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We present a finite element method for a class of contact-impact problems. Theoretical background and numeri- 
cal implementation features are discussed. In particular, we consider the basic ideas of contact-impact, the assump- 
tions which define the class of problems we deal with, spatial and temporal discretizations of the bodies involved, 
special problems concerning the contact of bodies of different dimensions, discrete impact and release conditions, 
and solution of the nonlinear algebraic problem. Several sample problems are presented which demonstrate the 
accuracy and versatility of the algorithm. 

1. Introduction 

In recent years large-scale computational capabilities have been developed in many areas of 
structural analysis. The primary technique used in these developments is the finite element 
method. At the same time, very few capabilities are available for complicated structural problems 
involving contact-impact effects, an area of considerable importance in science and technology. 
In fact, it appears that only small-deformation quasi-static problems have been considered thus 
far (see [ l-31). This is not surprising as contact-impact phenomena are inherently nonlinear and 
the resulting problems are difficult. 

In this paper we summarize some aspects of our work in developing numerical algorithms for 
general contact-inpact problems in continuum mechanics. In section 2 we discuss the basic con- 
cepts associated with contact-impact problems and develop the interface conditions for the simple 
cases of frictionless and perfect-friction contact. In section 3 we describe a class of contact-impact 
problems, termed “Hertzian” problems, in which simplifications of a geometric and kinematic 
nature are made which lead to a simple numerical formulation. Spatial discretization aspects of 
this formulation, involving finite element techniques, are discussed in section 4. In section 5 we 
consider how these notions extend to problems involving the contact of bodies of different di- 
mensions (e.g. a three-dimensional solid and a two-dimensional plate). 

The spatially discretized equations of motion - a system of ordinary differential equations - 
is temporally discretized using the Newmark algorithm. Basic features of this technique are sum- 
marized in section 6. A point that we wish to stress here is the great care required to obtain accu- 
rate numerical results for impact problems of a wave-propagation nature. In section 7 we outline 
some discrete schemes, based upon exact results of wave-propagation theory, which enable us to 
very accurately simulate the solution of impact problems involving discontinuous stress waves. 
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In section 8 we indicate how we solve the resulting nonlinear algebraic system of equations and 
summarize the main steps of the algorithm. 

Finally, in section 9, we present the results of some numerical computations based upon the 
previous theory. The importance of the discrete impact and release conditions discussed in section 
7 is clearly shown. 

2. Basic ideas of contact-impact 

It is usual for the term COMCXI to have a static connotation whereas ~?~~act has a dynamic one. 
Here we use contact in the general sense to include static as well as dynamic phenomena. 

We identify a bo&, B with its injtial configuration, and we assume B is an open region of R3 
with a piecewise smooth boundary aB. A mztact ~$oble~~ is a boundary-value problem, or an 
initial-boundary-value problem in which two bodies B’ and B2 interact according to the principles 
of the mechanics of continuous media. Thus the primary kinematic axiom of a contact problem is 
that configurations hr and b2 of B’ and B’, respectively, do not penetrate each other, i.e. 

b’ n b2 = 12,. (1) 

We refer to (I ) as the ~~~~e~let~abi~~t}~ condition. 
On the other hand, the unique condition which characterizes contact problems is that material 

points on the boundaries of B’ and B2 may coalesce during the motion of the bodies. Thus we 
say B’ and B2 are in contact if ab’ n ab2 # 8, and we define the contact surface c by 

c=ab’nab”. (2) 

If B1 and B2 are never in contact, then c = @ for all configurations b’ and b2, and in this case an 
initiaI-boundary-value problem for B’ and B2 reduces to one in which B’ and B2 may be treated 
separately. A non-trivial contact problem is one in which c # 0 for at least one instant during the 
motion of B’ and B2. These notions are illustrated in fig. 1. Eq. (1) indicates that c is a material 

Fig. 1. Contacting bodies. 
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surface with respect to both bodies, i.e. one which is not crossed by material particles. From this 
we may deduce the interface conditions on c. 

We say x E c is a persistent point of c if joining or releasing of the bodies is not instantaneously 
occurring at X. Let x E c be persistent and denote by z, = i its velocity. Note that only the normal 
part of ‘u is independent of the parameterization of c. Let o1 and v* be the velocities of the material 
particles located at the points x1 and x2 contained in ab’ and ab*, respectively, such that x = x1 =x2 
at the present instant. Then, since c is material and x is persistent, 

v.n = v1.n = v2.n ) (3) 

where n is a unit normal vector to c at x. 
On the other hand, for momentum to be balanced at x, it is required that 

t’ + t* = 0 ) (4) 

where to is the Cauchy traction vector with respect to ab”. 
In addition we assume that no tensile tractions can occur on c: 

where n& is the outward unit normal vector to aba. This condition precludes the possibility of two 
bodies becoming “glued” together. Conditions (l)-(5) characterize our notion of a contact 
problem. 

More specific conditions on the tangential parts of voL and ta are determined by the frictional 
nature of the contact. 

In the sequel we shall consider the two simplest cases. 
Case I: If we assume that points, once in contact, move with c until released, we have 

vl = v* (6) 

For this model we say that a no-slip, or perfect friction, condition is achieved on c. Eqs. (4) and 
(6) and condition (5) characterize the interface conditions for this case. 

Case II: We may create the interface conditions for a frictionless, sliding contact by asserting 
that the tangential part of each ta is identically zero: 

te - (t” l n”) na = 0 . (7) 

Eq. (7) along with (3)-(5) are the interface conditions for this case. 

3. The class of Hertzian problems 

We call problems “Hertzian” if the contact surface is approximately planar and the bodies have 
undergone small straining in the neighborhood of the contact surface. Specifically, we make the 
following assumptions: 
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Fig. 2. Contact surface for Hertzian problems. Fig. 3. Configuration of bodies and alignment of points which 

eventually contact in Hertzian problems. 

(i) The unit normal vector with respect to the contact surface c’ is n = niei = e3, where the 
ni indicate components with respect to the standard basis {ei}i for R3, (see fig. 2). 

(ii) The ratio of area elements on the contact surface between the deformed and undeformed 
bodies differs negligibly from unity. Thus the Cauchy and Piola-Kirchhoff traction vectors for 

body number (Y (t” and T”, respectively) are approximately equal, i.e., ta = T”. 
Assumptions (i) and (ii) together imply that 

{t?, t;, 0) = to - (t”.n)n ~TT”-(T”.n)nx{Tp,T~,O}. 

(iii) Material points which eventually contact have, to the first order, the same initial coordi- 
nates zr, z2. This is depicted in fig. 3. 
We emphasize that the realm of applicability of our formulation involving the above assump- 

tions is considerably greater than that to which Hertz’s classical theory applies. 

4. Spatial discretization of the bodies and contact surface 

The methods we use to discretize problems into finite element models are standard (see e.g. [4]) 
except for our simulation of the contact surface which we shall now describe. 

Let us assume for the moment that two bodies are in contact along the surface c. If we add a 
term of the form 

s ~-(.d -x’)dc, 

to a standard variational formulation for two independent bodies (see [ 51 for further details), then 
the enforcement of compatibility along the surface c will be achieved by way of taking indepen- 
dent variations of T (x@ are the deformed coordinates of material points in body a, and 5 is inter- 
preted as the Cauchy traction vector across the contact surface). We note that, by assumption (i) 
above, c may be replaced in (8) by its projection upon the zr-z2 plane. 
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L- z11=2 

Fig. 4. Schematic of initial configuration of bodies and alignment of candidate contact nodes for the Hertzian case. 

Our finite element discretization of (8) is achieved by availing ourselves of the particularly 
simple nature of (8), i.e. there are no derivatives of K or x~. Thus we may assume that 7 consists of 
Dirac delta functions located at nodal points, as long as the finite element displacement functions 
are continuous at the nodes, which is assured. Thus (8) becomes in this case 

(9) 

where i = 1,2,3 refers to the spatial direction of components and N is the total number of pairs of 
nodes designated as candidates for contact (see fig. 4). The 7ii are interpreted as nodal contact 
forces. 

Eqs. (8) and (9) apply when there are tangential as well as normal contact forces. To achieve a 
frictionless condition on the contact surface, we simply delete the i = 1,2 terms in (8) and (9); 
namely 

s 7(x1-x’)dc, 
c 

(lob) 

where for simplicity we have omitted the subscripts 3 on r and xQ. Here rj is interpreted as the 
nodal contact force in the normal direction. To simplify our presentation we will henceforth only 
discuss the frictionless case (10). 

In assembling our global matrix equations, we include the ri in our vector of unknowns along 
with the nodal displacement components. Thus we like to think of (lob) as giving rise to a contuct 
element stiffness matrix, which for the jth contact point is 

0 10 Xf 

i II 1 o-1 ri 

O-10 2 _xi 

(11) 
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When the nodes corresponding to the jth contact point are in contact we add (11) to the global 
stiffness matrix. Otherwise we replace (11) by 

(12) 

which uncouples the two nodes corresponding to the jth contact point and results in ri = 0, 
The preceding description gives a rough idea of how the basic structure of the matrix equations 

is changed to account for Hertzian contact. More details concerning the actual steps of the incre- 
mental-iterative process are contained in section 7. 

5, Contact problems involving bodies of different dimensions 

The preceding formulation needs only trivial modification to be made applicable to contact 
problems involving bodies of different dimensions. There are many cases of considerable interest 
which fall into this category (e.g. solids contacting plates or shells). The modifications necessary 
are essentially interpretive. An example illustrates this assertion. 

Consider the frictionless Hertzian contact of a three-dimensional solid and a two-dimensional 
plate. Let B’ represent the solid and B2 the plate. The contact term is exactly as before, i.e. (10). 
However, note that in this case c is also identifiable with part of the two-dimensional “volume” 
of the plate rather than its boundary. Thus r contributes to the transverse momentum equation 
(or equilibrium equation in the case of statics) of the plate rather than to its boundary conditions. 
The interpretation of r is thus two-fold, i.e. it is the normal component of the traction vector 
with respect to B’, as before, and it is also the normal component of the “body force” with 
respect to B2 (fig. 5). 

This interpretation is general - namely, for one and two-dimensional bodies the contact force 
is an equivalent “body force” which contributes to the momentum equations rather than to the 
boundary conditions. 

It should be noted that the contact element described in section 4 applies to the case of bodies 
of different dimension since the load on each body results from a term like (9) or (10). 

Fig. 5. Schematic of the contact of a solid and plate. 
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6. Temporal discretization 

We use the Newmark method to temporally discretize the matrix equations of motion. This 
method amounts to a one-step i~ltegration formula involving two parameters which can be ad- 
justed to control stability and numerical dissipation. Applications of the Newmark method to 
linear elastodynamic problems have been studied by many authors (e.g. see Goudreau-Taylor 
161). Briefly, the algorithm is given by 

u n+,=~,+At~,+(1/2--p)At2i;,iPA2id’,+, , 

& n+f = z&t (I- $A& + ~Atii,+r , 

(1W 

(13b) 

where u, = u(t,) is the displacement vector at time t,, At = tn+, -- t,, 0 and y are the two parame- 
ters, and a superposed dot indicates time differentiation. For linear elastic problems y = l/2 pro- 
duces no dissipation, and /3 > l/4 produces unconditional stability. 

If the mass matrix M is diagonal (lumped mass), /I = 0, and the stiffness matrix K and load 
vector R are independent of ir, then the method is explicit, i.e. the solution can be advanced 
without solving a Iarge set of simultaneous equations at each time step. Otherwise the method is 
implicit and equations must be solved. 

7. Discrete impact and release conditions 

The static aspects of the Hertzian algorithm (cf. section 4) are relatively simple. However, the 
dynamic aspects, especially the impact and release conditions, are quite delicate. To motivate this 
aspect of our work, consider the following hypothetical situation. 

Assume that we are in the process of numerically solving some impact problem and suppose 
that it is discovered as we monitor the motion of the bodies that they impact somewhere in the 
time interval (tr, t2). At time t, we know the states of both bodies and we know that somewhere 
between t, and t, they have coalesced over a portion of their boundaries. Assume for the moment 
we know the geometry of, the contact surface c. The question which arises then is what is the state 
of c at time t,, i.e. what are the tractions, velocities and accelerations on c? It is necessary to know 
this information to carry forth the step-forward time inte~ation. The appropriate values can be 
deduced from a local, wave-propagation analysis involving the theory of propagating singularity 
surfaces (see 151 section 7 for further details). A similar situation occurs when the bodies dynami- 
cally release. 

In the remainder of this section we shah present the discretized impact and release conditions 
for the case of linearly elastic bodies. T~ou~out, we employ a lumped, rather than consistent, 
mass matrix. This renders the presentation more concise and leads to significant computational 
simplifications. For the low-order elements (e.g. bilinear) that we use in our analyses this represents 
no loss in accuracy. 

For simplicity, we shall consider the frictionless case and isolate one pair of candidate contact 
nodes. The equations of motion for these nodes will be denoted 

APiP + P(tP) - (-1)&r = 0 ) ($4) 
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I->0 INDICATES COMPRESSION 
AT CONTACT POINT 

CONTACT _ _ NO CONTACT 
REGION REGION 

Wd 

r<O INDICATES TENSION 
AT CONTACT POINT 

TOL -t-j-+ TOL 

Fig. 6. Contact logic. 

where the superscripts indicate the body number, M" is the lunped mass coefficient, Ka(@) is the 
elastic force and r is the nodal contact force. If the bodies are not in contact r = 0; otherwise 
r>o. 

Let us suppose that at the end of the previous time step these candidate nodes were not in con- 
tact. Furthermore, assume that in the process of computing the present state, contact has been 
made. This occurs whenever 

(i) d=x'-x2< - TOL or (ii) d < TOL and r > 0, (15) 

where TOL is a small positive number which acts as a safeguard against round-off. (In our finite 
element analysis program FEAP, we are currently using TOL = lO--‘O L, where L is a problem de- 
pendent characteristic length.) This logic is displayed graphically in fig. 6. As a result of coming 
into contact, the algorithm makes the displacements compatible, i.e. u* - u1 = do = X' - X2, 
where X1, X2 are the coordinates of the particles in the initial configuration. However, the veloci- 
ties ti’, i2 and accelerations ii’, ii* are left as computed by the algorithm. It is at this point that 
we impose the impact conditions. We denote by I’+, 7, and ii, the corrected values of velocity, 
contact force and acceleration assigned to the pair of nodes in contact. They are given as follows: 

7, = T_ _ KM1 (;;C _ ;;‘) ) 
(M'+M*) 

(16a) 

(16b) 

. . (M'ii'+M*iiT) 
u+ = --~~~~ 

(M'+M*) ' 
(16~) 
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where p;f: is the density of body CY in the initial configuration, U” is an appropriate wave velocity 
for body a! (e.g. U” is dilatational velocity for three-dimensional linear elastic bodies, whereas it is 
“bar-wave” velocity in simple bar theory), the subscript (--1) refers to values taken at the end of 
the previous time step, and the subscript (---) indicates values taken at the end of the last iteration 
of the present time step. Note that the right-hand side of (16a) depends on data computed prior 
to impact (i.e. ;I?,, zi’,). This is consistent with wave-propagation theory and is important in 
numerical computations. For example, using data from the last iteration of the present time step 
(i.e. ;I:, &I) leads to markedly inferior numerical results (e.g. spike overshoots and osciltations 
about the correct values). On the other hand, r, and ii, are computed from data obtained in the 
last iteration (i.e. r_, r?, Sf). The argument for this goes as follows. In the post-impact state there 
should be a unique value of T.+ and ii, assigned to the contact point. Since the values of zli_ and u’_ 
are already compatible, we employ (14) to solve for r, and ii,. That is we set 

~~~+ -I- P(fP) - (-l)“r+ = 0 (17) 

and substract (17) from (14) evaluated at the previous iteration: 

fwii: + KLy(u(y_) - (-l)?_ = 0. (181 

This is how we arrive at (16b, c). Satisfaction of the equations of motion is automaticalty achieved 
for the post-impact state as a result of (17). 

Now we shall describe the release conditions. These stem from the same concepts as the impact 
conditions. In fact, one way to look at the release conditions is to view them as impact conditions 
with time running backwards. Thus from a local wave-propagation analysis we obtain the post- 
release velocities Vi and V,” from the pre-release data r_, and V_, as follows: 

(19) 

where A ‘, A 2 are tributary area weighting factors for the respective candidate nodes. Simultaneous- 
ly we need T, to be equal to zero. We set r, = 0 and adjust the accelerations in (14) so that this 
change maintains satisfaction of the equations of motion. The computation is analogous to the 
one in which we calculated (16b, c): 

;;,” = z - (-l)?_ /Ma ) (20) 

where here C: and E: are the corrected post-release accelerations, and G’, i;! and r_ are the values 
computed from the last iteration of the present time step. 

We determine whether or not release has occurred in the following way. If r < 0 (tension across 
the contact surface in any iteration) we release; if T > 0, but less than 2% of the previous time step 
value r-i, we also release. Otherwise we retain contact. The last release case above was arrived at 
from numerical experimentation. For example, problems were run for releasing bars in which the 
theoretical drop-off of r was 100% in one time-step (shock waves). Our numerical computations 
predicted this drop-off quite accurately producing a positive r of less than 1 O-3 times the previous 
value. Interpreting this as contact, the algorithm did not release the bars until the next time step, 
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at which time the update indicated in (19) and (20) had negligible effect due to the very small 
value of T_. We deduced the criterion above from cases like this. 

The only pitfall in using this criterion can be seen as follows. Suppose the actual drop-off during 
a time step in a problem is greater than 98% of the previous value, but the exact solution from this 
point on is constant at some small positive I-. The algorithm would release and not join the nodes 
until the next time step. From here on everything would run as it should. 

Under appropriate circumstances, the formulas 

~ = (MY, + M’C!_,) -- + 
(M’ +JP) ’ 

(21a) 

and 

V:= I/_, + (-m 1)“At 7-,/2&P , @lb) 

may be used in place of (I 6a) and (19), respectively; one needs that the mesh is regular in the 
sense that (AX,)a = AiV, where (AX,)” is the height of the element in body (Y (see fig. 7). Eq. 
(21 b) has the desirable property of eliminating the need of computing the area weighting factors 
in (19). These ideas, as well as more refined methods of computing discrete impact and release 
conditions, will be dealt with in future work of the authors. 

8. Solution of the nonlinear algebraic problem 

Fig. 7. Schematic of finite element meshing in neighborhood of contact region. 

In this section we shall assume that all contact force degrees of freedom are included in the 
nodal “displacement” vector u. For simplicity we shall also only deal with the nonlinear elastic 
case. 

Let the equations of motion for both bodies and the contact forces be written 

Mii+K(u)=R, cm 
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where M is the mass matrix, K(u) is the vector of elastic and contact forces and R is the external 
load vector. Assuming fl and At # 0, use of the Newmark formula f 13a) in (22) yields the non- 
linear algebraic equation 

_-!_ Mu,+~ + K(u,+,) = R,,, + MA, , 
/3At2 

where 

(23) 

We solve (23) via the following Newton-Raphson iterative procedure. 
Let a superscript in parentheses indicate the iteration number. The 0 and i+l iterative solutions 

at time tn+t are then given by 

respectively, where Au,,,~ fi) satisfies the linear equation 

(25) 

r 1 = - M + DK(u$,) and 
@At2 

R' =Rntl -K(u$,)+M 

in which DK indicates the tangent stiffness. Iteration continues until 

where II l II is the Euclidean norm (i.e. llxll = (C xf)“*), and e, the error tolerance, is a preassigned 
“small” positive number of order At. A summary of the resulting algorithm is contained in table 1. 

Static analysis may be carried out with this algorithm by formally setting M = 0. 

9. Sample probkms 

In sample problems 9.1 and 9.4-9.9, bilinear displacement elements are employed. In 9.2 and 
9.3, standard linear displacement elements are employed. 
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- 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 

9. 

10. 

11. 

12. 

13. 
--. 

Initialize K* to zero, input At for the sequence. 

For each time sequence in the analysis compute contribution to K* for each continuum finite element. 

Determine the first equation (say number N) in K* which will be modified by the remaining contact 
elements. 

Factor K* to equation N- 1 using Gauss elimination and place the factored K* into backing storage. 

For each step or iteration in the sequence read the partially factored K* into core. 

Initialize R* to the current load level R. 

For the continuum elements compute the contribution to R*. 

For the contact elements determine the state of penetration and add the appropriate contributions to 
K’ and R*. This conpletes formation of K*. 

Reduce R * , 
(8 

complete factoring of K’, and back substitute to determine A@,+l. 

Update solution tici) n+t and check for convergence. If convergence test is satisfied, continue; otherwise 
repcat steps 5 to 10. 

Output solution displacements and strcsscs, compute new time. and complete update of displacements, 
velocities and accelerations. 

For each time step in the sequence repeat steps 5 to Il. 

For each sequence repeat steps 1 to 12. 

9.1. Hertz cwl tact problem 

The Hertz static contact problem (see [ 71) was solved, and we were able to accurately compute 
both the contact region and the pressures over a wide range of loading. The mesh is depicted in 
fig. 8, and contact pressure versus contact radius resuIts are plotted in fig. 9. The data are: 

Table 1. Summary of the contact-impact algorithm 

UNIFORM LOAD 

Fig. 8. Finite element mesh for Hertz static contact problem. 

-HERTZ SOLUTION 

. FROM CONTACT FORCES 

0 ELEMENT STRESS 
(ADJACENT TO SURFACE) 

0 1.0 2.0 

CONTACT RADIUS 

Fig. 9. Comparison of results of finite element solution and 
Hertz solution of static contact problem, 
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E= 1000 (Young’s modulus), 

I, =.3 (Poisson’s ratio), 

R=8 (radius of quarter sphere). 

The total applied force is distributed uniformly across the top surface. 
The nodal contact forces were converted to contact pressures by a tributary area method. The 

results clearly indicate that the contact pressures are given more accurately by the nodal contact 
forces than by the element stresses, as one might surmise they would be. 

This problem, although extremely simple to solve analytically, is a source of considerable in- 
sight as regards impact and release phenomena. Since the definition of the contact surface (a point) 
is trivial, we are able to focus in completely on the importance of achieving a theoretically correct 
impact and release. The data are given in fig. 10. The results (figs. 1 l-l 4) are tracings of computer 
plots which employ linear interpolation between time steps. The stress data (fig. 14) are to be 
viewed as occurring at the center of the element. Since the numerical results are so close to the 
exact ones we did not include the latter so as not to crowd the plots. 

Newmark data for these runs consisted of p = .OOlOOl , y = SO2 up to time .2, and then 
j3 = .OOlOOl, y = S25625 between .2 and S. The reason for increasing y (which increases the 
numerical dissipation) in the second time sequence was to mitigate the effects of an apparent in- 
stability. The original time sequence data are right at the stability limit. As the analysis proceeds, 
some noise becomes amplified at the boundaries. Some of this noise is visible in fig. 14. 

5.0 

INITIAL VELOCITY =O.l BAR 2 INITIALLY AT REST 
1 

FOR BAR I 
I 

4.0 I- 

N 
2 
x 

J 3.OL 

h 

DATA : L 
2 2.0 - 

LZIO (LENGTH/BAR) 

E q 100 (YOUNG’S MODULUS1 

p= 01 (DENSITY 1 
1.0 - 

A=l (AREA1 

At =.005 (TIME STEP) 0 I I I 1 * 

AX=.5 (ELEMENT LENGTH) 

Fig. 10. Data for the impact of two identical bars. 

0 .I .2 .3 .4 .5 
TIME 

Fig. 11. Impact of two identical bars. Contact force vs. time. 
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I .2 .3 .4 .5 

TIME 

Fig. 12. impact of two identical bars. Displacements of contact 
points vs. time. 

0 

N 
0 
; -2.0 

z 

ii! 
I- 
lJ7 -4.0 

f 

c 
L I- 

-6.0 L 
0 .I .2 .3 .4 .5 

TIME 

.I2 

.08 BAR 2 

; 

g 

ii .04 ‘- 
> 

BAR I 

o- c 

-.02 I I I I I )- 

0 .I .2 .3 .4 .5 

TIME 

Fig. 13. Impact of two identical bars. Velocities of contact 
points vs. time. 

Fig. 14. Impact of two identical bars. Stress in element 32 vs. time. 

The discontinuous stress and velocity waves which result after impact are difficult to capture 
numerically, especially with a coarse gird, as employed here. Our results, figs. 11-l 4, indicate the 
veracity and importance of the impact and release conditions. Note how effectively the impact 
conditions bring the contact force from zero to the exact value in one time step without any 
overshoot (fig. 1 1). The release (at t= .2) is also very crisp. The slight pertL~rbation from the exact 
solution (fig. 13), which is due to the Newmark algorithm, could be made to go away completely 
with mesh refinement. 

Lack of space prevents us from including some “negative” results obtained by not using the 
impact and release conditions discussed in section 7. These results possess spike overshoots around 
wave fronts, oscillations about the exact solution, and spurious release waves. As can be seen from 
figs. 1 l- 14, they are entirely eliminated by imposing the impact and release conditions. 

This problem is slightly more complicated than the previous problem. Here again the length of 
each bar is 10, and the initial conditions, density and area are the same as in fig. 10. However, we 



T. J.R. Hughes et al., A finite element method for a class of contact-impact problems 263 

---- EXACT 40 

- FINITE ELEMENT 
SOLUTION N 

0 

0 .I .2 .3 .4 .5 

TIME 

CONTACT c- d RELEASE 

BAR 2 /i//l 
BAR I / 

.I .2 .3 .4 .5 

TIME 

Fig. 15. Impact of two dissimilar bars. Contact force vs. time. Fig. 16. Impact of two dissimilar bars. Displacements of 
contact points vs. time. 
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Fig. 17. Impact of two dissimilar bars. Velocities of contact 
points vs. time. 

(SYMMETRIC 1 

Fig. 18. Finite element mesh for impact of an elastic sphere 
against a rigid wall. 

have taken the elastic moduli of the bars to be different, namely E, = 49 and E, = 100. Bar 1 is 
subdivided into 20 equal-length elements and bar 2 into 14. The time step At = .00714 and 
/3 = .OOlOOl, y = .502. The results, depicted in figs. 15-l 7, are remarkably accurate. 
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9.4. Impact of an elastic sphere against a rigid surface 

The mesh for this problem is depicted in fig. 18. The data are: 

P = .Ol (density), 

E = 1000 (Young’s modulus), 

V = .3 (Poisson’s ratio), 

R =5 (radius of sphere), 

At = .Ol (time step), 

p =.25, y=.5 (Newmark parameters). 

The sphere was subjected to an initial, uniform velocity of .3 (downward). The normal pressure 
distribution over the contact area at the time instant when the contact radius has spread to its 
maximum value compares favorably with the quasistatic approximate solution of Hertz [ 71 (see 
fig. 19). 

In axisymmetric problems such as this one the contact element along the axis of symmetry 
should not be included. This is because of the basic assumption that the contact force consists of 
delta functions - this leads to no generalized force when the radius is zero. For demonstration 
purposes we have included it in this problem; it produces the spike in the nodal contact force 
data in fig. 19. 

The effects of the initial impact were small in this problem, and large time steps did not mar- 
kedly affect the results. 

HERTZ SOLUTION 

FINITE ELEMENT 
SOLUTION-ELEMENT 
STRESSES 

FINITE ELEMENT 
SOLUTION-NODAL CONTACT 
FORCES DIVIDED 6Y 
TRIBUTARY AREA 

I I I I I * 
.3 6 .9 1.2 

CONTACT RADIUS 

Fig. 19. Impact of an elastic sphere against a rigid wall. Contact pressure vs. contact radius at instant of maximum contact area 

development. 
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9.5. Impact of two dissimilar elastic spheres 

The mesh for this problem is depicted in fig. 20. The data are: 

265 

p, =.Ol, p* =.02 

E, = 1000, E,=2000 

*1 
= .4, v2 = .2 

R,=5, R,=S 

At = .Ol 

P =.25, y =.5 

(density), 

(Young’s modulus), 

(Poisson’s ratio), 

(radius of sphere), 

(time step), 

(~ewm~rk parameters)~ 

The uniform initial velocities of the spheres are V, = 4.0 (upward) and V, = 2.0 (downward). 
The shape of the computed contact surface at the instant of maximum contact area developmnt 
is compared with the approximate quasistatic Hertz solution in fig. 2 1. 

(SYMMETRIC 1 

Fig. 20. Finite element 
elastic spheres. 

SPHERE 2 

SPHERE I 

mesh for impact of two dissimilar 

9.6. Head injury model 

HERTZ SOLUTION 

CONTACT RADIUS 

Fig. 21. Impact of two dissimilar elastic spheres. Shape of 
contact surface at instant of maximum contact area develop- 
ment. 

Several contact-impact analyses of an axisymmetric spherical head model were performed (see 
[ 81). The model consists of a three-layered skull and encapsulated brain (fig. 22). The radius of the 
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Fig. 22. Axisymmetric spherical head injury model. 

brain cavity R = 2.95 in, the thickness of each hard bone layer is 0.05 in, and the thickness of the 
diploe is 0.10 in. Material properties are taken to be linear elastic and are given in table 2. In the 
skull, three layers of elements were used through the thickness and four-point Gaussian quadrature 
was employed. The brain elements make use of one-point quadrature. 

(Co Hollow skull contucting a rigid surjhce 

The skull was discretized into 5 1 elements and 7 candidate contact elements were employed 
(see fig. 23a). The skull is fixed at the uppermost node, and a rigid frictionless surface is pressed 
into it from the bottom. The rigid surface, initially just touching the skull, is given an upward 
motion of .l in per step until a total motion of .5 in was achieved. Inertial effects were neglected. 

Tracings of computer plotted deformed configurations and contact pressures (obtained from 
nodal contact forces by a tributary area method) are depicted in figs. 23b- 23f. Note how the 
peak contact pressure occurs towards the outer radius of the contact zone. This is a common 

Table 2. Material properties for head injury model 
__ ___ ._.___ __ - 

Property Hard bone DiploB Brain 

K - bulk modulus 1.333 .1333 ,305 

(lo6 psi) 

G - shear modulus 

(lo6 psi) 

.8 .08 .0305 

p - density 

(10-41b-sec2/in4) 
__- 

2 .2 .037 
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Fig. 23. Initial (a) and deformed (b-f) mesh configurations of a hollow skull model contacting a rigid surface. 

feature of shell-like contact phenomena, but quite opposite that for a homogeneous elastic sphere 
(cf. fig. 9). 

(bl Hollow skull impacting a rigid surface 
The mesh of the previous problem is also used here. The data are: 

At = .05 X lo-’ set (time step) 

p= .25, y= .5 (Newmark parameters). 

The uniform initial velocity of the sphere was 352 in/set (= 20 mph) downward. In this example 
we were interested in seeing the early-time wave-propagation effects, and thus we employed a 
time step which is close to the transit time for a dilatational wave to travel through the thickness 
of each skull layer (the transit time for the hard bone layer equals .0456 X 1 O-’ set). The contact 
force for the first 100 time steps is presented in fig. 24. The period of oscillation superposed 
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Fig. 24. Contact force vs. time for a hollow skull impacting 
a rigid surface. 

Fig. 25. Finite element mesh for impact of skull-brain model 
against a rigid surface. 

upon the results is approximately .35 X IO-' set, which is very close to the time required for a 
d~latational wave to pass through the entire thickness of the skull and back (i.e. approximately 
.365 X 1 O-’ see). 

Cc) Impact of skull-brain model against a rigid surface 
The mesh for this problem is depicted in fig. 25. The modeling of the skull portion is identical 

to the previous two cases. Here we used a time step of .365 X low5 set; all other data are the same 
as for the previous case. Pressure profiles over the contact surface, obtained from the nodal contact 
forces by a tributary area method, are depicted in fig. 26. It is interesting to compare these results 

0 01 0.2 03 0.4 0.5 06 0.7 0.8 

CONTACT RADIUS, IN. 

Fig. 26. Contact pressure profiles for skull-brain impact problem. 
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with the profiles obtained from the dynamic Hertz problem and the quasistatic shell problem, 
case (a). In the former case the peak contact pressure is located on the axis of symmetry (cf. 
fig. 19), and in the latter case it is towards the periphery of the contact zone, falling off to zero 
along the asymmetry axis (cf. fig. 23). Here in fig. 26 results somewhere in-between these extremes 
is achieved. 

9.7. Rectangular block impacting a rigid surface 

An analysis was performed of a plane strain linear elastic rectangular block impacting a rigid 
surface. The finite element mesh is shown in fig. 27. The data are: 

P = 0.1 

E = 1000 

V = .3 

L =9 

At = .002725 

p = .001001, y = .502 

(density), 

(Young’s modulus), 

(Poisson’s ratio), 

(length), 

(time step), 

(Newmark parameters). 

Fig. 27. Finite element mesh for a plane strain rectangular 
block impacting a rigid surface. 

The time step is the transit time for a dilatational wave to propagate the length of one element. 
Initially the block is traveling at a uniform velocity of 1 (downward). The block impacts the rigid 
surface at t = 0. Outside the shaded zone (see fig. 28) defined by R = ct, where c = 366.9 is the 
dilatational wave velocity, the exact solution consists of two constant zones, I and II, separated 
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L WAVE FRONT 

FROM INITIAL 

BOUNDARIES 

\ \ IMPACT 

OILATATIONAL WAVE FRONT SURFACE 

EMANATING FROM FREE 

BOUNDARY REFLECTIONS 

Fig. 28. Wave front diagram for rectangular block impact problem 

by the dilatational wave front which emanates from the initial impact. The circular wave front is 
a result of reflections off the right-hand side (free) boundary. 

We were interested in determining the early time results for this problem which can be com- 
pared with the known solution in zone II and provide a test of the discrete impact conditions. 

0 

-I 0 

3 
F 
k 

-2.0 

N” 

-30 

-40 

TIME x i02 

I.0 2.0 

I I b 0 

-I 0 

; 

k! -2 0 

!I5 

N” 

-3.0 

A 
-40 

TIME x IO2 

10 

I_-_& 
C 

t 

Fig. 29. Stress results for rectangular block impact problem. 
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- DEFORMED CONFIGURATION 
----- INITIAL CONFIGURATION 

Fig. 30. Deformed configuration superposed upon initial ~onfigu~tion for rectangular block impact problem at time .0163. The 
displacements are magnified SO times. 

Eight time steps were run, allowing the front separating zones I and II to propagate to within one 
element length of the top surface. Stress results for several elements are depicted in fig. 29. In each 
case the rise of stress from zero to the exact value is achieved in one time step, and this value is 
maintained until the wave from the right-hand boundary reaches the element. The results corro- 
borate the effectiveness of the discrete impact conditions. 

A deformed mesh at t = .0163 with displacements magnified by a factor of 50 is superposed 
upon the undeformed mesh in fig. 30. At this time the plane front has traveled upward through 
6 elements. Note that bulging along the right-hand side occurs up to this point. The effect of a 
frictionless contact surface is evidenced by the displacement to the right of the lower right-hand 
corner node. 

(al Triangular punch 
A rigid triangular punch is driven into a linear elastic half-plane at constant velocity V = 100. 

(see fig. 3 1). The data are : 

Fig. 31. Rigid triangu~r punch driven into a haif-plane at constant velocity V. 



272 

P = .Ol 

E = 1000 

V = .3 

CkJ = tan--’ 2 

At = .0025 
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(density), 

(Young’s nloduIus), 

(Poisson’s ratio), 

(punch angle): 

(time step), 

p =.25, r=.5 (Newmark parameters). 

Five contact elements were employed. The initial mesh configuration and several deformed con- 
figurations are illustrated in fig. 32. 

INITIAL CONFlGURATfON t =.0125 

t = .0250 t = .03f5 

Fig. 32. Initial and deformed configurations for rigid 
triangular punch problem. 

Fig. 33. Rigid parabolic punch driven into a half-plane at 
constant acceleration A. 

(61 Parabolic pu&~ 

A rigid parabolic punch was driven into the half-plane at a constant acceleration A = 4000 
(see fig. 33). The surface of the punch is defined by the equation zs = (z,)*/8. The remaining data 
are the same as in the previous case. The initial mesh configuration and deformed configurations 
are depicted in fig. 34. 
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2000 r 

500 

t = .0250 t = .0375 

0 1 
0 0.01 002 0.03 

TIME 

Fig. 34. Initial and deformed configurations for rigid 

parabolic punch problem. 

Fig. 35. Total contact force vs. time for rigid punch problems. 

Total contact force for case (a) or (b) is known [9] to vary linearly or quadratically, respec- 
tively, with time. The results of the finite element analyses are seen to exhibit this behavior (see 
fig. 35). 

The results for case (b) employed a modification to the velocity impact conditions. Specifically, 
the velocities of the last time step prior to impact, il’y,, in eq. (16a), were replaced by the veloc- 
ities of the last iteration prior to impact, zi”_. This was done because the impactor was accelerating, 
causing the velocities to vary linearly over the time step. Results using (16a), although showing the 
general trend of fig. 35, oscillated quite a bit before settling down. In general this artifice is MO? to 
be recommended; the sharp impact results of previous problems (namely the bar problems 9.2 and 
9.3 and the block problem 9.7) would not have been obtained if this was made the rule rather than 
the exception. What this problem does emphasize is that more sensitive (i.e. higher-order) impact 
and release conditions are necessary if one is to avoid taking excessively small time steps during 
the impact and release phases of a contact problem. 

-- TRIANGULAR PUNCH 

P=65OxlO’t 

- PARABOLIC PUNCH 
P=lEloxlo’t’ 
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We have recently aided a research team of Berkeley physicists studying electron-hole drops in 
germanium (see for example [ lo]) by performing contact analyses of germanium crystals. Their 
work has been featured in lengthy articles in the San Francisco Chronicle, May 19, 1975, New York 
Times, May 19, 1975, and other major periodicals. Briefly, their theory indicates that long-lived 
electron-hole drops will occur around the point of maxinlum E,* - eS3, where eii are the infinitesi- 
mal strains in stressed germanium crystals. Their experimental technique enables them to photo- 
graph the electron-hole drop (see fig. 36). This was the first direct photographic evidence of the 
existence of this phenomenon. 

Fig. 36. First photo~aph of an electron-hole drop in germanium. 

The Hertzian contact algorithm was employed to calculate the strain contours of sample crystals. 
For example, the following data were employed to analyze the plane strain configuration illustrated 
in fig. 37. 



T. J.R. Hughes et al., A finite element method for a class of contact-impact problems 

(El, - E,, 1 x IO3 CONTOURS 

7 

SYMM. ABT. $ 

-r-- 

-- 
23 

NYLON 
SET SCREW 

DISPLACEMENT 
BOUNDARY 
CONDITION 

GERMAP”““” 
CRYSTAL 

275 

Fig. 37. Finite element mesh and strain contours for contact analysis of a germanium crystal. 

Nylon set screw: E = 1000 dyn/cm* , 

v = .3, 

Germanium crystal : E = 13850 dyn/cm* , 

v = .3. 

The radius of the germanium crystal is 2 mm. The nylon set screw was driven into the crystal 
.08 mm, as illustrated in fig. 37, and five of the candidate contact nodes engaged. In fig. 37 we 
also show contours of err - ea3. The computed point of maximum err - e3s is in close agreement 
with the photographed location of the electron-hole drop (cf. fig. 36). 
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