
A DeVIL-ish Approach to Inconsistency in Interactive
Visualizations

Yifan Wu
UC Berkeley

yifanwu@berkeley.edu

Joseph M. Hellerstein
UC Berkeley

hellerstein@berkeley.edu

Eugene Wu
Columbia University

ewu@cs.columbia.edu

1. INTRODUCTION
Declarative languages have a long tradition in both the

database systems and data visualization communities, sep-
arating specifications from implementations. In databases,
declarative languages like SQL shield application program-
mers from changes to physical and logical properties like
disk layouts, indexes and schema changes. In data visual-
ization, declarative languages like Polaris, ggplot2 and Vega
shield visualization programmers from variations in render-
ing, including screen layout, resolution, and color schemes.
Declarative languages have been considered a foundational
step forward in both communities.

To date, most of the work on declarative languages in the
visualization community has focused on describing static vi-
sualizations: the positions, shapes and colors of graphical
marks to be rendered. Interaction has been accepted as a
key aspect of modern visualization systems [7], yet work on
introducing declarativity to interactive visualizations is still
in its infancy. Recent systems such as Reactive Vega [9, 10]
have introduced higher-level specifications for interactions in
a functional reactive programming (FRP) model. Synergis-
tically, we are studying the benefits of a Declarative Visual
Interaction Language (DeVIL) that enables the specifica-
tion of interactive visualizations in a declarative framework
inspired by languages like SQL and Polaris. In particular,
DeVIL presents a unified relational model for interactive vi-
sualization applications, and provides a basis to analyze as-
pects of interaction such as performance, correctness, and
expressiveness.

In this paper, we focus on a specific benefit provided by
DeVIL: managing the consistency of interactive visualiza-
tions in the face of inherent asynchrony and reordering of
events in modern data visualizations. We begin by illustrat-
ing how the quest for increased interactivity and scale in
data visualization can lead to unintended, confusing or unde-
sirable user experiences (inconsistencies). We show how our
declarative approach naturally lets us borrow consistency
strategies from the database literature, freeing programmers
from the need to build ad-hoc mechanisms to achieve con-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

HILDA’16, June 26 2016, San Francisco, CA, USA
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4207-0/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2939502.2939517

sistency in their applications.

2. DATA MODEL
DeVIL takes a relational approach towards interactive

data visualization and models nearly all logical represen-
tations of the visualization—input events, base data, marks
(e.g., SVG elements), and even the rendered pixels—as database
tables. In other words, data computation, visually encoding
data values into marks, layout, and rendering are logically
encapsulated within the DeVIL data model. We emphasize
the term logically because the physical representation may
not be practical to implement. For instance the pixels are
significantly more efficient when represented as a rasterized
image, however we can logically model them as a database
table for analysis purposes. Although a full treatment of
the data model is beyond the scope of this paper, we will
outline the key concepts in order to ground the examples in
the subsequent sections.

At a high level, static visualizations are expressed as view
definitions over a set of base data tables (Figure 1). These
view definitions logically describe how to aggregate and trans-
form the data, how to map those records into a set of marks
in the Marks table, and how to render the visualization into
a table of pixels shown to the user. Complex computations
such as layout algorithms and rasterization are modeled as
table UDFs.

Figure 1: High-level DeVIL data model.

Interactions are modeled as a join between an Events table
and the base data. User interactions (e.g., drag) are com-
posed of a stream of event records (e.g., mousemove) that
are appended to the Events table. Since the visualization
is modeled as a set of view definitions, each event record
triggers updates to all of the views, including the pixels ta-
ble. The updated state of the pixel table solely depends

on the previous state of the database along with the newly
appended event.

The Events, Marks and Pixels tables also represent differ-
ent levels of abstractions in the data model. Section 4 will
show cases where these abstractions are used when resolving
inconsistencies in the visualization.

This table-centric model provides numerous benefits by al-
lowing us to borrow analysis and execution techniques from
the database literature [12]. For instance, we can use no-
tions of versioning and database lineage to easily facilitate
time-travel capabilities such as undo and replay as well as
linked interactions such as cross-filtering [11]. In addition,
we can now view the visualization through the lenses of ma-
terialized view maintenance, and explore automatic ways to
incrementally update the visualization. In contrast, existing
visualization developers have to implement these features by
hand. This is not only error-prone, but also, as we will ex-
plore in Section 3, exposes the visualization to undesirable
consistency issues that are difficulty to manage and debug.
Finally, modeling the visualization state as tables allows us
to both borrow and adapt existing concurrency analysis, and
enables powerful policy descriptions as simple logical state-
ments over these tables.

3. SOURCES OF REORDERING
The data model sketched in Section 2 can capture the

semantics of the visualization and interactions, but there
are many sources of non-deterministic reordering in any in-
teractive system: asynchronous execution, software compo-
nents that introduce reordering, and concurrent interactions.
They could cause undesired behaviors in interactive visual-
izations, and we will illustrate with a few examples.

We start with a fully synchronous example that induces
a correct ordering at the expense of significant interaction
delays. The user drags their mouse to select bars in a sum-
mary bar chart (e.g., sales by month). This 1) resizes the
selection box 2) highlights the selected bars and 3) renders
the disaggregated records of the highlighted bars in a scat-
terplot visualization. We assume that the selection box and
highlights are nearly instantaneous to update, whereas the
cost to compute and render the linked visualization is high
(perhaps due to network latency or database access).

Figure 2a shows a time plot of a synchronous execution of
this example, where the bottom is most recent. The user’s
drag motion generates two mouse move events. 1:move rep-
resents a move event in time T1, which is sent to the backend
in the same timestep. However, the processing takes a long
time (denoted by two timesteps at the backend), thus the
entire interface, including dispatching mouse movements, is
blocked until visualization is updated in T3. Only then, can
the next 2:move event from the interaction occur in T4. Un-
der this execution model, long backend processing time dras-
tically reduces the interactivity of the visualization applica-
tion and can lead to a poor interactive experience, which
has been shown in literature to reduce user data analytics
performance [5]. In the following examples, we will explore
different ways that applications could introduce asynchrony
as a mechanism to increase concurrency as well as improve
interaction response times. We find that this can introduce
unintended side effects in the update order of the visualiza-
tion.

Asynchronous Event Dispatch, Synchronous Visual-

ization Updates: Event-driven programming models like
Javascript and its various frameworks encourage asynchronous
event handling as a way to ensure responsiveness to user in-
put. However asynchrony is not a panacea. For instance,
Figure 2b illustrates the effects of asynchronously dispatch-
ing events to the backend system. This execution model
allows users to continue interacting with the visualization
while the backend processes earlier events. But in this case,
each event/response pair is handled synchronously, so the
user will not see any visual changes for the 1:move event
until it is fully computed in T3.

External Sources of Reordering: Our next example il-
lustrates how asynchronous event dispatch described above,
along with non-deterministic backend software components
can lead to unintended reorderings. For instance, visualiza-
tion systems are commonly designed as a two tiered architec-
ture, where a client (e.g., browser) renders the visualization
and translates user interactions (e.g., the move events of a
drag interaction) into a sequence of queries that are sent to a
backend database system. The client then renders the query
results. Although database systems guarantee serializability
(e.g., transactions are executed equivalently to some serial
ordering), they are allowed to reorder the transactions in ar-
bitrary ways. Figure 3 shows how this can cause the updates
for the 2:move to arrive and render in T3, while the earlier
1:move events is rendered later in T4.

Asynchrony Within an Interaction: A common way
to improve interactivity is to introduce concurrency by de-
composing the visualization update into smaller updates for
each component. For instance, the mouse movement up-
dates three components of the visualization—the size of the
selection box, the color of the selected bars, and the con-
tents of the scatterplot. Separate requests may be executed
asynchronously for each of these components, so that some
parts of the visualization can remain responsive. For ex-
ample, Figure 2c decouples the updates to the bar chart
and the scatter plot, so that selection and highlighting is
reflected very quickly, whereas the scatterplot is allowed to
take more time. In this way, the user can see what they are
selecting in real time, although the detailed scatterplot view
may take longer to render.

Although this is a common way to improve visualization
interactivity, the asynchrony can lead to surprising effects in
the visualization. For instance, T3 in Figure 2c shows bars A
and B highlighted, however the scatterplot only shows data
for bar A—components of the same visualization are showing
results from different subsets of the base data. This can lead
the user towards incorrect conclusions, so the developer may
consider these visualization components inconsistent.

Concurrency Between Interactions: The asynchrony
described above is an instance of concurrency within a sin-
gle interaction. Similar reorderings are possible under con-
current interactions—for example, two users in a collabora-
tive interface, or a single user using multiple input devices
(e.g., hand tracking). Consider a new developer creating an
interactive visualization for sales data (Figure 4). She first
creates a selectable bar chart of sales by month (month) that
updates the chart of sales in SF and NYC (city). She then
copies and modifies month to create a selectable bar chart of
sales by hour (hour). Unfortunately, in this configuration,
each selectable chart independently updates city. For ex-
ample, if the user selects bar A in month, then city shows

(a) Fully synchronous execution model
blocks interaction inputs until visualiza-
tion is updated.

(b) Asynchronous processing does not
block inputs, but synchronous execution
blocks visualization updates.

(c) Asynchronous processing and visual-
ization updates improve interactivity but
introduce unintended reorderings.

Figure 2: Time plots of visualization updates to the selection box, highlighted bars, and scatterplot based on user mousemove
events.

Figure 3: Time plot of reordering due to nondeterministic
processing in the backend database.

SF and NYC sales for bar A, regardless of selections in hour.
Even in an idealized setting where updates are instanta-

neous (Figure 4), the concurrent interactions in month and
hour can interleave the mouse move events. This can cause
city to show data corresponding to month’s selected data
in one instant (e.g., T1 and T3) and switch to hour’s se-
lected data in the next instant (e.g., T2 and T4). The in-
terleaved visualization updates due to the interleaved inter-
action events can cause users tremendous confusion.

Note that the reordering in this example came from the
interleaving of the events from the two concurrent interac-
tions. There are some obvious ways to address this issue, for
example, by disallowing concurrent interactions altogether,
while other policies may only allow concurrent interactions
as long as they don’t interfere with each other. We will dis-
cuss policies to specify these semantics in the next Section.

Figure 4: Time plot of interleaved events between two con-
current interactions: undesirable reorderings are possible
even if processing is instantaneous.

This section has described reorderings due to different
forms of asynchrony. Many of these re-orderings result in
inconsistent and, we argue, incorrect visualization states
that can confuse or mislead users. Going forward we will
treat them in two separate categories: individual interaction
and interleaved interactions, due to the resolution semantics
which will be discussed. In the following sections, we will
see other cases where the reorderings can be declaratively
resolved. The power of the DeVIL approach is that it pro-
vides a framework to reason about, and express what the
consistency semantics should be.

4. DEALING WITH REORDERINGS
So far we’ve seen that a combination of concurrency and

asynchrony can be used to improve visualization interac-
tivity, however at the cost of potentially undesirable result
reorderings. This is not a new problem. Event-driven pro-
gramming models like Javascript and its various frameworks
encourage asynchronous event handling to ensure respon-
siveness to input. But a side-effect of that responsiveness
is complexity: the order of event handling can be hard to
predict and control. There have been numerous efforts to
deal with this problem from the front-end community which
we will discuss in related work section. This section dis-
cusses how DeVIL makes it possible to detect potential con-
flicts from difference sources on various levels, and provide a
framework to reason about reordering and declarative ways
to specify and ensure correct behavior.

4.1 Database Conflict Analysis
Traditionally in databases, acceptable concurrency is de-

fined by a serializability guarantee, ensuring that the queries
are executed by a transaction as if in isolation. A common
serializability guarantee is conflict serializability, which en-
sures that the reads and writes of all transactions occur in
an order equivalent to some serial ordering of the transac-
tions [4]. In Section 2 we described how the UI is modeled
as Marks and Pixels tables, which are view definitions over
the Events and Base Data tables. In the case of interleav-
ings due to concurrent interactions, the interactions share
the same logical screen, so there may be write conflicts in
the edits to the Marks, Pixels or other shared tables in the
data model. Given this setup, we may address concurrency
between interactions modeling an interaction, and all of the
view updates due to its events, as a transaction. We could
then apply standard database locking to the materialized

tables that represent visualization views.

Figure 5: Update diagram of two interactions updating the
same view with different values.

To make things concrete, let’s take a look at the example
in Figure 5. A brushing interaction on the blue chart (view
1) triggers an update, shown as the purple chart along the
arrow, to a secondary view (view 3), depicted as the ques-
tion mark. The orange chart (view 2) tries to update view
3 with a different chart. If these updates are modeled as
updates to individual pixels in the pixels table, then write-
write conflicts become apparent.

Now that we see how write conflicts could arise in DeVIL
and how conflict analysis could prevent potentially erroneous
updates to the UI, we will demonstrate scenarios where this
analysis can automatically identify“satisfactory”reorderings
in terms of visualization semantics, and allow more con-
currency than a strict serial interaction ordering. We will
see that different acceptable interation semantics can be ex-
pressed by varying the granularity of the analysis (table,
record, and cell level) and the tables for which we apply
lock based analysis (Pixels and Marks).

Table Level Locking Naively, the entire pixel table could
be locked during the execution of an interaction (includ-
ing both the user events and the computations needed to
perform the interaction query). This simple method yields
correct output without any potential anomalies but severely
decreases the interactivity, which negates the point of this
whole exercise, which is to increase interactivity via asyn-
chrony.

Record Level Locking Let’s consider reducing the locking
granularity to the record level for the Pixel table. As seen
in Figure 6, selecting the blue bars in view 1 updates view
3, and selecting the orange bars in view 2 updates view 4.
Since there are no record level conflict, the interactions are
allowed to happen concurrently, which is be an improvement
from the previous table level locking scheme.

Figure 6: Update diagram of two interactions updating dif-
ferent non-overlapping views, without record level conflict.

Cell Level Locking Pushing for even further concurrency,
we can study cell level locking on the Marks table. In Fig-
ure 7 where the same mark is modified by two interac-
tions, but one modifies the color, the other the transparency.

These two interactions do not have any conflicts on the
Marks table cell level but will have a conflict on records in
the Pixel table, so in this case we are allowing more concur-
rent interactions to happen.

Figure 7: Update diagram of two interactions updating color
and transparency of a single mark respectively, without cell
level conflict

Figure 8 is an example of cell level read-write conflict.
User 1 (cursor) is brushing to select bars A and B in the
view (say in a linked selection visualization), while user 2
(hand pointer) concurrently attempts to drag bar A—these
forms of interaction are commonplace on touch-based visu-
alizations such as Tableau Vizable. If the bar is moved out
of User 1’s selection region, then it can unintentionally mod-
ify the results of User 1’s selection. As mentioned before in
Section 2, the User 1’s selection can be logically viewed as a
join between the user’s selection region and the bars in the
visualization based on their overlap. Since evaluating this
join requires comparing the positions of the bars with the
selection region, the join obtains a read lock on the mark po-
sition attributes. Thus, when the drag interaction attempts
to update bar A’s position, it cannot acquire the write lock
until User 1’s interaction is completed.

Figure 8: Scenario where user 1 selects bar A and B , user 2
drags bar A , creating a cell level read-write conflict on the
position of bar A .

Our application of conflict analysis introduces the inter-
esting issue of abort due to deadlocks. It is not clear how
to unwind an ongoing interaction in a user friendly manner
and the issue merits deeper investigation.

While database conflict analysis at the read/write level
provide a simple and useful mechanism to work with re-
orderings, it does not always capture application semantics
intelligently and only helps with interleaved interactions. As
a result, we first introduce Merge Functions to allow orders
that conflict but are semantically acceptable, which apply
when conflict analysis is too conservative. We then introduce
Interaction Constraints to prevent orders that do not con-
flict but lead to semantic inconsistencies which apply when
conflict analysis is too liberal. Note that both of the mecha-
nisms could deal with reorderings from single interaction as
well as interleaved interactions.

4.2 Merge Functions

Traditional database conflict analysis may forbid desirable
reorderings. In many cases, we can easily avoid unneces-
sary conflicts using visualization semantics. For example, in
Figure 9, the “update diagram”, the selections AB in view
1 updates with the blue dots, and the selection XYZ to the
right in view 2 updates with the orange dots, which partially
overlaps with the blue dots. Under record level locking on
Pixels table, this scenario would conflict, since both interac-
tions are writing to the pixels in the overlapped area, with
different colors. However, in practice, we rarely see con-
currency limitations due to these conflicts, suggesting that
there are ways to avoid these issues.

In this subsection we will describe merge functions, which
resolve conflicts between pairs of Pixel (or Marks, or data)
tables. We will see that a large class of techniques used in
the wild can be reduced to applications of merge functions
at different tales in the DeVIL data model.

Figure 9: Update diagram of two concurrent interactions
that“conflict”but could be correct under painter’s algorithm
semantics (described below).

Merging on the Pixel Layer One common technique in
rendering from computer graphics is alpha composition [8],
which exposes arithmetic for arbitrary composition between
objects. For example, we could make two marks transparent,
preserving information about the marks’ position and colors.
The visualization developer applies the transformation on
the overlapping pixels, as seen in Figure 10.

Figure 10: Example of a merge function that combines the
orange and blue points into the merged view via alpha com-
position.

Merging on the Mark Layer Following the same set up
as the example in Figure 10, an alternative to pixel layer res-
olutions is on the mark layer, as demonstrated in Figure 11.
Beginning with the first scenario, painter’s algorithm (or pri-
ority fill), the merge function always takes the pixel assign-
ment from one interaction consistently across all overlapping
marks. The second example outcome in the same figure,
the distortion function, merges the overlapping marks into
a bigger mark. As for jittering, the merge function moves
the two overlapping marks in the opposite direction by a
certain number of pixels, and then apply painters algorithm
as mentioned before, this way suggesting that there is more
than one mark in the area. Finally, transparent overlay up-
date both of the original marks’ transparency, still revealing
information about the fact that the marks are not a simple
mark, but allowing two updates to happen concurrently.

Figure 11: Four examples of merge functions on mark layer.

Merging on the Interaction Layer Revisiting the con-
flict mentioned in Figure 5, we demonstrate a merge function
to resolve the conflict in Figure 12. We could avoid overlap-
ping pixels by repartitioning the updates to different parts
of the UI: once a conflict is detected, dynamically update the
layouts of the target views into spatial subsets of the original
view. This is merging on the interaction layer because the
merge function is applied to all the marks impacted by the
respective interactions.

Figure 12: Update diagram of two concurrent interactions
merged via spatial partitioning: shrinking the individual bar
width to fit all marks within the original view.

Figure 13 is our final merge function example. The inter-
action in view 1 translates selections into a filter predicate
which states that the attribute corresponding to the x-axis
(view1.x) must be in the set {A,B}. The interaction addi-
tionally updates view 3 to show the subset of the base data
table satisfying view1.x ∈ {A,B}. View 2 involves a sim-
ilar interaction to also update view 3. Rather than merge
records directly, the merge function may instead compose
the views’ predicates using a conjunction (or disjunction)
operator. In the figure, view 3 shows a scatterplot of the
two base data records that satisfy both predicates.

Figure 13: Update diagram of two concurrent interactions
merged via predicate conjunctions: showing results that sat-
isfy both of the predicates defined in the individual interac-
tions.

This ability to work with different layers of the visualiza-
tion objects, pixels, marks, and interactions, makes it possi-
ble to express a wide range of behaviors, which are otherwise
difficult to implement in imperative models.

More broadly, merge functions are used in the database
community as powerful tools for reasoning about reordering,

as seen in commutative operators a la Sagas and CRDTs,
which were recently shown to generalize to any monotonic
code, as in BloomL and the CALM Theorem. Depending on
the semantics of the merge function and lineage information,
we could design a collection of merge functions for visual-
ization use cases that are monotone, i.e. commutative, asso-
ciative, and idempotent [1], and even perform compiler side
optimization to discover monotonicity automatically. We
intend to explore these in future work.

4.3 Interaction Constraints
While database conflict analysis and merge functions can

express a wide range of consistency policies, there are still
reasonable policies cannot be expressed using the mecha-
nisms introduced so far. In this section, we will give exam-
ples of how constraints in our data model offer a natural
way to describe even richer consistency semantics. These
interaction constraints are logical statements analogous to
classic integrity constraints. Note in the examples below
we use some syntactic sugar to abstract away implementa-
tion details, which merit a deeper discussion outside of this
paper.

Multi-visualization Consistency Let us return to Fig-
ure 2c, where the asynchronous execution of each visualiza-
tion component results in a visualization state that shows
inconsistent data in T3. The bar chart shows that two bars
are highlighted, however the scatterplot only shows the data
for bar A. The designer may be concerned about the visual-
ization user drawing wrong conclusions from the intermedi-
ate states, and assert that the input records from basedata
that generated the marks in the bar chart and scatterplot
(i.e., their lineage) should be the same, as shown in example
snippet below.

lineage(barchart, basedata) == lineage(scatter, basedata)

Specific Concurrency Control A visualization designer is
concerned that two interactions, though with no data level
conflicts, when happening concurrently might mislead the
user to draw wrong conclusions (perhaps due to implicit as-
sumption connecting the two unrelated interactions). The
designer could use the following constraint to prevent two
interactions from happening simultaneously.

!concurrent(interaction1, interaction2)

Interaction Responsiveness Guarantee To prevent un-
responsive UX in the case of an unexpectedly long running
query, a designer may wish to kill long running interactions
that are blocking.

seconds(now - current_interaction.begin) < 60

AND is_blocking(current_interaction)

The examples above only illustrate some scenarios and
there are many other potentially useful policies. While we do
not have space to detail the implementation of these policies,
it’s worth noting that the ability to access multiple layers of
the data model and global state at any timestep allows us
to declaratively describe and enforce invariants. One could
implement these policies with an event driven imperative
programming model, but it will require a lot of machinery
to manage global states across time.

5. RELATED WORK
There are several recent approaches to improve design pat-

terns for visualization and front-end programming. Rx [6]
and React [2] are emblematic of event-driven functional reac-
tive programming (E-FRP) languages that simplify the com-
position of asynchronous and event-based programs. Many
of the concepts are similar to stream query operators, how-
ever their model is not explicitly relational, and tools for an-
alyzing and addressing the inconsistency issues highlighted
in the paper are lacking.

Reactive Vega [9] adopts an FRP execution model to in-
teractive visualizations and introduces a high level data flow
specification as well as a compact short-hand (Vega-lite) for
expressing common visualization and interaction patterns.
From the database community, FORWARD [3] models web
applications as materialized view definitions over a nested
relational model. However neither directions have focused
on advanced tools to resolve inconsistencies in the visual
interaction due to asynchrony and concurrency.

6. FUTURE WORK
DeVIL’s unified data model enables direct application of

conflict analysis tools from concurrency control, distributed
systems, and constraint logic. In addition, its grounding in
view definitions enables potential new work such as lineage
support that can be leveraged when expressing interaction
constraints. Further work is required to understand how
the three proposed mechanisms can compose together. In
addition, we are currently in the process of developing a
DSL for expressing the policies categorized in this paper,
and building a prototype system to evaluate our proposed
solutions.

References
[1] P. Alvaro, N. Conway, J. M. Hellerstein, and W. R. Mar-

czak. Consistency analysis in bloom: a calm and collected
approach. In CIDR, 2011.

[2] Facebook. React. https://facebook.github.io/react/.

[3] Y. Fu, K. W. Ong, Y. Papakonstantinou, and M. Petropou-
los. The sql-based all-declarative forward web application
development framework. In CIDR, pages 69–78, 2011.

[4] J. Gray and A. Reuter. Transaction processing: concepts
and techniques. Elsevier, 1992.

[5] Z. Liu and J. Heer. The effects of interactive latency on
exploratory visual analysis. TVCG, 2014.

[6] E. Meijer. Reactive extensions (rx): curing your asyn-
chronous programming blues. In SIGPLAN, 2010.

[7] W. A. Pike, J. Stasko, R. Chang, and T. A. O’connell. The
science of interaction. IV, 2009.

[8] T. Porter and T. Duff. Compositing digital images. In
ACM Siggraph Computer Graphics, volume 18, pages 253–
259. ACM, 1984.

[9] A. Satyanarayan, R. Russell, J. Hoffswell, and J. Heer. Reac-
tive vega: A streaming dataflow architecture for declarative
interactive visualization. TVCG, 2016.

[10] A. Satyanarayan, K. Wongsuphasawat, and J. Heer. Declara-
tive interaction design for data visualization. In UIST, 2014.

[11] C. Weaver. Cross-filtered views for multidimensional visual
analysis. In TVCG, 2010.

[12] E. Wu, L. Battle, and S. R. Madden. The case for data
visualization management systems. VLDB, 2014.

