
PFunk-H: Approximate Query Processing using Perceptual
Models

Daniel Alabi
Columbia University

daniel.alabi@columbia.edu

Eugene Wu
Columbia University

ewu@cs.columbia.edu

ABSTRACT
Interactive visualization tools (e.g., crossfilter) are critical
to many data analysts by making the discovery and veri-
fication of hypotheses quick and seamless. Increasing data
sizes has made the scalability of these tools a necessity. To
bridge the gap between data sizes and interactivity, many
visualization systems have turned to sampling-based approx-
imate query processing frameworks. However, these systems
are currently oblivious to human perceptual visual accuracy.
This could either lead to overly aggressive sampling when the
approximation accuracy is higher than needed or an incor-
rect visual rendering when the accuracy is too lax. Thus, for
both correctness and efficiency, we propose to use empirical
knowledge of human perceptual limitations to automatically
bound the error of approximate answers meant for visual-
ization.

This paper explores a preliminary model of sampling-based
approximate query processing that uses perceptual models
(encoded as functions) to construct approximate answers in-
tended for visualization. We present initial results that show
that the approximate and non-approximate answers for a
given query differ by a perceptually indiscernible amount, as
defined by perceptual functions.

1. INTRODUCTION
Dynamic and interactive visualization tools (e.g., crossfil-

ter [37]) make it easier for data analysts to discover and ver-
ify hypotheses seamlessly. However, the increasing amounts
of data available for analyses is accompanied by the need
for scalability of these interactive tools. Increased latency
in visualization tools has been shown to negatively affect
interactive exploratory visual analytics [31]. To bridge the
gap between data sizes and interactivity, many modern vi-
sualization systems have turned to approximation [6] as a
trade-off between computational cost and query answer ac-
curacy.

Many existing systems employ some form of approxima-
tion. Sampling-based approximate query processing (AQP)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939512

systems like BlinkDB [2], Aqua [1], and IFocus [7] can evalu-
ate a query on a subset of the underlying dataset. The larger
the sample size used during query processing, the better –
but slower – the approximation. Recent work has argued
for approximation that preserves visually motivated guar-
antees [24]. For example, IFocus [7], an online sampling
algorithm, selects samples until, with a very high probabil-
ity, the pairwise ordering of bar heights in a bar chart is
preserved. In other systems, the accuracy of the approx-
imation procedure is determined either by the user or by
resource availability. For example, BlinkDB [2] can use a
user-specified time limit or error threshold to determine the
optimal sample size. The difference in the provided guaran-
tees by IFocus and BlinkDB highlights the trade-off between
the accuracy and computational cost of an approximation.

Common to many sampling-based AQP systems are global
tuning parameters or thresholds that can be used to deter-
mine when sampling stops. For instance, IFocus relies on a
minimum resolution parameter r below which the visual or-
dering property does not have to be satisfied [7]. Although
the paper does not specify how r should be set, this pa-
rameter could potentially be automatically set based on hu-
man perceptual inaccuracies. For instance, the difference
between bar heights of 90 and 91 pixels is perceptually in-
discernible in most situations. As a result, we might set the
minimal resolution to 1 pixel. Similarly, many humans have
trouble distinguishing between small shades of red [8]. Such
minimal thresholds for perceptual indiscernibility of visual
objects apply in any situation where information can be en-
coded graphically.

We can use knowledge of human visual perceptual limi-
tations to design better visualization systems. The field of
graphical perception explores how humans decode informa-
tion on data visualizations and contains extensive studies on
user perception and judgement accuracies in a multitude of
settings [12, 11, 35, 4, 16, 27]. Some of these studies quan-
titatively assess human perceptual accuracy. For instance,
Cleveland et al. [12] identified a set of elementary perceptual
tasks that are carried out when people extract quantitative
information from graphs and ordered the tasks on the ba-
sis of how accurately people perform them. Motivated by
such studies, in Section 2, we present an initial construction
of perceptual models that can be used in sampling-based
approximate query processing.

In this paper, we present an online sampling algorithm
that can use knowledge of human perceptual error, encoded
in perceptual models, to provide approximate answers that
differ from the true answers by a perceptually indiscernible

amount. The algorithm, PFunk-H, uses simple perceptual
functions (linear or non-linear) to automatically determine
the confidence interval for approximate answers. Since the
width of the confidence interval determines both the effi-
ciency and the correctness of query approximation, we would
like to be able to automatically determine the width of the
interval such that the interval is lax enough so that we do
not consume too many samples but strict enough to ensure
perceptual correctness.

The introduction of PFunk-H and our preliminary exper-
iments is an initial foray into the use of perceptual models
in approximate query processing. Perceptual models can be
used in a multitude of settings, some of which we outline in
Section 6. We are particularly excited about the potential
performance benefits of applying the PFunk ideas in inter-
active visualizations, where recent studies [39] have found
cases where user accuracy is highly robust to many forms of
approximation.

We now begin with a quick primer on graphical percep-
tion and our simplified model for perception in data visual-
izations.

2. GRAPHICAL PERCEPTION AND SIM-
PLE PERCEPTUAL MODELS

This section gives an overview of graphical perception re-
search and introduces the perceptual models used in this
paper.

The broad perception literature has studied and devel-
oped theories for the factors that affect human perception.
Within this literature is the rich area of graphical perception,
which studies how accurately humans can perform visual
judgements in data visualizations. For instance, the power
law of psychophysics [35, 26] models the perceived magni-
tude of the encoded value using an exponential relation-
ship with the true value. Beyond general models, research
have performed studies specific for visual encodings, types of
judgement tasks, as well as type of visualization. Color per-
ception has been extensively studied and there are numer-
ous proposed color spaces [30, 29] designed to be perceptu-
ally uniform such that perceived color differences uniformly
translate to differences of the encoded values. Similarly,
Cleveland et al. [11] measure perceptual error of propor-
tional comparison tasks between pairs of visually encoded
values (e.g., bar heights, or slopes of lines). Furthermore,
recent work has extended graphical perception studies to
animated data visualizations [38].

These studies provide evidence of substantial variability
of human perceptual accuracy that is affected by the data
values, the visual encoding, the judgement task, and many
other factors. The simple perceptual functions introduced
in this section are meant as a first step to succinctly capture
this variability in a manner than can be used by a visualiza-
tion system for e.g., optimization.

2.1 Framework for Perceptual Functions
The general form of a perceptual function is as follows: 1

P (v∗1 , . . . , v
∗
n|C) = ε (1)

where v∗1 , . . . , v
∗
n are the non-approximate values to be

1similar notation is used to specify conditional probability
distributions

encoded visually. C encompasses the possible contexts for
which this model is valid; these can include the specific user,
the time of day, the user’s mental fatigue, and other possible
settings. ε specifies the maximum allowable deviation of the
true values from their approximated counterparts. When
ε → 0, this corresponds to a constraint that the visualiza-
tion must render non-approximate values.

The simplest case of a perceptual function is the univari-
ate case where we assume the values to be encoded are in-
dependent of one another, a reduction to the n = 1 case in
Equation 1. We make use of univariate perceptual functions
P (u) : R → R in this paper (the context C is not explicitly

specified here). P (u) maps a single visually encoded value to
the maximal perceived error. Consider a simple linear uni-
variate function P (u)(v) = 10−2(5 · v+ 1). P (u)(102) = 5.01
represents a margin of error of ±5.01 for an encoded value
of 102. If the encoded value is 10, then the margin of error
would be ±0.51.

We have been running several classes of perceptual exper-
iments for use in fitting perceptual functions. For a spe-
cific class of experiments, we assume that ε, the perceptual
margin of error, is normally distributed with an unknown
mean and variance. Measurement errors are often modeled
as gaussian noise [27]. Users were asked to estimate the
height of a specific bar in a bar chart. Then for each an-
swer, we calculate the absolute difference between the user’s
estimate and the true bar height. As an example, suppose
that a user is asked to estimate the height of a bar of height
100 in some scenarios. After 20 tasks for the user, we ag-
gregate error values and calculate the sample mean and std
values as 5 and 2 respectively. Then a 99% lower bound
for ε100 (perceptual error when estimating bar height 100)

is 3.96 so we set P (u)(100) = 3.96. In this manner, we can
aggregate lower bounds for ε and then fit these values to
a function that gives us the least square error. Figure 2c
shows logarithmic univariate perceptual functions with en-
coded truth values normalized to range [0, 1]. R-90, R-99,
and R-99.9 use the 90th, 99th, and 99.9th lower bounds for
the perceptual errors obtained for each possible bar height.

2.2 A Library of Perceptual Functions
It is important to recognize that prior studies also suggest

that user accuracy is context sensitive. For instance, a model
fit to data from a low contrast setting may not apply when
the contrast is high [19]; the accuracy for estimating the
heights of tall bars and short bars are different; and fatigued
users may not be as accurate as alert users [25]. We imagine
a growing library of perceptual models collected under dif-
ferent contextual settings (e.g., tasks, users, lighting, etc).
With such a library, the system may pick the most applica-
ble model for a given user based on the user’s own perceptual
information, as well as her environment. Alternatively, users
may carry and use personalized libraries of perceptual mod-
els. It’s important to note that some of these models depend
on the user or the visualization environment, while others
depend on the computed results—the former case requires
quickly detecting and picking the most appropriate model,
while the latter case necessitates more advanced approxi-
mation techinques than those described here. Over time,
we hope this library can provide more accurate accuracy
estimates and be useful for larger scale perceptual research.
Along these lines, methods to scale the collection of context-
sensitive perceptual models, and identifying models that are

robust to different contexts are promising directions of fu-
ture work.

3. THE ALGORITHM AND ITS ANALYSIS
In this section, we present PFunk-H. This algorithm sup-

ports approximate answers for SUM and COUNT based aggrega-
tion functions and we present the version for the AVG aggre-
gate function. For ease of description, we have stripped the
algorithm to the simplest form possible — we present very
simple and conservative concentration inequalities, and we
assume a monotonically increasing perceptual function and
that each record is a single numerical value within [0, 1]. In
practice, our implementation of PFunk-H supports SELECT-
PROJECT-GROUPBY queries over full records with bounded nu-
merical ranges beyond [0, 1], and we use stronger inequal-
ities. Further extensions not described in this paper ex-
tend the algorithm to non-monotonic perceptual functions,
as well as bi-variate functions.

3.1 The PFunk-H Algorithm
PFunk-H uses a single perceptual function to return an ap-

proximate average of the dataset X(= {x1, . . . , xN}). Sup-
pose µ is the population mean. At the end of the algorithm,
we want to estimate with high probability a sample mean v
such that

v ∈ [µ− P (u)(µ), µ+ P (u)(µ)] (2)

Equation 2 is a guarantee that the margin of perceptual
error is ≤ P (u)(µ) with probability ≥ (1 − δ). In other
words, with a high probability, the final approximation error
is not perceptually discernible by humans, as defined by the
perceptual function P (u). Table 1 describes the symbols
used in Algorithm 1.

Algorithm 1: Basic Univariate PFunk-H Algorithm

Data: P (u),X, δ
1 Initialize s = 0, v = R(X), t = P (u)(v);

2 while t > P (u)(v − t) and s < N do
3 s = s+ 1;

4 t =
√

log(2/δ)
2s

;

5 v = s−1
s
· v + 1

s
·R(X);

6 return v;

Algorithm 1 depicts the iterative algorithm in detail. s
represents the total number of samples required for a mar-
gin of error of t. On each iteration, we sample without re-
placement one more element from the dataset using R(X).
Using Hoeffding’s inequality [21], we can compute the de-
creased margin of error t. We continue this procedure until
t ≤ P (u)(v − t), when the number of samples ensures that
Equation 2 is satisfied. The challenge is that the perceptual
function P (u) is conditioned on the true value µ, and we
outline the proof in Subsection 3.1.1.

Example 1. We now provide an example execution se-
quence of Algorithm 1. Suppose the dataset is generated
from a normal distribution x1, . . . , xN ∼ N (0.2, 1) where
N = 1 million points, and the perceptual function is lin-
ear P (u)(x) = x

10
. The maximum allowable perceptual error

when computing the AVG is defined as P (u)(µ = 0.2) = 0.02,

Var Description
X Dataset 0 ≤ X0, . . . , Xn ≤ 1

R(X) Proc to return a random without-replacement
sample from X

P (u) Univariate perceptual function
δ Chance of failure of algorithm (default: 0.05)
∆ Step size for sample set size

Table 1: Table of Notation for the PFunk-H Algorithms

however we do not know the value of µ and must learn it
as part of the algorithm such that, by the time the algorithm
terminates, the confidence interval for the sample mean v
should be a sub-interval of [µ± P (u)(µ)] = [0.2± 0.02].

The conditional in Line 2 compares the empirical margin
of error t with the output of the perceptual function over
the sample mean minus the margin of error v − t. After
taking 5867 samples we find that v = 0.21, and t = 0.018 is
less than the true perceptual error 0.02 and ensures that the
approximated result is not perceptually discernible.

To extend this algorithm to records with multiple at-
tributes, we simply need to keep track of the margins of er-
ror tattr for each attribute attr. In addition, the error bound
computed in Line 4 can be replaced by stronger inequalities.
For instance, the current (loose) bound uses Hoeffding’s clas-
sical inequality [21] which restricts the values to [0, 1]. The
“-H”in“Pfunk-H”is a reference to our use of Hoeffding’s clas-
sical inequality. Alternatives such as Hoeffding-Serfling [5]
can reduce the margin of error 2. Also, the current algo-
rithm assumes that all values are within [0, 1] to simplify
the proof. However, it is simple to extend to handle val-
ues within a fixed numerical range [a, b] where a < b [21].
In addition, making distributional assumptions about the
dataset would allow us to compute the empirical variance
and further reduce the bounds. For example, we have found
that assuming that the attribute values come from a gaus-
sian distribution can reduce the number of samples by 10×
or more to reach the same error bound.

3.1.1 Proof of Correctness
We now illustrate a proof of correctness for Algorithm 1.

Claim 1. Assuming P (u) is a monotonically non-decreasing
function, at the end of the algorithm, Pr[P (u)(µ) > t] > 1−δ
where t is as defined in the Algorithm 1.

Proof. We prove the contrapositive Pr[P (u)(µ) ≤ t] ≤ δ.
We use the one-sided case of Hoeffding’s classical inequal-

ity. By Theorem 1 in [21], Pr[v − µ ≥ t] ≤ e−2st2 where
s is the number of samples used in calculating the sample

average v, and equivalently, Pr[µ ≤ v − t] ≤ e−2st2 . Using

the monotonicity assumption for P (u),

Pr[P (u)(µ) ≤ P (u)(v − t)] ≤ e−2st2 (3)

Solving e−2st2 ≤ δ obtains a lower bound for s, where s ≥
log(1/δ)

2t2
. When the algorithm terminates, s = d log(2/δ)

2t2
e.

2
By replacing Line 4 with t =

√
ρs log(2/δ)

2s where

ρs =

{ (
1 − s−1

N

)
, for s ≤ N/2(

1 − s
N

) (
1 + 1

s

)
, for s > N/2

}

Pr[P (u)(µ) ≤ P (u)(v−t)] ≤ δ is equivalent to Pr[P (u)(µ) >

P (u)(v − t)] > 1 − δ, while the stopping condition ensures

that P (u)(v − t) ≥ t. Thus, Pr[P (u)(µ) > t] > 1− δ.

Claim 2. If s < N , then v ∈ [µ− P (u)(µ), µ+ P (u)(µ)]

Proof. In Claim 1, we invoked the one-sided case of Ho-

effding’s inequality [21]. For the two sided case, ≥ log(2/δ)

2t2

samples are needed so that v ∈ [µ − t, µ + t]. By Claim 1,

with probability (1− δ), P (u)(µ) > t. As a result,

[µ− t, µ+ t] ⊆ [µ− P (u)(µ), µ+ P (u)(µ)] (4)

Therefore, v ∈ [µ−P (u)(µ), µ+P (u)(µ)] with probability
≥ (1− α).

4. EXPERIMENTS

Figure 1: Idealized (S-1) and PFunk-H’s empirical margin
of error (S-1-empirical) for a quadratic perceptual function

We ran a range of experiments on PFunk-H using different
perceptual functions. However, because of space limitations,
we show two classes of perceptual functions: logarithmic
univariate perceptual functions based on perceptual experi-
ments; and synthetic quadratic functions. We show that the
empirical margin of error produced by PFunk-H is very close
to the true margin of error based on the perceptual function
used. Further, we show how the sampling complexity varies
(inverse relation) with δ, the chance of failure.

4.1 Setup
We ran all experiments on a 8-core Intel(R) Xeon(R) CPU

E5-2680 2.80GHz server running Ubuntu 12.04.3 LTS. How-
ever, all experiments were single-threaded to avoid speedup
from parallelization.

PFunk-H is evaluated on top of NEEDLETAIL, a database
system designed to sample records matching a set of ad-hoc
query predicate conditions [28]. For our experiments, we
generated synthetic datasets with 10 million records, each
containing 20 continuous columns and 2 discrete columns.
Each continuous field is drawn from a (truncated) normal
distribution with mean and std in ranges µ ∈ [0.1, 0.8] and
σ ∈ [0.1, 0.5] respectively. Our preliminary experiments fo-
cused on the continuous fields.

Figure 2a shows three synthetic quadratic functions S-0,
S-1, and S-2. We include these synthetic functions to show

the generality of PFunk-H to handle any monotonically in-
creasing function, both linear and non-linear. Figure 2c
shows three logarithmic functions based on data from per-
ceptual studies on bar charts [38]. The functions R-90, R-99,
and R-99.9 use the 90th, 99th, and 99.9th lower bounds, re-
spectively, for the perceptual errors obtained for each true
bar height. As a result, the relative order of the log func-
tions is R-90 > R-99 > R-99.9. See Section 2 for more detail
on modeling.

4.2 Comparing the Perceptual Functions
Figures 2b and 2d show how the number of samples cho-

sen by PFunk-H varies with the failure probability of the
Algorithm δ. Recall that the δ parameter in Algorithm 1 is
used to specify the chance of failure of the sampling Algo-
rithm. Since the failure probability δ is directly related to
the sampling complexity (see Algorithm 1), we can expect
δ to correlate with the percentage of the dataset sampled.
Indeed, it is. Figures 2b and 2d show that – for all six
perceptual functions) – as the failure probability increases,
the number of samples chosen decreases. This makes sense
since δ → 0 implies that the entire dataset should be used
to calculate a non-approximate answer.

Figures 2b and 2d also show the relative sampling com-
plexity of the six perceptual functions. As expected, for a
constant δ, R-99.9 samples more than R-99 which samples
more than R-90. For the synthetic squared functions, S-0
samples more than S-1 which samples more than S-2. This
result follows the (reverse) relative ordering of the functions
shown in figures 2a and 2c.

A natural question to ask is: how close is the estimated
margin of error (variable t produced in Algorithm 1) to

P (u)(µ) (allowable perceptual error for true answer µ)? Re-
call, that since we do not know µ before PFunk-H runs, we
also do not know P (u)(µ). We used PFunk-H with function
S-1 on different columns with means µ ranging from 0.1 to
0.7. Figure 1 shows the original function S-1 (ground truth)
and estimated margin of errors S-1-empirical for the query
answers produced by PFunk-H. As expected (and already

proven in Section 3), P (u)(µ) > t which makes S-1 slightly
greater than but close to S-1-empirical.

5. RELATED WORK
The work related to PFunk-H can be placed in a few cat-

egories:
Graphical Perception: One of the first studies to for-
malize visual perceptual accuracy was done by Cleveland &
McGill [12]. A range of experiments have been performed to
further validate Cleveland & McGill’s foundational work on
graphical perception. Talbot et al. [34] extend the original
experiment to study the effects of distractor bars and sepa-
ration between non-adjacent bar charts. Heer et al. [19] ap-
proximately replicate the original experiment using crowd-
sourcing and a larger collection of chart types. Zacks et
al. [40] evaluates the same perceptual task but on 3D charts.

A concept similar to perceptual functions has been intro-
duced by Demiralp et al. [14]. They formulate perceptual
kernels, a distance metric of aggregate pairwise perceptual
distances used to measure how color, shape, and size af-
fect graphical perception. But it is not immediately obvious
(based on its formal definition) how to use perceptual ker-
nels in sampling-based AQP systems. On the other hand,
our initial definition of perceptual functions aim to provide

(a) Synthetic quadratic perceptual functions (b) δ vs. Number of Samples — for S-0, S-1, S-2

(c) Logarithmic univariate perceptual functions based on perceptual
experiments

(d) δ vs. Number of Samples — for R-90, R-99, R-99.9

Figure 2

error metrics that can be used in a sampling-based algorithm
like PFunk-H. The definition of perceptual functions makes
it especially conducive for online algorithms.

Last, weber models (both linear and log-linear) have been
formulated to provide concise means to model the human
perception of differences in the correlation of objects in graph-
ical models [18, 26].
Approximate Query Processing: There are two broad
categories of algorithms for approximate query processing:
online and offline. We consider related work for both cate-
gories.

Online AQP is most closely related to our work presented
in this paper because PFunk-H is an online algorithm. The
main idea behind online aggregation [20] is the interactive
and on-the-fly construction and refinement of confidence in-
tervals for estimates of aggregate functions (AVG, SUM, and
so on). Online aggregation is particularly appealing for the
interactive query processing functionality it provides. Users
are provided with an interactive tool that can be used to stop
processing aggregate groups when the users deem fit. Thus,
the onus rests on the user to the approximate processing.
This interface, although very intuitive for users that have
knowledge of statistics, could be daunting for lay users with
no background in math. On the other hand, PFunk-H stops
processing automatically when the query answers intended
for visualization are perceptually indiscernible from the true
answers. In this manner, our answers are computed approx-
imately, yet satisfy formal visual guarantees. IFocus [7] is
another online sampling algorithm which provides a formal
probabilistic guarantee different from what PFunk-H gives:
the visual property of correct ordering, whereby groups or

bars in a visualization are ordered correctly.
As per offline AQP, Garofalakis et al. [15] surveys the

area. Examples of systems that support offline AQP inlude
BlinkDB [2] and Aqua [1]. In an online AQP system, sam-
ples are typically chosen a-priori (i.e., via Neyman Alloca-
tion [13]) and are tailored to a workload or set of predictable
queries [3, 9, 10, 23].
Scalable and Interactive Visualization Tools: A slew
of interactive visualization tools and frameworks have been
introduced by both the database and visualization commu-
nities. Examples include Tableau, SeeDB, and SnapTo-
Query [17, 36, 22].

Online perceptually-aware approximate query processing
algorithms like PFunk-H can, in theory, be incorporated into
any of such systems so that the visualizations produced can
be approximate to enhance interactivity and scalability yet
guarantee certain perceptual properties.

6. CONCLUSION & FUTURE DIRECTIONS
In this paper, we advocate for the top-down design of visu-

alization systems based on the use of perceptual functions, or
pfunks, to model human perception. We introduced a gen-
eral API for perceptual functions and have shown a proof-
of-concept use of perceptual functions for sampling-based
approximate query processing. Specifically, we designed the
PFunk-H algorithm that can provide formal guarantees on
the confidence interval of approximated query results us-
ing univariate perceptual functions. The key challenge is
developing an iterative approach that allows the output of
the perceptual function to be conditioned on the true re-

sult values. We then outlined the performance and accuracy
benefits by running PFunk-H on both synthetic perceptual
functions, as well as functions fit to existing perceptual data.

We are currently working on extensions to the PFunk-H
algorithm to support different distributional assumptions,
non-monotonic perceptual functions, bi-variate functions, as
well as functions to describe animated and interactive set-
tings. In addition, we are developing GPaaS (Graphical Per-
ception as a Service) as a way to simplify the development,
deployment, and analysis of perceptual experiments in order
to facilitate the collection of quantitative results for different
visualizations, tasks, and contexts.

Looking broader, our work on the use of perceptual func-
tions in sampling-based approximate query processing is a
small part of a larger goal of combining the HCI/perceptual
literature with data visualization system design. We believe
that there is a large body of literature describing human
limitations in many visual analysis contexts that have the
potential to be translated into high-level constraints that
can be used by the visualization system – either for perfor-
mance as illustrated in this paper, for general visualization
recommendations [33, 32], or even visualization debuggers
that alerts the user or designer when the visual rendering
violates visual constraints.

This work is supported in part by NSF 1527765.

References
[1] S. Acharya, P. B. Gibbons, and V. Poosala. Aqua: A Fast Deci-

sion Support Systems Using Approximate Query Answers. pages
754–757, 1999.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and
I. Stoica. BlinkDB: queries with bounded errors and bounded
response times on very large data. In EuroSys ’13, 2013.

[3] B. Babcock, S. Chaudhuri, and G. Das. Dynamic sample se-
lection for approximate query processing. SIGMOD ’03, pages
539–550, New York, NY, USA, 2003. ACM.

[4] J. C. Baird. Psychophysical analysis of visual space. Pergamon
Press Oxford, New York, [1st ed.] edition, 1970.

[5] R. Bardenet and O.-A. Maillard. Concentration inequalities for
sampling without replacement. Bernoulli, 21(3):1361–1385, 08
2015.

[6] L. Battle, M. Stonebraker, and R. Chang. Dynamic reduction
of query result sets for interactive visualizaton. In Proceedings
of the 2013 IEEE International Conference on Big Data, 6-9
October 2013, Santa Clara, CA, USA, pages 1–8, 2013.

[7] E. Blais, A. Kim, P. Indyk, and S. Madden. Rapid Sampling for
Visualizations with Ordering Guarantees. In 41st International
Conference on Very Large Data Bases, volume 8, pages 521–
532, 2015.

[8] B. Brewer. Perception and its objects. Philosophical Studies,
132:87–97, 2007.

[9] S. Chaudhuri, G. Das, M. Datar, R. Motwani, and V. Narasayya.
Overcoming limitations of sampling for aggregation queries. In
Proceedings of the 17th International Conference on Data En-
gineering, pages 534–542, 2001.

[10] S. Chaudhuri, G. Das, and V. Narasayya. Optimized strati-
fied sampling for approximate query processing. ACM Trans.
Database Syst., 32(2), June 2007.

[11] W. Cleveland and R. McGill. Graphical Perception and
Graphical Methods for Analyzing Scientific Data. Science,
229(4716):828, 1985.

[12] W. S. Cleveland and R. McGill. Graphical perception: Theory,
experimentation, and application to the development of graphi-
cal methods. Journal of the American Statistical Association,
79(387):pp. 531–554, 1984.

[13] W. Cochran. Sampling Techniques. Wiley, third edition, 1977.

[14] Ç. Demiralp, M. S. Bernstein, and J. Heer. Learning percep-
tual kernels for visualization design. IEEE Trans. Vis. Comput.
Graph., 20(12):1933–1942, 2014.

[15] M. N. Garofalakis and P. B. Gibbon. Approximate query pro-
cessing: Taming the terabytes. VLDB, pages 725–, 2001.

[16] M. Gleicher, M. Correll, C. Nothelfer, and S. Franconeri. Per-
ception of average value in multiclass scatterplots. IEEE Trans.
Vis. Comput. Graph., 19(12):2316–2325, 2013.

[17] P. Hanrahan. Analytic database technologies for a new kind of
user: The data enthusiast. SIGMOD ’12, pages 577–578, New
York, NY, USA, 2012. ACM.

[18] L. Harrison, F. Yang, S. Franconeri, and R. Chang. Ranking
visualizations of correlation using weber’s law. IEEE Transac-
tions on Visualization and Computer Graphics, 20(12):1943–
1952, Dec 2014.

[19] J. Heer and M. Bostock. Crowdsourcing graphical perception:
using mechanical turk to assess visualization design. In Proceed-
ings of the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 203–212. ACM, 2010.

[20] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggrega-
tion. SIGMOD, pages 171–182, 1997.

[21] W. Hoeffding. Probability inequalities for sums of bounded ran-
dom variables. Journal of the American Statistical Association,
58(301):13–30, 1963.

[22] L. Jiang and A. Nandi. SnapToQuery : Providing Interactive
Feedback during Exploratory Query Specification. 8(11):1250–
1261, 2015.

[23] S. Joshi and C. M. Jermaine. Robust stratified sampling plans
for low selectivity queries. In Proceedings of the 24th Inter-
national Conference on Data Engineering, ICDE 2008, April
7-12, 2008, Cancún, México, pages 199–208, 2008.

[24] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A
visualization-oriented time series data aggregation. Proc. VLDB
Endow., 7(10):797–808, June 2014.

[25] K. Kahol, M. J. Leyba, M. Deka, V. Deka, S. Mayes, M. Smith,
J. J. Ferrara, and S. Panchanathan. Effect of fatigue on
psychomotor and cognitive skills. The American Journal of
Surgery, 2008.

[26] M. Kay and J. Heer. Beyond weber’s law: A second look at
ranking visualizations of correlation. IEEE Trans. Visualization
& Comp. Graphics (Proc. InfoVis), 2016.

[27] D. Kersten, P. Mamassian, and A. Yuille. Object Perception
as Bayesian Inference. Department of Statistics, UCLA, pages
1–34, 2011.

[28] A. Kim, E. Blais, A. Parameswaran, P. Indyk, S. Madden, and
R. Rubinfeld. Rapid sampling for visualizations with ordering
guarantees. Proc. VLDB Endow., 8(5):521–532, Jan. 2015.

[29] P. Kovesi. Good colour maps: How to design them. arXiv, 2015.

[30] C. Li, M. R. Luo, and C. Li. Assessing colour rendering prop-
erties of daylight sources part ii: A new colour rendering index:
Cri-cam02ucs. 2009.

[31] Z. Liu and J. Heer. The effects of interactive latency on ex-
ploratory visual analysis. IEEE Trans. Visualization & Comp.
Graphics (Proc. InfoVis), 2014.

[32] J. Mackinlay. Automating the design of graphical presentations
of relational information. ACM Trans. Graph., 5(2):110–141,
Apr. 1986.

[33] J. Mackinlay, P. Hanrahan, and C. Stolte. Show me: Automatic
presentation for visual analysis. IEEE Transactions on Visual-
ization and Computer Graphics, 13(6):1137–1144, Nov. 2007.

[34] J. Talbot, V. Setlur, and A. Anand. Four Experiments on the
Perception of Bar Charts. IEEE Transactions on Visualization
and Computer Graphics, 20(12):2152–2160, Nov. 2014.

[35] R. Teghtsoonian. The American Journal of Psychology,
88(4):677–684, 1975.

[36] M. Vartak, S. Madden, A. Parameswaran, and N. Polyzotis.
Seedb: Automatically generating query visualizations. Proc.
VLDB Endow., 7(13):1581–1584, Aug. 2014.

[37] C. Weaver. Multidimensional visual analysis using cross-filtered
views. In Proceedings of the IEEE Symposium on Visual An-
alytics Science and Technology, IEEE VAST 2008, Columbus,
Ohio, USA, 19-24 October 2008, pages 163–170, 2008.

[38] E. Wu, L. Jiang, L. Xu, and A. Nandi. Graphical perception in
animated bar charts. arXiv, 2016.

[39] E. Wu and A. Nandi. Towards Perception-aware Interactive Data
Visualization Systems. DSIA Workshop, IEEE VIS, 2015.

[40] J. Zacks, E. Levy, B. Tversky, and D. J. Schiano. Reading bar
graphs: Effects of extraneous depth cues and graphical context.
Journal of Experimental Psychology: Applied, 4(2):119 – 138,
1998.

