analyze the local
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Figure 6.1: Regular and irregular vertex configurations in 2D: Left: An interface separating two

regions is regular, as is a triple-point vertex separating three regions. Right: Vertices with edge

valence of four or higher are irregular.

Figure 6.2: Choice of separation direction: Resolution of an irregular vertex depends on the

underlying flow field.

velocity field (Figure 6.2).

Three Dimensions Our philosophy in 3D is identical: we allow irregular configurations to arise

through collapsing of short edges during mesh improvement, and then separate them back into regular

configurations as dictated by the flow.

Unfortunately, while a T1 process in 2D is fairly simple, a complete 3D T1 process involves

many individual mesh operations (Figure 6.3), and the (ir)regularity of a vertex cannot be defined

simply in terms of valence, since many different distinct irregular topologies are now possible (see

Figure 6.4 for a sneak peek). Rather than treat this situation with potentially fragile, special-case

code, we show that all irregular configurations can be treated in a simple and unified manner

by a concrete definition of regularity that allows classification of vertex topology based on just its

local neighborhood information, and analyzing the mesh topology and iterating on a single, low-level

vertex separation operation which we propose. Consistent with our overall approach, collision-safety

can be assured by canceling individual operations that violate it. In theory this can delay topology

changes, but we observed no artifacts across thousands of T1 processes.
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Figure 6.3: A 3D T1 process begins when a short edge between distinct triple-junction curves

collapses to become a vertex incident on four materials. Adjacent edges on the original interface

(red) also collapse yielding a quadruple-junction curve. Then, one vertex on the curve separates

perpendicularly to create a new interface (dark blue). Nearby vertices follow suit to complete the

process.

Region Graphs Now consider the space of possible configurations about a vertex in 3D. As in 2D,

the regular configurations (Figure 6.4, left) mirror the stable states described by Plateau’s laws: a

manifold surface by itself; three surfaces meeting along a triple curve; and four triple curves meeting

at a point. However, in 3D both vertices and edges may have high valences, leading to diverse

irregular configurations (Figure 6.4, right). Because visualizing 3D vertex configurations is difficult,

we need a better tool to characterize their topology and determine how to resolve them. We will

therefore define the concept of a region graph of a mesh vertex.

For brevity, we adopt the following incidence definitions. A vertex and an edge (resp. triangle)

are incident if the vertex is one of the two (resp. three) vertices composing the edge (resp. triangle).

A region and another simplex (i.e., vertex, edge, or triangle) are incident if any triangle bordering

that region contains the simplex in question. Two regions are incident only if they share a triangle;

two regions joined only by a vertex or edge are not incident.

The region graph of a vertex v is an undirected graph in which each node corresponds to a region

incident on v. Two graph nodes are joined by an arc if the two corresponding regions are incident.

(We use the terms node and arc for graph elements, and vertex and edge for 3D mesh elements).

Figure 6.5 shows the region graphs for the regular and irregular configurations in Figures 6.4. (This

region graph is a subgraph of a larger dual (pseudo-)graph of the entire mesh, but per-vertex region

graphs offer simpler visuals.)

Next, we make the key observation that the region graph for a regular vertex will be completely
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Figure 6.4: Regular and irregular configurations in 3D: Left: (1) A manifold surface separating

two regions (here, the top and bottom half-spaces), (2) a triple-curve bordering three regions, and (3)

a quadruple-point at which four regions meet. Right: Four of the infinitely many possible irregular

non-manifold configurations that must be resolved by vertex separation.

Regular Irregular

Figure 6.5: Region graphs: Left: The region graphs for vertices at: (1) a two-region surface,

(2) a 3-region curve, and (3) a 4-region junction, corresponding to Figure 6.4, left. Their graphs

are complete. Right: The region graphs for the central vertices in the irregular configurations of

Figure 6.4, right, are incomplete.

connected (Figure 6.5, left); all other graphs, which lack some arcs, correspond to irregular vertex

configurations (Figure 6.5, right). Since graph arcs correspond to region incidence relationships, this

implies that a vertex v is regular if every pair of regions incident on v is also mutually incident (share

a face). Missing arcs therefore indicate pairs of regions that are not incident, an irregularity that we

must correct. As suggested by Figures 6.6 and 6.7, this requires vertex separation: splitting apart the

irregular vertex, and filling the gap with new geometry.

Vertex Separation As a concrete example, consider the central vertex v in Figure 6.7, left. Its

region graph has a missing arc corresponding to the left and right (non-incident) regions, A and B.

We duplicate and pull the mesh vertex v apart into new vertices va and vb. Their separation distance

is set to a fraction of the average length of the surrounding edges, typically 10%. Triangles originally

incident to region A are updated to use vertex va rather than v, by simply relabeling one of its vertex

indices. Similarly, triangles incident to region B are updated to use vb. All remaining triangles
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incident on v, but not on region A or B, are updated to use vb. Figure 6.7, middle, shows the mesh

after it has been pulled apart.

This may yield a gap in the mesh that we need to fill, depending on the incident regions’ material

types. The gap’s shape arises from the existing edges incident on v “opening” into triangular gaps,

as the original vertex v splits in two. Therefore, for each edge vw incident on region A, vertex

separation creates a potential gap that we may fill with a new face vavbw (Figure 6.7, right).

However, we do not always need to fill the resulting gap with triangles. In some cases, adding

these triangles would erroneously separate regions consisting of the same material; i.e., the new

triangle would have the same label on both sides, making it redundant. (Consider a 3-region variant

of Figure 6.7 where the top and bottom middle triangles are absent.) This can be detected in advance

by examining the two triangles incident on the edge vw and the region A. If the two triangles’ labels

on the outside of region A differ, the triangle must be created to maintain the separation of these

materials.

Returning to the topological view, Figure 6.7, bottom, shows the effect of vertex separation on the

region graph. The original graph for vertex v is replaced by two distinct region graphs for the vertices

va and vb, both of which are complete. Therefore the new geometry is in a regular configuration, as

desired.

Vertex separation subsumes the two-material pinching of “singular” non-manifold vertices of

Brochu and Bridson [2009].

Resolving Complex Irregular Vertices Vertex separation can be performed on any irregular

vertex, but when its original region graph has multiple missing arcs (i.e., multiple pairs of regions are

not mutually incident), one vertex separation may not suffice; va or vb can remain irregular. This can

be solved by iterating vertex separation as we discuss next. We will require a decision on which arc

to process at each step, but for the moment, consider picking one missing arc arbitrarily at each step.

After applying vertex separation, each of the two new vertices’ region graphs may still have

missing arcs. However, these region graphs will have strictly fewer nodes, since the region graph

for va does not contain node B, and vice versa. Since vertex separation only applies to irregular

vertices, this monotonic decrease in nodes per region graph halts when a vertex becomes regular with

either 3 or 4 regions (nodes). Therefore, we place any new irregular vertices back into a global queue
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Figure 6.6: Vertex separation in 2D: Top: An irregular vertex v in 2D (left) is separated into two

regular vertices, va and vb (middle); the resulting gap is filled by a new edge with appropriate labels

(right). Bottom: The incomplete region graph of v is correspondingly converted into two complete

region graphs for va and vb.

v

vb

va

vb
1

w2

w1

w2

va vbv

Mesh 
(Primal)

Region Graph 
(Dual)

w

va
A B

A B

Figure 6.7: Vertex separation in 3D: Top: An irregular vertex in 3D (left) is duplicated and separated

(center), and the resulting gap is filled by new triangles with appropriate labels (right). Bottom: The

incomplete region graph is replaced by two complete region graphs.
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to be processed, assured that iteration will terminate within finite steps with a set of regular vertex

configurations. Figures 6.8 and 6.9 show a vertex initially incident on six regions that requires three

vertex separations, and the corresponding region graph sequence, respectively.

Figure 6.8: Complex vertex resolution: This geometry’s central irregular vertex is incident on six

regions, and has a region graph with multiple disconnected node pairs. A sequence of three vertex

separations are needed to resolve this case. The result is a new interface (blue) between the front and

back regions, bounded by four regular vertices. Region graphs are shown in Figure 6.9.

Figure 6.9: Complex vertex region graphs: The sequence of region graphs corresponding to Figure

6.8. The original irregular vertex is split into two irregular vertices, each incident on five regions.

Each of these vertices are split into two regular vertices, each incident on four regions. While the

top vertex is not directly involved in the mesh edits in the second step, its region graph is modified

because the newly created interface connects the front and back regions.

Choosing Separation Directions In many cases there are multiple candidate region pairs {A,B}

at a vertex; the correct choice of which pair to separate should be determined by the underlying

flow. For each pair {A,B}, we first compute the direction of separation as the vector between the
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centroids of the one-ring vertices of v that are incident to either region. For ambient velocity fields,

we then take the dot product between the directional derivative of the velocity with the direction of

separation, which indicates how strongly the velocity field is diverging along that direction, i.e., how

strongly the pair desires separation. We compute this separation strength (either analytically or with

finite differencing) for each candidate pair, selecting the one with the highest value for processing.

(If the separation strength in a given direction is zero, no vertex separation is performed.) Algorithm

2 summarizes the complete process.

For generality, we can support alternate measures of separation strength. Mean curvature flows

seek to reduce surface area, so we examine the change in mesh surface area for each proposed vertex

separation, selecting the one which most reduces the area. Our normal flows tests do not give rise to

T1 processes.

Vertex separation is performed in descending order of separation strength over all irregular

vertices. Because edits to the mesh can slightly change its shape and resulting behavior, at the

discrete level a complex T1 process may depend on the outcome of others nearby. This global

sort assures that irregular vertices are processed in a consistent order, so that the outcome depends

on physical quantities rather than implementation-specific vertex ordering. This also minimizes

temporal flickering due to the mesh alternating among nearby configurations. While more costly than

greedily separating in the optimal direction for each vertex individually, irregular vertices typically

comprise a small and sparse subset of the mesh.

Consistency with Edge Collapses Since edge collapse and vertex separation are essentially dual

operations, their triggering criteria should be consistent. Otherwise, the same irregular vertex may be

repeatedly created and destroyed causing temporal coherence issues. Therefore, when performing a

collapse of a short edge that would create an irregular vertex, we also check if the velocity field is

acting to decrease the edge length. If not, this indicates that the physics is driving the geometry away

from the potential T1 process, so the instigating edge collapse is cancelled.

Collision-Safety It remains to ensure collision-safety of vertex separation. To do so, we exploit the

concept of pseudo-motions [Brochu and Bridson, 2009], which approximates certain instantaneous

mesh operations as a continuous deformation over a step of fictitious time. This allows CCD checks

to identify any collisions between the relevant geometry and the rest of the mesh. Vertex separation
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can be viewed as a pseudo-motion transporting vertex v to the position of vb, followed by a second

pseudo-motion that separates va from vb, bringing the triangles of region A along with it. The newly

created gap-filling triangles vavbw are just the sweeping trajectories of the edges vbw due to the

motion from vb to va.

In addition to colliding with the rest of the mesh, triangles and edges moved in the second

pseudo-motion can end up intersecting the geometry they were pulled apart from. This cannot

be tested via CCD since these elements are initially incident to vertex v, i.e., trivially colliding.

We instead detect such intersections through instantaneous (static) collision detection on the final

configuration. Specifically, the final positions of triangles incident on region A are tested against all

mesh edges, and the final positions of edges incident on A are tested against all mesh triangles. This

will guarantee no intersections, but could potentially allow tunneling of very small components. We

rule this out by testing for instantaneous collisions between all mesh vertices and the volume swept

out by each moving triangle’s pseudo-motion. Since only a single vertex of each triangle moves

during the pseudo-motion, these volumes are tetrahedra, and a standard point-in-tetrahedron test

suffices.

Ordering of Operations In Algorithm 1, we perform merging and mesh improvement before

vertex separation. This choice ensures that potential T1 processes initiated by edge collapses are

usually completed by vertex separation operations before proceeding to the next time step. This

allows the underlying physics to continue evolving without locking four or more regions together.
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Algorithm 2 Vertex Separation
while T1 process has occurred in the last iteration do

Candidate list C = { }

for all vertex v in the mesh do

Construct v’s region graph G = V,E

If the graph G is already complete, skip this vertex

for all {A,B} /2 E where A 2 V,B 2 V do

Compute separation direction d

AB

t
AB

 separation strength(d
AB

)

if t
AB

> 0 then

Add {A,B, t
AB

,d
AB

} into the candidate list C

end if

end for

end for

Sort C with descending t (separation strength)

for all candidate {A,B, t
AB

,d
AB

} in C do

t
AB

 separation strength(d
AB

)

If t
AB

< 0, skip this candidate

Create vertices va and vb

va  v + ✏d
AB

vb  v � ✏d
AB

for all face f incident to v do

if f is incident to region A then

Change f ’s vertex v to va, keeping its labels

else

Change f ’s vertex v to vb, keeping its labels

end if

end for

for all vertex w adjacent to v and incident to A do

Add face vavbw with proper labels if needed

end for

end for

end while 27



Chapter 7

T2 Processes

We now consider the simpler T2 process in which a region shrinks until it disappears, as occurs in

convergent velocity fields (Figure 7.1). In the discrete case, a closed tetrahedron shaped region may

undergo an edge collapse or edge flip during remeshing that yields a specific degenerate configuration:

a pair of triangles sharing the same three vertices. Their labels nevertheless remain consistent; i.e.,

the conceptual zero-volume region “between” the two triangles is closed and consistently labeled.

To resolve this degeneracy, we detect if the outer regions

of the two triangles have different material labels; if so, we

delete one of the two triangles and relabel the other, effectively

removing the degenerate region while leaving in place a sepa-

rating interface between materials (top). Otherwise, the outer

regions have the same material and should be connected, so we

simply delete both triangles (bottom). The latter subsumes the

two-material analog described by Brochu and Bridson [2009].

Degeneracy removal also provides a second natural splitting

mechanism. If thread-like geometry becomes very slender its

tetrahedra collapse and are removed, without the explicit detection or cutting of spindles (e.g.,

[Wojtan et al., 2010]).
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Figure 7.1: In a 3D T2 process, one region (blue) collapses away.
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Chapter 8

Multimaterial Merging

T1 and T2 processes involve regions that are locally connected by the non-

manifold mesh. Multimaterial surface tracking also requires the ability to

handle collision-induced topology changes between regions that are initially

disjoint, either merging them into one or establishing a new separating

interface. Like previous authors [Brochu and Bridson, 2009; Stanculescu et

al., 2011], we initiate merging when geometry comes within a user-defined

proximity threshold. However, these existing two-phase approaches depend

on a local zippering operation. While we adapted zippering to multiple

materials, in practice it requires well-aligned geometry to avoid causing

intersections. Hence many zippering operations are canceled, preventing

merging and causing lingering interface noise (cf. [Brochu et al., 2010]).

8.1 Snap-Based Merging

We propose a new merging strategy based on snapping together of nearby

vertices. Our snapping operation is identical to an edge collapse, which

coalesces two existing vertices, except that the original vertices do not share

an edge. This simple operation can lead to more effective merging.
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Ideal Snapping Consider first an idealized scenario in which two perfectly

aligned triangles approach head on. As they come within the merge proximity threshold, each pair

of corresponding vertices is snapped together, so that the original two triangles become perfectly

coincident. Degeneracy removal (Chapter7) deletes one or both triangles to complete the merge. The

figure illustrates the 2D analog.

Generalized Snapping Since meshes rarely collide in ideal alignment, we generalize snapping

taking loose inspiration from compatible remeshing (e.g., [Alexa, 2002]). Concretely, we seek to

modify the nearby meshes such that there are readily snappable vertex pairs. We identify close

edge-edge and triangle-vertex pairs, and subdivide them as necessary: each edge in an edge-edge

pair is split at the closest point on the edge, and the triangle in a triangle-vertex pair is trisected at

the closest point to the vertex (face splits can be collision-checked similar to an edge split). Each

vertex now has a counterpart on the opposing mesh, and snapping proceeds as in the idealized setting.

Figure 8.1 shows the analogous 2D process.

Figure 8.1: Generalized snapping in 2D: Left: For nearby meshes, an edge in a proximate edge-

vertex pair is split at the closest point, and the resulting vertex pair is snapped. Similarly snapping a

second edge-vertex pair completes the merge. For matching materials, the separating edge would

then be deleted. Right: A zipper-based merge is more disruptive and adds more volume.

Because this split-and-snap strategy uses smaller, incremental edits to the non-manifold mesh

rather than zippering’s simultaneous creation of a manifold tube, each edit is less likely to be halted

by collisions. Furthermore, our method actively modifies the mesh to enable merging, whereas

zippering relies on encountering a feasible state by chance, which becomes unlikely in tangled

collisions. Accordingly, snapping offers more effective merging.
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Implementation Details When snapping a particular vertex pair, we place the newly snapped

vertex at the average position of the original vertices. Individual splitting and snapping operations

are checked for collision-safety and the introduction of degenerate geometry exactly as for edge

splits and collapses, respectively, and canceled if necessary. To minimize poor quality geometry and

unnecessary refinement, we also check if an edge or triangle would be subdivided close to one of its

existing vertices, and instead perform vertex-vertex snapping directly. Likewise, if a triangle would

be subdivided close to one of its edges, we split the edge instead, and snap using its new vertex. We

do not snap vertices that share an edge since that is an edge collapse. We allow snapping between

components of triangles that share an edge only if the angle between the triangles is less than 90

�.

This allows snapping of folded geometry, which occurs often during collisions, while preventing

snapping in the plane of a triangle.
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Chapter 9

Multimaterial Mesh Improvement

Our multimaterial mesh-based surface tracking algorithm employs collision-safe, local remeshing

[Brochu and Bridson, 2009] to maintain the quality of the triangle mesh, while preserving intersection-

safety. This is achieved via a set of local multimaterial remeshing operations which are direct

extensions of classic mesh operations, including edge flipping, edge splitting, edge collapsing,

and vertex smoothing. For completeness, we describe the details of these operations and their

multimaterial modifications below.

9.1 Our approach

At each iteration, we perform passes of edge splitting, edge collapsing, edge flipping, and vertex

smoothing. We cancel any operations that would introduce collisions, as well as those that would

yield unacceptably poor quality angles, inverted normals (relative to the original local patch), tiny-

area triangles, and large volume loss; following Brochu and Bridson [2009] we expose the target

angle bounds, edge length bounds, minimum triangle area bound, and volume change bound as user

parameters, as these may be problem-dependent (see also Chapter 9.6). These bounds are respected

by each of our topological operations as well. (In particular, the maximum volume change bound

should be chosen with this in mind; an overly strict limit can hinder merging.)

We detect feature edges by thresholding dihedral angles between triangle pairs sharing an edge

[Botsch and Kobbelt, 2004; Dunyach et al., 2013], rather than analyzing the local quadric metric

tensor [Brochu and Bridson, 2009; Jiao et al., 2010]; we found this to be more robust and intuitive to
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control, and it extends naturally to the non-manifold case. We used a threshold of 30�. Vertices lying

on one or two feature edges are considered to belong to a feature curve or ridge, and vertices lying

on three or more feature edges are identified as peaks.

9.2 Edge Flipping

The primary subtlety in performing edge flips is to ensure that triangle labeling remains correct,

since two consistently labeled triangles sharing a manifold edge may nevertheless have opposing

orientations. We pick one of the two incident triangles as a reference triangle, and use it to construct

the resulting flipped two-triangle patch with the same vertex winding order (i.e., orientation) for both.

The new triangles can then simply be assigned the label of the reference triangle. To preserve sharp

features we disallow flipping of feature edges, though we do allow flipping of smooth non-feature

edges that connect two feature vertices. We do not perform flipping on non-manifold edges, as this

operation is not well-defined. Collision-checking follows Brochu and Bridson [2009].

Rather than flipping based on a Delaunay(-like) criterion, we follow Botsch and collaborators in

seeking a mesh with more regular connectivity [Botsch and Kobbelt, 2004; Dunyach et al., 2013].

That is, we perform flips that drive valences towards six for interior manifold vertices and four for

boundary vertices. To handle manifold patches that border on non-manifold edges and vertices, we

simply ignore triangles that are connected to the patch only through a non-manifold edge for the

purposes of valence-counting, so that non-manifold vertices are seen as boundary vertices (i.e., with

an ideal valence of four, within the manifold patch in question). We perform the flip if it reduces the

total least squares difference between the ideal valences and the current valences.

min

4X
i=1

�
deg(vi)� deg(vi)

opt

�2 (9.1)

In the above, vi is one of the four vertices of the two-triangle patch, deg indicates the vertex valence

(or degree), and deg(vi)opt is the optimal valence of vi (either four or six).

9.3 Edge Splitting and Collapsing

Splitting and collapsing of non-manifold edges are straightforward extensions of the manifold case

(Figure 9.1), and can be checked for collisions in the same way [Brochu and Bridson, 2009]. We
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use an upper and lower edge-length bound to trigger splitting and collapsing, respectively. Child

triangles created by an edge split inherit the labels of their parents. Edge collapses do not require

relabeling, since the two triangles bordering the edge are deleted and the surrounding labels remain

correct.

To generate new vertex positions when splitting or collapsing, we use the modified butterfly

scheme [Zorin et al., 1996; Brochu and Bridson, 2009; Wojtan et al., 2010]. We treat both non-

manifold edges and feature edges in the same manner as Zorin’s original scheme treats boundary

edges. This has two benefits. First, sequences of non-manifold or feature edges are subdivided by

fitting a smooth cubic curve, thereby better preserving their shape. Second, a smooth region separated

by a non-manifold curve or sharp feature curve from an adjacent smooth region uses information only

from the “same side” to perform subdivision; as in the regular boundary edge case, reflection is used

to derive ghost-data for “missing” triangles. This preserves the smoothness of patches on either side,

such as in the case of the sharp intersection curve produced by the merging of two spheres. Similarly,

for situations in which two or more smooth patches are connected at only a single non-manifold

vertex (but no edges), each patch is treated as a distinct manifold.

When collapsing an edge to a point, we can choose the position of the final point to be either one

of the existing endpoints or a new point computed using subdivision. In smooth regions, subdivision

is preferred, whereas near sharp features selecting one of the end points better maintains the shape.

Following Brochu and Bridson [2009], we preserve peak vertices over ridge vertices, and ridge

vertices over smooth non-feature vertices. In our non-manifold setting, when two vertices have the

same feature type, we prefer to keep a non-manifold vertex over a manifold one. If two vertices are

equivalent in terms of features and manifoldness, we simply use the midpoint. Taken together, these

choices minimize the disruption of features and non-manifold boundaries that collapses can cause.

The collapsing operation is a potential source of certain degeneracy configurations. Most of the

degeneracy cases are resolved by the same flap-removal operation introduced in 7; the most common

cases are the collapse of an edge of a tetrahedral region, which effectively constitutes a T2 process,

and the collapse of an edge of a triangle with the opposite vertex being of valence 3, which brings

the two triangles neighboring the two uncollapsed edges to coincidence and thus deleting them.
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Split Collapse

Figure 9.1: Non-manifold edge splits and collapses closely parallel their manifold counterparts.

9.4 Vertex Smoothing

We apply smoothing of vertex positions to improve the shape of mesh triangles. Because naı̈ve

Laplacian smoothing tends to rapidly destroy volume, particularly in high curvature regions, we

follow previous authors in applying tangential or null-space smoothing, which removes the normal

component of the displacement induced by smoothing [Botsch and Kobbelt, 2004; Jiao and Alexander,

2005; Jiao et al., 2010]. For feature ridge vertices, smoothing-induced displacement perpendicular to

the ridge direction is projected out instead so that smoothing occurs only along the ridge. For peak

vertices, no smoothing is applied. We compute the vertex normal and ridge direction per Jiao and

Bayyana [2008]. No special treatment is required for non-manifold geometry.

For strongly folded geometry (dihedral angles exceeding 165

�) we instead perform Laplacian

vertex smoothing in the average plane of the fold, as a special case. That is, we find the average

normal of the incident triangles, and project out smoothing perpendicular to that direction. The goal

is to widen the angle at the fold, under the assumption that such very sharp folds correspond to a

crease that is in the process of merging. Treating this case with smoothing rather than relying entirely

on collision-induced merging produces smoother intersection curves, for example during the initial

collisions of spheres undergoing normal flow (Figure 10.3).

Smoothing yields an updated position for each vertex; these displacements are treated as pseudo-

motions allowing collisions to be detected and resolved in the same manner as time integration

[Brochu and Bridson, 2009].
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9.5 Eliminating Very Poor Triangles

Individual remeshing operations are canceled if they damage features or violate bounds on volume

change, areas, angles, or edge lengths, as described by Brochu and Bridson [2009]. However, in

complex scenarios these potentially conflicting constraints can limit the remesher’s ability to resolve

poor triangles. For example, eliminating a poor quality triangle may require smoothing a vertex in a

manner that damages a feature, or performing a collapse that temporarily introduces a very small

angle. Therefore, if triangles with very poor angles (e.g., outside [2�, 178�]) remain after our standard

remeshing pass, we apply a more aggressive strategy: we apply our remeshing operations on those

elements alone while ignoring all constraints beyond intersection-safety. This infrequently invoked

fail-safe is effective at eliminating poor triangles at the cost of additional localized regularization.

9.6 Simulation Parameters

Our algorithm exposes a set of parameters that control the behavior of various mesh operations,

allowing the method to cope with the diverse needs of different applications. Some of these parameters

are drawn directly from the original El Topo method [Brochu and Bridson, 2009], while a few are

specific to our new multimaterial setting.

For most of the simulations presented in the paper, we used the following default set of parameter

values. Maximum volume change allowed in any remeshing operation is set to 0.1%¯L3 where ¯L is

the mean of the upper and lower target bounds for edge lengths during remeshing. The minimum

area triangle allowed to be created during remeshing is set to 2%

¯L2. Vertex separation distance is set

to 10%

¯L. The range of triangle internal angles allowed to be created by any remeshing operation is

set to [3

�, 177�]. In addition to edge length bounds, we also attempt to split edges whose opposing

angle exceeds 160�. The distance threshold that triggers proximity-based impulses during collision

handling ranged from 10

�4
¯L to 10

�3
¯L. The distance threshold at which merging is initiated ranged

from 10

�4
¯L to 2 ⇥ 10

�2
¯L. The merge distance threshold should typically be set larger than the

collision proximity threshold, since otherwise the collision code will act to keep surfaces too far

apart to merge, which would clearly be counterproductive.

While these parameter settings were generally effective there are clear tradeoffs involved, which

is why we chose to expose them to the user. For example, in situations where smaller perturbations at
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T1 transitions are desired, the user can specify a smaller separation distance for the vertex separation

operation used to resolve irregular vertices. This reduces the size of the required instantaneous mesh

modifications at the expense of reduced mesh regularity (i.e., a shorter new edge). Similarly, a low

threshold on the allowable volume change during remeshing operations can better preserve volume,

but requires canceling some operations that may have lead to better mesh quality.
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Chapter 10

Evaluation

Recapping, our method can be seen to handle the entire targeted suite of high-level tasks, using a

concise set of local, collision-checked, low-level transformations: edge flip, edge split, edge collapse,

face split, vertex smoothing, vertex snapping, vertex separation, and degenerate face removal. In

addition, the use of exact CCD to detect and cancel unsafe operations further guarantees that our

topological changes never introduce intersecting meshes.

Below, we evaluate the capabilities of our method on several complex multimaterial mesh flows.

To give an example, it took 4 hours to run our largest mean curvature flow test to completion (2200

frames), which involves 2000 initial regions and 220K triangles, on an Intel Xeon 3.47GHz machine

with 24GB RAM.

Experiments consistent with first order convergence are documented in a technical report [Da

et al., 2014a].

We are making the source code of our C++ implementation, dubbed Los Topos, available in order

to encourage application of our method and to foster further research. It can be downloaded at

http://www.cs.columbia.edu/cg/multitracker/.

10.1 Prescribed Velocity Flows

We start with multimaterial variants of two traditional stress tests: the Zalesk sphere and Enright

tests [Enright et al., 2002a]. In the Zalesak sphere test a notched sphere is rotated through 360

�

about an external point to test sharp feature preservation under rigid body motions, a traditional
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Figure 10.1: Multimaterial Enright test: A sphere divided into four material regions is advected

through the “Enright test” velocity field. The distinct regions are well-preserved despite the extreme

stretching. Top: Interior interfaces. Bottom: Exterior interfaces.

strength of meshes. In the Enright test a sphere is advected through a highly deforming velocity

field to induce very thin features. We used fourth-order Runge-Kutta to compute vertex trajectories

from the ambient vector fields. The final configuration shows remarkably faithful recovery of the

original spherical shape; the largest error is seen around the region undergoing extreme stretching,

where small errors introduced by the remeshing operations such as edge collapsing and T1 vertex

separation are magnified significantly into the final configuration errors.

Our multimaterial Zalesak disk test exhibits no perceptible smoothing or lost volume. Our

multimaterial Enright test (Figure 10.1) preserves thin features even under extreme stretching in

multi-layered regions. While gradually accumulated position error due to time integration and

remeshing manifests as mild “wrinkling” on the final sphere, this is consistent with El Topo’s results

[Brochu and Bridson, 2009] and difficult to avoid for such purely passive flows. In a simulation

scenario, this effect should be eliminated either through problem-dependent physical processes

or additional regularization [Bojsen-Hansen and Wojtan, 2013a]. This effect has been repeatedly

observed in computational physics settings too, and treated by volume-preserving smoothing or

“undulation removal” [de Sousa et al., 2004; McKee et al., 2008; Toutant et al., 2012].

Alternating steps of outward normal flow and the curl noise velocity field of Brochu and Bridson
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[2009] yields a stress test featuring both substantial stretching and merging. We applied this process

to four spheres of different materials, which resulted in the complex geometry in Figure 10.2. For

this test, we performed normal flow by computing area-weighted vertex normals (normalized average

of incident triangle normals, weighted by area) and applying a constant offset distance (i.e., forward

Euler).

The final prescribed velocity flow example we consider is a single-phase grid-based fluid flow

inside a cubic domain. External forcing is applied to induce a swirling motion on a collection of 27

spheres with various material labels being passively advected using second-order Runge-Kutta.

Figure 10.2: Normal Flow + Curl Noise: Alternating steps of normal flow and curl noise applied to

four spheres yield complex deformations and topology changes.

10.2 Geometric Flows

Geometric surface flows have various applications within computer graphics [Eckstein et al., 2007;

Pan et al., 2012; Crane et al., 2013]. We consider multimaterial normal and mean curvature flows.

Normal Flows To examine merging in more detail, we apply multimaterial normal flow on two

special cases of interfacial speed functions. First, we consider material surfaces moving (either

inward or outward) at a constant speed; when they collide, a new interface is created and assigned a

velocity of zero. Results show two expanding spheres colliding, leading to the formation of a circular

internal interface. This non-manifold curve remains sharp, and the surfaces on either side remain

smooth, due to our non-manifold, feature-preserving remeshing strategy. When the direction of flow
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Figure 10.3: Multimaterial normal flow: Twenty-five spheres of different materials and sizes

undergo outward normal flow collide to yield many internal interfaces, shown in red.

is reversed, the spheres seamlessly shrink until finally pinching off and disappearing. The figure

shows the result of normal flow applied to 25 initially disjoint spheres of various materials (colors).

Mixed material merging produces interior interfaces, while matching materials merge into one region.

Reversing the direction of flow causes the interfaces to smoothly shrink and disappear.

The second special case of normal flow we consider follows an example by Saye and Sethian [2012].

A set of three interfaces move at constant speed in the normal direction, with the signs of the velocities

chosen to satisfy a cyclical ordering; that is, material A flows into material B, B flows into C, and

C flows into A. The initial configuration is two overlapping spheres sharing a flat circular interior

interface bounded by a triple curve. This causes a curling motion around the stationary triple-curve

(Figure 10.4).

We computed normal flow vertex trajectories using the face offsetting method (FOM) [Jiao, 2007].

FOM alleviates artifacts in discretizations based on vertex normals, at the cost of a stringent time

step restriction. Because FOM does not (yet) support general evolution of triple curves undergoing

normal flow, these examples compute triple junction trajectories as special cases. (Multimaterial

normal flow with arbitrary speeds and triple junctions is non-trivial even for level sets (e.g., [Zhao et
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Figure 10.4: Cyclical normal flow: Two overlapping spheres sharing a circular internal interface

undergo normal flow with a cyclical ordering, with the front cut away for visualization. The result is

a curling effect around the stationary triple curve.

al., 1996]), and has not been addressed for triangle meshes.) For the expanding and shrinking spheres,

we compute triple-junction trajectories by considering only the outer manifold surface, ignoring the

(stationary) interior interface. For cyclical normal flow, we treat the triple curve as a zero-velocity

boundary, consistent with the true solution.

Mean Curvature Flows Figures 6.3 and 7.1 show basic T1 and T2 processes, driven by mean

curvature flow. An arrangement of 2000 distinct materials evolving inside a cube (Figure 10.5)

demonstrates robustness across thousands of topology changes.
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Figure 10.5: Mean curvature flow: A collection of 2000 random Voronoi cells undergoes many T1

and T2 topology changes.

We computed mean curvature flow vertex motions using the discretiza-

tion of Meyer et al. [2002] with forward Euler. Based on minimization of

surface area, it extends to non-manifold vertices simply by considering the

area of all incident triangles.

10.3 Comparing Snapping and Zippering

To compare snap-based merging against zippering we consider two spheres

merging under normal flow, with the resulting shared interfaces shown

to the right. With zippering (top), the growing intersection curve and

internal interface develop in a discontinuous and noisy fashion. By contrast,

snapping (bottom) yields smoother growth of the new interface. The outer

geometry also exhibits greater overall symmetry and smoothness with snapping.

For these tests, we intentionally used normal flow based on vertex normals. This gives merging

velocities more reflective of fluid or solid animations, which undergo many topological operations

during collisions; by contrast, FOM generates vertex velocities that (combined with small time steps)

avoid merge operations after initial contact. The latter yields better normal flows, as in Chapter 10.2,

but does not adequately stress test complex merging.
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10.4 Liquid Animation

We demonstrate full integration with a grid-based multiphase liquid solver [Losasso et al., 2006],

in which the evolution of the interfaces is tightly coupled to the fluid physics. We first consider

liquid spheres colliding in zero gravity with surface tension. Figure 20.1 shows a two-droplet case

merging and separating. The simulation takes on average 48 seconds per frame, of which 8.6% is

spent on surface tracking. We also consider a three-droplet variation, in which two matching droplets

briefly merge through the third surrounding droplet, briefly forming an unstable non-standard double

bubble. Our third example (Figure 10.6) applies high viscosity (per Batty and Bridson [2008]) to

the collapse of nine viscous Stanford bunnies falling in a heap under gravity; the various impacting

interfaces merge as expected. Each frame takes 174 seconds, and surface tracking takes 23.8% of

the total simulation time. Taking best advantage of mesh detail for liquids can require appropriate

sub-grid physics, adaptive grids, or coupling with particles [Brochu et al., 2010; Yu et al., 2012;

Bojsen-Hansen and Wojtan, 2013a], which has not yet been explored in the multimaterial setting.

Following Thuerey et al. [2010], we applied local volume-preserving mean curvature flow to gradually

regularize sub-grid geometric features, deferring further study of this question to future work.
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Figure 10.6: Viscous Bunnies: A multiphase scenario in which nine viscous bunnies with different

materials are dropped into a pile.

Figure 10.7: Swirling: We passively advect 27 spheres through a single-phase fluid simulation in a

cubic domain with a rotational forcing function applied to induce mixing.
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Figure 10.8: Scaling of the total run time against mesh complexity.

10.5 Scaling

To experimentally examine how our method’s performance scales with mesh size, we conducted

a series of simulations with identical initial geometry, but varying remeshing resolution, for two

different simulation scenarios:

1. face offsetting on two initially disjoint spheres, and

2. mean curvature flow on a cube divided into 20 Voronoi cells.

The total simulation time was recorded for each run and plotted against the average number of

triangles throughout the simulation, shown in figure 10.8. The slope of the two fit lines suggest our

overall method scales close to linearly with the number of triangles in the mesh. Extending the

algorithm to even larger examples should be possible by exploiting parallelism and more advanced

collision-culling strategies.
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Chapter 11

Discussion

While we focused on topology change, enhancements to remeshing would be welcome. In particular,

we preserve intersection-safety, but it remains uncertain what, if any, absolute and simultaneous

guarantees on triangle quality and feature preservation may be achievable. Spatially adaptive,

anisotropic, or high-order remeshing could improve our results [Jiao et al., 2010; Narain et al., 2012;

Clark et al., 2012]. Some edge-length scale popping or flickering can be visible when edits must

modify vertices on nearby distinct feature curves or when folding occurs, such as in the curl noise

example (Figure 10.2); however, merging level sets also “pop” at the grid scale.

Exact CCD only provably guarantees collision detection; floating point precision hinders true

guarantees on response in degenerate scenarios [Brochu et al., 2012]. Hence our topological

operations are truly safe or canceled, but impulsive response [Bridson et al., 2002; Harmon et al.,

2008] applied after time integration has no theoretical guarantees. Pervasive collision detection is also

a performance bottleneck. We applied broad-phase culling via uniform grids; adaptive alternatives

could offer speed-ups. The locality of our mesh edits also suggests parallelization opportunities.

Faithful modeling of soap films and bubble blowing requires open surfaces, for which surface

meshes have strong natural advantages over implicit models. For example, Bernstein and Wojtan

[2013] developed topological operations for geometric modeling with open surfaces. The core

challenge in our setting is to eliminate the dependence on consistent region labels during topological

operations.

In order to make the algorithm scale better on a parallel architecture, operations that can be

carried out concurrently should be identified. Thanks to the local nature of our remeshing operations

48



including the T1 processes, each operation reads and writes a relatively small patch on the mesh (at

most the 2-ring neighborhoods) so in most cases one operation would not interfere with the next.

Another layer of parallelism can be added in the collision pipeline. Since we ensure collision-

safety for each edit and thus the total collision checking cost can be significant, parallelizing the

collision detection code is likely to provide a significant gain. It is also relatively easy to parallelize,

since the narrow phase collision detection usually involves reading and performing computation on a

number of nearby mesh elements without any write operation.
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Part II

Surface-Only Simulation of Soap Films

and Bubbles
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Chapter 12

Introduction

Figure 12.1: A series of snapshots of an evolving catenoid soap film joining two circular wires, an

instant before the film pinches apart.
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Figure 12.2: A variety of dynamic foam, film, and bubble scenarios captured by our method. Top:

A small foam rearranges and settles to equilibrium. Bottom: A bubble with a wire constricting its

mid-section gradually squeezes to one side.
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In this part of the dissertation, I will discuss the development of a surface-only simulation framework

for a particular fluid phenomenon: the air flow around soap films, which is behind the familiar

motions of soap bubbles and foams. Although we encounter bubbles and foam on a daily basis while

drinking coffee, washing the dishes, or playing with children’s toys, the motion and structure of these

phenomena are difficult to understand and even more difficult to simulate with a computer.

Soap bubbles are essentially layers of immiscible fluids: air on the inside, a thin film of liquid,

and then air on the outside again. The surface tension of the liquid drives the bubble toward a shape

with less surface area, while air pressure forces the bubble to maintain a constant volume. These

behaviors are described by the Navier-Stokes equations, which can be exceptionally difficult to solve

accurately, especially when confronted with the large density jumps, immiscible fluid interfaces, stiff

surface tension forces, and extremely thin liquid surfaces required for bubble motion.

Prior work has successfully simulated foam dynamics using an Eulerian approach. These

approaches utilize considerable computational resources for the detailed calculation of the air

dynamics within each bubble and the accurate resolution of film geometry. We propose a new

model which solves the problem more economically while guaranteeing several important theoretical

properties by construction.

Our proposed model is the first numerical method for the dynamics of soap films, bubbles, and

foams that is based on the equations of non-manifold vortex sheets.

We model soap film structures as non-manifold vortex sheets driven by surface tension forces.

We propose a discrete model to evolve the sheet as it deforms and undergoes topology changes such

as pinching, merging, and rearrangement.

We represent the geometry using a Lagrangian non-manifold triangle mesh decorated with

material region tags. We store circulation variables on the vertices; by Kelvin’s circulation theo-

rem this ensures a circulation-preserving model by construction. Numerical results exhibit nearly

dissipation-free dynamics.

The use of the vortex sheet equations ensures an exactly divergence-free velocity field via the

Biot-Savart law, and integrating mesh vertex positions through the induced velocity field leads to

excellent volume preservation over long simulations.

We derive a simple, discrete update rule for the effect of surface tension forces on the non-

manifold sheet, based on a discrete measure of mean curvature. We formulate the update rule in a
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manner that generalizes immediately to the case of non-manifold junctions. This yields stable film

behavior even along complex foam junctions. Through the addition of a simple vertex constraint

mechanism, we support wire loops and structures to control the bubbles and films, enabling a variety

of familiar bubble interactions.

Our complete computational model provides a compact description of foam dynamics that

requires no volumetric discretization or linear system solve, is computationally efficient as compared

to traditional Eulerian techniques, and is robust enough to animate complicated foam dynamics on a

standard workstation.
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Chapter 13

Related Work

The behaviors of bubbles and foams are a subject of substantial interest across a variety of scientific

and engineering disciplines (e.g., [Weaire and Hutzler, 2001; Weaire, 2013; Saye and Sethian, 2013]).

The reproduction of their visual characteristics was addressed in a pair of articles by Glassner [2000a;

2000b]; more recent authors have explored the dynamic simulation of bubbles.

13.1 Particulate Bubbles

One simple approach to small-scale bubble dynamics is to treat each bubble as a particle, with various

rules controlling their interactions, such as the early work of Kück et al. [2002]. Later work has

yielded increasingly realistic behavior, and often used these models to add bubble details to traditional

volumetric liquid simulations [Greenwood and House, 2004; Hong et al., 2008; Kim et al., 2010;

Busaryev et al., 2012; Patkar et al., 2013].

13.2 Eulerian Bubbles

A different albeit more expensive tack is to model the bubbles themselves with volumetric multiphase

fluid simulations. Since the thickness of the bubble’s liquid film is on the order of micrometers, its

mass is effectively negligible and can be treated as such; thus the main challenges are to simulate

the air flow interior to the bubble with appropriate surface tension forces on the interface, and to

represent the evolving non-manifold geometric structure of foams. Hong and Kim [2003] were the
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first in graphics to make use of a multiphase flow solver to model bubbles, applying surface tension

as a smoothed body force. Hong and Kim [2005] adapted earlier work in computational physics

[Kang et al., 2000], using ghost-fluid methods to incorporate surface tension boundary conditions

for fully submerged bubbles. In a similar vein, Mihalef et al. [2006] simulated boiling water. To

allow multiple bubbles in mutual contact and thereby support foam structures, Zheng et al. [2006]

presented a regional level set method that generalizes the standard level set method to more than

two regions. Zheng et al. also proposed a semi-implicit surface tension discretization to improve

stability. Losasso et al. [2006] similarly extended the particle level set method to many regions to

adapt Hong’s work to the case of multiple interacting liquids. Kim et al. [2007] artificially inflated

bubbles to compensate for volume drift. Saye and Sethian [2013] added a model for film drainage

operating on different time scales.

13.3 Mesh-Based Bubbles

Since the visual appearance of bubbles is entirely dominated by the soap film itself, a seemingly

natural approach is to focus modeling efforts there. D̆urikoviç [2001] proposed such a method in

which the bubble surface is represented by a deformable mass-spring system on a triangle mesh.

Simple surface tension forces based on the Laplace-Young equation are applied to the vertices,

assuming bubbles maintain a near-spherical configuration. Similarly, Brochu [2006] proposed a

preliminary boundary-element discretization of 2D droplet dynamics, and Zhang et al. [2012] used

a surface-only mass-spring model for real-time animation of triangulated liquid droplets. Batty et

al. [2012] modeled thin sheets of viscous liquid with surface tension using triangle meshes, but did

not address bubbles. Though computationally attractive, these models concentrate the mass of the

system on the (thin) liquid film, whereas in the case of bubbles the film is effectively massless relative

to the surrounding air flow. Zhu et al. [2014] applied a similar thin-sheet idea to inviscid liquids and

films, and modeled the influence of wind by coupling to a standard dense Eulerian grid method. This

approach yielded compelling animations of blowing bubbles, soap film catenoids pinching apart, and

waterbell shapes, though it cannot model multi-bubble foam structures.

A more accurate approach to mesh-based modeling of bubbles and foams at equilibrium is to

construct a discrete surface energy based on the area of the interfaces subject to a volume constraint
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per bubble, and seek to minimize it. This is the approach taken by the venerable Surface Evolver

technique [Brakke, 1992]. Since surface tension forces are proportional to interface mean curvature,

the resulting discrete surface energy gradient in this model is essentially equivalent to discrete

mean curvature operators common in graphics [Pinkall and Polthier, 1993; Meyer et al., 2002].

Recent work on constant-mean-curvature surfaces [Pan et al., 2012] modifies the energy functional

to simultaneously optimize mesh quality.

Methods for volumetric simulation of multiphase flows have also made use of explicit moving

meshes. For example, conforming Lagrangian tetrahedral meshes with dynamic remeshing allow

for a finite element discretization of multiple regions with area-based surface tension discretized on

the interface triangles [Misztal et al., 2012; Clausen et al., 2013]. Rather than using a volumetric

tetrahedral mesh, Part I of this thesis presented Los Topos, a multi-region extension of the El Topo

triangulated mesh-based surface tracking package [Brochu and Bridson, 2009], and applied it to

Eulerian grid-based volumetric multiphase liquids. The work in this Part makes use of Los Topos to

handle the complex topological rearrangements exhibited by foams. In general, these mesh-based

volumetric methods rely on a complete discretization of the fluid domain, rather than the surface

alone, and have not been applied to bubble dynamics.

13.4 Vortex-Based Fluids

Vortex methods model incompressible flows by relying on an alternative basis representation [Cottet

and Koumoutsakos, 2000]. Rather than choosing the primary variable to be velocity, which must be

constrained to lie in the space of incompressible vector fields, vortex methods evolve the dynamics

using the curl of velocity, or vorticity, ! = r⇥ u. This family of methods guarantees incompress-

ibility by construction, avoids numerical dissipation common to traditional methods, and provides a

terser representation of the velocity field.

A variety of Lagrangian discretizations of the vorticity equation have been used including particles

[Park and Kim, 2005], filaments [Angelidis and Neyret, 2005; Angelidis et al., 2006; Weißmann and

Pinkall, 2009; Weissmann and Pinkall, 2010; Barnat and Pollard, 2012], and sheets [Pfaff et al., 2012;

Brochu et al., 2012], along with circulation-based Eulerian discretizations [Elcott et al., 2007]. The

conserved variable in all of these cases is circulation, though Mullen et al. [2009] presented an
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interesting energy-preserving Eulerian discretization. Zhang and Bridson [2014] recently proposed

an improved Particle-Particle Particle-Mesh (PPPM) strategy to accelerate the major bottleneck in

Lagrangian vorticity-based schemes: evaluation of the Biot-Savart kernel to reconstruct the velocity

field. Earlier work used the Fast Multipole Method (FMM) [Brochu et al., 2012], truncated the

required kernel evaluations [Pfaff et al., 2012; Vines et al., 2014], or suffered the O(N2
) cost of

pairwise evaluation.

Although vortex methods are most commonly applied to smoke, a few authors have considered

the role of vortex sheets at or near a liquid interface. Golas et al. [2012] used a hybrid approach: a

vortex particle method handles the large interior of the flow domain, and this is coupled to a regular

grid-based simulator applied on a narrow band around the liquid interface or solid boundaries. In

the context of deep ocean waves, Keeler and Bridson [2014] achieved a surface-only discretization

by combining the El Topo surface tracker with the solution of a specific boundary integral equation

derived under a potential flow assumption. Another use for vorticity equations at the liquid interface

is to provide additional detail to a lower resolution fluid simulation [Kim et al., 2009; Bojsen-Hansen

and Wojtan, 2013a], similar in spirit to the use of vortex particles that augment smoke simulations

with turbulent detail [Selle et al., 2005; Pfaff et al., 2009].

13.5 Vortex Sheets

We make use of a vortex sheet formulation of the vorticity equation. Early numerical work in this

direction was carried out by Tryggvason [1988], Agishtein and Migdal [1989], and Pozrikidis [2000]

among others. Recently Stock [2006; 2008] proposed a circulation-based discretization that has

since been extended to smoke animation [Pfaff et al., 2012; Brochu et al., 2012]. The main source of

vorticity for smoke is fluid density gradients (i.e., baroclinity), which requires some quantities to be

converted back and forth between vorticity and circulation. For bubbles the vorticity source is surface

tension, which possesses a simple integration rule that works directly in the space of circulations.
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Chapter 14

Smooth Setting

A soap film is a thin sheet of liquid immersed in an ambient fluid medium, typically air. When the

film has a spherical topology, it is known as a soap bubble, and when multiple such bubbles contact,

they form a non-manifold network of films known as a foam.

We focus on centimeter-scale soap films, whose dynamics are generally dominated by (a) the

surface tension of the film, along with (b) the (assumed) incompressibility and (c) inertia of the

ambient air. For the centimeter length scale, the inertia of the liquid itself is negligible; the temporal

evolution of the film is governed by the motion of the ambient air.

To capture this behavior, we model the interface as a vortex sheet.

14.1 Kinematics of a vortex sheet

A vortex sheet is an immersed surface delimiting a discontinuity in (only) the tangential component

of a velocity field in 3-space. While the tangential component of velocity is generally discontinuous,

the component normal to the vortex sheet remains continuous.

Consider a surface f : M ! R3 immersed in ambient space, where M ⇢ R2 is a reference

domain. To each surface point f(X) we associate a unit surface normal n(X) : M ! S2.

The state of a vortex sheet is encoded by its position f and a scalar field � : M ! R called the

circulation [Pozrikidis, 2000].
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Circulation We note that circulation is most typically defined as a quantity associated to a given

closed loop; in a slight abuse of terminology, borrowed from other works on vortex sheets [Pozrikidis,

2000], we take circulation to be a pointwise quantity, by identifying each point f(X) with an arbitrary

loop, as follows.

x
x

0

L n

Figure 14.1: Sign convention

for pointwise circulation.

To understand the geometry behind �(X), consider an arbitrary

closed loop L that pierces the sheet at x = f(X) and some fixed ref-

erence point x0 = f(X0) (refer to the inset figure). �(X) measures

the alignment of the velocity field to tangent motion along the closed

loop, i.e.,

�(X) =

I
L

u · dx.

Above, we emphasized the word arbitrary because for any two loops L1 and L2 both piercing the

sheet only at x and x0,
H
L1

u · dx =

H
L2

u · dx ([Pozrikidis, 2000]). We emphasized the word fixed

because the scalar field � is meaningful only if the same reference point x0 is used for all evaluations

of �(X),X 2M . Furthermore, selecting a different reference point x0
0 is equivalent to uniformly

offsetting the entire field by some fixed constant, �0
(X) = �(X)+C. Note that Fig. 14.1 establishes

a correspondence between the orientation of the surface (normal) and the sign of the circulation.

Recovering the ambient velocity from the circulation With � as our state variable, we can

evaluate the velocity field in 3-space in two steps. First we recover the vortex sheet strength,

� : M ! R3,

� = n⇥r

f

�, (14.1)

2

1

n
γ

Figure 14.2: Conventions for

vortex sheet strength.

where r
f

is the surface gradient operator for f . Observe that by con-

struction � is tangential to the surface (because of n⇥) and divergence-

free (because it is a right-angle rotation of a gradient field). Note

that the direction of � is determined by the local r
f

� direction,

independent of the choice of the reference point x0. Vortex sheet

strength represents vorticity confined to the sheet, under the relation-

ship ! = ��(f), with Dirac delta �.
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From the vortex sheet strength we recover the ambient velocity, u : R3
! R3 through the

Biot-Savart integral

u(x) =

1

4⇡

Z
f

� ⇥ (x� x

0
)

kx� x

0
k

3
df 0. (14.2)

The field u is divergence-free by construction. Thus, a velocity field derived from vortex sheet

kinematics is automatically able to capture the dynamics of incompressible fluids without explicit

enforcement of the incompressibility condition.

x
x

0

x′

Next, we consider two nearby points x and x

0 on the vortex sheet.

The integration loop for circulation at x0 intersects the sheet at x0 and

the reference point x0, and can be broken down as the sum of two

loops: one between x0 and x, and one between x and x

0. The former

corresponds to the circulation at x. Therefore, the difference between �(X) and �(X

0
) is the velocity

integral around the latter loop, which is represented by the tangential velocity jump u at x as the two

points approach each other. This reveals the following relation, which is needed in Section 14.3 (see

[Pozrikidis, 2000] for details):

�u = r

f

�. (14.3)

14.2 Dynamics of self-advection

In the absence of external forces, the evolution of the circulation field is given by Kelvin’s circulation

theorem:

D�

Dt
= 0, (14.4)

where D denotes the total (equivalently material or advective) derivative.

Consider the consequences on implementation. As the vortex sheet deforms under the advection

induced by the ambient air, the scalar circulation field remains constant. This property sets circulation

apart from a vorticity-based representation of the velocity field, avoiding explicit handling of vortex

stretching and simplifying the numerical implementation.

The question arises whether Kelvin’s circulation theorem is applicable since the vortex sheet

represents a tangential velocity jump which seems to ‘shear’ the material loop open. Intuitively,
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the (tangentially discontinuous) vortex sheet representation can be understood as the limit of a

(tangentially continuous) finite-thickness sheet model as the thickness tends to zero, and thus the

circulation theorem is well-formed. For a detailed derivation, we refer the interested readers to the

vortex sheet formulation [Pozrikidis, 2000].

14.3 Dynamics with surface tension

With surface tension, the circulation field no longer remains constant; instead its evolution is governed

by a simple, local law.

Neglecting viscosity and external forces, we have the momentum equation for the incompressible

Euler equations

Du

Dt
= �

rp

⇢
(14.5)

everywhere away from the sheet, where r is the canonical gradient of R3. Taking the difference of

the limiting values across the sheet gives the relation

D�u

Dt
= �

r(p1 � p2)

⇢
= �

r

f

(p1 � p2)

⇢
(14.6)

on the sheet. For the second equality, we have used the fact that r(p1 � p2) = r
f

(p1 � p2), which

holds because the velocity jump �u is tangential to the surface.

In the equations above, the two pressures p1 and p2 are those of the air on two sides of the film.

If we consider the (very thin) liquid volume in the film, we actually have three distinct regions (air-

liquid-air), separated by two liquid-air interfaces, and the difference between p1 and p2 is therefore

the sum of the two pressure jumps (from air on one side of the film to liquid, and from liquid to air

on the other side) induced by the surface tension in the two liquid-air interfaces. As a result, the total

pressure jump p1 � p2 is given by

p1 � p2 = �(H1 �H2), (14.7)

2

1
where p1, p2 are the pressures on each side of the surface, � is the surface

tension coefficient and H1, H2, are the (signed, scalar-valued) mean curvatures

of the two liquid-air interfaces possessed by a soap film immersed in air. We

use the convention that the mean curvature is positive when the interface is convex toward the liquid.
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For a manifold patch of the vortex sheet we simply have that H1 = �H2, since the conceptual

“two” sides of our idealized thin sheet geometrically coincide while possessing opposing orientations.

However, we have explicitly broken out the two contributions as a foreshadowing of our treatment of

triple-junctions.

Substituting (14.3) and (14.7) into (14.6) yields

Dr

f

�

Dt
= �

�

⇢
r

f

(H1 �H2). (14.8)

By linearity of differentiation, we find Drf�
Dt

= r

f

D�
Dt

. Applying this rule and integrating both sides

gives

D�

Dt
= �

�

⇢
(H1 �H2), (14.9)

where we have chosen to discard the integration constant, recalling that � is only defined up to the

choice of a constant, equivalently the choice of a reference point. For an alternative derivation, refer

to Pozrikidis [2000] who builds on an argument by Baker et al. [1982].

Note that circulation evolves in proportion to the scalar-valued mean curvature; this may be

contrasted against other representations of the velocity field, for which the consideration of surface

tension can involve the vector-valued mean curvature normal.

Discussion We have arrived at the temporal evolution of the circulation � subject to inertia and

surface tension. The attendant evolution of the ambient velocity field thus accounts for inertia,

surface tension, and (due to the Biot-Savart law) incompressibility.

The simplicity and locality of the evolution (14.9) become pronounced when one adopts a

Lagrangian discretization of the soap film: the update to the state variables requires simply the

evaluation of the mean curvature. To our knowledge this circulation-based temporal evolution of

vortex sheets subject to surface tension has not previously been employed to model soap films.
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Chapter 15

Discrete Setting

15.1 Spatial discretization

Figure 15.1: Oscillating cube.

Nonmanifold triangle mesh without boundary

We represent the geometry of our discrete soap film

using a piecewise linear triangulated surface, i.e., a

triangle mesh. The mesh contains non-manifold edges

and vertices where soap films meet along Plateau bor-

ders [Weaire and Hutzler, 2001].

Our mesh is always watertight, i.e., it does not have

open boundaries. We accommodate scenarios where

the soap film has a prescribed open boundary (e.g., a

wire) by ignoring a part of the mesh in the dynamics,

as discussed in Section 15.6.

Regions We enumerate each watertight region of the mesh (i.e., each bubble volume), assigning a

unique integer index to each region. Two regions with a common interface are called a region-pair.

Circulation For the purpose of modeling vortex sheets, we have interpreted circulation as a

pointwise quantity [Stock, 2006]; that is, it is a scalar field restricted to the surface. Recall

that the orientation of the circulation gradient together with the surface normal determines the
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γ
Γ2

Γ1

n

Γ3

� = n⇥r

f

�.

orientation of the vortex sheet strength: We therefore sample the

scalar circulation field � at vertices of the triangle mesh. This

gives rise to a piecewise linear field over triangles, whose gradi-

ent (and therefore also the sheet-strength) is piecewise constant, and

which coincides with the vertex-based discrete curvature measure

used below. (This is to be contrasted with previous work which

placed pointwise circulation on edges [Stock, 2006; Pfaff et al., 2012;

Brochu et al., 2012].)

We associate a distinct scalar circulation field to each region-pair. Thus, manifold vertices store

one circulation scalar, while triple-junction vertices store three circulation scalars, one for each

region-pair incident to the vertex. Quadruple-points, which also arise frequently in stable foams, will

store six circulations, and so forth.

Region-pair interfaces and circulations must satisfy a consistent sign convention. Our imple-

mentation chooses the interface normal as oriented from the higher index region to the lower;

the recovered velocity is independent of this arbitrary choice, so long as circulation variables are

consistently oriented relative to the surface normal, using the convention codified in Fig. 14.1.

15.2 Temporal discretization

Since we work in the Lagrangian frame of the moving surface, the time-evolution equation for

circulation (14.9) indicates that we can simply advect vertices according to the ambient velocity,

and integrate surface tension forces into the vertex-based circulations (§15.3). In the absence of

surface tension, circulations are carried along and naturally conserved. We apply forward Euler to

integrate the vertex positions under the velocity field u induced by circulations, as computed from

the Biot-Savart law (§15.4).

15.3 Integrating Surface Tension

We integrate surface tension forces into the circulation using the (discrete, scalar, signed, pointwise)

mean curvature at the liquid-air interface. Recall that since we have only surface tension forces, and

no baroclinic terms, we avoid the need to convert back and forth between circulation and vorticity:
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integration is performed directly in the space of circulations.

We take a forward Euler step, updating the circulation associated to each region-pair (i, j), i < j

via

��

v

i,j

= �

��t

⇢A
(Hv

i

�Hv

j

) (15.1)

where A is the Voronoi area of the vertex [Meyer et al., 2002], used to convert from integrated to

pointwise curvature, and Hv

i

, Hv

j

are the integrated signed scalar mean curvatures at vertex v due to

the liquid-air interface at incident regions i and j, respectively. Recall from the smooth setting that

Hv

i

is positive when region i is outwardly convex at v.

To evaluate Hv

i

, we consider only the triangles incident to vertex v and region i. We sum the

signed scalar mean curvature of incident edges. For each edge e, we take He

i

= |e|✓, where |e| is

the edge length, and ✓
i

is the dihedral angle given by cos ✓
i

= n

1
i

· n

2
i

, and n

1
i

, n2
i

are the outwardly

oriented normals of the two incident triangles to e for region i [Cohen-Steiner and Morvan, 2003].

The sign of He

i

is unambiguous, based on the outward orientation of region i. Then the signed scalar

vertex curvature, Hv

i

, is

Hv

i

=

1

2

X
e

He

i

(15.2)

2

1

31

2

where the factor of one half accounts for the

fact that the integrated edge curvature is divided

amongst its two vertices.

This unified treatment is applied identically

whether a vertex lies on simple manifold regions,

or on a complex triple, quadruple, or even higher-

order junction.

Plateau borders At a triple-junction the to-

tal effect of surface tension will be zero on all

of the three circulations, �v

1,2,�
v

1,3,�
v

1,3, only

when all three curvatures are equal, Hv

1 = Hv

2 = Hv

3 . This recovers the proper 120

� an-

gle Plateau border equilibrium, as dictated by Plateau’s laws, and illustrated in Fig. 15.3.

A similar behavior occurs for quadruple-points, where the four curvatures become equal
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with angles of ✓ ⇡ 109.47�. Although higher order junctions can also balance in this manner, they

are typically unstable.

Discussion For our mean curvature computation, we initially at-

tempted to use the familiar cotan Laplace curvature discretization,

which gives rise to a mean curvature normal vector, Hn; however, our

dynamics requires signed mean curvature scalars, H . While the latter

could theoretically be extracted from the former by an inner product

with an appropriately oriented surface normal, we encountered diffi-

culties in the use of various options for discrete vertex normals n. Without a discrete unit normal n

that is guaranteed to be in precise alignment with Hn, the scalar mean curvature H extracted from

Hn may have an incorrect sign.

15.4 Evaluating Biot-Savart

Given the circulation values stored on each vertex, including multi-valued circulations on non-

manifold vertices, we can convert to vortex sheet strength, and use the Biot-Savart law to find the

velocity at any point in the domain.

From � = n⇥r

f

� we uniquely recover the vortex sheet strength on a per-triangle basis. The

triangle normal n is computed in standard fashion recalling our earlier orientation convention, and

the scalar circulations on the vertices define a linear circulation field on the triangle from which the

constant gradient can be readily recovered. Since the vortex sheet strength is a per-triangle quantity,

no changes are needed to evaluate Biot-Savart near non-manifold geometry.

Our expression for the Biot-Savart law, with regularization per Pfaff et al. [2012], is:

u(x) =

1

4⇡

Z
S

�(x0
)⇥

x� x

0

(|x� x

0
|

2
+ ↵2

)

3/2
dx0. (15.3)

Thus the velocity u at a point x in space is an integral over the surface, which we discretize with

one-point quadrature at triangle barycenters. We set the regularization parameter ↵ to half the mean

mesh edge length. We perform a direct O(N2
) evaluation of this integral; proven FMM [Brochu et

al., 2012] or PPPM [Zhang and Bridson, 2014] techniques exist to drop this to essentially O(N).
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15.5 Integrating Position

The velocity can be evaluated at the mesh vertices in order to perform time integration of the vertex

positions. We again use forward Euler, although higher order schemes could be readily incorporated

(both here and when integrating surface tension) at the cost of additional Biot-Savart evaluations.

Since we use forward Euler to integrate surface tension into circulation (effectively updating velocity),

and then use forward Euler to advect positions based on the (updated) velocity, we are in fact applying

a Symplectic Euler scheme.

15.6 Solid Interaction

To support simple solid interactions with wire loops (e.g., Fig. 15.3), we develop a projection

method to constrain the motion of the vertices. Given a set of constrained vertices and their desired

trajectories, our approach locally modifies the circulations of the constrained vertices to induce the

necessary sheet velocities.

Since the tangential motion of the sheet does not necessarily correspond to tangential motion of

the actual liquid film [Pozrikidis, 2000], we seek only to constrain the normal motion of the sheet

by modifying circulations. In the tangential direction, we simply snap the vertices to their desired

position in the tangent plane. This reduces the number of active constraints from 3n to n for a set of

n constrained vertices. Conveniently, each (manifold) vertex carries a single circulation, giving us

exactly n constraints for n degrees of freedom. We can recover a square, dense linear system to find

the necessary circulations as follows.

We describe the computation of the Biot-Savart integral for this set of vertices as a matrix B

applied to the affected circulation variables, �
c

, yielding a relation u = B�

c

. We seek a change

in circulations ��

c

such that a vertex’s normal velocity component changes by �v · n, where �v

represents the difference between current and target velocity. We must solve the linear system

N

TB��

c

= N

T

�v (15.4)

where N is a matrix composed from the discrete vertex normals of the vertices. For robustness against

the possibility of (near-) singularity we employ Tikhonov regularization, by adding the identity
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matrix scaled such that its influence is small and independent of time step and mesh resolution:

(BT

NN

TB + �2
I)��

c

= BT

NN

T

�v, (15.5)

where � = 0.025/ē is the regularization parameter, and ē is the average edge length. This corresponds

to a mild preference for smaller changes in circulation. The computed ��

c

is directly added to the

circulation variables and the simulation continues.

At times, we would like to animate an open soap film bounded by a wire, although the Los Topos

package currently requires that all regions be closed and watertight. We therefore approximate open

scenarios by adding a film of inactive and non-rendered ghost triangles that do not participate in the

dynamics (i.e., circulation evolution, Biot-Savart evaluation, etc.), but do close up the open region.

Moreover, we observe that in the presence of an open boundary, having vorticity in the interior of

the soap film is insufficient, since those degrees of freedom cannot adequately encode a path of air

flow from below the film to above (and vice versa) around the film boundary. As a result the flow

behaves as if the air volumes above and below the film are conserved separately, even though the

two regions are well connected outside the sheet boundary. The top row of Figure 15.2 illustrates

this phenomenon in 2D. We therefore place an additional vorticity degree of freedom on each open

boundary edge along the edge tangent direction (Figure 15.2 bottom row), and solve for their strength

using the same projection method above.

Air flow

Figure 15.2: 2D illustration of the treatment of vorticity at open boundary. The thick blue lines are

the vortex sheet, with the yellow dots being the boundary. Top: The interior vorticity (orange arrows)

lacks the ability to represent an airflow path from below to above the sheet. Bottom: The additional

vorticity degrees of freedom (yellow) provides the airflow path around the open boundary.
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Figure 15.3: Top:A double-bubble being gradually pulled apart by two wire loop (constraints) on

either end. Bottom:A stable non-manifold film structure spanning an octahedron-shaped wire.
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Chapter 16

Time Integration

Our complete time integration loop is given by Algorithm 3.

Algorithm 3 Time Integration Loop
while simulating do

Integrate Surface Tension into Circulations (§15.3)

Recover Velocity from Circulation (Biot-Savart) (§15.4)

Integrate Vertex Positions Using Velocity (§15.5)

Enforce Constraints via Projection (§15.6)

Perform Remeshing and Topology Changes, Los Topos (§16.1)

end while

16.1 Discrete Mesh Evolution

Our discrete soap film model relies on the ability to represent non-manifold liquid interfaces as

Lagrangian triangle meshes, and to treat the topological changes that arise as bubbles deform and

rearrange. We make use of the Los Topos multimaterial surface tracking package introduced by Da et

al. [2014b], which was tailor-made for these types of topology changes, including bubble splitting,

multi-bubble merging, and so-called T1 processes (essentially foam rearrangement).

We treat Los Topos largely as a black box: we provide proposed vertex trajectories for the

vertices of the triangle mesh, and the algorithm finds an updated watertight mesh that satisfies these

trajectories as nearly as possible, after handling topological changes and remeshing. Since we rely
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on storing circulation data at mesh vertices, we must also reassign circulation values to affected

vertices whenever a remeshing operation is performed. We therefore use a slightly smaller set of

operations to reduce resampling: edge splitting, edge collapse, T1 processes, and snapping. For edge

splitting, edge collapse, or snapping (coalescing nearby unconnected vertices), we project the new

vertex position onto the old mesh and compute a new circulation value by barycentric interpolation

over triangles. For a T1 process, which amounts to duplicating and separating an existing vertex,

the two resulting vertices are assigned the circulation of the old vertex. (We eschew edge flipping,

which changes geometry without changing vertices leading to temporal discontinuities, and vertex

smoothing, which moves nearly all vertices and leads to oversmoothing of circulation.)
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Chapter 17

Evaluation

We evaluate the effectiveness of our method with a range of examples. The results are organized

to show how our method effectively preserves circulation, handles solid boundaries, and stably

simulates non-manifold foam configurations. The size of the simulation meshes and simulation times

are summarized in Table 17.1. The maximum percentage deviations in the total volume of enclosed

air over the entire simulations for the cube, double-bubble, and foam rearrangement examples was

2.2%, 2.4%, and 0.05% respectively.

Figure 17.1: The equilibrium

bubble.

Circulation preservation The circulation-based discretization in

Section 15 allows our bubbles to preserve circulation over long sim-

ulations while being relatively insensitive to the effects of remeshing.

Figure 15.1 uses an initially cube-shaped bubble to illustrate how our

method maintains bubble oscillations over very long periods. The

bubble remains stable and temporally smooth despite re-meshing and

re-sampling the circulation variables as often as needed to preserve

mesh quality. The sphere also maintains a remarkable degree of

symmetry throughout.

Note that our explicit integration scheme is not unconditionally

stable, and we must introduce some damping (by slightly diffusing

� along the sheet) in order to maintain stability. Conveniently however, this can also provide a

reasonable visual approximation of air viscosity, as we demonstrate by re-running the same oscillating
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Test Vertices Faces Simulation time per frame (s) Number of frames Total time (min)

Cube oscillation 4274 8544 1.29 6736 145

Double bubble 5204 10496 1.94 3560 115

Octahedron 854 1951 0.319 564 3

Bubble in a ring 1122 2240 0.309 1533 8

Catenoid pinching 1153 2294 0.96 1500 24

Pulling double bubble apart 1003 1998 0.276 5000 23

Bubble cluster 2734 5787 0.695 2214 25

Bubble popping 1971 4099 0.321 28000 150

Sweeping ring 3070 6129 0.504 7500 63

Table 17.1: Simulation time for various examples. A frame always corresponds to one time step of

simulation.
cube bubble with a substantially increased damping coefficient. As expected it settles rapidly to

a stable spherical configuration (Fig. 17.1), demonstrating that our method achieves the desired

steady-state equilibrium for this canonical example.

Figure 17.2: A double-bubble.

Moving beyond the simple sphere topology, we perform a similar

oscillation test on an initially stretched double bubble, shown inset.

Here, and throughout our examples, the velocity of the ambient air

flow plays the dominant role in the motion, in this case generating the

interesting wobbling behavior; this velocity is compactly encoded by

the triangle mesh. Furthermore, we see that surface tension behaves

naturally on the triple curves and the interior interface joining the

two bubbles.

Interaction with solid boundaries Our solid boundary condition explained in Section 15.6 allows

us to simply and stably simulate bubbles interacting with solid obstacles like metal wires or bubble

wands. Figure 12.2, center, shows how pulling apart two metal rings can correctly stimulate the

catenoid soap film shape and eventual separation of a single soap film. Here we have also made

use of non-simulated triangles to illustrate that our numerical method supports open films (although

our underlying surface tracker does not). When the separation occurs, sharp geometric features are

created near-instantaneously, but again the simulation remains stable.

74



Figure 15.3, left, shows a double-bubble being pulled apart by two metal rings until they undergo

splitting and become fully separated. While the pinching behavior is similar to the catenoid case,

here we see a triple junction curve shared by two bubbles collapsing to a point and separating as

opposed to the earlier example involving the collapse of a single film.

Figure 12.2, right, illustrates a squished bubble constrained by a stationary loop. The surface

tension forces lead the bubble to gradually squeeze to one side as the combined system relaxes

towards a more stable configuration. Such an example would be difficult to achieve with a standard

Eulerian scheme due to the complex boundary conditions created by the wire.

Figure 17.3: Sweeping a metal ring through space to blow bubbles.

Figure 17.3 simulates blowing bubbles from a wire ring, by sweeping the ring through space in

the axial direction. The inertia of the air mass pushes the initially flat soap film to bulge out until it

pinches off into individual bubbles.

Non-manifold foam dynamics Next we step from single and double film and bubble configurations

up to the more general case of highly complex non-manifold film and foam structures. Figure 15.3,

right, shows a network of non-manifold soap films stretched over an octahedron, a common physics
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experiment for children. We initialize the geometry a short distance from its equilibrium, and observe

that it quickly settles and remains stable.

Our final pair of test cases involves a free-floating foam consisting of ten bubbles combined

together in a complicated, non-manifold non-equilibrium state (Fig. 12.2, left). Upon initiating the

dynamics, the bubbles naturally shift and rearrange until they find an equilibrium. To up the ante, we

take the same drifting foam and intermittently puncture a random bubble by directly deleting the

relevant interface triangles. At each pop the foam suddenly ripples and the bubbles quickly shift

into new non-manifold equilibrium configurations in accordance with the dynamical laws. In the

accompanying video we can see that there appears to be net lateral motion of the bubble cluster

upon bubble popping; this motion does not necessarily indicate a violation of the law of momentum

conservation. As the mass of the system is in the air, popping bubbles changes the momentum that

the bubble cluster ‘visually’ represents, therefore as the air is moved by the advancing/receding soap

films, it is not surprising to see the bubble cluster’s visual center shift while the total air momentum

is conserved. As a simpler example, figure 17.4 shows a large bubble being deformed from the

spherical shape due to the presence of a smaller bubble to its right. As the small bubble is suddenly

popped, the large C-shaped bubble tries to recover the spherical steady state by pushing away the air

volume at the original location of the small bubble towards the right, which in turn propels the large

bubble to the left, thus creating an apparent net motion indicated by the green arrow.

Figure 17.4: The net motion of a deformed large bubble after the small bubble next to it pops.
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Chapter 18

Accelerating the Biot-Savart integral by

Fast Multipole Method

The proposed method relies on a key step, which is the computation of the velocity field from the

vortex sheets, using the Biot-Savart integral:

u(x) =

1

4⇡

Z
S

�(x0
)⇥ (x� x

0
)

kx� x

0
k

3
dx0. (18.1)

Since this boundary integral needs to be evaluated at each vertex during mesh movement, a naive

implementation that directly discretizes the integral through quadratures results in a quadratic time

complexity in the mesh size. In general, fast summation techniques such as fast multipole method

(FMM) have been developed to improve the scaling of such computation.

Fast Multipole Method Template Library (FMMTL) [Cecka and Layton, 2015] is a generalized

framework for FMM with various kernels. It is a versatile template library that accelerates matrix-

vector multiplications where the matrix is a kernel matrix resulting from integrals like Biot-Savart,

while encapsulating the implementation details of FMM from the client application. We employ this

library to replace the original quadratic-time implementation of the Biot-Savart integral.

18.1 Time Complexity

The implementations with and without FMMTL integration are compared on a test where a single

bubble with an ellipsoidal initial shape is allowed to relax towards and then oscillate around the
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spherical equilibrium configuration. The number of vertices in the mesh is varied roughly from 400

to 40,000. Each mesh resolution results in a series of frames, whose individual computation time and

precise vertex counts are recorded, and plotted in log-log in Fig. 18.1 with respective linear fits.

Figure 18.1: The scaling of computation time with mesh size.

Note that the computation time recorded above consists of only the time spent on Biot-Savart

integral and excludes all other components of the simulation such as mean curvature computation. In

this bubble oscillation example, the Biot-Savart integral is by far the performance bottleneck in the

naive implementation, usually two orders of magnitude more expensive than the second component

which is remeshing.

The plot confirms the quadratic time complexity of the naive implementation, evident from

the slope of 2. The timing for the FMMTL version shows a slope of 1 on the right part of the

curve which dips down as the vertex number decreases, consistent with a nonlinear curve log T =

logN + log logN resulting from the expected time complexity of T = O(N logN). Around

N = 10

4 vertices, the FMMTL version is more than 10 times faster than the naive version.
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18.2 Large Foam Tests

The accelerated Biot-Savart integral allows for simulation of foams with more bubbles. Fig. 18.2

shows a bubble cluster, starting from a regular 5 by 5 by 5 cubic grid. Fig. 18.3 shows an even bigger

foam cluster with 512 bubbles. In both examples, the individual bubbles gradually slide past each

other to seek a more energetically favorable arrangement, transforming the global shape of the whole

cluster to a near spherical configuration in the process.

Figure 18.2: Bubble cluster rearrangement test with 125 bubbles. The bubbles start off from a regular

grid and gradually rearrange into a near-spherical cluster.

Figure 18.3: Bubble cluster rearrangement test with 512 bubbles.
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Chapter 19

Discussion

The surface-only nature makes our proposed technique to foam simulation markedly different than

earlier alternatives, yielding a number of trade-offs, including limitations.

From the standpoint of versatility, purely Eulerian methods currently dominate. Given their

long line of investigation, Eulerian methods support a broad range of features that we have yet to

explore, including accurate modeling of viscosity, application to volumetric liquids, and bidirectional

coupling with complex rigid and deformable objects. On the other hand, Eulerian methods require

that bubbles be significantly larger than the grid scale in order to resolve the desired velocity field and

film geometry without excessive dissipation or volume loss; even then, explicit volume control may

be necessary. Although circulation- or energy-preservation has been considered by a few Eulerian

schemes [Elcott et al., 2007; Mullen et al., 2009], conserving these quantities in an Eulerian setting

remains challenging in the presence of fluid interfaces. In contrast to Eulerian methods, our approach

efficiently handles all the dynamics on the mesh surface itself, notably without the need for a large

linear solve; furthermore, circulation is preserved in a natural and simple manner, and in particular in

the presence of non-manifold fluid interfaces.

In comparison to related surface-based discretizations of thin sheets and films [Batty et al., 2012;

Zhu et al., 2014], our focus on centimeter-scale soap films justifies neglecting certain quantities: we

do not track mass or thickness of the liquid, nor tangential component of the dynamics. Instead,

we focus on the complex geometry of non-manifold foam structures and its attendant topology

changes, moreso than any existing purely triangle mesh-based scheme for foam. Our treatment of

air-dominated dynamics also requires no coupling with a grid-based solver.
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Due to the need of encoding the velocity field on a surface representation (also inherent to the

vortex sheets method), our current derivation assumes inviscid incompressible flow, so that proper

viscous boundary layers (e.g., vortex shedding) and divergent flows (e.g., inflating bubbles) remain

out of reach; it may be interesting to introduce a limited form of divergence in the form of normal

motion, via an operator splitting approach. The assumption of equal densities on either side of the

sheet removes the baroclinic terms, which play a crucial role in previous vortex sheet smoke methods

as well as potential extensions to small-scale liquid droplets.

I believe this surface-only discretization based on circulation is attractive both for its minimalist

representation of complex soap film dynamics, and for the concrete numerical and computational

benefits it offers. We have shown that it preserves volume effectively and exhibits minimal dissipation,

while being fast and stable enough to handle a range of compelling foam and bubble behaviors.

Having so far addressed the dynamics of both turbulent smoke and soap foams, we anticipate that

vortex sheet techniques have a great deal yet to offer.
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Part III

Surface-Only Liquids
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Chapter 20

Introduction

Figure 20.1: Reproduction of various patterns resulting from the collision of jets. (A) Fluid chains.

(B) Disintegrating sheets. (C) Violent flapping.

Many fascinating liquid phenomena, such as the crown splash adored by artists and scientists alike

and the fluid chains formed by colliding jets [Bush and Hasha, 2004], are driven by subtle balances

between the surface tension force and the inertia of the liquid. The deforming free surface, a defining

aspect of liquids, carries the geometric information that drives surface tension effects, which are

in turn responsible for the characteristic look and feel of familiar liquids like water. Undoubtedly,

capturing the free surface with sufficient detail is crucial to the successful re-creation of these liquid

phenomena in computer simulations. From a computer graphics viewpoint, the free surface is also
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the only visually important element of the final imagery, as it is where the most prominent optical

effects such as reflection and refraction happen.

However, traditional fluid simulation techniques, including spatial grids [Foster and Fedkiw,

2001], volumetric meshes [Misztal et al., 2010], and particles [Ihmsen et al., 2014b], invest many of

their degrees of freedom deep inside the liquid and far from the free surface. Populating the entire

volume of the liquid is clearly uneconomical, and as we will demonstrate, it is also unnecessary

for many phenomena of interest. In a traditional free surface flow solver, volumetric samples serve

two roles: (a) to represent an arbitrary velocity field inside the liquid volume, and (b) to enforce

incompressibility. Recent numerical experiments suggest that internal vorticity plays only a small

role in the perceived dynamics of liquids [Zhang et al., 2015], motivating us to disregard the first role

of volumetric samples. But what about incompressibility? Discarding internal samples and working

with variables only on the liquid surface, incompressibility can be enforced by projecting the velocity

or position of the surface [Zhang et al., 2012], or by working with a surface velocity representation

that is, by construction, incompressible [Brochu et al., 2012; Keeler and Bridson, 2014]. Motivated

by these observations, we propose the first surface-based treatment of general 3D liquid bodies

dominated by surface tension and inertia.

The first challenge in a surface-only numerical scheme is finding a sufficiently expressive velocity

field representation that can be stored on the surface. Capturing an arbitrary three dimensional velocity

field with a surface-only representation is an inherently ill-posed problem. Fortunately, many liquid

animation scenarios are well approximated by a reduced space of harmonic velocity fields induced

by two simplifying assumptions.

First, liquids are typically assumed to be incompressible, which reduces the space of velocity

fields to those that are divergence-free.

Second, the three primary sources of vorticity in typical flows of interest are baroclinity due to

density gradients, surface tension due to curvature gradients, and interaction with solid boundaries

due to viscosity. However, for a liquid with uniform internal density, density gradients and surface

tension forces occur only at the liquid-air surface. Furthermore, for the idealized case of inviscid flow

described by the Euler equations, viscosity is absent and as a result vorticity generated at the solid or

air surfaces does not propagate into the interior [Stock, 2006]. This motivates the assumption that

the interior of the liquid volume is irrotational, reducing the space of velocity fields to those that are
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curl-free.

Our work builds on these two assumptions. We develop a surface-based numerical treatment of

volumetric liquids, inspired by the representations that become possible when an internal velocity

field is assumed to be divergence- and curl-free. For a contractible domain, such as a liquid droplet,

the harmonic vector field can be expressed as the gradient of a harmonic scalar function. When this

integrability condition holds, it becomes possible to express the volumetric velocity field, and in

turn to integrate the Euler equations, in terms of only surface position and velocity. Even when we

consider scenarios beyond the scope of the integrability condition, the surface-based representation

continues to produce visually compelling animations reproducing fascinating liquid behavior (see

Figure 20.1).

This lower dimensional subspace of vector fields has previously been shown to possess a

surprising degree of expressive power through successful applications to a variety of phenomena

ranging from droplet impact [Davidson, 2000] and smoke [Brochu et al., 2012; Weissmann and

Pinkall, 2010], to soap films (presented in Part II of this thesis) and ocean waves [Xue et al., 2001;

Keeler and Bridson, 2014]. Unfortunately, existing surface-only techniques are not suited to reliable

simulation of many common liquid phenomena, such as splashing and water jets. Vortex methods

have difficulty treating baroclinity robustly (the Boussinesq approximation is not applicable to the

liquid-air interface; see section 21.3 for more details), while potential flow approaches suffer from

stability issues due to the nonlinearity of the Bernoulli equation. For most liquid phenomena, a full

3D simulation (grid-based, volumetric mesh-based, or particle-based) is currently the only feasible

approach.

We propose a novel framework that is exempt from these pitfalls, for robust and flexible simulation

of incompressible liquid of uniform density, with surface tension, gravity, and contact with solid

objects. By making velocity the simulation state variable, we avoid the destabilizing effect of

nonlinear time integration: the nonlinearity in the advective term of the Euler equations is easily

handled on a Lagrangian mesh in the form of the total derivative.

Working directly with velocity in a surface-only setting requires a new set of tools. We present

the first advection-projection scheme for surface-based liquids, which proceeds in three steps: a

Lagrangian mesh advection phase; a surface-only projection phase based on the Helmholtz decompo-

sition that requires only the evaluation of two boundary integrals; and a final boundary element solve

85



to integrate forces such as surface tension, gravity, and solid contact.

The use of an explicit triangle mesh for surface tracking allows for easy and accurate surface

tension force computation, which is especially crucial at the three-phase junction where the solid,

liquid, and air phases meet. We solve for the pressure and its normal derivative on the surface using a

first-order boundary element method (BEM) solver, where the surface tension force and the solid

contact force are conveniently described by Dirichlet and Neumann boundary conditions, respectively.

The resulting numerical scheme successfully reproduces a host of surface tension-dominated liquid

phenomena (see Figure 20.2 for an example).

Figure 20.2: Comparison of the evolution of droplets in an off-center coalescence test between our

method (A) and an unstructured tetrahedral mesh method (B) [Quan et al., 2009].
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Chapter 21

Related Work

Free surface flow simulation has been a central topic in the broader literature of computational fluid

dynamics since the field’s inception. Characterized by a free surface separating a liquid region from

an exterior air region assumed to be massless, it presents various challenges in interface tracking,

discretization of the governing physical equations, and treatment of liquid-solid-air interaction.

21.1 Grid and volumetric meshes

The dominant approach to liquid simulation discretizes the space in and around the liquid into a

grid, and stores on it the velocity field of the fluid [Foster and Metaxas, 1996; Foster and Fedkiw,

2001]. The surface evolution is tracked using one of a range of techniques, such as the popular level

set method [Osher and Sethian, 1988; Enright et al., 2002b]. Alternative discretizations include

conforming volumetric meshes [Chentanez et al., 2007; Misztal et al., 2010; Clausen et al., 2013],

embedded volumetric meshes [Batty et al., 2010], and particle methods [Ihmsen et al., 2014b].

The spatial discretization of the liquid volume is subsequently used to approximate and solve the

incompressible Euler or Navier-Stokes equations.

These approaches suffer from memory and computational costs proportional to the volume of

the simulation domain due to the discretization of the liquid interior. Furthermore, conforming

volumetric mesh methods such as that of Clausen et al. [2013] spend a significant fraction of their

computation time maintaining the quality of the mesh interior, while grid-based methods require

more complex construction of differential operators to treat surface tension [Fedkiw et al., 1999;
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Hong and Kim, 2005] and triple junctions [Wang et al., 2005] in the absence of a conforming mesh.

21.2 Mesh-based surface tracking for Eulerian fluids

In contrast to level set- or particle-based approaches for representing liquid geometry, explicit surface

meshes [Wojtan et al., 2011] store geometric information strictly on the surface and are gaining

attention due to their ability to preserve surface details and volume. Their explicit geometry can be

beneficial when coupled to an underlying volumetric discretization of the fluid dynamics, such as

for the discretization of surface tension. Thürey et al. [2010] achieve a remarkable level of detail

by combining a high resolution surface mesh for surface tracking and local wave simulation with a

low resolution grid for coarse-scale motion and incompressibility. Brochu et al. [2010] also employ

a surface mesh, using it to guide the placement of additional pressure samples in a Voronoi mesh.

Bojsen-Hansen and Wojtan [2013b] introduce a surface tracking error measure which compares the

normal from the mesh to the pressure gradient from the grid, enabling the use of meshes with much

higher resolution than the grid. These works and others that utilize surface meshes, such as those by

Schroeder et al. [2012] and Pfaff et al. [2012], all rely on a background grid to carry out the pressure

solve. While they benefit from a higher resolution or the more straightforward surface description

afforded by the explicit surface mesh, the physical degrees of freedom still reside on the grid and a

discretization of the volume remains necessary.

21.3 Vortex sheets

While both grid- and mesh-based volumetric discretizations grow cubically in complexity when

refined, surface meshes grow quadratically. Some researchers have therefore abandoned the back-

ground grid altogether and sought to formulate the necessary dynamics entirely on the surface.

Brochu et al. [2012] advocate a philosophy of “as much as one sees, that much one should compute,”

achieving linear time complexity for smoke by using vortex sheets represented by an explicit surface

mesh. Part II of this thesis proposes a circulation-preserving surface tension model for soap films

also based on vortex sheets. The strength of vortex sheets lies in the Biot-Savart integral which

recovers the full 3D velocity field from a surface-only representation; however, baroclinity, which is

key to modeling the effects of gravity, is difficult to treat near strong density gradients. Brochu et

88



al. [2012] adopt the Boussinesq approximation, applicable only when the density difference across

the surface is small (Atwood ratio approaches 0), while the soap films technique in this thesis does

not consider baroclinity. Neither method is suitable for the simulation of sharp liquid-air interfaces

in free surface flow where the density ratio is near-infinite (Atwood ratio approaches 1).

The fundamental limitation of vortex sheets is also its greatest strength: the reliance on Kelvin’s

circulation theorem to simplify self-advection. With this simplification the vortex sheets method

completely side-steps the non-linear part of the dynamics and achieves both simplicity and efficiency;

however, barotropy is a prerequisite condition to Kelvin’s circulation theorem, which does not hold

for phenomena containing interfaces with large density jumps, such as the liquid-air interface.

21.4 Potential flow

The simulation of liquid using potential flow formulations has been explored for various phenomena

such as droplet impact [Davidson, 2000] and ocean waves [Xue et al., 2001; Keeler and Bridson,

2014]. By assuming the velocity field is a gradient field and thus irrotational in addition to in-

compressible, the velocity field can be compactly encoded by the scalar potential function on the

surface whose evolution is governed by the Bernoulli equation. Unfortunately, the nonlinear term

in the Bernoulli equation [Davidson, 2000] destabilizes the time integration. Xue et al. [2001] rely

on smoothing to suppress the instability, while Keeler and Bridson [2014] linearize the Bernoulli

equation, sacrificing interesting motions such as breaking waves in return for stability. For the

phenomena we consider, both a severe lack of stability and a loss of motion modes are undesirable.

21.5 Other non-volumetric techniques

Several additional techniques have been proposed to simulate liquid phenomena without paying

the price of volumetric discretization. Brochu [2006] proposes an incompressibility enforcement

technique based on a harmonic partition of the liquid domain. Zhang et al. [2012] efficiently

process the motion of a surface mesh using a collection of deformation operators, including a mean

curvature flow operator to approximate surface tension. In these works, the masses associated to the

surface degrees of freedom only approximately reflect how much of the underlying liquid volume it

influences. Batty et al. [2012] and Zhu et al. [2014] also utilize triangle meshes, but only to capture
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Method Setting BI BEM

[Zhang et al., 2012] Droplets

[Brochu et al., 2012] Smoke X
[Keeler and Bridson, 2014] Waves X X
[Da et al., 2015] Bubbles X
Current 3D Liquid X X

Table 21.1: A summary of related surface-based fluid methods. BI indicates boundary integrals;

BEM indicates the boundary element method.

thin sheet-like structures, not as a representation of the surface of a liquid volume. For bulk bodies of

liquid that are not thin in any direction, Zhu et al. [2014] use a volumetric mesh, effectively reverting

to a conforming tetrahedral method.

21.6 Boundary integrals and the boundary element method

The boundary element method (BEM) has proven to be a powerful technique for a variety of

phenomena including elasticity [James and Pai, 1999] and brittle fracture [Zhu et al., 2015; Hahn

and Wojtan, 2015], as well as the potential flow schemes above. We refer the interested readers to

Sauter and Schwab [2011] for more details on the theory of boundary integrals and the boundary

element method.

Despite the success of BEM in elasticity and fracture simulation, applying BEM to the Navier-

Stokes equations results in an integral equation containing a domain integral [Ladyzhenskaya, 1963],

corresponding to the nonlinear convective term. One proposed treatment is the Dual Reciprocity

Method (DRM) [Power and Partridge, 1994; Florez and Power, 2001], which essentially approximates

this term using a collection of radial basis functions. However, several issues of DRM have prevented

it from gaining widespread popularity, including lack of convergence [Florez and Power, 2001] and

ill-conditioned systems [Chen et al., 2003].

We summarize the relationships among the surface-based fluid animation methods most relevant

to the current work in Table 21.1. Note that the vortex sheets method is considered a boundary

integral method, as is evident from the Biot-Savart integral.
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Chapter 22

Time Integration

Our model of a 3D liquid volume represents the state—position and velocity—only on the liquid

boundary surface. We do not explicitly represent state in the interior.

Throughout our method, we adopt the following assumption (which will be referenced as [HVF]

in the following text whenever the derivation invokes it):

DEFINITION 22.0.1. The Harmonic Velocity Field assumption (HVF): A velocity field u : R3
! R3

fulfills the HVF assumption if:

• r · u = 0,

• r⇥ u = 0,

i.e., it corresponds to a flow that is both incompressible and irrotational.

?

Advection

u

�
u

+
u

harmonic

u

divergent

Helmholtz
Decomposition BEM Solve

curl-freeharmonic harmonic

Incompressibility
Projection

External forces:
gravity

solid contact
surface tension

Figure 22.1: Overview of a time step. The inset text summarizes the properties on various velocity

components.
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We integrate forward in time by operating directly on the boundary surface, storing and updating

the position and velocity of the surface. We employ operator-splitting [Stam, 1999] to solve the

incompressible Euler equations over the liquid domain ⌦:

Du

Dt
= �

1

⇢
rp+

1

⇢
F, (22.1)

r · u = 0. (22.2)

We implement this scheme in three steps (Figure 22.1): advection, projection, and integration of

external forces (gravity, surface tension and solid contact). The advection step moves the position

of the boundary surface and updates the velocity field absent internal and external forces (Du

Dt

= 0).

Next, the projection step removes any velocity divergence, @u

@t

= �

1
⇢

rp, introduced by advection.

Finally, we integrate the effect of external forces into the velocity field while respecting the solid

boundary and incompressibility constraints, @u

@t

=

1
⇢

F. We describe each step in detail in the sections

below.

22.1 Advection

At the start of time integration, we are given the position of the surface, decorated with a harmonic

velocity field. In our Lagrangian approach, advection requires only to update the position of the

surface; the velocity associated to each surface point is unaltered. Although the initial velocity field

was divergence-free [HVF], the change in surface position can introduce velocity divergence.

22.2 Projection

Next, we remove the divergence, projecting back to the space of harmonic velocity fields. We

first describe Helmholtz-based projection for a volumetric velocity field, and then present the

transformation to the surface-based representation.

Helmholtz decomposition As depicted in Figure 22.1, we denote by u

� the harmonic 3D velocity

field before advection, u the (generally divergent) velocity field after passively moving the velocity

field with the liquid, and u the (incompressible) post-advection, post-projection velocity field.
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We can think of divergence as inducing a pressure, p, in a projection that brings u back into the

linear subspace of incompressible velocity fields to obtain u. In other words, we can find u by the

orthogonality condition u ? (u� u) and the incompressibility conditionr · u = 0. For continuous

vector fields in R3 over the liquid domain ⌦, orthogonality v ? w is defined through the vanishing

of the inner product hv,wi⌦ =

R
⌦ v ·wdV .

Unlike most previous approaches [Batty et al., 2007; Clausen et al., 2013; Misztal et al., 2010;

Ihmsen et al., 2014a], which use a Poisson solve to perform the projection, we adopt a constructive

Helmholtz decomposition [Phillips, 1933] on u,

u =�r�+r⇥A (22.3)

=

harmonic
r⇥A� �r��

=

u

+

curl-free
r�⌦

=

u� u

�

div-free

⇠⇠⇠⇠⇠
r⇥A⌦ ,

(since r ⇥ u = 0)
(22.4)

where the scalar potential is �(x) =Z
�
n(y) · u(y)G(x,y)dS

y| {z }
��

�

Z
⌦
r

y

· u(y)G(x,y)dV
y| {z }

�⌦

, (22.5)

and the vector potential is A(x) =Z
�
n(y)⇥ u(y)G(x,y)dS

y| {z }
A�

�

Z
⌦
r

y

⇥ u(y)G(x,y)dV
y| {z }

A⌦=0

. (22.6)

Here � = @⌦ is the liquid surface, n is the outward unit surface normal, and G(x,y) = � 1
4⇡kx�yk

is the free space Green’s function of Laplace’s equation. These formulas can be proven using the

property of the Green’s functionr2G = �
D

, where �
D

is the Dirac delta. In the literature, boundary

integrals in the form of �� or A� are known as single layer potentials [Sauter and Schwab, 2011].

Equation 22.4 decomposes u into three orthogonal subspaces (see Appendix): (a) harmonic

(simultaneously div- and curl-free); (b) divergent but curl-free; (c) rotational but div-free. Since by

assumption u is irrotational, the third termr⇥A⌦ vanishes. Any divergent component of u must

be in r�⌦. These properties on the various velocity components are summarized in Table 22.1. If

we equate u to the harmonic first component, then the divergent second component is u� u. We

have identified the solution to the simultaneous conditionsr · u = 0, from (a), and u ? (u� u), by

the orthogonality of the subspaces.
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Component Divergence-free Curl-free Zero

u� X X
u X
u X X
u+ X X
r�� X X
r�⌦ X
r� X
r⇥A� X X
r⇥A⌦ X X X
r⇥A X X

Table 22.1: A summary of various velocity components.

In summary, we can construct the divergence-free velocity, u, using only the boundary integrals

�� and A�. Note that the Green’s function, G(x,y), tends to infinity as the evaluation point, x,

approaches the source point, y. The resulting singularities in the integrals require special treatment,

which we describe in Section 23.

Surface-only representation Assume that the liquid domain ⌦ is contractible. By the Poincaré

lemma, a curl-free vector field u over a contractible domain ⌦ can be always be represented as the

gradient u = r� of a scalar potential field, �. If u is also divergence-free, 0 = r · u = r ·r�,

then � is harmonic, satisfying Laplace’s equationr2� = 0.

Since our velocity field is harmonic, i.e., curl- and divergence-free [HVF], it can be exactly

represented by the gradient of a harmonic potential.

Taking the boundary restriction of the velocity field yields a volume-conserving surface velocity

field, whose normal component n̂ ·u equals the normal derivative (n̂ ·r)� of the harmonic potential

by construction. Therefore, we have a specific instance of Laplace’s equation, a boundary value

problem (BVP), which can be solved to recover � over ⌦, using the surface velocity as the Neumann

boundary condition. The gradient r� of the solution is unique.

If any two harmonic velocity fields have the same normal component in their boundary restriction,

then they will both establish the same boundary data for the BVP, and both yield the same gradient

r�. Therefore, two harmonic velocity fields with the same normal component in their boundary

restriction must be the same field. In other words, for a contractible domain, a (3D) harmonic velocity
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field can be fully described by the normal component of its boundary restriction.

In addition to the construction above that recovers the harmonic volumetric velocity field from

the given surface velocity field which is known to be the boundary restriction of some harmonic

velocity field, we may also desire the ability to test if a given (arbitrary) surface velocity field is

the boundary restriction of any harmonic velocity field at all. For this purpose we introduce the

construction of a surface scalar field ˜⇣ for a given surface velocity field ˜

u (in this section we use tilde

over symbols to denote surface fields as opposed to volumetric fields) provided certain conditions on

˜

u are met. We pick an arbitrary reference point x0 2 �, define ⇣(x0) = 0, and compute the potential

of any other point x 2 � as

˜⇣(x) =

Z
P

x0x

ˆ

t ·

˜

uds, (22.7)

where P
x0x ⇢ � is an arbitrary curve on the surface connecting x0 and x, provided the choice of

the curve does not affect this value; otherwise we say the ˜⇣ field is not well-defined for the given

surface velocity ˜

u. When ˜⇣ is indeed well-defined, we can use it as the Dirichlet boundary condition

to solve a Laplace BVP problem for a volumetric field ⇣ over ⌦. The aforementioned � field over ⌦

can also be constructed provided the Neumann BVP problem is solvable (i.e. the Neumann boundary

condition is compatible); otherwise we say the � field is not well-defined for the given surface field

˜

u. We then introduce the following theorem:

THEOREM 22.2.1. On a contractible domain, the necessary and sufficient condition for a surface

velocity field ˜

u to be the boundary restriction of a harmonic velocity field is that the corresponding ⇣

and � fields are both well-defined, and differ by a global constant.

Proof. If ˜

u is indeed the boundary restriction of a harmonic velocity field u, it clearly affords a

well-defined � field, as shown above, with the property u = r� by construction. It follows that its

boundary restriction, ˜�, satisfies that (I � ˆ

n

ˆ

n

T

)u = r

˜�.

For any closed surface loop L ⇢ �, the circulation is
H
L

ˆ

t ·

˜

uds =

R
S

ˆ

n · r ⇥

˜

udA where

S ⇢ � is the surface region enclosed by L (because the domain is assumed to be contractible, S is

well-defined). The right hand side is the normal flux of vorticity through S. As the velocity field

in the interior of ⌦ is curl free, the boundary limit of vorticity is zero (assuming the velocity is

sufficiently smooth and well-behaved), so the circulation is zero for any L, and thus the choice of

curve P
x0x does not affect the value of ˜⇣(x). In other words, ˜⇣ is well defined, and so is ⇣. By
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construction ˜⇣ satisfies that (I � ˆ

n

ˆ

n

T

)u = r

˜⇣ as well. Therefore, ˜⇣ and ˜� differ only by a constant.

Since both � and ⇣ are harmonic functions over ⌦ and differ by a constant in the boundary value,

they differ by the same constant over the entire ⌦ domain. In other words, the condition in question

is a necessary condition.

On the other hand, if the ⇣ and � fields corresponding to a given surface velocity field ˜

u are

both well defined and differ by a constant, then u = r� = r⇣ is the desired velocity field. First,

this velocity field u is harmonic by construction. Second, the boundary restriction of this velocity

field u has the correct normal component because ˆ

n · u =

ˆ

n ·r� =

ˆ

n ·

˜

u, as well as the correct

tangential component because (I � ˆ

n

ˆ

n

T

)u = (I � ˆ

n

ˆ

n

T

)r⇣ = (I � ˆ

n

ˆ

n

T

)

˜

u. Therefore, ˜u is indeed

the boundary restriction of u. In other words, the condition in question is a sufficient condition.

On a non-contractible domain, e.g., in 3D, for a genus k 6= 0 liquid body, the normal component of

the boundary restriction of a harmonic velocity field still forms a compatible Neumann boundary con-

dition, and the gradient of the BVP’s solution is still unique. Furthermore, the velocity field obtained

from the BVP is still harmonic by construction. However, the Poincaré lemma no longer holds on such

a domain: there exists an “extra” finite-dimensional vector space of harmonic vector fields that cannot

be expressed as gradients of continuous potentials. These cor-

respond to a flow circulating around a finite number of non-

contractible loops, e.g., around the handle of the solid donut

(see incident figure). The analysis in our approach simply

ignores these “extra” modes.

Surface-only projection We are now ready to see that the Helmholtz projection can be directly

computed on the surface representation, taking as input and producing as output only surface data.

Equation 22.4 allows us to evaluate the post-projection velocity

u = r⇥A� �r�� (22.8)

at any location in ⌦ using only the surface velocity field on �, since both �� and A� are boundary

integrals. The resulting u is a harmonic velocity field. Therefore, the boundary restriction of (22.4)

allows us to operate directly on surface velocity fields, without representing the interior velocity field.

Henceforth, we denote the boundary restriction of u, u, etc. by the same symbols.
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Tangential velocity Although (22.8) already gives us the post-projection velocity, we can simplify

it further. For the scenarios we consider, air density is negligible compared to liquid density. Imagine

that the pressure gradient rp has a tangential component: it would effect an infinite tangential air

velocity, in turn instantly restoring equilibrium. This argument leads to the familiar free-surface

condition p = 0, from which it follows that the pressure gradient in (22.1) is always normal to

the surface �. We therefore resolve (22.8) using only the normal component of u, denoted un,

while copying the tangential component directly from u using the tangential projection operator

P = I � nn

T :

u = Pu+ unn, (22.9)

un = n · (r⇥A� �r��) . (22.10)

Apart from being more efficient, the main advantage of using the Helmholtz decomposition only for

the normal component, un, is that it simplifies the treatment of ther⇥A�-term in (23.4)–(23.6).

22.3 External force integration

In the final stage of time integration, we consider external forces F. The input to this final stage is

the post-projection harmonic velocity field, and the output is the end of time step harmonic velocity

field [HVF]. In particular, we emphasize that external forces are added in such a way that the velocity

field remains incompressible, in contrast with typical volumetric approaches.

Unlike with volumetric discretizations such as a grid or a tetrahedral mesh, in our surface-only

representation the mass associated with each degree of freedom cannot be easily computed; when a

surface vertex moves it is not immediately clear how much liquid volume moves with it. We therefore

circumvent the computation of the nodal masses altogether.

By harmonicity [HVF], the velocity change induced by external forces can be expressed as the

gradient of a harmonic pressure field p
F

. Therefore, given appropriate boundary conditions, we can

specify p
F

as the solution to Laplace’s equation.

We model external forces that act (a) normal to the boundary surface, e.g., surface tension,

free-slip solid contact, or (b) uniformly throughout the liquid body, e.g., gravity. Both of these

categories allow for straightforward modeling of boundary conditions for Laplace’s equation.
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The boundary consists of the liquid-air interface �

A

and the liquid-solid interface �

S

, satisfying

�

A

[ �

S

= �. The surfaces �
A

and �

S

intersect only along a curve T which we refer to as the triple

junction. Neglecting air pressure, the surface tension force creates a Dirichlet boundary condition at

the liquid-air interface. The solid contact force and gravity body force, on the other hand, create a

Neumann boundary condition, i.e., a pressure derivative that prevents interpenetration and separation.

Consequently, we can write a well-posed boundary value problem to find the pressure due to external

forces p
F

:

r ·rp
F

= 0 , subject to (22.11)

p
F

= �H, on �

A

, (22.12)

@p
F

@n
=

⇢

�t
(u+ g�t� usolid) · n, on �

S

, (22.13)

where � is the surface tension coefficient, H is the (signed) mean curvature, and g is the gravitational

acceleration. We explicitly integrate acceleration due to gravity into the vertex velocities; the

constraint on the solid contact region ensures that these vertices cannot move into the solid.

A vertex is considered to be in contact with the solid only if at least one of its incident faces is

in �

S

. When a droplet peels off a solid surface, the contact area shrinks as the droplet moves away.

Finally, �
S

consists of only one triangle; once it gets too small, remeshing turns this triangle into a

single vertex. This last vertex is then not constrained any further and can move away from the solid

freely.

We solve this system using the Boundary Element Method [Sauter and Schwab, 2011], without

the need to discretize the liquid volume. The BEM solve yields pressure values and normal derivatives.

The resulting pressure gradient accelerates the input velocity field u to the end-of-step velocity u

+,

u

+
= u�

�t

⇢
rp

F

. (22.14)
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Chapter 23

Spatial Discretization

23.1 Surface mesh

To track the liquid domain boundary �, we employ the mesh-based surface tracking library Los Topos

[Da et al., 2014b], taking advantage of its gentle mesh-merging operation, robust collision resolution,

and remeshing capabilities. However, in principle any surface tracking technique that maintains a

manifold surface mesh can be used. � is represented as a triangle mesh (V, F ) consisting of vertices

V and triangular faces F . Each connected component of liquid volume is represented by a closed

manifold triangle mesh. We use V (i) and F (i) to denote the set of vertices neighboring vertex i and

the set of faces incident to vertex i, respectively. The area of face i is denoted a
i

, while the vertex

area is defined as â
i

=

1
3

P
j2F (i) aj . We store a velocity vector u

i

(the subscript distinguishes the

discrete quantity u

i

from its continuous counterpart u) on each vertex i 2 V . A linear basis function

✓
i

is used to interpolate the velocity at any point on the surface: u =

P
i2V ✓

i

u

i

.

We implement isotropic spatial adaptivity into the Los Topos library by allowing different

elements to have different minimum and maximum edge length bounds. Each vertex is endowed with

a target edge length, from which the its minimum and maximum edge lengths are calculated. The

remeshing code makes edge collapsing and splitting decisions based on the smaller of the bounds

on the two vertices of the edge. Loosely inspired by Narain et al. [2012], we first determine the

vertex target edge lengths individually according to the local curvature (as the largest deviation of the

dihedral angles from ⇡ on incident edges) and the local velocity variation (as the magnitude of the

velocity Laplacian). We then reduce the target edge lengths where necessary, in order to ensure that
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the target edge lengths on neighboring vertex do not differ by more than a constant factor (we use 1.2

for all tests).

The stored surface velocity is linearly interpolated onto new vertices during edge-split operations,

and averaged onto the replacement vertex during edge-collapse operations.

23.2 Vertex-neighborhood integration

Using the piecewise-linear triangle element greatly simplifies the geometric evolution of the surface

as compared to higher order representations, but makes evaluation of boundary integrals tricky. For

example, the normal derivative n ·r�� has a strongly singular kernel [Sauter and Schwab, 2011]

and is not well defined at non-smooth points on the surface (such as a vertex) even in the Cauchy

principal value sense. Appropriate measures must be taken to manage the order of singularity.

We discretize (22.10) by integrating it with the basis function ✓
i

, in a style similar to the Galerkin

BEM:

â
i

un
i

=

Z
�
✓
i

undS =

Z
�
✓
i

(n ·r⇥A� � n ·r��) dS. (23.1)

The integrals can then be evaluated on each face individually, over which the normal n is a constant:Z
�
✓
i

n ·r��dS =

X
j2F (i)

Z
j

✓
i

n ·r��dS, (23.2)

Z
�
✓
i

n ·r⇥A�dS =

X
j2F (i)

Z
j

✓
i

n ·r⇥A�dS. (23.3)

The right hand sides of (23.2) and (23.3) are double integrals, since �� and A� are boundary integrals

themselves. The inner integrals diverge to infinity near vertex i in a weakly singular fashion, thus we

discretize the outer integral using a four-point Gaussian quadrature with Duffy transform [Duffy, 1982;

Keeler and Bridson, 2014]; this analytically removes weak singularities.

Next, we describe the discretization of the inner integral. For the �� term, the integrand in (23.2)

requires evaluating n ·r�� =

@

@n

�� =

R
n(y) · u(y)

@

@n

x

G(x,y)dS
y

. Although it is divergent

on vertices as discussed above, the integral is not singular when evaluated at a quadrature point in

the interior of face j, because the kernel @

@n

x

G(x,y) evaluates to zero on face j. This means that

within a particular face, this face itself does not contribute to the value of the integral. Therefore,
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this integral can be discretized by Gaussian quadrature directly. In practice we find using only one

quadrature point per face sufficient.

The A� term in (23.3), on the other hand, is vector valued and needs a different treatment. We

first transform it via integration by parts:Z
j

✓
i

n ·r⇥A�dS (23.4)

=

Z
j

n ·r⇥ (✓
i

A�)dS �

Z
j

n · (r✓
i

⇥A�) dS (23.5)

=

I
@j

✓
i

A� · tds�

Z
j

n · (r✓
i

⇥A�) dS, (23.6)

i

j

Figure 23.1: The loop integral involving

A�.

where @j is the boundary of triangle j, and t is its unit

tangent. Since the integration by parts moved the deriva-

tive from A� to the shape function ✓
i

, the inner integrals

now have a weakly singular kernel instead of a strongly

singular one. For a given face j 2 F (j), the first term

consists of three line integrals, one along each edge. The

integrals along the two edges incident to vertex i cancel

with those from neighboring faces, while the integral along

the third edge is zero because ✓
i

vanishes there (Figure

23.1). Therefore, the first term can be dropped, resulting

in: Z
j

✓
i

n ·r⇥A�dS = �

Z
j

n · (r✓
i

⇥A�) dS. (23.7)

As with the preceding weakly singular integrals, this too can be discretized directly by a four-point

Gaussian quadrature with Duffy transform. Consequently, we now have all the required tools to

evaluate the normal component of the velocity field in (23.1).

Eliminating numerical smoothing The Galerkin-style outer integral (23.1) is employed to sup-

press the singularity, but at the same time it introduces a smoothing of the velocity field which can

damp the motion significantly at low mesh resolutions. Fortunately, as we show below, the negative

effects of this numerical dissipation can be largely counteracted.
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For any discrete field �
i

on vertices, whose interpolated continuous field is � =

P
i2V ✓

i

�
i

,

discretizing it back to vertices again via an integral in the form of (23.1) will result in a discrete field

˜�
i

that appears smoothed compared to �
i

:

˜�
i

=

1

â
i

Z
�
✓
i

�dS =

1

â
i

Z
�
✓
i

X
j2V

✓
j

�
j

dS (23.8)

=

1

â
i

�
i

Z
�
✓2
i

dS +

1

â
i

X
i 6=j

�
j

Z
�
✓
i

✓
j

dS (23.9)

=

1

2

�
i

+

1

2

X
j2V (i)

!
j

�
j

,where (23.10)

!
j

=

P
k2F (i)\F (j)

a
k

2

P
k2F (i)

a
k

. (23.11)

The weights !
j

can be computed by evaluating the integrals over the linear basis functions

✓ on triangles containing node i and collecting the resulting terms. It is easy to verify that these

weights form a partition of unity: each term in the sum in the nomiator adds the areas of the two

triangles containing edge (i, j), the result is scaled by twice the area of the neighborhood of node i,

as illustrated in Figure 23.1. Guided by this analysis, we apply Laplacian smoothing after evaluating

the velocity field by (23.1) and before the pressure solve, with the negative coefficient �1
2 and the

same weights as above, which effectively sharpens the velocity field just enough to remove the

numerical smoothing. In practice we use a slightly smaller coefficient (e.g. -0.4 or -0.45) to retain a

small amount of smoothing, so that the explicit time integration is stable.

23.3 Boundary Element solve

In order to solve (22.11) for pressure induced by external forces, we use a direct boundary integral

equation formulation [Atkinson, 1997], due to the mixed nature of our boundary condition:

⇥(x)p
F

(x) =

Z
�

✓
p
F

(y)

@G(x,y)

@n
y

�

@p
F

(y)

@n
y

G(x,y)

◆
dS

y

, (23.12)

where ⇥(x) is the internal solid angle of the liquid domain ⌦ at x 2 �, discretized according to

Mantic [1993] (below, we will drop the subscript from p
F

in derivatives for legibility). We then use a

vertex-collocated linear BEM formulation as in Keeler and Bridson [2014].
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Special care must be taken at the triple junctions, where the surface � is expected to have a

sharp crease. Such geometric non-smoothness often plagues collocated BEM solvers, as quantities

like @p

@n

may take on different values on either side of the crease, creating a discontinuity. We use a

simplified version of the double nodes technique [Hartmann, 2012], taking advantage of the fact that

the pressure p is always continuous, and that the @p

@n

discontinuity only occurs at the triple junctions.

The local geometry around a triple-junction vertex can be seen as the union of the liquid-air interface

(part of �
A

) and the liquid-solid interface (part of �
S

), each a smooth patch of surface isomorphic to

a half-plane. Therefore, each vertex on a triple junction holds two @p

@n

values, one for the liquid-air

interface, which is an unknown, and the other for the liquid-solid interface, which is given by the

Neumann boundary condition in (22.13). The pressure p, on the other hand, is not duplicated, and its

value on the triple junction is given by the Dirichlet boundary condition in (22.12). This guarantees

that there is still one unknown and one collocation equation on each triple junction vertex, as for all

other vertices, and thus the resulting linear system is not over- or underdetermined.

23.4 Pressure and discrete mean curvature

Figure 23.2: Surface tension force balance at the

triple junction.

Equation 22.12 requires the evaluation of mean

curvature H at a vertex. We discretize it as the

(signed) scalar mean curvature integral over the

vertex local neighborhood (the discrete mean

curvature measure) [Cohen-Steiner and Morvan,

2003]. The integral mean curvature is then di-

vided by the vertex area â
i

to obtain the point-

wise mean curvature H in (22.12). This dis-

cretization scheme has been found to work well

for implementing surface tension as a pressure

jump condition in the Lagrangian setting [Da et

al., 2015].

Again, the triple junctions must be treated differently, as one of the principal curvatures of the

liquid surface is essentially infinite, making the mean curvature not well-defined. Examining the
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force balance at a triple junction point (Figure 23.2), we find the pressure induced by the pairwise

surface tension forces between the three phases as an integral over a strip of infinitesimal width

covering both sides of the triple junction,Z
pphasesds = (�

LA

t

LA

+ �
SA

t

SA

+ �
SL

t

SL

) · t

SA

, (23.13)

where subscripts LA, SA and SL stand for liquid-air, solid-air and solid-liquid respectively, and

the t vectors with various subscripts are the unit tangent vectors in the corresponding interface,

pointing away from and orthogonal to the triple junction. The width of this strip over which the

surface tension force between three phases is exerted is a numerical parameter, chosen so that the

motion of non-equilibrium triple junction configurations can be properly resolved by the explicit

time integration, while making the equilibrium configuration sufficiently accurate. We find a value of

0.25 times the average edge length works well.

23.5 Velocity update

However, the BEM solve for p
F

yields pressure values and normal derivatives, not the gradients

required by the update (22.14). For smooth regions of the surface, we interpolate the vertex pressure

linearly per face to obtain a piecewise-constant tangential pressure gradient, and average them from

faces to vertices. This tangential gradient is then combined with the normal pressure derivative @p

@n

from the BEM solve to produce the full pressure gradient. On triple junctions, across which the

surface normal and tangent vectors are different, we solve the following overdetermined system

via its normal equations for each triple junction vertex i, essentially least-square fitting the various

directional derivatives known to us: 0BBBBBBBBB@

n

T

S

n

T

A

t

T

SL

t

T

LA

t

T

TP

1CCCCCCCCCA
rp =
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@tSL
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@p
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1CCCCCCCCCA
, (23.14)

where t

TP

is the unit tangent of the triple junction curve, and the partial derivatives on the right

hand side are obtained either from the BEM solve (for normal derivatives) or from tangentially
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Vertices Faces FMM solve Single iteration of FMM solve Factor

162 320 128.4ms 1.42ms -

642 1280 1838.9ms 36.86ms 24x

2562 5120 39.365s 403.3ms 11x

10242 20480 268.23s 1759ms 4.4x

40962 81920 1884.31s 8533ms 4.9x

Table 23.1: Time cost and mesh complexity for various refinement levels.

differentiating the pressure field (for tangential derivatives) as before. The first four equations of this

overdetermined system establish the pressure gradient in the plane orthogonal to the triple junction.

Although redundant, only together can they span this plane reliably regardless of the contact angle at

the triple junction; removing any of them makes the system prone to ill-conditioning.

23.6 Fast summation for boundary integrals

Both the boundary integral evaluation in the projection step and the boundary element solve in the

force integration step can be accelerated by fast summation techniques like FMM [Greengard and

Rokhlin, 1987]. As in Part II, we employ FMMTL [Cecka and Layton, 2015], a template library that

provides an efficient implementation of FMM for various kernels, for this task. Following Keeler

and Bridson [2014], the BEM solve is performed by a BiCGStab solver that relies on the FMM

summation for matrix-vector multiplication.

23.6.1 Scaling

Table 23.1 shows preliminary results on the scaling of the FMM implementation compared to the

naı̈ve direct summation implementation. The test geometry is a deformed spherical droplet with

successively refined tessellation. The right most column shows the factor of cost increase from the

previous row due to the mesh complexity increase; a factor of 4 is consistent with linear scaling.

The factor is is significantly higher for the early rows (which is not surprising from the O(N logN)

scaling), and approaches 4 for the later rows.
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Chapter 24

Evaluation

This section evaluates the proposed method with the results of some simulation experiments. The

purpose of these experiments is to explore what phenomena the method can produce, as well as to

investigate how restrictive the HVF assumption is and how expressive the harmonic velocity fields

can be.

24.1 Dripping

The familiar phenomenon of water dripping from a sink tap is driven by surface tension in a process

known as the Rayleigh-Plateau instability (Figure 24.1). Our method successfully captures the entire

process from the thinning of the neck to the pinch-off of the droplet.

24.2 Water jets collision

Bush and Hasha [2004] systematically studied the flow patterns resulting from laminar jets colliding

at an angle, identifying several regimes in a phase diagram parameterized by the jet flow rate, surface

tension coefficient, nozzle radius, etc. In Figure 20.1, the most representative patterns are reproduced.

Lower flow rates and higher surface tension coefficients cause the liquid jets shooting away from

the original collision to bend back and meet again for a second collision (and subsequently, a third,

and so on). Each collision flips the orientation of the liquid sheet plane by 90

�, forming a so-called

“fluid chain” structure (Figure 20.1 A). At higher flow rates, the liquid sheet oscillates in the normal
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direction until it disintegrates (Figure 20.1 B) or even ruptures violently (Figure 20.1 C), as a result

of the liquid sheet flapping instability (highlighted in Figure 24.2).

24.3 Splash on a hydrophobic surface

The behavior of a liquid droplet on a solid surface is greatly affected by the relative strength of the

surface tension at the liquid-solid interface and at the air-solid interface. Figure 24.3 shows the splash

created by the impact of a water droplet on a hydrophobic solid surface.

24.4 Crown splash

When a droplet impacts on a water surface, the resulting splash takes a distinctive “crown” shape as

a result of the Rayleigh-Plateau instability (Figure 24.4). The top of the crown usually atomizes into

many small droplets shooting off in different directions. Level set based surface tracking methods

are known to lose these small droplets quickly. Our method was able to resolve and maintain these

droplets, recreating the splashes at a previously unseen level of detail.

24.5 Droplet collision

Figure 24.5 shows the splash patterns resulting from the head-on collision of two droplets in

zero gravity. The extent of the splash and the atomization of the sheet is dictated by the relative

strength of surface tension and liquid inertia, which is described by the dimensionless Weber number

We = ⇢v2l/�. Our results qualitatively agree with the experimental observations reported by Pan et

al. [2009], successfully reproducing the “fingering and separation” regime and the “breakup” regime

(Figure 24.6) in the correct parameter ranges.

In applications like ink-jet printing, off-center collisions are of more practical interest since they

are statistically more likely. Quan et al. [2009] studied the intermediate configurations during the

coalescence and subsequent separation of two droplets using an unstructured tetrahedral mesh solver.

Figure 20.2 shows a side-by-side comparison of our simulation and the results reported by Quan et

al. [2009] in Figure 16.
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Figure 24.1: Dripping water. (A) – (D) A droplet pinches off near the tap at a low flow rate. (E) An

elongated stream is created before droplet formation at a high flow rate.
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Figure 24.2: Sheet flapping instability following a jet collision.
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Figure 24.3: A water droplet impacting, splashing on, and rebounding off a hydrophobic surface.
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Figure 24.4: Crown splash.
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Figure 24.5: Collision of two droplets, with various surface tension coefficients.
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Figure 24.6: Droplet collision simulated by our technique (bottom) compared to physical experiment

photos (top) by Pan et al. [2009] in Figure 3 (c).
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Chapter 25

Discussion

Our method represents the first surface-only numerical scheme practical for simulation of liquid

phenomena involving large, splashy motions, and therefore opens up a number of new questions

and future opportunities. Most importantly, as a surface-only method, the asymptotic complexity

compares favorably against the most widely-used Eulerian solvers employing regular grids, and thus

provides a more tractable solution when scaling to larger and more complex scenarios.

We would like to clearly point out two major limitations in terms of applicability of the proposed

technique, as a result of our assumptions: the technique is only applicable to irrotational flows, and is

only applicable to contractible domains (detailed below).

First, our formulation—both the projection step and the boundary element solve—assumes that

the liquid domain is irrotational on the interior. This excludes certain motions like swirling and

vortices. However, for the kinds of external forces and boundary contact conditions we consider,

vorticity cannot originate spontaneously in the interior of an initially-irrotational fluid of uniform

density, therefore we have no risk of creating erroneous behavior, if the initial state is irrotational. On

the other hand, a no-slip boundary contact condition, such as that needed for modeling the rolling of

a droplet down an inclined plane, can induce rotational motion, and is therefore outside the scope of

our current work. It would be interesting to superpose additional rotational degrees of freedom, such

as vortex particles [Selle et al., 2005; Park and Kim, 2005], vortex rings [Angelidis and Neyret, 2005;

Weissmann and Pinkall, 2010], and vortex sheets [Pfaff et al., 2012; Brochu et al., 2012].

Second, our formulation also ignores the finite number of harmonic vector fields that cannot be

represented as the gradient of harmonic potentials. It would be interesting to study in detail whether
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accurately tracking the modes can reproduce a broader range of liquid phenomena. As a preliminary

exploration, we initialize a solid-donut shaped liquid body with a rotational velocity (see Figure 25.1).

Such a velocity cannot be represented by the gradient of a harmonic potential; note, however, that it

can be represented by our surface-based vector field. We observe that the donut spins freely before

the Rayleigh-Plateau instability sets in and atomizes the domain. We have measured the momentum

magnitude (P ), angular momentum magnitude (J), kinetic energy (T ) and surface tension energy

(V ) of the system and plotted them in Figure 25.2; note that the system momentum and angular

momentum are roughly conserved (with the angular momentum showing about 30% error over the

entire simulation), and kinetic energy dissipates, as expected. If we consider a stronger

Figure 25.1: Donut-shaped liquid body with a rotational velocity.

Figure 25.2: Measurement of momenta and energies.
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surface tension coefficient, the donut collapses into a droplet, which also continues to spin.

As stated previously, for the forces that we consider, Euler’s equations specify that the modes in

the kernel (such as the rotational mode here) should be conserved over time; hence at least in this

scenario, qualitatively the correct behavior is observed.

Furthermore, as a result of the liquid-centric formulation, our technique is not aware of the air

incompressibility (in fact, it is not aware of anything in the air volume, since air velocity is not

even represented at all). This could pose problems when the desired simulation involves bubble

entrainment. However, collapsing bubbles are not the first problem we would have in such a scenario;

since any liquid domain with interior bubbles would not be contractible by definition, our basic

assumption breaks down anyway.

Although not required by our solver, it may be desirable to evaluate the velocity at certain

locations in the interior of the liquid domain in some situations, such as for one-way solid coupling

(an example being entrained bubbles). This information is not directly available on our surface-only

representation, but can be obtained by solving for a potential flow using the surface normal velocity

as the Neumann boundary condition, as described in Section 22.2 (the “Surface-only representation”

paragraph).

Our surface-based approach has the potential to scale

favorably with scene resolution compared to volumetric-

based approaches. With the fast summation techniques

implemented, the complexity of the entire method (both

the Helmholtz decomposition and the BEM solve) is prac-

tically linear with the number of elements in the surface

mesh, which in turn scales quadratically with the inverse

of the spatial resolution.

In our numerical experiments with asymmetrically col-

liding jets, we also attempted to reproduce the parameter

regime corresponding to the “fishbone” observed by Bush

and Hasha [2004]. However our simulation slowed down

to ten minutes per frame as we approached the formation

of the fishbone, due to the number of triangle mesh elements and the quadratic scaling of the boundary
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integral quadrature. This suggests that the fishbone is an ideal testbed for these fast summation

methods. A 3D grid, on the other hand, would scale cubically, due to its volumetric nature. As the

space of potential geometric features also scales quadratically with the inverse resolution, our method,

combined with fast summation techniques, would achieve an asymptotically optimal complexity.

Our Helmholtz decomposition-based incompressibility projection requires evaluation of two

boundary integrals, and does not require a linear solve. It could be adapted for other applications,

such as volume-conserving elastic deformation to remove divergence, or in other surface-only models

like that of Zhang et al. [2012] as an alternative to local volume correction.

Appendix: Orthogonality of Helmholtz Decomposition

Harmonic

�r�� +r⇥A�

Co-exact

�r⇥A⌦ = 0

Exact

r�⌦

We dissect (22.3) from the perspective of the Hodge

decomposition [Abraham et al., 1988], which decom-

poses a differential k-form ! into the sum of an exact

component d↵, a co-exact component ��, and a har-

monic (closed and co-closed) component �, while

guaranteeing the components are mutually orthogonal

provided certain boundary conditions are met. Ap-

plying it to our scenario, we decompose the 1-form

u

[, in which case d and � correspond to gradient and curl respectively. Based on the observation

on the divergence and curl of each term above, we find that (r�⌦)
[

= d�⌦ is the exact compo-

nent, (�r ⇥A⌦)
[

= ��(⇤A[

⌦) is the co-exact component, and the two boundary integral terms

(�r�� + r ⇥ A�)
[ together become the harmonic component. For this scenario, Abraham et

al. [1988] prove in Theorem 8.5.5 that the decomposition is indeed orthogonal, and in particular,

the exact component is orthogonal to the harmonic component (summarized in the incident figure).

Converting back to vector fields, this means that the velocity constructed from the two boundary

integral terms,

u = �r�� +r⇥A�, (25.1)
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satisfies

r · u = 0, (25.2)

(u� u) ? u, (25.3)

and we have found the desired post-projection velocity u.
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Part IV

Conclusions
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Chapter 26

Summary and Future Outlook of

Surface-Only Techniques

The methods proposed in Part II and Part III add to the class of surface-only simulation techniques,

which avoids any volumetric discretization, and its associated disadvantages. The superior asymptotic

complexity of the surface-only techniques is a significant benefit, and its importance will only grow in

the future as the hardware becomes more powerful and the demand in resolution and detail increases

accordingly.

As the foundation of surface-only formulations, one must adopt certain simplifying assumptions

so that the interior velocity field (not directly represented) is constrained from having too much

freedom for the surface-only representation to capture. It is important to note that such an assumption

is critical in the formulation of surface-only methods. A fully general velocity field cannot be

adequately captured by a surface-only representation in a meaningful way (of course it is possible to

construct a one-to-one mapping between R3 and R2, but such mapping cannot be continuous and

thus is of little use in this context).

In both Part II and Part III, the critical assumption is that the interior velocity field is both

incompressible and irrotational, which corresponds to the inviscid limit of the fluid material property.

In other words, treating the viscous effect in a principled way is a challenging problem in the

proposed frameworks above. Other assumptions are possible and may result in a different surface-

only formulation. For example, the fully-viscous limit is an interesting case where the interior

120



velocity field can be constructed from the surface velocity field by solving a vector Laplace equation.

While the promises of the class of surface-only simulation techniques are exciting, this is a

research area still in its infancy, and many questions remain to be answered before the techniques are

ready for general application.

On the theoretical side, topology changes are currently not treated robustly in most surface-only

approaches. When originally-disjoint fluid volumes are merged (e.g., when the topology changes

occur in the vortex sheets smoke by Brochu [Brochu et al., 2012], when two droplets collide, or

when the separating film in the middle of a double-bubble pops), the two original potential fields that

are possibly discontinuous must be replaced by a single continuous potential field, which may cause

loss of motion modes if not handled properly. In these cases it should be recognized that the first

cohomology groups of the newly formed fluid domain are altered, which may result in new harmonic

modes that need to be explicitly represented.

Boundary integrals and the boundary elements method also have issues on non-manifold surfaces.

Most of the boundary elements textbooks do not discuss non-manifold surfaces at all. Although

a more solid theoretical footing is yet to be found, the results presented in Part II suggest that a

straightforward extension of the manifold formulation to the non-manifold case is possible.

On the application side, an important issue to address is coupling surface-only solvers with

traditional volumetric (especially Eulerian grid) solvers, due to the rich collection of features

available to the latter, accumulated over the past decades. For example, the vortex sheets bubbles

solver coupled to a traditional liquid solver can be used to simulate a foaming jug of beer, where

neither is sufficient on its own. It is also conceivable that the surface-only liquids solver can be

used on top of a background low-resolution Eulerian grid to simulate a large-scale waterfall, where

the surface-only solver preserves all the high frequency details while the background grid cuts off

long-range communication between different parts of the connected body of water and reduces the

boundary integral cost significantly. Although the benefits of such coupling is readily obvious, it is

challenging to implement due to the distinct representation employed by each approach.
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