

Online Arabic Handwriting Recognition

Using Hidden Markov Models

Fadi Biadsy Jihad El-Sana Nizar Habash

Columbia University
Department of Computer

Science, New York,
NY 10027, USA

fadi@cs.columbia.edu

Ben-Gurion University
Department of Computer

Science, Beer-Sheva, 8105
Israel

el-sana@cs.bgu.ac.il

Columbia University
Center for Computational

Learning Systems, New York,
NY 10115, USA

habash@cs.columbia.edu

Abstract

Online handwriting recognition of Arabic script is a

difficult problem since it is naturally both cursive and

unconstrained. The analysis of Arabic script is further

complicated in comparison to Latin script due to

obligatory dots/stokes that are placed above or below

most letters. This paper introduces a Hidden Markov

Model (HMM) based system to provide solutions for

most of the difficulties inherent in recognizing Arabic

script including: letter connectivity, position-dependent

letter shaping, and delayed strokes. This is the first

HMM-based solution to online Arabic handwriting

recognition. We report successful results for writer-

dependent and writer-independent word recognition.

Keywords: Online Handwriting Recognition, Arabic,
HMM

1. Introduction

Keyboards and electronic mice may not endure as the
prevalent means of human-computer interfacing. Devices
such as Tablet PC, hand-held computers, and mobile

technology, provide significant opportunities for
alternative interfaces that work in forms smaller than the
traditional keyboard and mouse. In addition, the need for
more natural human-computer interfaces becomes ever
more important as computer use reaches a larger number
of people. Two such natural alternatives to typing are
speech and handwriting, which are universal human
communication methods. Both are potentially easier

human-computer interfaces to learn by new users
compared to keyboards. Although a handwriting
interface expects users to be literate, it ensures a higher
degree of privacy and confidentiality compared to
speech.

Automatic Handwriting Recognition has been
classified into two categories based on the presentation
of the data to the system: offline and online. Offline

handwriting recognition approaches do not require
immediate interaction with the user. A scanned
handwritten or printed text is fed to the system in a
digital image format. In online handwriting recognition
approaches, the user writes using a digital device (such
as a digital tablet) utilizing a special stylus. The digitized

samples are fed to the system as a sequence of 2D-points
in real-time, thus tracking additional temporal data not
present in offline recognition.

In this paper, we introduce an online handwriting
recognition system for the Arabic script, which is used by
approximately one-seventh of the world’s population to
write a variety of languages such as Arabic, Farsi, Urdu,
Pashto, and Kurdish1. We focus on word-level
recognition of undiacritized (unvocalized) Arabic. No
sentence-level context is modeled. As such, references to
language modeling in this paper are over word parts not

words. Arabic vocalic diacritics are most often ignored in
writing and printing and, therefore, not addressed here.

We first explain basic characteristics of the Arabic
script and overview related work in handwriting
recognition. Then, we discuss preprocessing and feature
extraction, the recognition framework, and evaluation
results. Finally, we draw some conclusions and suggest
directions for future work.

2. Characteristics of the Arabic Script

Arabic script consists of 28 basic letters, 12

additional special letters, and 8 diacritics2. Arabic is
written (machine printed and handwritten) in a cursive
style from right to left. Most letters are written in four
different letter shapes depending on their position in a

word, e.g., the letter ع (E)3 appears as ع (isolated), ـ�

(initial), ـ�ـ (medial), and ـ� (final). Among the basic
letters, six are disconnectives, i.e., they do not connect to
the following letter: ا (A), د (d), ر (r), ز ,(*) ذ (z), و (w).
Disconnectives have only two letter shapes each.

The presence of these letters causes the continuity of
the graphic form of the word to be interrupted. We
denote connected letters in a word as a word part

4
. If a

word part is composed only of one letter, this letter will

be in its isolated shape. For example, the Arabic word
 heights' consists of 7 letters (from right' (mrtfEAt) ������ت
to left): م (m) realized initially ر ,�ـ (r) realized finally ـ�,

1 We focus in this paper on the Arabic script as it is used for writing

Modern Standard Arabic only.
2 The diacritics are not explored here, since they are almost never used

in handwriting.
3 All Arabic letters are transliterated in Buckwalter’s Arabic

transliteration format (without diacritics.)
 www.ldc.upenn.edu/myl/morph/buckwalter.html
4 Formally, wp is defined: (initial ● medial* ● final) || isolated.

 (E) ع ,ـ�ـ realized medially (f) ف ,�ـ realized initially (t) ت
realized medially ا ,ـ�ـ (A) realized finally ـ�, and ت (t)
realized in isolated shape ت. This word has three word
parts (from right to left): ��, ����, and ت.

Arabic script is similar to Roman script in that it uses
spaces and punctuation markers to separate words.
However, certain characteristics relating to the obligatory

dots and strokes of the Arabic script distinguish it from
Roman script, making the recognition of words in Arabic
script more difficult than in Roman script. First, most
Arabic letters contain dots in addition to the letter body,
such as ش ($) which consists of س (s) letter body and
three dots above it. In addition to dots, there are strokes
that can attach to a letter body creating new letters such
as ط ,ك, and ـ�. These dots and strokes are called delayed

strokes since they are usually drawn last in a handwritten
word-part/word. Second, eliminating, adding, or moving
a dot or stroke could produce a completely different
letter and, as a result, produce a word other than the one
that was intended (see Table 1). Third, the number of
possible variations of delayed stokes is greater than those
in Roman script, as shown in Figure 1. There are only
three such strokes used for English: the cross in the letter
t, the slash in x, and the dots in i and j.

Table 1: Word (a1) (EzAm) 'lion' differs from (b2)
(grAm) 'love' in the position of the only dot in the
word. Word (a2) (Erb) 'Arab' differs from word (b2)
(grb) 'west' in the absence of one dot.

 a b

��ام ��ام 1

��ب ��ب 2

Finally, in Arabic script, a top-down writing style is

very common: letters in a word may be written above
their consequent letters. In this style, the position of
letters can not be predefined relative to the base line of

the word. This further complicates the recognition task,
particularly in comparison with the Roman script. In our
proposed recognition model, no restrictions were applied
regarding the top-down writing style.

Figure 1: Delayed strokes in Arabic script under or
above the letter body. The boxed pairs represent
common variants (e.g., three dots are often written
as a circumflex ‘^’). These seven strokes appear in
letters used in writing standard Arabic. Eleven
additional strokes exist for writing additional letters
in other languages (Urdu, Pashto, Farsi, etc.)

3. Previous Work

Most of Arabic handwriting recognition in previous
works focused on recognizing offline script [1]. Much of
online recognition focused on isolated Arabic letters only
 [4] [6] [12]. As far as we could determine, there was little

work that tackled the difficulties of online Arabic cursive
handwriting recognition. Al-Emami and Usher [2]
developed an online Arabic handwriting recognition
system based on decision-tree techniques. The system
was tested with 13 Arabic-letter shapes. Alimi [3]
developed an online writer dependent system to
recognize Arabic cursive words based on neuro-fuzzy

approach. The system was tested by one writer on 100
replications of a single word.

As for the delayed strokes, previously work viewed
them as features that added complexity to online
handwriting recognition. Four methods were proposed to
recognize words with delayed strokes. In the first
method, delayed strokes were totally discarded from
handwriting in the preprocessing phase [3]. In the

second, delayed strokes were detected in the
preprocessing phase and then used in a postprocessing
phase [8]. In the third method, the end of a word was
connected to the delayed strokes with a special
connecting stroke. This special stroke, which indicated
that the pen was raised, resulted in a continuous stroke
sequence for the entire handwritten English sentence
 [11]. Finally, delayed strokes were treated as special
characters in the alphabet. So, a word with delayed

strokes was given alternative spellings to accommodate
different sequences where delayed strokes are drawn in
different orders [7].

These four methods are not adequate for the task of
recognizing Arabic script. The first and second methods
could not be employed effectively since the information
that makes letters different from others is the number and
position where the dots are located. Eliminating delayed

strokes will cause a tremendous ambiguity, particularly
when the letter body is not written clearly. Furthermore,
some Arabic letters have a similar shape of composition
with some letters, such as: the letter (s) ـ� has a similar ـ
shape to the three letter shapes ! �ـ ـ (b + t + y) (without
dots). The third and fourth methods also cannot be
implemented, since Arabic words may contain many
delayed strokes. These methods will dramatically

increase the hypothesis space, since words should be
represented in all of their handwriting permutations. For
example: the word "�#�#$ (Hqyqyp) ’real’ contains 10
dots, thus, 10! representations would be required.

4. Preprocessing and Feature Extraction

In this section, we describe our approach in terms of

geometric preprocessing, feature extraction, and our
novel solution to the delayed-stroke problem.

4.1. Geometric Preprocessing

At this stage, the acquired point sequences pass a
geometrical processing phase to minimize handwriting
variations. We have used a low-pass filter algorithm [15]
to reduce noise and remove imperfections caused by
acquisition devices. Then, Douglas and Peucker’s
algorithm [5] was adopted to simplify the point

sequences by using a tolerance t1 (determined

empirically) in order to eliminate redundant points
irrelevant for pattern classification. In the final step, we
performed writing-speed normalization by re-sampling
the consequent point sequences.

4.2. Feature Extraction

In our current implementation, we extract three
features from the point sequence1 (PS), for each point:
local-angle, super-segment, and loop-presence.

The local-angle feature: This local feature is the
angle between each vector (v=pi-1pi) in PS, and the X-

axis, where i > 1. The local-angle feature of pi is denoted
by local-anglei.

The super-segment feature: This novel feature
provides wider geometric information which relates each
segment to its segment group. The feature is computed
by first applying Douglas and Peucker's algorithm with
tolerance t2 > t1, on PS to obtain the skeleton points (the

remaining vertices after applying Douglas and Peucker’s
algorithm)2. Every two consecutive skeleton points
define a skeleton vector. The super-segment feature, for
every point pi, which temporally appears between the
vector’s skeleton points, is defined as the angle between
the skeleton vector and the X-axis. This feature is
denoted by super-seg-anglei.

The loop feature: This is a global feature that
indicates the presence of a loop in PS. Global features

capture information about the global geometric shape of
the whole word/letter. Three common global features
were used in previous work in handwriting recognition:
loops, cusps and crossings [7]. In this work, only the
loop feature is used, since loops are obligatory in many
Arabic-letter shapes, e.g., (f) ـ�ـ. In contrast, cusps and
crossings are less common and vary among writers.
Global features are not robust features by themselves for

unconstrained script. However, the loop feature has
greatly improved our recognition rate. We denote this
feature for point pi as is-loopi, where is-loopi = 1 if pi is
in a loop, otherwise 0.

4.3. Delayed-Stroke Handling

Delayed strokes are essential to distinguishing among
various Arabic letters. Thus, handling delayed strokes
correctly is vital for appropriate recognition of the
Arabic script. We have developed the delayed-stroke

projection algorithm as a novel method to handle
delayed strokes. Our algorithm involves two steps, the
detection of delayed strokes and the incorporation of
delayed strokes in the word-part body PS.

In the Arabic script, delayed strokes are written
above or below the word part and could appear before,
after, or within the word-part with respect to the
horizontal axis as shown in Figure 2. Typically, delayed
strokes are written immediately after completing the

1 From now on, we use point sequence to denote the preprocessed

point sequence.
2 Here, t1 is the tolerance utilized in the preprocessing phase and t2

was determined empirically.

word-part body. This creates the general interleaved
sequence wp1, ds1, wp2, ds2,…, wpn, dsn where wpi is ith
word part and dsi is the ith delayed stroke set associated
with wpi. The delayed stroke set can be empty for word
parts with stroke-less letters. Therefore, to detect delayed
strokes associated with a word part, it is enough to
determine whether a given PS forms a delayed stroke or

not. The detection also groups each word-part body with
its delayed strokes in a word.

Figure 2: Possible delayed-stroke positions used for the
detection mechanism: (a) five delayed strokes for word
part 1; (b) two delayed strokes for word part 3; (c) three
delayed strokes for word part 1.

The detection of delayed strokes is performed based
on the location and size of the strokes, in addition to the
time order of the written strokes. Recall that delayed
strokes are either dots or short stroke sequences. Dots are

detected based on the size and shape of their bounding
box with respect to the word part. Dots tend to have
nearly square bounding boxes. Valid non-dot delayed
strokes are required to either fall within the horizontal
boundary of the word part or to appear before (on the
right side of) the word part. This restriction allows for
overlapping consecutive word-part bodies, as shown in
Figure 2 (a and b) – e.g., in a, word-part 1 and 2 overlap.

At this stage, we know which point sequence is a
delayed stroke and which is a word-part body. The next
step is the projection procedure, which we illustrate in
Figure 3 (with one letter). Our delayed-stroke projection
algorithm starts by vertically projecting the first point of
the delayed stroke q1 into the letter body at point pi. The
incorporation of the delayed stroke into the letter body is
performed by inserting the delayed stroke PS into the
letter body PS starting from pi. The last point of the

delayed stroke is connected to point pi+1. The two newly
added virtual vectors that connect the delayed stroke
with the letter body are sampled in a uniform manner
with a predefined number of points, denoted as virtual

points. Then, we generate a new PS for the letter. The
new sequence includes all points starting from the first
point of the letter body to point pi, then to q1, to the last
point of the delayed stroke, to pi+1, and finally to the last

point of the letter body.

Figure 3: The projection of the delayed-stroke ء in

the letter ك (k); (b) the delayed stroke is projected to

the letter body; (c) the new generated PS (p1 to p53).

pi

q1

p1
p2

p19

p36

 p44

 p53

 p29

1

3

3 1 1

1

 (a) (b) (c) 2

2

2

2

 (a) (b) (c)

Of course, Arabic letters usually appear as a part of

connected word parts and not as isolated letters. We
handle this case by projecting the starting point of each
delayed stroke into the word-part body and integrating it
as in the isolated letter case (see Figure 4). For the cases
where the delayed strokes appear before or after the
word-part body, as shown in Figure 2 (b and c), we

connect the delayed stroke to the closest point of the
word-part body. Our solution for delayed strokes can
also be utilized for the task of recognizing scripts that
include diacritic markers (e.g., French, German, Spanish,
etc.)

Figure 4: Three delayed strokes are projected in
the second and third word-part bodies for the

handwritten word: ا)'&!�ع (AlAnTbAE) ‘the

impression’.

4.4. Feature-Vector Construction

Since we use a discrete Hidden Markov Model
(HMM) (for more details on HMM see [14]) for the
recognition task, the “input” (observation sequence) to
this type of model is a sequence of discrete values. Thus,
a quantization process is required to convert the 3D
feature-vector sequence, extracted from a handwritten
word part, to a discrete observation sequence. In our
current implementation, each observation oi in this

observation sequence is an integer value [0...259]. The
necessity of such sharp discretization stems from the lack
of training samples for online Arabic handwriting
systems. The values [0…255] are used to represent the
3D-feature vector. The features local-anglei and super-

seg-anglei are real angle values, converted to 16 and 8
directions, respectively. This treatment is similar to [9].
The feature is-loopi is binary (one bit). The values
[256…259] are utilized to represent the virtual points

using (a) the position of the delayed stroke (above or
below the word part), and (b) the direction of the virtual
vector (up or down). These four observation symbols are
crucial to distinguish letter-shapes that have the same
letter body but differ on the position of their delayed
strokes, e.g., ـ� (t) and یـ (y).

5. The Recognition Framework

Our recognition framework uses discrete HMMs to

represent each letter shape. To enhance word recognition,

these letter-shape models are embedded in a network that

represents a word-part dictionary. The segmentation of

word parts into letter-shapes and their recognition are

performed simultaneously in an integrated process,

similar to [7] [11] [13]. Our approach greatly utilizes the

fact that Arabic words are composed of word parts to

improve the efficiency of the recognition framework.

The next four sections describe in more detail the word-

part dictionary, the letter-shape models, the word-part

network, and the word recognizer.

5.1. Word and Word-Part Dictionaries

To constrain the space of search, we utilize a
dictionary of possible valid words. This ensures better
recognition rates compared to systems that can recognize
any arbitrary permutation of letters. The Arabic
dictionary D is subdivided into a set of sub-dictionaries
{D1, D2,…, Dn} based on the number of word parts in

each word. Sub-dictionary Dk includes all words that
consist of k word parts. For example, if a given

dictionary D includes the words {ن�� , 0#�/" , ا. -,ي , ا'
 D is .{وس�م , ه6 , ��45 , �-32د , �-2, , /�دي , روای" , ���1"

divided into the following four sub-dictionaries:

• D1 = { ,2-� , 45�� , 6ه}

• D2 = {"/�#0 , "���1 , 32د-�}

• D3 = {ن�� {وس�م , /�دي , ا. -,ي , ا'

• D4 = {"روای}

We refer to the word-part dictionary WPDk,i as the
list of word parts located in index i (starting from right in
a word) of the words in Dk. The word-part dictionaries
for D3 presented above are the following:

• WPD3,1 = {و , /� , ا}

• WPD3,2 = {�� {س� , د , . -, , '

• WPD3,3 = {م , ي , ن}

5.2. Letter-Shape Models

Each Arabic letter has two or four shapes that vary
depending on its position in the word. We have chosen to
treat these letter shapes independently (i.e., as unique

characters). For example, associated with the letter (h)
are four letter-shape models for ;, ـ>ـ ,هـ, and =ـ
corresponding to its isolated, initial, medial, and final
shape, respectively.

The discrete Left-to-right HMM without state

skipping has been adopted to model each Arabic letter

shape. We selected this basic topology because it has

been effectively used in handwriting recognition [7].

Additionally, there is no sufficient evidence that more

complicated topologies would necessarily achieve better

recognition results [7].

5.3. Word-Part Network

The letter-shape are embedded in a network that

represents the word-part dictionary WPDk,i. We optimize
this network by grouping all shared suffixes, as shown in
Figure 5. Each node in this network represents a letter
shape, and each path from the start node to a leaf
corresponds to a unique word part in WPDk,i. Each leaf
contains the word-part text wpj representing the path
from the start node to this leaf.1 We shall refer to this
network as a word-part network. We denote WPNk,i as

the word-part network that represents the word-part
dictionary WPDk,i. WPN*k,i is WPNk,i with each node

1 For wpj, 1 ≤ j ≤ k (= the size of the word-part dictionary)

replaced with its corresponding letter-shape model. Null
transitions are used to connect consecutive letter-shape
models in the network.

Figure 5: A word-part network – each path from
the start node to a leaf represents a wp which is
formally defined: (final●medial*●initial) || isolated.

A word-part network can be built starting either by
placing the first or last letters (of word parts) in the first
level of the tree. We decided to use the last letters to be
in the first level in the word-part network because Arabic
words always (except for the last word part in a word)

end with one of the six disconnective letters. This fact
guarantees that at least one letter is shared in each word
part, which leads to a reduction in the size of the WPN.

5.4. Arabic-Word Recognizer

In section 4, we computed the observation sequences
Os = [O1, O2,…, Ok] from a given handwritten Arabic
word, where Oi = [oi,1, o i,2,…,oi,Ti] is an observation
sequence constructed from the handwritten word-part i.
In this section, we introduce an Arabic word recognizer

using WPN*k,i, for 1 ≤ i ≤ k, and the Viterbi algorithm,
given Os. The recognition task is to find the word W =
[wp1, wp2,…,wpk] (wpi is word-part i in W) in a given
sub-dictionary Dk which maximizes the posterior
probability:

1

P(|) P(|)
k

i i

i

W Os wp O
=

= ∏ (1)

 where, P(|) P(|)P() / P()
i i i i i i

wp O O wp wp O= (2)

For simplicity, assuming all word parts in the sub-

dictionary occur with equal probability and since P(Oi),
is the same for all word parts, the problem is reduced to
maximize P(Oi|wpi), which can be computed
efficiently by Viterbi algorithm given WPN*k,i. The
Viterbi algorithm computes δt(S)

 which refers to the
highest probability along a single path at time t, which
accounts for the first t observations and ends in state S

 [14]. Particularly, we are only interested in the
accumulated maximum likelihood in the leaf states at
time Ti (= |Oi|), given WPN*k,i and Oi (for 1 ≤ i ≤ k).
Therefore,

 *

,P(| ,) ()i

i k i Ti
O wp WPN qδ= (3)

where q is a leaf state in WPN*k,i, q.text = wp, and δi is
the result of applying Viterbi algorithm on WPN*k,i, given

Oi. Now, we search for the word W in Dk as follows:

1 2

*

,
[, ,...,] 1

P(| ,)
k k

k

i i k i
W wp wp wp D i

W argmax O wp WPN
= ∈ =

= ∏ (4)

Here, W is the recognized word text.

6. Model Training

Training data is created by asking Arabic-literate
trainers to handwrite (using a digital tablet) a list of
predetermined words. The trainers are also asked to
manually specify demarcation points that separate letter
shapes such that all delayed strokes of a letter shape are
horizontally between the letter shape’s demarcation
points. The details of the specific training data used in
our evaluation are discussed in section 7.
The words in the training data are split into letter-shape

samples. In order to avoid improper samples, each
letter-shape sample is tested to determine if it satisfies
predetermined letter-shape well-formedness rules, e.g.,
number and placement of dots/strokes above or below
the letter body. The Baum-Welch training algorithm is
used for training the HMM parameters, λ = (A, B, π) for
each letter-shape model. The initial state distribution π =
{πi} is initialized to: π1 = 1 and πi = 0 for 1 < i ≤ N where

N is the number of states in the model. The transition
probability matrix A = {ai,j} is initialized to ai,i= ai,i+1 =

0.5, for 1 ≤ i < N; ai,j = 0 where, i ≠ j and j ≠ i+1 for 1
≤ i < N and aN,N = 1. The observation matrix B is
initialized to reflect a uniform distribution. We have
empirically chosen the number of states for each letter-
shape model based on the geometric complexity of the
letter shape. In our system, the number of states varies

from 5 to 11 states. For example: we assigned 11 states
for the isolated letter shape ش ($), and 5 states to the
isolated letter shape ا (A).

7. Evaluation

There is no standard reference data set for training
and/or testing online handwriting recognition systems for

Arabic script. Therefore, we constructed our own sets as
follows. For training, four trainers were asked to write
800 selected words each and mark the boundaries of the
letter shapes as described in the previous section. The
words were selected to cover all Arabic letter shapes
with almost uniform distribution. For testing, ten testers
(the four trainers, in addition to six new volunteers) were
asked to write 280 words not in the training data. The
test set included 2,358 words in total1. The overlap of

trainers participating in the creation of training and test
data is intended to help us evaluate writer-dependence in
addition to writer-independence. The trainers and testers
were asked to write in their own writing style, but respect
the rule that a word-part body should be written in a
single continuous stroke followed by a number of

1 Not all volunteers finished the testing task, and some word samples

were omitted due to being incomplete. Thus, on average, the number
of words per tester was 236. The average number of word parts per

word is 2.64.

aN,N a1,1

a1,2 a2,3 a3,4 wp1

wp2

wpm

Start
Node

a3,3 a2,

2

Letter-shape model

delayed strokes. We tested our system with five different
dictionary sizes: 5K, 10K, 20K, 30K, and 40K words
selected from Arabic Treebank [10], twenty random
articles from Al-Arabi Magazine1, and ten random
articles from the website of the news channel Aljazeera2.
The 280 test words were present in all dictionary sizes.
The purpose of the various dictionary sizes is to test our

system’s performance under different ambiguity
conditions. We present our results in terms of two
metrics: word recognition rate (Table 2) and word-part

recognition rate (Table 3).
Overall, we get good results given that we used a

relatively small training set. The difference between the
writer-independent and writer-dependent recognition
rates is less than 2%, with all tested dictionary sizes. This

implies that the features, model, and delayed stroke
algorithm we introduced are adequate for the task of
writer-independent handwriting recognition.

The performance degrades as expected as ambiguity
(dictionary size) increases. The degradation in word-part
recognition is at a lower rate than word recognition,
suggesting that the recognition failure is tied to specific
word parts. In fact, recognition errors are mostly of very
close looking word-parts such as ب / ب� and ر / د. The

current features used are not good at distinguishing these
word parts adequately.

Table 2: Writer dependent (WD) and writer
independent (WI) average word recognition rates
for 2,358 words written by ten testers (all values are
in percentage.)

 5K 10K 20K 30K 40K

WD 96.47 95.50 92.86 90.84 89.75

WI 96.28 95.21 92.55 89.68 88.01

Table 3: Writer dependent (WD) and writer
independent (WI) average word-part recognition
rates for 6,220 word parts written by ten testers (all
values are in percentage.)

 5K 10K 20K 30K 40K

WD 98.44 97.94 96.86 95.90 95.44

WI 98.49 97.78 96.54 95.12 94.40

There are no previous results on Arabic online

handwriting recognition that we can compare to, since
previous work on Arabic online recognition was limited
in test size and/or letter coverage [2] [3].

8. Conclusion and Future Work

This paper introduced an HMM based system with
novel components to provide solutions for most of the

difficulties inherent in recognizing Arabic script: letter
connectivity, position-dependent letter shaping, and
delayed strokes. An evaluation of the system shows the
features and model selected to be adequate for the task of

1 www.alarabimag.com
2 www.aljazeera.net

writer-independent handwriting recognition at a high rate
of word recognition.

In the future, we plan to increase the system’s
robustness to handle cases where delayed strokes are
written before the completion of a word part. We also
plan to reduce the number of errors described in the
previous section using geometric-computation techniques

in an additional postprocessing phase. Moreover, we
plan on exploring sentence-level language modeling to
improve word recognition [11]. And finally, we plan to
explore morphologically driven models of Arabic words
to improve the dictionary’s efficiency and coverage.

References

[1] Badr Al-Badr and Sabri A. Mahmoud. Survey and bibliography
of Arabic optical text recognition. Signal Processing, 41(1):49–
77, 1995.

[2] Samir Al-Emami and Mike Usher. On-line recognition of
handwritten Arabic characters. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(7):704–710, July 1990.

[3] Adel M. Alimi. An evolutionary neuro-fuzzy approach to
recognize on-line Arabic handwriting. In Proceedings of the 4th
International Conference Document Analysis and Recognition,
pages 382–386, 1997.

[4] Adnan Amin. Machine recognition of handwritten Arabic word
by the IRAC II system. In Proceedings of the 7th Joint on
Pattern Recognition, pages 35–37, Munich, Germany, October
1982.

[5] D. Douglas and T. Peucker. Algorithms for the reduction of the
number of points required to represent a digitized line or its
caricature. The Canadian Cartographer, 10(2):112–122, 1973.

[6] T.S. El-Sheikh and S.G. El-Taweel. Real-time Arabic
handwritten character recognition. Pattern Recognition,
23(12):132301332, 1990.

[7] Jianying Hu, Sok Gek Lim, and Michael K. Brown. Writer
independent on-line handwriting recognition using an HMM
approach. Pattern Recognition, 33(1):133–147, 2000.

[8] Jianying Hu, S.C. Oh, J.H. Kim, and Y.B. Kwon. Unconstrained
handwritten word recognition with interconnected Hidden
Markov Models. In proceedings Third Int. Workshop on
Frontiers in Handwriting Recognition, pages 455-560, Buffalo,
USA, May 1993.

[9] Jay J. Lee, Jahwan Kim, and Jin H. Kim. Data-driven design of
HMM topology for online handwriting recognition, pages 107–
121, 2002.

[10] Mohamed Maamouri, Ann Bies, Hubert Jin, and
TimBuckwalter. Arabic treebank: Part 1 v 2.0. In Linguistic
Data Consortium, LDC Catalog No.: LDC2003T06, 2003.

[11] John Makhoul, Thad Starnert, Richard Schwartz, and George
Chou. On-line cursive handwriting recognition using speech
recognition methods. In Proceeding of IEEE ICASSP’94
Adelaide, pages v125–v128, Adelaide, Australia, April 1994.

[12] N. Mezghani, A. Mitiche, and M. Cheriet. On-line recognition
of handwritten Arabic characters using a kohonen neural
network. In Proceedings of the Eighth International Workshop
on Frontiers in Handwriting Recognition, page 490,
Washington DC, 2002.

[13] Se-Chang Oh, Jin-Young Ha, and Jin H. Kim. Context
dependent search in interconnected Hidden Markov Model for
unconstrained handwriting recognition. Pattern Recognition,
28(11):1693–1704, 1995.

[14] Lawrence R. Rabiner. A tutorial on Hidden Markov Models and
selected applications in speech recognition. IEE Proceedings on
Readings in Speech Recognition, 77(2):257–286, 1989.

[15] L. Schomaker. Using stroke- or character based self-organizing
maps in the recognition of online, connected cursive script.
Pattern Recognition, 26(3):443–450, 1993.

