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SUMMARY

A new algorithm has been developed for smoothing the surfaces in finite element formulations of
contact-impact. A key feature of this method is that the smoothing is done implicitly by constructing
smooth signed distance functions for the bodies. These functions are then employed for the computation
of the gap and other variables needed for implementation of contact-impact. The smoothed signed
distance functions are constructed by a moving least-squares approximation with a polynomial basis.
Results show that when nodes are placed on a surface, the surface can be reproduced with an error
of about one per cent or less with either a quadratic or a linear basis. With a quadratic basis, the
method exactly reproduces a circle or a sphere even for coarse meshes. Results are presented for
contact problems involving the contact of circular bodies. Copyright © 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

This paper describes an algorithm that replaces a rough surface, such as generally found in
finite element models of solids, with a smooth surface and at the same time computes the
gap function that is needed for the implementation of contact-impact techniques. We call it
monolithic because the smoothing operation is not separate from the gap computation; instead,
during the gap computation, a smoothed surface is implicitly constructed.

The basic concept is to construct smoothed signed distance functions for the contacting
bodies, with the surfaces of the bodies described by the zero isosurfaces of these functions. A
moving least-squares approximation is used for the signed distance function so that the contact
algorithm perceives the surface as continuously differentiable. In contrast to most previous
smoothing algorithms, where a smooth approximation based on splines or other techniques
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is constructed first, followed by an evaluation of the gap, in this method the gap of any
point or node is computed directly. The smoothing is implicit in the computation of the gap,
and there is no need to define surface normals; they emerge naturally from the algorithm
(except for a sign). These attributes markedly decrease the complexity of smoothing contact-
impact. Furthermore, the algorithm is readily applicable to arbitrary surface meshes, such as
combinations of quadrilateral and triangular surface elements and can readily be applied to
both two- and three-dimensional problems.

The algorithm may be made almost completely automatic for elements of any order.
Smoothing can be of different orders: both linear and quadratic basis function smoothing
is considered here. Moreover, features of the geometry, such as rounded corners and fillets,
that are not explicitly modelled in the finite element model can be treated naturally within
this method.

Smoothed contact algorithms have been described by Kikuchi [1] and Wriggers et al. [2].
Smooth interpolations have been given by Wriggers ef al. [3] in two dimensions and by
El-Abassi et al. [4] with cubic splines. Recently, Puso and Laursen [5] reported a method
where Gregory patches, a form of spline interpolation, were used to smooth both frictionless
and frictional contact in three dimensional problems. Other aspects of the contact problem
that are relevant but not examined here are interface properties and stability, see McDevitt
and Laursen [6], and References [7, 8]. Other relevant papers are Jones and Papadopoulos
[9], who introduced pressure smoothing, Kloostermann ef al. [10] who used a barrier method,
Bajer and Demkowicz [11] and Stupkiewicz [12].

The outline of this paper is as follows. In Section 2 we summarize the notation to be used
and the features of the contact problem relevant to this paper. In Section 3 we describe the
surface smoothing procedure. Section 4 describes its implementation. In Section 5 we examine
the accuracy of this method in fitting certain analytic shapes and describe the results of some
contact problems involving smooth circular bodies modelled by piecewise linear elements.

2. NOTATION AND PRELIMINARIES

Notation and contact surface conditions. We first briefly review the contact-impact problem
and the notation to be used in this paper, see References [13, 14] or [15]. This algorithm
applies to an arbitrary number of bodies, but for purposes of simplicity, we limit our descrip-
tion to two bodies as illustrated in Figure 1. We denote the two bodies by Q4 and Q7 and
the union of the two bodies by Q. The boundaries of the bodies are denoted by I'* and T'Z.
The corresponding entities in the initial state, which corresponds to the reference state, are
indicated by subscript noughts, e.g. Q.

In contact-impact formulations, it is often desirable to express the discretized equations in
terms of one of the bodies, which is called the master; here, body A is designated as the
master, body B as the slave. When we wish to distinguish field variables that are associated
with a particular body, we append a superscript 4 or B; when neither of these superscripts
appears, the field variable applies to the union of the two bodies. Thus the motion of the two
bodies is given by

x1=x(X1,1), xEP=x(X%1) (1)

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:101-125



MONOLITHIC SMOOTHING-GAP ALGORITHM 103

Figure 1. Nomenclature for contact-impact problem.

and the velocity field, v2(X2,t) = 0x(X?,1)/ot refers to the velocity in body B, whereas
v(X,¢) refers to the velocity field in both bodies.
The contact interface I, is the intersection of the surfaces of the two bodies, i.c.

LL=T4NT% (2)

The contact interface consists of the two surfaces of the two bodies that are in contact, but
since they are theoretically coincident we refer to a single interface It, which is a function of
time. In numerical solutions, the two surfaces will usually not be coincident. In those cases,
I, refers to the master surface. Moreover, when the two bodies are in contact on several
disjoint interfaces, we designate their union by I%.

The bodies are governed by the conservation of mass, momentum and energy and the con-
stitutive equations; in addition a measure of strain, such as Green strain must be defined.
Contact adds the following conditions: the bodies can not interpenetrate, called the impenetra-
bility condition, and the tractions must satisfy momentum conservation on the interface. We
assume here that the normal traction across the contact interface cannot be tensile, although it
is not difficult to extend the methods to the situation where the normal tractions are bounded
by an adhesive limit. The impenetrability condition is Q4N Q?# =0, i.e. the intersection of the
two bodies is the null set. This condition can be written as

g(x)= gnirn X — x| sign(n” - (X — x))<0 vxel? (3)
xer4

where n? is the unit outward normal to body A and g(x) is the gap function (also called the
interpenetration function); note that the sign of the above gap function differs from the com-
mon definition, but we use this definition since it avoids many minus signs in the subsequent
development.
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Penalty weak form. The formulation of contact-impact in this paper is limited to
Lagrangian meshes. The implementation is independent of whether the formulation is total
Lagrangian or updated Lagrangian or of the method for enforcing the impenetrability con-
straint. We have selected the penalty method as a model since it is the simplest and avoids
inequality constraints. Moreover, because we are primarily interested in describing the use of
this gap function, we will restrict the development to frictionless contact.

The weak form of the contact problem with the impenetrability condition imposed by
penalty methods in terms of the displacements u(X,7)=x — X can be written as

For u(X,7)e U

0=46W(u)=0Whi(u) — SW(u) + / By % H(g(w)oudl, Véu(X)e U 4)
L

In the above f is the penalty parameter and H(g(u)) is the Heaviside step function defined
by H(x)=1 for x>0; H(x)=0 if x<0. The scalars W™ (u) and W*'(u) are the internal
energy and the work of the external forces, respectively. For the penalty method the weak
form is not an inequality; the signed character of the problem is taken care of by the presence
of the Heaviside step function in the integral over the contact surface in the above. Note that
the integral over the contact surface I, consists of two surface integrals over I'4 and T2.
The space U of trial functions consists of all functions which are continuous and piecewise
continuously differentiable within each body and satisfy displacement boundary conditions; the
space of trial functions need not be continuous across the interface between the two bodies.
The space U, of test functions is the same as U except that the test functions vanish on the
boundaries where the displacements are prescribed.

For the purpose of developing the discrete equations, we use a Lagrangian mesh and make
the following approximation of the motion in terms of shape functions N;(X), and nodal
values of the displacements u;(¢):

ui(X, 1) = Ny (X)u; (¢) ()

where u;(t) are the components of the displacements at node /. Throughout this paper, re-
peated upper case indices are summed over the nodes of the model or of an element; the range
of lower case indices is 1 to nsp, where ngp is the number of space dimensions. The nodal dis-
placements are sometimes also arranged in a column matrix d, where d, =u;;, a =nsp(I—1)-+i.
The discrete weak form of the momentum equation can be written as

W) o aW(d) 0

— _ _— _ g .
0=0W(d)=—5 = duy By O /FcﬁgaﬂH(g(d))dl“éu,] (6)

u

We then invoke the standard definitions of nodal internal, external and contact forces:

6Wim(d)
6u,-1

int __
il

(7)
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0 Wext(d)
ext __
il — auu (8)

c_ [ 5,9
fi = [ Ba s Hg@)ar ©)

The internal and external nodal forces can be computed either by a total Lagrangian formu-
lation or an updated Lagrangian formulation; the corresponding equations are simply different
expressions for the same nodal forces and the numerical values are identical. One can also
use standard forms that do not arise from potentials, see Reference [13].

The equations corresponding to (6) can be obtained by invoking the arbitrariness of the
nodal displacements on all surfaces that are not prescribed displacement surfaces, and some
subtle steps on the contact surface which we will not repeat here, see Reference [13],

M= S+ =0 (10)

The above are the discrete equations for the contact impact problem in the penalty method.
Note that the impenetrability constraint is completely taken care of by the contact forces
arising from the penalty.

We can add the effects of inertia by adding a d’Alembert inertial term X" = M;;ii;;, where
M;; is the mass matrix and superposed dots denote time derivatives. The discrete equations
are then

Myiiy + fii™ = £+ fi5=0 (11)

Remark

As can be seen from Equation (9), the contact forces do not depend on the shape functions
but instead on the approximation of the surface. This is to be expected since the shape of the
surface depends on the gap function approximation rather than the shape functions.

3. GAP ALGORITHM

The direct computation of a smoothed gap function (called the interpenetration function in
Reference [13]) is described in this section. The essential idea is to associate with each body
a smooth signed distance function expressed in terms of the surface nodes positions of the
body. When a standard master—slave approach is used, it is only necessary to have a smoothed
distance function for the master body. The interpenetration of any node on the slave body
is then computed in terms of the gap function for the master body. However, we will first
describe a general algorithm, where both bodies are treated equivalently.

Each body is associated with a signed distance function, which for bodies 4 and B are
denoted by ¢4(x,t) and ¢?(x,t), respectively, as shown in Figure 2. The signed distance
function for body A is given by

¢ =sign(n? - (X — x)) )r(reurr} IX — x|| (12)
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?o8=0

Figure 2. Two overlapping bodies and their signed distance functions.
The constraint that the two bodies do not interpenetrate is then given by

d'(x,t) <0 vxel? (13)
PP(x,1) <0 VxeT4 (14)

The impenetrability condition can also be expressed in terms of the gap function. For this
purpose, we propose the following algorithmic definition of the gap function in terms of the
signed distance functions:

g(x,1) = max(¢*(x,1), $(x,1)) <0 (15)

where the inequality gives the impenetrability condition. Note that the above defines the gap
function for any point in space: it is only necessary to compute the signed distance functions
and then to choose the maximum of the two. This definition conforms with the standard
definition of the gap function (3) but is advantageous when the gap function is constructed
by an implicit smoothing as is done in the following.

For clarity, we describe the algorithm here for a master—slave approach to the contact.
For a master—slave algorithm, the signed distance function is only constructed for the master
body, which we denote by 4. The rough finite element model is retained for body B. The
gap function in this case is equivalent to ¢?(x,t), so the impenetrability condition can be
written as

g(x,1) = ¢pA(x,)<0 VxeTl® (16)

The gap function is constructed by a moving least square procedure in this paper, although
other implicit function constructions can be employed. We describe the method only for the
determination of ¢“(x,¢); the determination of ¢?(x,?) is identical. The basic idea is to fit a
smooth implicit surface function through the surface nodes of body A in the vicinity of any
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Figure 3. Example of a fit of a signed distance function to a set of nodes
connected by linear element edges.

point where the gap is needed. The smooth surface is given by the zero isosurface of ¢4(x, 1),
i.e. ¢4(x,t)=0. The implicit function is constructed by a moving least square function, see
Reference [16]. As the function is constructed, we try to keep the norm of the gradient of
¢4(x,1) close to unity, so the function is approximately a signed distance function. A generic
set of nodes for a quadrilateral mesh and the signed distance function ¢4(x,?) are illustrated
in Figure 3. As can be seen, the smooth surface does not pass exactly through the nodes but
it provides a least-squares fit.
The implicit distance function is

(%, 1) = ai(x,1) pi(X) (17)

where a;(x,t), for j=1 to m are the spatially varying parameters of the approximation to
the surface and p;(x), for j=1 to m are the basis for the approximation; repeated lower
case indices are summed over their range throughout this paper. In most cases, we will use
a polynomial basis. For example, for a linear polynomial basis in two dimensions

[a]=[ar a> as] (18)
[p]=[1 x y] (19)
For a quadratic polynomial basis in two dimensions
[a;]=[a1 a2 a3 a4 as ag] (20)
[pl=[1x y x* xy ] 21)
Note that the function ¢#(x,?) is defined over the entire space, not just on the surface.

The coeflicients a;(x,?) are obtained at any point in the domain of the problem by mini-
mizing the weighted quadratic form

J(ai,x,t) = élg w(x = x(1))(@i(X, ) pi(x1(1)))* + g(IIW‘bA(XJ)II2 -1 (22)
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where w;(x —x;(¢)) is a weight function of compact support that is at least once continuously
differentiable; p is a Lagrange multiplier that enforces the normality of the gradient of ¢4(x,?).
The purpose of the constraint associated with the Lagrange multiplier is to approximately
endow ¢“(x,¢) with the properties of a signed distance function. The support of the weight
function w; is denoted by £2; and Sy is the set of all nodes for which €2; includes x. In some
of our numerical implementations, we do not use the square of the norm in the last term
of (22).

Note that the normality constraint is only applied at the point where the moving least square
function is evaluated, yet remarkably, we find that the interpenetration functions constructed
by this procedure are approximately signed distance functions in the vicinity of the surface
of body A; this will be illustrated in the examples in Section 5. We have used cubic spline
weight function in our studies

24 +47 for 0<r<}
W(r)=q $—4r+4r* - 37 for L<r<l (23)
0 for 1<r
1
r= o k-l 24)

We make the size of the domain of influence, di,y a function of x, so that it can be set on
the run to include the minimum number of nodes sufficient to determine the minimum of
J(a;,x,t). For a linear basis in two dimensions, at least three nodes should be included in the
domain of influence, for a quadratic basis, six nodes are needed.

4. IMPLEMENTATION

To make the notation more compact, we let w; =w(x — X;), piy = pi(X;). The gradient of the
signed distance function is then given by

br=aipi+aipik (25)

The equations for coefficients a;(x,t), for j=1 to m, are obtained by finding the stationary
points of J in Equation (22). This yields

v

0= oar > Wiaipi pur + (U@irpi + 4iPiy) Prr (26)
ay 1€S8x
oJ

0= —= 2 Waixpi+aipic)D; &0
Ajk 1S,

oJ

0= ou_ > (aikpi +aipi)aj,p; + ajpjx) 2%)

K es,
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The above are non-linear equations in the unknowns a;(x,?), a;(X,t) and the Lagrange
multiplier u(x,¢). For a polynomial basis, these equations can be simplified as shown below; as
a matter of fact, closed form solutions are possible in two dimensions with certain assumptions.
We next illustrate the above equations for a two dimensional problem with a linear basis.
We assume that the spatial derivatives of the parameters a; «(x,¢) can be neglected, which,
as we shall see, does not detract much from the accuracy of the method. We immediately
consider a master-slave form of the algorithm, so instead of the two signed distance functions,
we need only compute one gap function (the more general procedure would just entail two
repetitions of this step). The gap function for a linear basis in two dimensions is given by

g=a1(X,t) + ax(X, 1)x + a3(x,t)y (29)
sO
a=[a]=[ar a; a3] and p=[p]=[p1 p> p3l (30)
If we neglect a; ;, the gradient of the gap is given by

Vg=lg.]=la> as] (31)
The function J can be written as
J= %aTAa + g(aTBa 1) (32)
where
1 x VI 0 0 0
A=>w, x2 x|, B= 1 0 (33)
1
vi 1
The equations for a are then
[A+ uBla=0 (34)
ag+a=1 (35)

The above is a system of non-linear algebraic equations. In two dimensions the above system
is easily solved since constraint (35) can automatically be met by letting

d) = cosd, az= sinu (36)

The function J can then be given in terms of «:

J=1(c1 — ersin® o + 2¢5 sin o cos ) (37)
where
AZ
¢ =An — Aii? (33)
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A2, A3
=Ayy — Ay — 2 4 218 39
&) 2 3T + A (39)
A4
C3 :A23 — j 13 (40)
11
Minimizing J with respect to o by setting the first derivative to zero then gives
1 -1 203
=_t — 41
2= an - 41)

The above has two solutions, so an estimate of the normal is necessary to select the correct
solution. The correct angle is then the one that meets the condition n - Vg <0; an estimate of
the normal can easily be obtained by the assembled normal algorithm, [17], or by computing
the normal to the nearest surface facet. This condition conforms to our convention that the gap
function is negative inside the body and the positive normal points out. For three-dimensional
problems, the determination of a can be posed as a minimization problem in two unknowns,
but we have used a more general solver described later.

4.1. Computation of derivatives of gap function

As can be seen from Equation (9), the derivative of the gap function with respect to the
nodal coordinates is needed to compute the contact forces in the penalty method. It is also
needed in the Lagrange multiplier and augmented Lagrange methods.

We describe next how these derivatives are computed. For this purpose, we rewrite the
normality condition as

a'Ba=1 (42)

We then take derivatives of Equations (32) and (33) with respect to x;;. This yields

A,Xyla + Aa»xi[ + U, Ba + :uB,XiIa + MBa,Xﬂ =0 (43)
a™Ba,, —0 (44)

where we have used the symmetry of B in developing the second equation. The above can
be combined in a single matrix equation

a,, —A,a—uB,,a
= (45)
Au,xil 0

Second derivatives, when needed for linearization of the equations, can be calculated similarly.
It is only necessary to take derivatives of Equations (43) and (44) and put all terms which
are known on the right-hand side. Note that part of the right-hand side of (45) is already
triangulated when (34) is solved.

A+uB Ba
a'B 0
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g=0

(O primary nodes @ shape nodes

Figure 4. Applications of shape nodes to obtain a better description of a curved surface.

4.2. Numerical implementation

For quadratic or higher order basis in both two and three dimensions, a general solver is
necessary. In our implementation, the supports of the weight functions are chosen so that the
minimum number of nodes required to determine the moving least square approximation are
used at each point that the gap is computed. For example, for a linear basis, since there are
only three constants, it suffices that the supports of three nodes on the contact surface include
the point considered; we denote the number of nodes selected to fit the function at x by m(x).
The algorithm is as follows:

1. The m(x) closest nodes on surface 4 to x are found; this set of nodes is called S(x)
and djr(x) in (24) is set by

dint(X) = max 2||x — x| (46)
I€S

2. Only the nodes in the set S(x) are used to compute the gap function at x.

The weight function is then a function of the spatial coordinate, i.e. w=w(X,X — X;). In
computing the derivatives of w with respect to spatial coordinates, we neglect its dependence
on the first of these variables.

For bases that are higher order than quadratic, the solver must be able to deal with the fact
that whenever the nodes that define the contacting surface are coplanar or nearly coplanar,
the matrix A becomes singular or near singular. This invariably occurs as meshes are refined.
In Appendix A, we describe a method which is able to deal with these difficulties.

4.3. Shape nodes

In some cases, the actual nodes of the finite element mesh do no suffice to give a good
description of the shape of the contact surfaces. These details can be modeled by defining
additional shape nodes as shown in Figure 4; these can be called secondary or slave nodes,
but we do not use the latter nomenclature because it is already used for master and slave
contact surface nodes. Shape nodes are also useful in the algorithm because of the number of
nodes needed to define the surface is often greater than the number of nodes in the contacted
element. For example, with a linear basis in two dimensions, three nodes are needed to define
the moving least square approximation.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:101-125
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Therefore, some of the nodes that are assigned contact forces according to (9) are outside the
contact area. Similar situations arise for linear bases in three dimensions and quadratic bases
in two or three dimensions, though the disparity between the number of nodes on a surface
element and that required to define the smoothed function decreases in three dimensions. The
shape nodes do not add unknowns to the system and serve strictly to describe the shape and
deformation of the contact surface.

We assume that the motion of the shape nodes on the surface are given by the same
interpolant that governs the motion within the element, so

X3(& 1) =x1(ON(E°) (47)

where the range of the repeated upper case index is over the nodes of the element whose
edge contains the slave node x5 and &5 is the parent element co-ordinate of this shape node.
Note that the parent element co-ordinate &5 will be outside the standard domain if the surface
is convex with respect to the interior of the element, inside the parent element if the surface
is concave.

The additional nodal contact forces dues to the presence of the shape nodes are then obtained
by evaluating Equation (9) by the chain rule and using Equation (47), which gives

fi= /r B9 29 N,(£5)H(g(d)) dT (48)

S
ouy,

where u3, are the displacements of the displacements of the shape nodes of the element. Note

that the contact forces will now appear on all nodes of the element, including the nodes one
layer beneath the contact surface. However, the nodal forces on the layer of nodes beneath
the contact surface will be quite small.

4.4. Features

In most finite element models, small scale features such as fillets and rounds on corners
are neglected because modeling them would entail the use of too many elements. Instead,
finite element models often have sharp corners at intersections of surfaces. However, sharp
corners are often inappropriate models for the contact phenomena that occur there. In this
algorithm, it is very easy to include features such as rounded corners and fillets. We illustrate
the concept in Figure 5. The basic idea is to associate a feature in the model with a specific
gap function and to define an appropriate hierarchy of gap functions. For a rounded corner,
the gap functions is

g=ro—Vx—x/ P+ (y -y P=r—|x—x/| (49)

where x/ =[x/ y/] is the position of the centre of the round and 7, is the radius of the
round. This gap function is then used to compute the gap in the domain of dominance for
the round: see Figure 5.

Since the gap in the above is not expressed in terms of the nodes of the system, it is
necessary to transfer nodal contact forces to the primary nodes, as for the shape nodes. The
relationship is obtained by using the chain rule with Equations (49) and (47):

s
fi= [ pavie) S ar (50)

i = x|l
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O O primary node

@ feature node

Figure 5. Depiction of a feature: a rounded corner; the domain of feature dominance is also shown.

The philosophy here differs markedly from Pandolfi ez al [18], who deal explicitly with
corners. Here, the objective is to avoid corners.

A crease can be introduced in the contact surface by adding the absolute signed distance
function to the gap function, see Reference [19] or [20] for the construction of functions with
discontinuous derivatives.

4.5. Other matters

For a master—slave routine, an estimate of the normal is always needed to obtain the correct
sign on the solutions for a. One approach is to use an assembled surface normal algorithm,
see Reference [17] or [21]. Alternatively, the normal can be estimated by finding the normal
to the closest facet of the master.

The contact-impact algorithm, like any other contact-impact routine, requires a bin sort to
isolate sets of nodes that are likely to be in contact in order to achieve reasonable efficiency.
These algorithms are well known and widely used in contact-impact methods so we will not
discuss them further.

5. TESTS AND EXAMPLES

In the following we describe some tests of the algorithm. Our intent is not to demon-
strate the solution of large problems, but to list some tests that should be made by any-
one who wishes to implement this algorithm and to indicate the level of accuracy. We
also use these examples to illustrate some of the advantages and shortcomings of this method.
In each of the tests, the nodes were placed on a surface defined by an analytic func-
tion, such as a sphere. The gap function and its gradient were then computed in
a subdomain about the surface. Three measures are used to quantify the error of the
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algorithm:

1. Error in the surface definition. This corresponds to the deviation of the g =0 isosurface
from the analytic surface on which the nodes were placed, given by

1
errp:S—r/F|g(x)|dF (51)

where St is the area of the surface considered. Note that the integral is evaluated over the
exact surface. For a circle in two dimensions, this definition of error can be approximated by

errpr =

2n
7 — Fexact |Fexact 40 52
anexact /0 ‘ cxact| exact ( )
where r is the distance from a point on the computed zero isoline to the origin of the circle.
2. Error in penetration. This is a measure of the error in the penetration function g(x) in
a subdomain about the impact surface. It is given by

1 - X
erry = M, where 1(g) = / lg| (53)
1(g) 0

where (2 is a volume surrounding the contact surface.
3. Error in gradient of gap function. This is a measure in the error in the gradient of in
the vicinity of the impact surface. It is given by

IZ(VQ - vgexact )

1/2
L(%9) , Where Iz(g)—(/QHVngQ) (54)

CIryy =

5.1. Straight line and plane

The first test of this algorithm is set of points on a straight line in two dimensions and a set
of coplanar set of points in three dimensions. The zero isosurface for a linear basis should fit
the points within machine precision, 10! to 107! on a MATLAB program on a PC. This
degree of accuracy was obtained for both uniformly spaced points and nonuniformly spaced
nodes.

5.2. Circle

Twenty to eighty nodes were placed on a circle of radius rewq =R=15. The gap function
was then computed with linear and quadratic bases. Table I gives the three error measures
described above: the subdomain {2 over which the error was measured consists of the domain
bounded by circles of radii 0.9R and 1.1R. An example of the smoothed contact surface is
given in Figure 6.

For a linear basis, the errors in the gap and radius converge with increasing number of
nodes. The zero isosurface for a linear basis always inscribes the nodes, i.e. the radius is too
small. The error in the radius of the approximate surface decreases rapidly as the number of
nodes increases. For a quadratic basis, the zero isosurface fits the circle exactly: it has the
correct radius with machine precision. Similarly, the gradient is obtained in the subdomain
around the surface with machine precision. The penetration has a slight error which does not
decrease with an increasing number of nodes: evidently the metric is slightly distorted by this
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Table I. Error in the gap function and its gradient for a circle.

No. of nodes Nodes/support erry errr erryy

Linear basis

20 3 0.020119 0.028499 0.00051878
40 3 0.00502 0.0064339 0.00042572
60 3 0.0019735 0.0031247 0.026183
80 3 0.0012439 0.0016031 8.332E-5
Quadratic basis
20 6 0.0010309 1.8793E-17 1.1945E-16
40 6 0.0010309 1.8947E-17 1.646E-16
60 6 0.0010309 2.0104E-17 6.0728E-17
13 T T T T T T T
Q = quadratic basis
L =linear basis ~ ———--—-
121 4

06 | 1 1 i | ! 1
0

0.1 02 03 0.4 0.5 0.6 0.7 0.3

Figure 6. Piecewise linear finite element surface through nodes of a circle over a 45° sector and the
zero isosurface from moving least square approximations with linear and quadratic bases.

method, regardless of the number of nodes. This should not affect the accuracy of solutions,
since it only effects the magnitude of the penalty term in the contact algorithm, not where
it vanishes. Nevertheless, it is surprising how well the constructed function corresponds to a
signed distance function even though the normality constraint is only applied at the point the
gap is computed.

Table II gives results for a set of nodes on the circle that are randomly spaced. The errors
are only slightly largely than for the uniformly spaced nodes, and for most purposes the
differences are irrelevant.
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Table II. Error in the gap function and its gradient for a circle for randomly spaced nodes.

No. of nodes Nodes/support erry errr erryy

Linear basis

20 3 0.017953 0.029015 0.083999
40 3 0.0045053 0.0072771 0.041485
60 3 0.0019181 0.0032469 0.027744
80 3 0.0011293 0.0018312 0.020585
Quadratic basis

20 6 0.0010309 2.1565E-17 4.4805E-17
40 6 0.0010309 2.9445E-17 3.0652E-16
60 6 0.0010309 1.1333E-16 4.1634E-14

Table III. Error in the gap function and its gradient for a cosine function.

No. of nodes Nodes/support erry errp erryy

Linear basis

10 3 0.078935 0.0043936 0.18056

20 3 0.017854 0.001042 0.0080975
40 3 0.0041367 0.00023672 0.0043724
80 3 0.0041367 0.00023627 0.0043724
Quadratic basis

10 6 0.011021 0.00027488 0.026673
20 6 0.011122 0.00010637 0.0040426
40 6 0.011172 5.8487E-6 0.0010493
80 6 0.011139 2.9109E-6 0.00027357

5.3. Cosine function

The objective of this problem is to test the algorithm for a situation where the curvature
varies markedly. The surface is given by
T
2
For this curve, the curvature varies from 0 to 1. The results are given in Table III.

The moving least square approximation and the straight line segments connecting the nodes
for a mesh of linear or bilinear finite elements are shown in Figure 7. It can be seen that the

moving least-squares zero isosurface is a little inside the nodes. This figure is for a coarse
mesh. For a finer mesh, the isosurface passes almost exactly through the nodes.

y=cosx, 0<x<

5.4. Cross-section of cylinder with hemispherical caps

The nodes are placed on a cross-section of a cylindrical vessel with spherical caps. This
problem is included because the transition from a curved surface to a linear surface causes
some difficulties if the solver is not robust. Table IV gives the errors in the approximation
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Figure 7. Piecewise linear finite element surface through nodes of a cosine function and the zero
isosurface from moving least square approximations with linear and quadratic bases.

Table IV. Error in the gap function and its gradient for the cross-section of
a cylinder with hemispherical ends.

No. of nodes Nodes/support erry errp erTyy

Linear basis

66 4 0.050885 0.049046 0.13345
202 4 0.021137 0.017865 0.053211

Quadratic basis

66 10 0.001649 1.4911E-33 1.8118E-16
202 10 0.0016497 7.1012E-07 1.3874E-06

to the surface. The radius of the spherical caps is unity, while the length of the cylindrical
segment is 2.

5.5. Sphere

A coarse and fine mesh on the surface of a sphere of radius one are shown in Figure 8;
only an octant is shown. The errors in g and its gradient were computed in a hollow sphere
with inner and outer radii of 0.9 and 1.1. Note that both triangular and quadrilateral surface
elements occur in the surface mesh, but as can be seen from Table V, the accuracy is still
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Figure 8. Coarse and fine meshes for an octant of the sphere; all nodes are on the surface of the sphere.

Table V. Error in the gap function and its gradient for coarse and fine models of sphere.

No. of nodes Nodes/support erry errr erryy

Linear basis

66 4 0.050885 0.049046 0.13345
202 4 0.021137 0.017865 0.053211
Quadratic basis

66 4 0.001649 1.4911E-33 1.8118E-16
66 10 0.001649 1.4911E-33 1.8118E-16
202 4 0.0016497 7.0209E-07 1.0598E-06
202 10 0.0016497 7.1012E-07 1.3874E-06

very good. The zero isosurface and the gradient of the sphere is obtained with machine
precision for quadratic basis functions. The error in the linear basis is significantly larger but
still acceptable.

5.6. Ogival surface

To evaluate the performance of the method for a surface with a sharp point, we considered
a surface of revolution with an ogival cross-section. The surface is given by

¥+ —z=0 (55)

The error is computed on the plane z=0.5 using definitions of error analogous to those given
above but limited to this plane, and given in Table VI.

5.7. Spinning disc

This problem is illustrated in Figure 9. A disc is spinning on a frictionless surface with an
angular velocity of 5000 rad/s. The material properties are that of steel: Young’s modulus
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Table VI. Error in gap function and its gradient for an ogival three-dimensional surface.

No. of nodes Nodes/support erry errr erTvy

Linear basis

242 4 0.021064 0.0087873 0.058576
439 4 0.017045 0.0044053 0.05494
687 4 0.0093902 0.00237 0.038656
1334 4 0.0016786 0.00087825 0.03001
Quadratic basis

242 10 0.015944 0.00061205 0.018643
439 10 0.0094599 0.00021484 0.017543
687 10 0.0085432 0.00013093 0.017582
1334 10 0.0038863 0.00014861 0.013094

Slave node

Figure 9. Finite element mesh for spinning wheel problem.

E =211 GPa and Poisson’s ratio=0.3. The penalty parameter is 4F. The disc is preloaded
as shown with a load of 400 N. The central difference method was used for time integration.
The forces at several of the surface nodes are shown in Figure 10. It can be seen that they
are very smooth; and they increase almost linearly to their peaks and then decrease linearly.
The forces at the sequential nodes repeat each other as expected.

5.8. Concentric rings

The inner of two concentric rings was rotated with an angular velocity of 4000 rad/s. The
interface between the two rings is a single surface in the initial configuration, i.e. the outer
radius of the inner ring equals the inner radius of the outer ring. The outer ring is fixed at its
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Figure 10. Vertical forces at nodes that contact the surface of the spinning wheel.

Figure 11. Finite element mesh for the concentric ring problem at 40 ps; in the initial configuration, the
nodes of the inner and outer rings that are on the contact surface are coincident.
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Figure 12. Contours of pressure in concentric rings at 40 us for solutions with smoothed contact (right)
and standard master-slave contact (left) on linear surfaces; one contour corresponds to 500 GPa.
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Figure 13. Time histories of circumferential velocity of a node of the inner ring for
smoothed and standard master-slave contact.

outer radius. The material is an isotropic Kirchhoff elastic material with the Lame constants
given by A=121730Pa, u=81154Pa, density=7.8 x 10~ g/m’. An explicit time integrator
was used with a time step of 0.03 ps. An initial pressure of 10000 Pa was applied to the
inner ring and the complete system was brought to equilibrium before starting the rotation.
The surfaces between the two rings are frictionless. A penalty parameter of 100E was used
in the contact algorithm.

Copyright © 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 55:101-125



122 T. BELYTSCHKO, W. J. T. DANIEL AND G. VENTURA

A quadratic basis was employed for the moving least-squares smoothing of the contact sur-
face. The inner surface of the outer ring is the master surface. Even with the smoothing, some
noise appears, so an integrator with high-frequency dissipation, the explicit generalized alpha
method of Hulbert and Chung [22], with p, =0 was used. Figure 11 shows the configuration
at 40 ps. Figure 12 shows the pressure contours at the same time for the smoothed contact
and a standard node-to-edge contact. It can be seen that the pressure varies very smoothly for
the solution with the smoothed surfaces. The radial variation of pressure in the inner cylinder
is due to the centrifugal body force. The node-to-edge contact shows a very irregular pressure
distribution, with peaks around the contacting nodes of the outer ring.

The circumferential velocity at a node on the circumference of the inner cylinder is shown
in Figure 13. The velocity for the smoothed case shows a slight drift but is smooth and
stable. For the node-to-edge contact, the oscillations are much more severe and an instability
occurs in the simulation. These oscillations would depend on the exact implementation of the
node-to-edge contact, but seem to be unavoidable in unsmoothed contact of concentric rings.

6. CONCLUSIONS

A method has been developed for smoothing and computing the gap between bodies in contact-
impact problems. The method is based on constructing a smooth signed distance function by
means of a moving least-squares approximation. This function is directly used to compute
the gap function and the normal to the implicitly smooth surface. The smoothed gap func-
tion is computed on the ‘run’, i.e. it is computed for any slave node as needed; no pre-
liminary steps of setting up a smoothed function are needed. Therefore, we call algorithm
monolithic.

Both linear and quadratic forms of the algorithm have been tested in two and three dimen-
sions. The quadratic algorithm gives better smoothing for coarse meshes and tends to closely
fit the nodes. In fact for circular (or cylindrical in three dimensions) meshes and for spheres,
the quadratic fit is exact. However, the linear fit tends to be more robust, although it tends
to inscribe curved surfaces. This shortcoming can be ameliorated to some extent by setting a
non-zero gap value for contact.

The algorithm is quite fast. Although a system of non-linear equations needs to be solved
at each point, the procedure is often far less involved and more readily vectorized than
algorithms for gap calculations for piecewise linear surfaces, since in the latter there are often
many contingencies that have to be dealt with.

Although the methodology has been presented in the context of a penalty method, it can
readily be extended to Lagrange multiplier and augmented Lagrangian methods. There may
be some challenge in developing Lagrange multiplier fields that are stable, but preliminary
indications are that this is not impossible. The method is applicable to a wide variety of other
methods, see References [23—32].

A key feature of the method is how easily it treats three dimensional bodies. Most of the
other methods published previously employ spline or polynomial fits for smoothing. These
are quite awkward on three-dimensional surfaces of arbitrary meshes. Moving least square
approximation, on the other hand, can easily treat very irregular meshes in three dimensions,
and as shown by the example, the smoothing is very effective in recovering shapes such as
spheres, cylinders and harmonic surfaces.
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APPENDIX A: GENERAL ALGORITHMS FOR MLS COEFFICIENTS

In Section 4 an analytic procedure for the determination of the MLS coefficients in the 2-D
case using the linear basis has been reported. Here the general case is addressed, including
3-D problems and the more general basis of functions (e.g. quadratic).

The problem is to minimize

Jo= 1 w(x — X;(t))ai(x, ) pi(x;(2))? (AD
2 jes,

subject to the condition that the gradient of the signed distance function have unit norm
IV (x, 1) = 1=0 (A2)

This problem has been solved in Section 4 by analytically finding the saddle point of the
Lagrangian functional J. Here the general case is addressed by introducing the augmented
Lagrangian functional

= 5 3% W= XN 06 + (Ve )] — 1)+ 2V e )] — 17

18

where both the Lagrangian and quadratic penalty terms appear, o being the penalty coefficient.
The saddle point of Jy can be determined by several iteration techniques, among which the
most widely used is the HP iteration, [33]. It is based on repeating the following steps in
sequence until convergence:

(i) Compute the minimum of Jy w.r.t. a; considering the multiplier u as a constant;
(ii) Update the value of u by the formula p:=p + o(||Ve4(x, 1) — 1);
(iii) Increment the penalty coefficient if the detected convergence rate is too low.

The application of the augmented Lagrangian iteration in the present case necessitates some
special techniques due to the particular mathematical structure of the function. In particular
two points are noteworthy:

1. The existence of multiple solutions in some cases;
2. The singularity of the Hessian of Jy; for particular arrangements of nodes and MLS
bases;

The first issue can be solved by appropriately choosing the initial guess of coefficients a;
through a rough estimate of the normal. In the practical application of the method this es-
timate is always known from the finite element discretization. The second issue arises, for
example, when a plane or a slightly curved surface is to be represented by a quadratic
basis.

This difficulty has been overcome by modifying the solver in step (i) of the iteration. The
minimum is determined by a Quasi Newton’s method where the new coefficients a; at the
iteration (k + 1) are given by

a®+h) —a® _ Oy, (a®)
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where H® is determined from the Hessian of J,; by adding to it a scaled identity matrix as
follows:

H =V + 1076 Tr(V2p)I

where Tr is the trace and I the identity matrix. Thus the identity matrix (i.e., steepest descent
bias) is added to the original, nearly singular Hessian. As the original Hessian is always
positive semidefinite, the modified matrix H is always non-singular. Note that in the formula
the trace gives a rough estimate of the spectral radius, while the factor 10~° is the stepsize of
the steepest descent bias. This stepsize is small enough not to alter the properties of Newton’s
method but eliminates the singularity.
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