
Research Statement and Agenda
Eugene Wu

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

eugenewu@mit.edu

The past decade has seen tremendous growth in both the volume of data and the complexity of anal-

yses that organizations want to perform. Increasingly, these analyses are not performed by experienced

database administrators but by domain experts that need simple ways to process their data without

worrying about scalability and management limitations. To be useful for these users, new systems must

simplify analyses and address performance bottlenecks at every step in the analysis pipeline. My work

has focused on many of these bottlenecks — robust data ingestion [7], improving core query perfor-

mance [3, 8, 11, 4, 2], supporting new forms of data and new domains [9, 5, 6, 1], summarizing and

debugging query results [12, 13], and scaling up visualizations [10].

More broadly, my goal is to build scalable and useful data management systems for real people. This

is reflected in my research approach, which emphasizes building end-to-end systems. I have tackled

performance challenges ranging from low-level core database query performance optimization to speeding

up high-level data cleaning and result debugging tasks. Such a comprehensive view is necessary in order

to identify and address the most significant bottlenecks throughout the entire process.

Research Projects

Although I’ve investigated many steps of the analysis pipeline during my graduate career, my thesis

research specifically explores practical fine-grained provenance techniques for large-scale data analysis

applications so that data scientists can easily understand and debug their results. In contrast to systems

that track the files and scripts used in a workflow, my work tracks input and output data at the record

granularity. This is particularly important in exploratory settings where data scientists run a complex

sequence of transformations that reformat, clean, rescale, aggregate and combine the input data. When

the analyst identifies trends or outlier results — often the most interesting parts of the dataset! — it is

crucial to understand where those results came from.

Tracking such provenance information is expensive, as most statistical summaries commonly depend

on a large number of input records. Although prior work developed closed-form methods to compute

provenance for common SQL operators, it either did not support custom operators, or provided APIs that

incurred impractical amounts of storage and query overhead. Moreover, provenance results can easily

inundate the analyst with uninformative inputs (e.g., a provenance query on a summation result over

the entire table would return every record); previous work has not explored the problem of reducing the

provenance to a meaningful subset.

To address these limitations, I developed research systems to explore the three key dimensions that

must be tackled to make provenance usage practical — result understandability, overhead, and latency.

Scorpion [12] is an outlier explanation framework that summarizes the most influential inputs that gen-

erated an aggregate outlier. Subzero [13] is a database that reduces provenance overhead by tuning the

storage behavior based on user-specified runtime and storage constraints. Smoke [10] is a provenance

system for interactive scenarios that can execute provenance queries with low-latency.

Scorpion: Using Provenance to Explain Outliers

When confronted with outlier results, we naturally ask “why?” Consider the simple analytic query our

Harvard Medical School (HMS) collaborator ran that computes a hospital’s total expenses by disease. He

found that that lung cancer cases disproportionately account for millions of dollars – do these patients

require expensive treatments, or is this cost correlated with other factors? While a provenance system

can automatically identify the lung cancer as the expensive cohort, an analyst wishing to know why must

http://www.mit.edu/~eugenewu/job.html

http://www.mit.edu/~eugenewu/job.html


still manually partition that data along various combinations of dimensions (e.g., treatment, age), re-run

the query on each subset, and hope a combination points to the cause. This ad-hoc process becomes

untenable in the presence of multiple outliers, or high dimensionality.

While it took our HMS collaborator six months to analyze the lung cancer problem described above,

Scorpion can identify the two doctors who over-treated their patients and are responsible for a signif-

icant amount of the costs within a few minutes of visual interaction and computation. Scorpion is an

interactive system that uses and filters provenance results to answer “why” questions in the context of

SQL aggregation queries. Users simply select outlier and normal results through a novel interface and

the system creates filters for potential subgroups of the data that most influenced the outliers. Our work

formalized a notion of predicate influence in terms of sensitivity analysis, provided a framework to search

for influential predicates, and identified aggregation operator properties that help reduce search times by

orders of magnitude as compared to a naive exhaustive algorithm.

SubZero: A Low Overhead Provenance System

Scientific applications such as the Large Synoptic Survey Telescope (LSST) are difficult domains for

existing provenance systems because they 1) demand pixel level provenance (e.g., “which pixels generated

this star?”) for debugging and result validation, 2) are high throughput systems (LSST processes 2GB/sec

each night), and 3) can only incur a fixed amount of storage and runtime overhead (LSST budgets ≤20%

of storage for provenance and must process each image in 15 seconds). Many operators are vectorized, so

even generating provenance information can slow operators by orders of magnitude. Custom “black box”

operators are common, so the provenance system must provide efficient APIs to extract the operator’s

provenance information.

I built SubZero [13], a provenance-enabled workflow system that separates how provenance is stored

from decisions of what provenance to generate. SubZero provides APIs that differentiate operators by

the amount of provenance they need to store (constant, linear, or polynomial in the output dataset

size). This allows operators to incur the cost of provenance generation and storage in proportion to

their complexity. When SubZero executes a provenance query, it can use previously stored provenance or

dynamically generate it by re-running previous operators. This lets the optimizer make policy decisions

that trade off provenance query performance and the overhead of achieving such query performance.

In our experiments, the combination of efficient encoding schemes and dynamic optimization reduced

storage overhead by up to 70× and query costs from a hundred seconds to fractions of a second. This is

a huge leap towards making provenance systems feasible in high-throughput applications.

Smoke: Low Latency Provenance for Interactive Visualizations

Data is increasingly published as interactive visualizations. Although tools to create static visualizations

and animations are prevalent, there are few tools that help create rich interactions — many authors

manually implement and optimize interactions such as brushing and linking 1. Smoke is a system that

lets data visualization authors declaratively express visualization interactions as simple provenance queries

and automatically optimizes the query execution to maintain low latency.

Smoke establishes the parallel between common forms of visual interaction and data provenance

by modeling visualizations as workflows from raw data to visual elements and visual interactions as

provenance queries. This allows visualizations to leverage performance optimizations in the provenance

system and scale interactions to larger datasets. I am currently building Smoke, which uses two key

insights to execute provenance queries at interactive (≤100ms) speeds. First, when designing a publishable

visualization, the author can specify the exact set of provenance queries that the system will need to run,

which can be used to optimize its storage representation. In contrast, existing systems are designed for

ad-hoc queries and cannot compare the benefits of different optimizations. Second, many interactions do

not need all of the source data specified by a provenance query, and only need a sample of the data, their

identifiers, or a summary statistic. Smoke uses materialization and approximation techniques to execute

these restricted queries much faster.

1A common form of brushing and linking is when a user selects (brushes) a set of points in one view, and the corresponding
(linked) objects in other views are also selected

http://www.mit.edu/~eugenewu/job.html

http://www.mit.edu/~eugenewu/job.html


Research Agenda

I am excited to continue building scalable and usable data management systems and explore the intersec-

tion between data management, visualization, and interaction. In particular, I am extending my thesis

to explain a larger class of outliers and to develop a provenance benchmark. I will also continue several

existing projects for building scalable analysis tools. Finally, I will investigate how visualization and

database systems can be co-optimized in an integrated visual analytics system.

Practical Provenance

Scorpion was a first step in showing that provenance can explain aggregation query results by properly

filtering and prioritizing the provenance information. However, we are still far from using provenance

in a general manner to debug and understand our analysis results. To push towards practicallity, I will

explore the following directions:

“Why” Explanations for More Complex Operators

Although Scorpion is a general framework, we have only developed optimizations for simple aggrega-

tion operators such as MEAN and STDDEV. Extending efficient support to more complex aggregation

operators (e.g., linear regression) will require finding additional operator properties that can be lever-

aged. Additionally, supporting other output types such as data constraint violations (e.g., identifying

records that violate a constraint such as “Canada is not a U.S. state”) is valuable for data cleaning and

integration. I plan on pursuing both of these directions.

Understanding Provenance Usage

Although the Open Provenance Challenge provides a benchmark to evaluate interoperability between

provenance systems, there are currently no performance-oriented provenance benchmarks. Furthermore,

there does not exist a corpus of provenance queries that are used in practice. Without such benchmarks,

it is difficult to evaluate different provenance systems and make consistent progress as a field. When I

release Smoke as a full-featured visualization system, I will gather information about how the visualization

and provenance systems are used. This will be the first study on how fine-grained provenance is used in

the wild, and the results will be used to develop new provenance interfaces and a fine-grained provenance

benchmark.

Core Data Analysis Tools

I intend to continue several projects I started in graduate school that explore scalable data analysis tools.

Robust Data Ingestion

The first step of data analysis is to load the data into the DBMS. However, modern DBMSs ingest data

in a single transaction, and expect the input file to be in a consistent, typed and error-free format. A

single malformed line can abort the entire loading process, losing all of the progress. DBTruck [7] is a

best-effort ingestion tool that automatically parses input files, infers a schema, and bulk-loads the data.

DBTruck will detect and log malformed records during the loading process, and gracefully degrade the

schema if data-type related errors occur consistently (e.g., alter a float column to a text column). I would

like to further develop DBTruck by combining the parsing and type inference steps, integrating the robust

loading process into the database system, and extending the automatic data cleaning capabilities once

the data has been loaded.

Location Aware Joins

Data is increasingly tagged with location information thanks to the proliferation of data sources such

sa sensors, mobile devices, and census surveys. Unfortunately, the location data is encoded at varying

degrees of granularity (e.g., a single point per state, or per house), accuracy, and representation (e.g., as a

polygon, region, address, or lat/long coordinate). I will continue an earlier project on automatic methods

to infer join conditions (e.g., aggregate neighborhood level data by state before joining with state level

statistics) and implement the join techniques within the database execution engine. These results can, for

example, be used in data exploration and computational journalism to automatically detect correlation

relationships within large corpuses of location-based datasets.

http://www.mit.edu/~eugenewu/job.html

http://www.mit.edu/~eugenewu/job.html


A Scalable Visual Analytics System

A key difficulty in scaling interactive visual analytics to large datasets is maintaining interactive (sub-100

millisecond) latencies. This is necessary so analysts can quickly try many different analyses. Current

approaches decouple the visualization and data management systems via a SQL query interface — each

interaction translates to a SQL query and each query takes seconds or even hours to run. The visualization

layer compensates for the high latency by either optimizing for a specific type of visualization (e.g.,

interactive heat maps), or caching a subset of the data and reimplementing query executors in the client.

I want to develop an integrated exploratory data analysis system where users interact and specify

analyses at the visualization level and the query processing system takes advantage of the visualization

semantics and human perceptual limitations to execute the analyses with low latency. Such a system has

the potential to scale without giving up functionality nor interactivity and to enable valuable exploratory

features such as accurate analysis recommendations. The following are several immediate research op-

portunities.

Perceptually-accurate Approximation

An integrated system can reduce query latencies by approximating results while still minimizing user

perceived errors by understanding the granularities of the visual encodings (e.g., color, x-position, radius).

For example, human perception of color has very low resolution as compared to position, so queries that

generate heat-maps can afford greater approximation error than those that compute bar charts. Similarly,

the output resolution is a visual variable that bounds the differences that the user can detect. The system

can quickly generate an initial result by computing an approximation that preserves the most perceivable

features in the visualization (e.g., an upward trend in a line chart). I plan to explore how these perceptual

properties can inform core query processing optimizations such as sampling, approximation and filtering.

Speculation and Pipelining

Interaction latency can be further reduced by taking advantage of interaction-level semantics. Each

visualization allows a limited number of interactions, which constrains the scope of possible queries. In

addition, many interactions (e.g., clicking on the border of a selection box to resize it) are triggered by

user motions that can take several seconds. This is an ideal environment to speculatively execute queries

and pipeline the execution with the time the user takes to express the queries. The key challenges are

developing a language to declaratively specify and detect interactions, mapping them to optimization

hints, and taking advantage of the hints.

Parallel Analysis

Analysts commonly test hypotheses on a subset of the data, then apply the analysis to the full dataset.

For example, an analyst exploring a large taxi ridership dataset may pick the rides during a single week

and location to rapidly iterate upon, and later expand the analysis to the full dataset or over other

weeks and locations. The system can automatically replicate the analysis on different samples (e.g., the

previous week, or a different location) to test result robustness or to identify similar trends. This requires

optimizations deep in the data management layer to layout the data so the analysis can be efficiently

parallelized, find query sharing opportunities to reuse computed results, and develop pruning techniques

to avoid fully analyzing unpromising datasets.

Contextual Recommendations

Recommending relevant data, visualizations and analyses is an important tool in exploratory data anal-

ysis. Prior recommendation algorithms are typically implemented at the database layer and only have

access to the data and the historical SQL queries. Higher level cues, such as the analyst’s exploration

history and visualization-specific features (e.g., distributional differences in a boxplot vs trends in a line

plot) can substantially improve the recommendation quality. I would like to explore how features across

multiple semantic levels — raw data, query result, visualization, image — can be combined and lever-

aged. The techniques for tackling Parallel Analysis will be equally applicable for quickly generating

recommendations.

http://www.mit.edu/~eugenewu/job.html

http://www.mit.edu/~eugenewu/job.html


References

[1] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang, and E. Wu. Uncovering the relational web. In WebDB,

2008.

[2] P. Cudré-Mauroux, E. Wu, and S. Madden. The case for rodentstore: An adaptive, declarative storage

system. In CIDR, 2009.

[3] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore: An adaptive storage system for very large trajectory

data sets. In ICDE, 2010.

[4] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden, H. Balakrishnan, and N. Zeldovich.

Relational Cloud: A Database Service for the Cloud. In CIDR, 2011.

[5] A. Marcus, E. Wu, D. R. Karger, S. R. Madden, and R. C. Miller. Crowdsourced databases: Query processing

with people. In CIDR, 2011.

[6] A. Marcus, E. Wu, D. R. Karger, S. R. Madden, and R. C. Miller. Human-powered sorts and joins. In

VLDB, 2011.

[7] E. Wu. DBTruck: Humane data import, October 2012. http://istc-bigdata.org/index.php/

dbtruck-humane-data-import/.

[8] E. Wu, C. A. Curino, and S. R. Madden. No bits left behind. In CIDR, 2011.

[9] E. Wu, Y. Diao, and S. Rizvi. High-performance complex event processing over streams. In SIGMOD. ACM,

2006.

[10] E. Wu and S. Madden. Smoke: Visualization interactions using provenance (in preparation).

[11] E. Wu and S. Madden. Partitioning techniques for fine-grained indexing. In ICDE, 2011.

[12] E. Wu and S. Madden. Scorpion: Explaining away outliers in aggregate queries. In VLDB, 2013.

[13] E. Wu, S. Madden, and M. Stonebraker. Subzero: a fine-grained lineage system for scientific databases. In

ICDE, 2013.

http://www.mit.edu/~eugenewu/job.html

http://istc-bigdata.org/index.php/dbtruck-humane-data-import/
http://istc-bigdata.org/index.php/dbtruck-humane-data-import/
http://www.mit.edu/~eugenewu/job.html

