QFix: Demonstrating error diagnosis in query histories

Xiaolan Wang
School of Computer Science
University of Massachusetts

xlwang@cs.umass.edu

ABSTRACT

An increasing number of applications in all aspects of soci-
ety rely on data. Despite the long line of research in data
cleaning and repairs, data correctness has been an elusive
goal. Errors in the data can be extremely disruptive, and are
detrimental to the effectiveness and proper function of data-
driven applications. Even when data is cleaned, new errors
can be introduced by applications and users who interact
with the data. Subsequent valid updates can obscure these
errors and propagate them through the dataset causing more
discrepancies. Any discovered errors tend to be corrected
superficially, on a case-by-case basis, further obscuring the
true underlying cause, and making detection of the remaining
errors harder.

In this demo proposal, we outline the design of QFix,
a query-centric framework that derives explanations and
repairs for discrepancies in relational data based on potential
errors in the queries that operated on the data. This is a
marked departure from traditional data-centric techniques
that directly fix the data. We then describe how users will
use QFix in a demonstration scenario. Participants will be
able to select from a number of transactional benchmarks,
introduce errors into the queries that are executed, and
compare the fixes to the queries proposed by QFix as well
as existing alternative algorithms such as decision trees.

1. INTRODUCTION

Data errors are a pervasive, expensive, and time consum-
ing problem that afHicts the vast majority of data-driven
applications. For example, errors in retail price data cost US
consumers $2.5 billion each year [5|. In aggregate, studies
estimate data errors to cost the US economy more than $600
billion per year [4]. Despite the costliness of data errors,
studies have found that a significant fraction of time in data
analysis — up to 80% [8] — is devoted to cleaning and wran-
gling [7] the data into a structured and sufficiently clean
form to use in downstream applications.

In response, both industry and academia have focused
on data cleaning solutions to mitigate this problem. ETL-
type systems |10,/13| focus on cleansing the data before it
is loaded into the database using a set of pre-defined rules;
outlier and anomaly detection algorithms |1| are used to
identify errors in the database after the data has been loaded;
while recent approaches use downstream applications such
as interactive visualizations [7}|15]|, application queries |11],
or data-products to facilitate error detection and correction
algorithms. In each of these cases, the focus of error diagnosis
and cleaning has been data centric, in the sense that the
process is meant to identify and directly fix data values.

Alexandra Meliou
School of Computer Science
University of Massachusetts

ameli@cs.umass.edu

Eugene Wu
Computer Science
Columbia University

ewu@cs.columbia.edu

Initial database: D, Query Log: Q
UPDATE Salary

Q, SET tax = 0.3*income
WHERE income > 85700

1D tax income pay
t1 950 9500 8550
t2 22500 90000 67500
t3 21500 86000 @ 64500

Final database: D, UPDATE Salary

Q o
D G AnEse pay 2 SET pay = income - tax
t1 950 9500 8550
t2 27000 90000 63000

13 25800 | 86000 | 60200 INSERT INTO Salary VALUES
t4 21625 86500 | 64875 Qs (4, 21625, s65e0, 64875)

Figure 1: Qi updates the tax amount with 30% tax rate for
high income employees using an incorrect predicate. The error
is propogated by Q2 to the pay field in the database. Finally, a
benign insert query Qs inserts correct salary information. The
final database state contains a mixture of incorrect and correct
salary data.

These efforts have largely ignored an important source of er-
rors — queries. Mistakes in queries can introduce errors that
spread throughout the database due to subsequent, possibly
correct updates. Consider the following salary management
example:

EXAMPLE 1 (SALARY UPDATE ERROR). A manager up-
dates the employees’ financial records to set the tax rate to
30% for high income employees who earn more than $87500.
She submits the update through a form in the salary account-
ing application, but incorrectly types $85700 for the income
threshold. Later queries that insert new paychecks, compute
tax calculations, and aggregate department salaries, end up
propagating this error to other records in the database, re-
sulting in incorrect paychecks and employee dissatisfaction.
Figure[]] illustrates this ezample where Q1, Q2, and Qs are
executed on an initial salary database Do. The error in the
predicate of Q1 is propagated to other fields in the table, by
other correct queries.

By the time some errors in the database are identified,
possibly by employees reporting incorrect paystubs, it is
difficult to (a) identify all other errors in the database, and
(b) trace these errors back to the erroneous update. Such
problems can occur in any data processing system with a
dynamic database: errors can be introduced by adhoc queries
executed by a system administrator, web-based forms that
construct queries based on user input, stored procedures
that use human input to fill the parameter values, or even
queries with automatically generated parameters if there is

a chance of errors in the code or data used for the parameter
generation.

Although existing data-centric cleaning techniques may
help identify and correct these reported errors directly, this
is suboptimal because it treats the symptom — the errors
in the current database state — rather than the anomalous
queries that are the underlying cause. In practice, only a
subset of the paystub errors will be reported, thus fixing the
reported errors on a case-by-case basis will likely obscure
the root problem, making it more difficult to find both the
erroneous query and the other affected data. Furthermore,
a data-centric approach must repair all errors — a non-
repaired value such as the incorrect tax rate may continue
to introduce errors in the database through future queries
(e.g., inserting incorrectly computed paychecks based on the
still-incorrect tax rate).

For these reasons, traditional data cleaning approaches may
be helpful for finding errors in the data, but are not designed
to diagnose causes of the errors when they are rooted in incor-
rect queries. There has been some work along a similar spirit,
but not directly for this problem. For example, integrity
constraint-based methods 9] reject some improper updates if
the data will fall outside predefined ranges. Certificate-based
verification [2] handles a broader class of erroneous queries,
but relies on asking users queries prior to executing the up-
date, which renders application-generated updates infeasible.
Several techniques have proposed diagnoses that describe
structural sources of errors either in the form of predicates
most correlated with the errors |15] or common components
of a workflow that caused the errors [14], but not at the level
of query identification.

Ultimately, query-centric cleaning and repair is challenging
because an error introduced by a query can be obscured by, or
propagated throughout the database by subsequent queries.
This alludes to several factors that make even identifying
problematic queries difficult:

1. Butterfly effect: An error in even a single query can
affect a large number of records, as documented in several
real-world cases [6},/12,/16]. Even if a single record is
incorrect, its value may be used as part of the WHERE or
SET clauses of subsequent valid queries that introduce
additional errors that are seemingly unrelated.

2. Partial information: In most practical settings, we can-
not assume that we can identify all errors in the database
— for example, not all employees will complain about their
incorrect paystubs. More likely, we only have access to a
subset of the data errors, and must use them to extrapo-
late the queries that affected a possibly larger set of data.
A diagnostic tool that can reduce the entire transaction
log to the most likely candidate queries and propose fixes
is needed to make this process manageable.

3. Multiple types of errors: An erroneous query can
cause multiple types of data errors. For example, a record
that should not exist may have been accidentally inserted,
or conversely a record that should exist was unintention-
ally deleted. Similarly, attribute values may be incorrectly
updated, updated when they should not have been, or
not updated when they should have. Any combination
of these error types may be present in the current state
of the database, and although they may not be obviously
related to each other, they must be addressed in a holistic
manner.

In this demo proposal, we outline the design of QFix, a
framework that derives explanations and repairs for discrep-
ancies in relational data based on potential errors in the
queries that operated on the data, and describe how users
will use QFix in a demonstration scenario. In contrast to
existing approaches in data cleaning that aim to detect and
correct errors in the data directly, the goal of QFix is to
identify the problematic queries that introduced errors into
the database. These diagnoses both explain how errors were
introduced to a dataset, and also lead to the identification of
additional discrepancies in the data that would have other-
wise remained undetected. Participants will be able to select
from a number of transactional benchmarks to generate a
query workload, introduce errors into the queries that are
executed, and compare the fixes to the queries proposed by
QFix against existing alternative algorithms such as decision
trees.

2. THE QFix ARCHITECTURE

Users Database 0 error tuple
A L Otuple diagnoses &
1 4 query repairs
QUERYFIX i
Query log i Optimizer I

Tuple, Query, &
Attribute Slicing

Figure 2: QFix architecture diagram

Figure 2] shows QFix’s major components. QFix takes
as input a query log containing UPDATE, INSERT and
DELETE queries, the database, along with a set of identified
data errors (called complaints). These complaints are pairs
of tuple id of tuples that are wrong, along with an estimate
of their correct values (e.g., 21500 as tuple t3’s tax value in
Example . QFix uses this information to trace the causes
of the errors and output the most likely set of queries in the
log (diagnoses), along with proposed repairs of these queries.

To achieve this, QFix first performs an optional outlier
removal step to deal with potential false positives in the
complaints. Then the MILP Encoding component transforms
the query diagnosis problem into a Mixed Integer Linear
Program (MILP) that is further optimized through slicing
and incremental repair techniques, before being sent to an
industrial MILP solver. The output of the solver constitutes
solutions to the query diagnosis problem.

3. PROBLEM AND SOLUTION SKETCH
3.1 Problem Outline

We assume a query log @) containing a sequence of update,
insert and delete queries qi, . . . g», that have been executed on
an initial database state Dy. For simplicity, we assume that
the database is a single relation with attributes A;, ..., Ap,
though this single-relation restriction is not a requirement
for QFix. Let D; = gi(...q1(Do)) be the the database state
output after executing queries ¢1 though ¢; on Dg. Thus,
the final database state is simply the application of the

query log to the initial state: Dy, = Q(Do) = gn(...q1(Dy)).
We assume that UPDATE and DELETE queries use predicates
composed of conjunctive and disjunctive range clauses of
the form (A; op ?), where op € {=,>,<,<,>,#} and 7 is
a constant value. We also assume that SET clauses are of
the form (A; = A; + 7) (relative update) or (4; = 7)
(constant update).

Queries in @ are possibly erroneous and introduce errors
in the data. We assume there is a true sequence of queries
Q" ={qi,...,q,} that generate a true sequence of database
states {Do, DT, ..., D;}. The true query log and database
states are unknown, and our goal is to find and correct errors
in @Q to retrieve the correct database state D;,.

To do so, QFix takes as input a set of identified or user-
reported data errors, called a complaint set and denoted as C.
A complaint ¢ € C corresponds to a tuple in D,, along with
its true attribute value assignments. For example, C = {c1},
where ¢; = (t3, {tax = 21500}, {income = 86000}, {pay =
64500}) forms the complaint set with incorrect taz and pay
attribute for the query log @ in Example[]] A complaint can
also model addition or removal of tuples: ¢ = (L,t*) means
that t* should be added to the database, while ¢ = (¢;, 1)
denotes that ¢; should be removed.

Our goal is to derive a diagnosis as a log repair Q' =
{q1,---,qn}, such that Q'(Do) = D;;. In this work, we focus
on errors produced by incorrect parameters in queries, so our
repairs focus on altering query constants rather than query
structure. Therefore, each query ¢; € Q' has the same struc-
ture as ¢; (e.g., the same number of predicates, the same vari-
ables and operators in the WHERE clause), but possibly differ-
ent parameters. For example, a good log repair for the exam-
ple of Figure [l|is Q" = {q1, g2, g3}, where q; =UPDATE Taxes
SET tax = 0.3 * income WHERE income >= 87500.

Problem definition

We now formalize the problem definition for diagnosing data
errors using query logs. A diagnosis is a log repair Q’ that
resolves all complaints in the set C and leads to a correct
database state Dj.

DEFINITION 2 (OPTIMAL DIAGNOSIS). Given database
states Do and Dy, a query log Q such that Q(Do) = Dy, a
set of complaints C on Dy, and a distance function d, the
optimal diagnosis is a log repair Q', such that:

e Q'(Do) = D}, where D}, has no errors
e d(Q, Q%) is minimized

Where d(Q, Q") measures the changes made in the repaired
query log. Informally, we seek the minimum changes to
the log Q that would result in a clean database state D;;.
Obviously, a challenge is that D;, is unknown, unless we
know that the complaint set contains all of, and only, true
complaints.

3.2 Solution Sketch

Our general strategy is to translate the starting and ending
database states, Dy and D,,, the query log @, and complaint
set C into a mixed-integer linear program (MILP) and solve
the resulting program using a generic solver. Briefly, a linear
program is a minimization problem consisting of a set of
constraints in the form of linear equations, along with an
objective function that is minimized; an MILP is a linear
program where only a subset of the undetermined variables
are required to be integers, while the rest are real valued.

To achieve this translation, we model each query as a
linear equation that computes the output tuple values from
the inputs or previous database state, and transforms the
equation into a set of of linear constraints. In addition,
the constant values in the queries are parameterized into a
set of undetermined variables, while the database state is
encoded as constraints on the initial and final tuple values.
Finally, the undetermined variables are used to construct
an objective function that prefers value assignments that
minimize both the amount that the queries change and the
number of non-complaint tuples that are affected.

Due to space constraints, we will walk through an example
of how the query UPDATE Taxes SET tax = 0.3 * income
WHERE income > 85700, when applied to t3'¢ to produce
t5°?, is translated into a set of constraints as detailed below.

First, we can rewrite the query as a conditional statement:

new 0.3 %t rate if p
t37tar = 9 4
t3“.tax 1-p

where
p = t3% income > 85700

This is equivalent to the following linearized form. In
addition, we add constraints on the starting and ending
value for the rate attribute: If t3°.tax was specified in C,
then the provided value is used instead of the value in the
database:

t5°% tax = (0.3 x t3'%income) x p + t3'%.tax x (1 — p)
= 3" income > 85700
t3 tax =30

t3°Y tax =25

In the above formulation, all variables are determined and is
trivially solvable. Instead, we replace the constaints 0.3 and

85700 with undetermined variables v; and vz, so that solving
the constraints will reassign those query constants to new
values that result in the desired value for t5°*.rate. Note
that the initial range [minval, mazval] of the undetermined
variables could be defined based on the valid range of the
corresponding attribute(s), or, as a heuristic, based on the
empirical distribute of the attribute values in the database.

Extending this process to all tuples and all queries in the
log describes the naive encoding procedure that solves the
OpTIMAL DiaGNosis problem. However, the size of the
resulting constraint problem increases at a rate of O(|D| x
|Q| x #attributes), rendering it infeasible for all but the
smallest databases and query logs.

QFix uses four additional optimizations not presented in
this paper to scale to large query log and database sizes. The
first three are called Slicing optimizations that reduce each
of the components in the problem size: Tuple-slicing; Query-
slicing; Attribute-slicing. MILP solvers typically (though not
guaranteed) take a much longer time as the size of the MILP
problem increases, thus each of the slicing techniques reduces
the problem and speeds up the solver time.

The final optimization serves to reduce the number of
undetermined variables that the MILP solver must provide
a solution for. The cost of the solver, in our experiments,
increases exponentially with the number of undetermined
variables. To this end, QFix uses an incremental algorithm
that tries to fix the queries in the query log one at a time.

These optimizations enable QFix to propose a solution
within several seconds for thousands of queries and tuples
on common transaction benchmarks in OLTPBench [3].

ORRUPT THE QUERY LOG

: SELECT DATASET
; TPCC v

2

Qs

UPDATE T
SET income += 950
WHERE income < 40060 1000

Generate Random Error

@CANDIDATE COMPLAINTS
/

1D tax income pay] A
tl 950 9500 8550

@ 22500 90000 67500

3 21500 86000 64500 v

Figure 3: Users introduce errors to benchmark workloads.
4. DEMONSTRATION OUTLINE

The objective of this demonstration is to show how QFix
can quickly and accurately detect and propose fixes to errors
in a query log, and compare its results to alternatives that
use existing techniques.

Figures [3] and [4] show screenshots of the initial and results
pages. Each step is annotated with a circled number, which
we detail below.

Step 1 (Select Dataset): Participants may first choose
from a dropdown menu containing a number of transaction
workload generators from the benchmarks in OLTPBench .
Since most transactional benchmarks focus on point update
queries, we additionally include a synthetic workload gen-
erator that includes range updates, as well as insert and
delete queries. The text box on the right side allows users
to additionally specify the number of queries to generate in
the workload.

Step 2 (Corrupt the Query Log): Once the workload
generator is specified, the Query Log component of the in-
terface renders a scrollable list containing all of the queries.
Users can either let the system to inject errors randomly by
clicking the “Random Error” button or manually add errors.
To introduce errors, the interface allows users to select any
editable query in the log and shows the selected query in an
editable popup so that users can edit the queries. For exam-
ple, in the figure, the user has edited query @2 and reduced
the threshold from income < 10,000 to income < 100.
Step 3 (Form a Complaint Set): The modified query
cause the state of the database at the end of the workload
to differ from the result of the original workload. The can-
didate complaints table lists the tuples that are different
and highlights the attribute values in those tuples as red
text. For instance, t1.tax, t1.income and t1.pay are all errors
introduced by the modified query. Users can select individual
attribute values or entire tuples to add to the complaint set
that is used as input to the QFix algorithms. When she is
satisfied, the user clicks Run QFix to execute the QFix and
alternative algorithms.

Step 4 (View Log Repairs): The result page lists the
original query ID and text at the top. The ID is important
because some proposed fixes may identify an incorrect query.
Below the original query, the interface shows each of the
proposed fixes as columns. For example, Figure [] shows
that both the QFix and alternative fixes identified the cor-
rect query Q2, however QFix only took 0.2 seconds to run,
and correctly fixed @2, whereas the alternative took 10 sec,
incorrectly selected Qs, and proposed an incorrect fix.

UPDATE T
income += 950

Q SET
2 WHERE income < 40000 1000

QueryFix @ Alternative
Q, 2sec Qs 10sec
UPDATET UPDATE T
SET income = income + 950 SET income = L.l * income

WHERE income < 10000 WHERE income < 9500

ID tax income pay ID tax income pay

tl 1045 10450 9405 tl 1045 10450 9405

t2 22500 90000 67500 @ 2 22500 94000 67500

t3 21500 86000 64500 t3 21500 86000 64500
t9 990 9900 8910

Figure 4: Comparisons between proposed fixes.

Step 5 (Validate Repairs): The bottom tables show the
effects of the fixes on the complaints from step 3. Correctly
fixed attribute values are highlighted in blue, unfixed errors
are shown as red text, while incorrectly fixed values are
highlighted with a red background. Finally, it is possible for
proposed fixes to introduce new errors, which are shown as
entire rows that are highlighted with a red background.

5. REFERENCES

[1] V. Chandola, A. Banerjee, and V. Kumar. Outlier detection:
A survey. ACM Computing Surveys, 2007.

[2] S. Chen, X. L. Dong, L. V. Lakshmanan, and D. Srivastava.
‘We challenge you to certify your updates. In SIGMOD, 2011.

[3] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux.
Oltp-bench: An extensible testbed for benchmarking
relational databases. In VLDB, 2013.

[4] W. W. Eckerson. Data quality and the bottom line. TDWI
Report, The Data Warehouse Institute, 2002.

[5] W. Fan, F. Geerts, and X. Jia. A revival of integrity
constraints for data cleaning. In VLDB, 2008.

[6] B. Grady. Oakland unified makes $7.6M accounting error in
budget; asking schools not to count on it. In Oakland, 2013.

[7] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer. Wrangler:
interactive visual specification of data transformation scripts.
In CHI, 2011.

[8] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer.
Enterprise data analysis and visualization: An interview
study. IEEE Trans. Vis. Comput. Graph., 2012.

[9] N. Khoussainova, M. Balazinska, and D. Suciu. Towards
correcting input data errors probabilistically using integrity
constraints. In MobiDFE, 2006.

[10] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss,

S. Vaithyanathan, and H. Zhu. Systemt: a system for
declarative information extraction. SIGMOD Record, 2009.

[11] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg,

T. Kraska, T. Milo, and E. Wu. Sampleclean: Fast and
reliable analytics on dirty data. 2015.

[12] M. Sakal and L. Rakovi¢. Errors in building and using
electronic tables: Financial consequences and minimisation
techniques. In Strategic Management, 2012.

[13] C. Thomsen and T. B. Pedersen. A survey of open source
tools for business intelligence. In Data Warehousing and
Knowledge Discovery. 2005.

[14] X. Wang, X. L. Dong, and A. Meliou. Data x-ray: A
diagnostic tool for data errors. In SIGMOD, 2015.

[15] E. Wu and S. Madden. Scorpion: Explaining away outliers
in aggregate queries. In PVLDB, 2013.

[16] J. Yates. Data entry error wipes out life insurance coverage.
In Chicago Tribune, 2005.

	Introduction
	The QFix Architecture
	Problem and Solution Sketch
	Problem Outline
	Solution Sketch

	Demonstration Outline
	References

