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Abstract-A framework is presented within which the method of augmented Lugrangians is readily applied 
to problems involving contact with friction. This method, which has enjoyed considerable success in the 
treatment of constrained minimization problems, has been previously applied to problems involving 
incompressible flow, incompressible elasticity of solids and even frictionless contact. An additional 
challenge to the method is provided by frictional contact problems governed by a Coulomb law, due to 
the special form taken by the frictional constraint. This paper describes a new extension of the augmented 
Lagrangian technique to frictional problems which is well-suited to finite element implementation. The 
proposed treatment inherits the traditional advantages of augmented Lagrangian techniques over penalty 
methods; namely, decreased ill-conditioning of governing equations, and essentially exact satisfaction of 
constraints withfinite penalties. A set of numerical examples is presented in which the utility of the method 
is demonstrated even in the presence of finite deformations and inelasticity. 

1. INTRODUCIION 

The method of augmented Lagrangians, originally 
proposed by Hestenes [l] and Powell [2] in the context 
of mathematical programming problems subject to 
equality constraints, has been known for years to 
provide important advantages over the more tra- 
ditional Lagrange multiplier and penalty methods. 
Extensions of the method of augmented Lagrangians 
to mathematical programming problems involving 
inequality constraints are also well established and 
go back to work of Rockefeller [3] and others; see 
e.g., the summary accounts in Bertsekas [4] and 
Fletcher [5]. More recently, within the context of 
finite element methods, augmented Lagrangian tech- 
niques have been successfully applied to incompress- 
ible finite deformation elasticity [6, 81, frictionless 
contact problems (e.g., [9, lo]), and viscoplastic- 
ity [ll]. All these problems share a common charac- 
teristic; namely, a certain key constraint present in 
each problem is conveniently enforced by a penaliza- 
tion. The advantages of the penalty approach are 
obvious: the technique is simple, introduces no 
additional equations, and is readily interpreted from 
a physical standpoint. Unfortunately, it is also well- 
known that penalty methods suffer from ill-con- 
ditioning that worsens as penalty values are 
increased, while constraints are satisfied exactly only 
in the limit of infinite penalty values (see [4] for a 
more concrete discussion of these ideas). Thus, for 
many problems it may be desirable or even necessary 
to consider the augmented Lagrangian technique as 
an alternative approach capable of circumventing 
these difficulties. 

Contact problems with friction in solid mechanics, 
the subject of the present investigation, constitute 

physical examples of variational inequalities; see 
e.g., the classical work of Duvaut and Lions [12] 
and the recent monograph of Kikuchi and Oden 
[13]. While instructive, such inequalities are not 
amenable to most finite element implementations. 
Typically, Lagrange multipliers or penalty regulariz- 
ations are introduced to reduce the problem to a 
variational equality which can then be handled using 
traditional finite element methods, as in [14]. See 
[13] for a comprehensive review of these alternative 
approaches. 

Indeed, the use of a penalization to accomplish this 
task is especially attractive in the case of frictional 
contact, because the resulting equations suggest a 
‘constitutive law’ for the interface which is almost 
exactly analogous to those traditionally used in the 
theory of plasticity [15]. Return mapping schemes 
essential for integrating such equations are also well- 
known [16]. Examples of implementations using a 
penalty regularization of this type are to be found in 
[17] and [18]. 

In this paper, the natural extension of these ideas 
to an augmented Lagrangian framework will be 
given. For simplicity, the friction law considered will 
be a Coulomb law, with no distinction made between 
static and kinematic coefficients of friction. While it 
is recognized that mathematical and empirical 
difficulties exist with such a characterization [13], it 
still enjoys a great deal of engineering utility in the 
opinion of the authors. 

The description will be given in the follow- 
ing manner. Sec. 2 will describe the frictionless con- 
tact problem in the context of a finite-deformable 
body in contact with a rigid obstacle. Although 
essentially a review of known results, this sec- 
tion conveniently provides a foundation for Sec. 3, 
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in which the frictional contact problem will be 
posed and treated in the context of a rigid obstacle 
problem in small deformations. This section clarifies 
the relation between return mapping algorithms for 
frictional problems of the type employed in plasticity 
(see Simo and Hughes [A for a review), and alterna- 
tive two-step algorithms of the type reviewed in [13]. 
New augmented Lagrangian algorithms are devel- 
oped within these two approaches. While the latter 
class of algorithms have the attractive feature of 
leading to symmetric equation systems, the former 
appears to exhibit more robust performance, particu- 
larly in highly nonlinear problems. It is emphasized 
that the small deformation assumption made in 
Sec. 3 is only introduced for the sake of convenience; 
the augmented Lagrangian framework developed 
therein is readily extended to finite deformations. In 
fact, Sec. 4, which consists of numerical examples 
demonstrating the method, is comprised mostly of 
finite deformation simulations. Details pertaining to 
the implementation of the proposed methodology are 
given in two appendices. 

2. AUGMENTED LAGRANGIAN TREATMENT OF 

FRICTIONLESS CONTACT 

In the following we outline the treatment of fric- 
tionless contact by consideration of the rigid obstacle 
problem in finite deformations as a model problem. 
By carefully stating the problem and motivating the 
augmented Lagrangian treatment through presen- 
tation of traditional Lagrange multiplier and penalty 
techniques, we shall provide a framework within 
which frictional effects are conveniently introduced. 

2.1. Statement of the obstacle problem in finite 
deformations 

We consider in this section the problem of finite 
deformation of a continuum body constrained by the 
presence of a rigid, immovable obstacle. We shall 
denote material points in the reference configuration 
&Y2 (an open subset of either R2 or R’) by X (see 
Fig. 1). Points in the current configuration are given 
by x = rp(X, t), where cp has the property that 

det(Drp(X, t)) > 0 for all t, where t is the time variable 
(which shall hereafter be suppressed). We denote by 
r a section of an which we shall consider to include 
all prospective points of contact, and y shall be the 
image of r over rp. Lastly, we define 86, an open 
subset of the ambient space which together with a H 
comprises the admissible region for the motion of R. 
The remainder of the ambient space is then con- 
sidered to be occupied by the rigid obstacle. We 
assume that H is invariant with respect to time. 

We next consider a scalar-valued gauge function h, 
defined on the spatial domain, which has the property 
thath<OinDd,h=OondW,andh>Ooutsideof 
K. It is assumed for the present that the set M is 
convex. While convenient for the development which 
follows, this restriction is not a major consideration 
in actual implementations, as we shall later see. The 
specific form of the gauge function is not crucial to 
what follows; we simply emphasize that for any 
admissible point x of the spatial domain, h ( 0. 

With this notation in hand, we are ready to state 
the contact conditions: 

For all X E r, the admissible deformation 
x = cp(X, t) satisfies: 

where 

h(x) Q 0, 

tN= -n(x).PNaO, 

tN(x)h (x) = 0, 

t,=PN+t,n=O, 

(2.1.1) 

(2.1.2) 

(2.1.3) 

(2.1.4) 

P:=first Piola-Kirchhoff stress tensor 
n:=outward normal in the current configuration 
N:=outward normal in the reference configuration. 

It is noted that eqn (2.1.1) represents the impene- 
trability condition, (2.1.2) represents the restriction 
that the normal component of surface traction be 
compressive (note the sign change in the definition 
of tN), and (2.1.3) is a condition ensuring that tN 

Fig. 1. Notation for the obstacle problem in finite deformations. 
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may only be nonzero when h(x) = 0. Equations 
(2.l.lH2.1.3) are therefore recognized as the familiar 
Kuhn-Tucker conditions. Equations (2.1.4) merely 
asserts that no friction is present. 

Accompanying the contact conditions are the 
remainder of the governing equations 

DivP+f=OinR, 

PN=lonF,, 

rp=@onF .* (2.2) 

where F, and Fp are the portions of XI on which the 
traction and motion, respectively, are prescribed. 

Remark 2.1. In this statement we make no restric- 
tion on the constitutive law governing P. Thus, this 
statement of the problem allows for either elastic or 
inelastic response. 

We next consider the variational formulation of 
this problem. In doing so, however, we first remark 
that admissible variations of the motion are con- 
strained by the contact conditions. This restriction 
takes the form 

Gp(X)*n(cp(X)) 60 on f if h(cp(X))=O, (2.3) 

where 69(X) is an admissible variation of the defor- 
mation (implying 6~ = 0 on F,). 

Keeping this fact in mind, we convert the strong 
form of the problem (2.2) into the weak form in the 
usual manner to obtain 

s 
P.Grad[dp]dR- f.iiqdi-2 

n s n 

- 
s 

f. 6rp dT - 
r. s 

t .&p dT = 0, (2.4) 
I- 

which must hold for all 6~ with 6~ = 0 on FV 
satisfying (2.3). 

We assert that (2.4) is difficult to work with in 
a finite element setting precisely due to the con- 
straint (2.3) on the admissible variations. For this 
reason, we shall consider Lagrange multiplier and 
penalty methods in the next subsection. However, we 
can further investigate the nature of the variational 
problem by noting 

t.hrp = -1,hp.n on F. (2.5) 

Use of (2.3) together with (2.5) leads to 

s 
t.bqdF,O, (2.6) 

I- 

which gives 

G(q, Scp):= P . Grad(Gq] dCI 

which again must hold for all &+J such that 6y, = 0 on 
FV and (2.3) is satisfied. 

It is noted that eqn (2.7) is a variational inequal- 
ity precisely of the type considered, for example, 
in [13]. 

2.2. Lagrange multiplier and penalty formulations 

In order to remove the rather inconvenient restric- 
tion on the variations given by (2.3), we first consider 
a formulation in which I,, an additional variable, is 
introduced over F. We demand that the following 
conditions be satisfied over f 

&>O, 

Nrp (W Q 0, 

&vh(rp (X)) = 0. (2.8) 

If one considers (2.2) to define the strong form of 
the boundary value problem, subject to constraints 
(2.8), the following variational equations, corre- 
sponding to the Lagrange multiplier formulation, 
result 

G(rp, 6~) + 
s 

Mrp . nb(X)) dT = 0, (2.9) 
I- 

L [%l4cp(x)) a- = 0, (2.9.1) 
Jr 

which must hold for all admissible 6~ and 61,, where 
61,> 0, is the variation of i,. 

We note that the variation of cp is unconstrained by 
the contact conditions in this case. However, this 
comes at the cost of an additional variable and 
indefinite structure of the resulting matrix problem. 
Although not insurmountable, these difficulties mo- 
tivate the consideration of a penalty regulurization. 

We begin this development by defining g, a func- 
tion over the spatial domain which shall hereafter be 
referred to as the gap function (see Fig. 2). For any 
point x in the spatial domain, we define g(x) as 
follows: 

S(x)l=Ilx-PII =min,:yl,coIlx-yI]. (2.10) 

Expressed in words, 5 is the closest point projection 
of x onto the admissible region, and its determination 
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K (s(e) = 0) 

Fig. 2. Definition of the gap function on the spatial 
domain. 

in turn defines g(x). Note that if x is admissible, 
R = x. As a consequence of this construction, 
g(x) > 0 is nonzero on+ if x is inadmissible. 

Remark 2.2. This definition of the gap function 
demonstrates why the assumption of convexity of K 
was made. As we shall see in a moment, the case in 
which x is inadmissible is the only case of interest 
with regard to the penalty regularization. If the 
admissible region were not convex, the definition of 
f could be nonunique. In practice, we are really only 
concerned with local convexity, and steps can be 
taken in the algorithmic setting to remedy the situ- 
ation when even this weaker condition is violated. 
See Appendix A for further elaboration. 

Remark 2.3. It is important to note that although 
the gauge function h may be defined such that it is 
identical to gap function g in the inadmissible region, 
in general this need not be the case. For example, one 
might conceive of situations in practice where it is 
advantageous to use a gauge function h distinct from 
g in order to define the searching algorithm which 
detects contact. Subsequently, g could be used in the 
finite element equations to characterize the contact 
conditions once contact is detected. In the present 
case, the introduction of g converts the inequality 
constraint (h < 0) to an equality constraint (g = 0) 
on f. 

With this definition in hand, the penalty regulariz- 
ation is achieved by the replacement of eqns (2.8) by 
the following 

&:=c,g(cp(X)) on r. (2.11) 

Remark 2.4. cN is known as the penalty parameter. 
As L,+ 00, g +O and &, is bounded. Thus, as Q-* 03, 
the constraint is increasingly well-satisfied. 

Remark 2.5. Note that (2.11) is essentially a 
(Yoshida) regularization. The structure of the regu- 
larization here is remarkably similar to that of 
the viscoplastic regularization used in treatments 
of rate dependent plasticity (see [7] for further 
discussion). 

The variational equation for the penalty method 
is now easily obtained by substitution of (2.11) 
into (2.9.1) 

which must hold for all 6~ such that 6~ = 0 on 
r+,. We note that (2.12) now only involves the 
variable cp, and no constraints of the nature of 
(2.3) are present on the admissible variations. These 
facts make (2.12) extremely attractive for finite 
element implementations. However, we know that 
the constraint h(q(X)) < 0 on r is satisfied only in 
the limit as +,,+co, and we further recall the pre- 
viously-discussed difficulty that ill-conditioning in- 
creases as 6N increases. It is these considerations 
that lead us to turn to the method of augmented 
Lugrangians. 

2.3. Augmented Lagrangian formulation 

The concept of the method is remarkably simple. 
Starting with the variational equation (2.9.1), we 
append a penalty regularization which renders the 
following 

G(rp, 6~) + s (2, + w(dX)))h~ n(cp(X)) df = 0. 
r 

(2.13) 

We note that (2.13) is a penalization of the Lagrange 
multiplier problem which is exact if the multipliers 
are the correct ones [corresponding to the solution of 
(2.9.1)]. We can see this as follows. If 1, is the correct 
multiplier, then g = 0 on r. Thus, in the case where 
the multipliers are correct, (2.13) attains exactly the 
same form as (2.9.1), making it an exact penalization 
(see [ 191). 

The crucial idea in the method of augmented 
Lagrangians is to regard &, as ajixed current estimate 
of the correct Lagrange multiplier, and solve the 
problem 

G(cp, 6~) + s (a!$)+ +g(q(x))) 
r 

6rp . n(cp(X)) dT = 0, (2.14) 

where A$$) > 0 denotes thejxed estimate of the correct 
1,. The superscript (*)(k) reflects the fact that the 
search for the correct 1, is an iterative process. One 
notes that the term (A$) + c,g(cp(X))) plays the role 
of the exact Lagrange multiplier in (2.14). One would 
suppose, then, that it is a good approximation to 
the correct multiplier, which motivates the update 
formula 

a$+‘)= (1$f’+c,g). (2.15) 
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Remark 2.6. (a> is called the Macauley bracket, 
defined as <x> = &X + Ix]]. Its appearance in (2.14) 
is consistent with the interpretation of It’$) + +g as 
the normal contact pressure, which must be positive 
[see (2.1.211. 

Remark 2.7. A slight change in the definition of 
g is made at this juncture, which accounts for the 
slight difference in form between (2.13) and (2.14). 
According to the definition of g made in the context 
of the penalty ~~l~zation, g > 0 is nonzero only 
in the inadmissible region. The effect of this, as 
can be seen in (2.12), is that a point of F only has 
a contribution to the integral over the contact sur- 
face if its current mapping lies in the ina~ssible 
region. Examination of (2.14) will show that this 
is not necessarily the case in the augmented Lagran- 
gian formulation due to the presence of 2,. In 
fact, one observes from (2.15) that if the old defi- 
nition for g were retained, the update formula for 
1, would dictate that A$+‘) be unamended (and 
perhaps nonzero) even if x were admissible. Thus, in 
order to conform to the augmented Lagrangian 
recipe for treatment of inequality constraints essen- 
tially due to Rockefeller [3] (see, e.g., [19, S]), we 
now allow g(x) to be a signed quantity, with magni- 
tude equal to the minimum distance between x and 
aI&. We take g(x) to be positive if x is inadmissible, 
and negative otherwise. With this definition, it is 
noted that g is now a suitable choice for the gauge 
function h, and it is this definition of g that is used 
in (2.14). Since this intricacy in the definition of g 
is a fairly minor point in practice, the old notation 
for g will be retained, but the reader should bear 
in mind the changed interpretation in the current 
context. 

It is important to notice that (2.14) is a nonlinear 
equation due to the contact conditions, geometric 
nonlinea~ty, and (perhaps) inelasticity. In general, 
then, it will be necessary to solve (2.14) in an iterative 
manner. One can easily envision two different sol- 
ution schemes; one in which update (2.15) is per- 
formed concurrently with the iterations necessary to 
solve (2.14), and another in which (2.14) is solved 
completely, before update (2.15) is performed. In this 
latter scheme, (2.14) and (2.15) are solved recursively 
(and completely separately) until convergence is at- 
tained. The first approach, which we shall denote 
simultaneous iteration, is the one considered for sol- 
ution of incompressible Navier-Stokes equations by 
Fortin and Fortin [21], and has subsequently been 
considered for frictionless contact by [lo] and by 
[9]. The second approach, which we shall refer to 
as nested iteration, is more closely related to 
ideas advanced independently by Hestenes[l] and 
Powell 121, and will be the approach focused upon in 
this paper. Although both techniques have advan- 
tages, the nested scheme has the attractive property 
of preserving quadratic convergence of the inner loop 

Table 1. Nested augmented Lagrangian algorithm for 
frictionless contact 

1. Initialization: 

set A$) = <& + c,+.g) from the last time step, 
k =O. 

2. Solve (using a nonlinear solution strategy) for rp(*‘: 

G(cp”‘, 89) + c (A$‘+ w(d”00)) 
Jr 

69 . n(9(~)~)) dT. 

3. Check for constraint satisfaction: 

IF (g(x) G TOL for all x E 7) THEN 
Converge. EXIT. 

ELSE 
Augment: 
I$+‘)= (1$)-e ENg(@))) 
k+k+l 
GOT0 2. 

ENDIF 

[i.e., solution of (2.1411 when a Newton-Raphson 
solution scheme is utilized. 

Remark 2.8. In the schemes considered in this 
paper, (FN isfixed throu~out the procedure (although 
this need not be the case). In practice, eN is chosen to 
be as large as practical without inducing ill-condition- 
ing. The advantage of the current treatment over the 
penalty method is that ~tisfaction of the constraints 
can be improved even if + is undersized through 
repeated application of the augmentation procedure. 
Since these augmentations only change A$), which is 
fixed with regard to solution of (2.14), no additional 
ill-conditioning of the resulting matrix problem is 
induced. 

To close the section, we present the nested 
augmented Lagrangian algorithm for frictionless 
contact in Table 1. 

3. AUGMENT LAGRANGIAN ~~~E~ OF 
CONTACX WITH FRICTION 

In this section we examine the extension of the 
framework developed in Sec. 2 to accommodate 
frictional effects. In order to simplify the presen- 
tation, we shall limit the discussion in this section 
to the rigid obstacle problem in small deformations. 
The ideas developed herein, however, are readily 
extendible to large deformations and contact of mul- 
tiple deformable bodies, as shall be demonstrated in 
Sec. 4 and in the appendices. 

3.1. State~nt of the ~rict~nal obstacie problem in 
small deformations 

We now consider the deformation of a body con- 
strained by a rigid, immovable obstacle, but assume 
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that the displacements of points in the body are 
very small. We denote points in the body Q (an 
open subset of either R2 or R3) as x (see Fig. 3). As 
in Sec. 2, we define H as the interior of the admissible 
region, and we designate F as a portion of Xl 
containing all prospective points of contact. We 
denote the displacement field over Q by II, and 
mention that although u is in general time dependent, 
the time argument will be suppressed except when 
needed. Outward normals to the body Q shall be 
denoted as n(x). 

We shall state the normal contact conditions 
slightly differently in the current context than was 
done earlier by a direct appeal to the concept of a 
(signed) gap function. Suppose a point x in r has an 
an initial distance g, L 0 from its closest point on 8 K 
(we assume all points x are in the admissible region 
initially). Then g,, is a scalar-valued function defined 
over r. The contact conditions in the linear theory 
are now given for all x E r by: 

gW:=u . n -g,(x) f 0, 

tN(u):= -n a(u)n > 0, 

tN(u)g(u) = 0. (3.1) 

Analogous to (2.2) in the previous section, the state- 
ments of local momentum balance and boundary 
condition prescription take the form 

diva +f=OinR, 

bn=ionr,, 

u=iionF,. (3.2) 

Remark 3.1. Again, we make no restrictions on the 
constitutive law governing u, except that it must be 
within the scope of the infinitestimal theory. 

We next state the form of the Coulomb friction law 
presumed to hold here. We define 

tr(u):= -un - t,n 

and ur:=u - (u * n)n on r (3.3) 

K 

Fig. 3. Notation for the frictional obstacle problem in small 
deformations. 

as the tangential components of the traction (note 
the sign change) and displacement, respectively. 
This provides the necessary notation to detine the 
Kuhn-Tucker conditions for Coulomb friction 

@:=lltTll -NN<o, (3.4.1) 

i+&D, 
T 

(3.4.2) 

CBO, (3.4.3) 

@=O. (3.4.4) 

We recognize (3.4.1) as the familiar Coulomb fric- 
tion condition, with p > 0 being the coeficient of 
friction. Equations (3.4.2) and (3.4.3) mandate that 
slip occur in the direction opposite that of the applied 
tangential traction, and eqn (3.4.4) enforces the con- 
dition that slip may only occur when @ = 0, i.e., when 
jjtTII = ptN. If IIt, II < ,utN, then perfect stick occurs, 
and fT = 0. 

Remark 3.2. In interpreting (3.4.1)-(3.4.4), the 
analogy of rigid-perfectly plastic response from the 
theory of plasticity may prove useful. Here, Q, plays 
the role of the yield criterion, and I, plays the role of 
the (deviatoric) strain rate. Note that afl of the 
deformation that occurs is inelastic. 

Remark 3.3. An important distinction between the 
current formulation and usual treatments of metal 
plasticity is also noted. We remark that flow rule 
(3.4.2) is non-associated since there is no irreversible 
slip allowed in the normal direction, as would be 
mandated by using @ itself as the flow potential 
(see [ 151). Thus, the extraction of a maximum dissipa- 
tion principle appears impossible except in the case of 
t,= constant. In this sense, the current formulation 
bears a close resemblance to a Drucker-Prager type 
of constitutive law. 

To construct the weak form, we first note that the 
admissible variations are again constrained 

6u.n<Oonrifg(u)=O. (3.5) 

Proceeding in the usual manner then yields the 
following 

G (u, 6 u):= 

f.Sudr 

= [-t,n.6u-tr.6rrT]dF (3.6) 
s r 
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which must hold for all 6 II such that 6 II = 0 on r, and Remark 3.4. Some authors (see, for example, [18]) 
(3.5) is satisfied. We note that r, and tT in the have felt it convenient to interpret or as a physical 

right-hand side of (3.6) are determined through stiffness corresponding to the stiffness of junctions at 
eqns (3.1) and (3.4.lH3.4.4). the interface. In this interpretation, (l/c=) i, is the 

As was the case in frictionless contact, (3.6) is elartic part of the relative velocity at the interface. In 
difficult to work with due to restriction (3.5). This our current treatment, however, we wish to allow no 
motivates the use of a penalty regularization. such elastic motion on the interface. Thus, in the 

3.2. Penalty regularization of the frictional obstacle 
context now being considered, or is best thought of 

problem 
as strictly being a penalization, induced mathemat- 
ically to ensure that the slip rate equals the relative 

One could follow the procedure suggested in velocity. 
Sec. 2 and introduce independent variables & and 
L, on the frictional interface r. This procedure, We now wish to consider the integration algorithm 
corresponding to the L.agrange multiplier treatment necessary to solve equality (3.6) (with variations no 
of the frictional obstacle problem, would result in longer constrained by the contact conditions), where 

tN and t, are given by (3.9.1)-(3.9.5). In general, 

G(u, 6u) = 
s 

[ - I,n .6u -I,. 6urJ dT (3.7) 
we solve this problem incrementally over the time 

r interval 

subject to, for all x E r 
K4 rl = 6 [tn, &+,I. 

n=l 

g(u) G 0 (3.8.1) 

I,>0 
In each time increment, we start with (3.6) being 

(3.8.2) satisfied at time tn. and wish to enforce satisfaction of 

a,g=o (3.8.3) 
(3.6) at t,+] subject to laws of evolution (3.9.1)- 
(3.9.5). We shall utilize a backward Euler integration 

@ = lllrll -p&GO (3.8.4) 
scheme to integrate equations (3.9.1X3.9.5) and 
employ a return mapping strategy; such approaches 

a are now well known and have been used extensively 

“T=$@ (3.8.5) in the theory of plasticity (see [A). Extension of these 
ideas to the frictional contact problem is straightfor- 

520 (3.8.6) 
ward and has been discussed in detail in [ 171 and [ 181. 
The following variational problem results, where 

@=O. (3.8.7) {un, tNnr t, } are given at t, 

This approach, while viable, suffers from possible 
indefinite structure in the resulting matrix problem. 

Wn+,, [-ttN”+,II.6u-fr”+,.6u,]dr, 

We thus introduce a penalty regularization in which (3.10) 

the Kuhn-Tucker unilateral constraint conditions 
(3.8.1)-(3.8.3), and the slip rule (3.8.5) are replaced as where the right-hand side of (3.10) is evaluated by 

follows: setting 

tN = EN <b)> (3.9.1) %+I =~N(du”+,)) (3.11) 

@ = INTII -ptjv<o (3.9.2) 
and by defining the trial ‘stick’ state as 

(3.9.3) 
tz, = h” + 4UT” +, - UT” ), 

@Z’*= Ilqd+,II -PtN”+,~ (3.12) 

k.20 (3.9.4) 
The return mapping is completed by setting 

@D=o. (3.9.5) 

We note that (3.9.1) is an identical treatment of the 
(3.13) 

normal contact constraint as that given in (2.11), 
keeping in mind that the appearance of the Macauley where 
bracket in (3.9.1) is due to the fact that g is now a 
signed quantity. Equation (3.9.3) is a penalization of 
the constraint suggested by (3.8.5), and is satisfied (3.14) 

exactly only in the limit &r --) co. \ ~1 
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A simple calculation shows that the above algor- 
ithm requires that IIt, +, I( = p’tNn +, if bz, > 0, and 
t r”+,=Oif rNm+,,,=O. 

We note, however, that just as in the case of 
frictionless contact, the kinematic constraint for parts 
of r that stick (the perfect stick requirement) is only 
accurately satisfied as er+co, which engenders ill- 
conditioning. Thus, as was done in Sec. 2, we shall 
consider application of the method of augmented 
Lagrangians to frictional contact. 

3.3. Augmented Lagrangian formulation 

We begin discussion of the augmented Lagrangian 
formulation for frictional problems by rewriting the 
equation to be solved for contact problems involving 
friction 

Wun,,, ha)= [-t,+,n.6u-t,“+;6u,]dT. 
s r 

(3.15) 

In the present context, we recognize that t, and 
t, must be redefined such that they include con- 
tributions due to both the penalization and the 
Lagrange multipliers. In the case of fN this is easily 
performed by using the augmentation scheme already 
discussed in Sec. 2. In view of eqn (2.14) we thus 
write 

fN = @N + ENg). (3.16) 

In the case of tT, we turn our attention to eqn 
(3.9.3). We recall that this equation amounts to a 
penalization of the constraint requiring the computed 
slip rate to equal the tangential velocity. In the case 
that @ < 0, this equation penalizes the constraint that 
L, = 0. In the present case, we alter (3.9.3) such that 
only the penalized part of i, appears on the right 
hand side. Assuming that tT decomposes additively 
into its penalty and Lagrange multiplier parts, and 
denoting the Lagrange multiplier part of tT by lr, we 
write down the augmented Lagrangian statement of 
the friction law 

tN = @N + 6Ng >, (3.17.1) 

@ = IbTII -h<o, (3.17.2) 

r,-5$D=;(i,-I,), (3.17.3) 
T 

r 30, (3.17.4) 

p=o. (3.17.5) 

Again we are interested in integrating eqns 
(3.17.1X3.17.5) between t, and tn+, in the algorith- 
mic setting. Application of a backward Euler scheme 

to (3.17.3), and subsequent utilization of the return 
mapping scheme alluded to previously gives 

tNn+~ = @,+, + cNgh + I )> (3.18.1) 

%+, 
> 

, (3.18.2) 

where 

pal 
Tn+,=tln+AAT+eTAuT, (3.19) 

and A<, the consistency parameter, is given by 

with @fF1 simply being @(ty+,, fNn+I). 
In examination of these expressions, we note that 

t, is in practice the converged sum of the penalty and 
Lagrange multiplier contributions from the last time 
step, and is completely fixed with regard to determi- 
nation of the state at t,,+ , . We further assert that is 
the context of nested augmented Lagrangian schemes, 
Air is fixed with regard to the solution phase (as is 
AN). Thus, the use of equations (3.18.1X3.20) in the 
course of solving (3.15) constitutes determination of 

trn+, and ?Nn + 1 within a displacement-driven frame- 
work just as in the case of the normal penalty 
regularization, with the appropriate consideration of 
the multiplier contributions. 

Remark 3.5. It is noteworthy that an increment of 
AT, AAT, appears conveniently in (3.19) rather than 
the multiplier itself. This seems intuitively reasonable 
due to the fact that the constraint involved here is 
expressed in terms of time derivatives of quantities, 
rather than in terms of undifferentiated quantities (as 
is the case with the normal contact constraint). It is 
this increment in the multiplier, rather than 1, +, , 
which is actually stored and augmented in the im- 
plementation proposed here. 

In order to complete the description of the algor- 
ithm the update formulas must be prescribed. The 
treatment of the normal contact is identical to that 
already discussed in the frictionless case, and the 
update formula for 1, is given in (2.15). In order to 
determine the update for AIT we first note that if the 
multipliers are the correct ones, 1, +, = t, +, and 

b,, =tTn. Then fT.+, = tTm + AA,, with A1, now de- 
noting the exact change in the multiplier from t,, to 
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t n + , . Comparison with (3.18.2) suggests the proper 
update formula for the tangential multipliers 

where A@, Al(‘), and tv:; are given in (3.19) and 
(3.20), computed using us’;, . It is important to note 
that this update is done (with a return mapping, if 
necessary) so that the Coulomb condition is satisfied 
by A$“:‘,) and A$!::). 

As was the case in frictionless contact, the solution 
of (3.15) involves solving a highly nonlinear set of 
equations. As a result, the issue of whether simul- 
taneous or nested iteration should be used becomes 
important. We shall herein consider only the tech- 
nique of nested iteration, but remark in passing that 
schemes based upon simultaneous iteration are easily 
conceived in the present framework. Summarizing the 
information discussed above, we present the (pri- 
mary) nested augmented Lagrangian for frictional 
contact contact in Table 2. 

Remark 3.6. Note that as a consequence of the 
nested approach, the multipliers are completely fixed 
during the solution phase. Transmittal of information 
from the penalty terms to the multipliers occurs 
during the augmentation procedure, creating new 
‘best estimates’ of the correct multipliers. In such a 
way, we see that in the first augmentation iteration 
during a time step, all information about the change 
in contact tractions during the step is contained in the 

penalty terms. As augmentations continue, however, 
this information is transferred into the multipliers 
via the augmentation procedure, so that when con- 
vergence is achieved the multipliers are the con- 
tact tractions, while the penalty terms are essentially 
zero. 

Remark 3.7. Note that the conditions for wn- 
straint satisfaction given in step 3 of Table 2 amount 
to checks of the impenetrability condition and the 
perfect stick condition (satisfaction of the Coulomb 
condition is guaranteed by the construction of tr). In 
a computational environment, one could preset the 
indicated tolerances and check these constraints auto- 
matically in the manner indicated. In practice, it is 
convenient (particularly in the case of interactive 
computing) to simply continue the augmentation 
process until successive augmentations yield little or 
no discernible change in the solution. 

We note once more that the advantage of the 
algorithm lies in the fact that cN and + (which are 
considered to be fixed) are chosen as large as possible 
without inducing ill-conditioning. Improvement of 
constraint satisfaction is attained through the aug- 
mentation procedure, without significantly altering 
the conditioning of the matrix equations emanating 
from (3.15). Furthermore, if the solution in step 2 
of Table 2 is carried out in a Newton-Raphson 
scheme, utilizing a consistent linearization of the 
equations, the rate of convergence within step 2 will 
be asymptotically quadratic, as in the case of the 

Table 2. Primary nested augmented Lagrangian algorithm for frictional 
contact 

1. Initialization: 

set A$?) = (AN + +g) from last time step, 
Al?’ = 0, 
k =O. 

2. Solve (using a nonlinear solution strategy) for II?; ,: 

G(u~~,,Gu) + 
f 

[(A$)+ cNg(uikl,))Su. n+t&i,) .Gu,]dT =0 
r 

where fy(u$kl ,) is given by (3.18.1H3.20) using A1f) for A&. 

3. Check for constraint satisfaction: 

IF (g(u$ ,) d TOLl for all x E r AND 1111~~ +, - uTm 1) < TOL2 
for all x E r such that Ilt,II < p((.+g + A,)) THEN 
Converge. EXIT. 

ELSE 
AUGMENT (for all x E r): 
A$+‘)= (1&‘+6,g(l$;,)) 

k+k+l 
GOT0 2. 

ENDIF 
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penalty regularization. In fact, one further notes that 
if no augmentations were performed in any time step, 
the method reduces to the penalty regularization. 

Despite these advantages, we assert that solution of 
(3.19, due to return mapping (3.18.1)-(3.20), inherits 
a somewhat unsavory characteristic of the penalty 
regularization; namely, nonsymmetric tangent stiff- 
nesses are obtained in the consistent linearization of 
(3.15) in the case where part of r slips (see, e.g., [18]). 
This nonsymmetry arises from linearization of the 
return map, so one alternative might be to eliminate 
the return map in the solution of (3.15). This motiv- 
ates the consideration of an alternative scheme for 
augmented Lagrangian treatment of contact. 

The variation of the algorithm which we shall 
consider resembles, in some ways, algorithms dis- 
cussed in [ 131, and presented in more detail in [20] and 
[22]. In these treatments, a return mapping is not 
performed using the current normal tractions, thus 

eliminating the troublesome nonsymmetric nature of 
the return map emanating from the nonassociated 
flow rule discussed earlier. Instead of this return 
mapping, the Coulomb condition is enforced with 
respect to a previously-obtained estimate of the nor- 
mal tractions, which is held fixed in the solution 
phase. Based upon the solution to this problem, these 
algorithms compute new estimates of the normal 
tractions, which are then used as data in order to 
define the friction law for the next solution phase. 
The key idea of these algorithms is that strict enforce- 
ment of the friction law is not made in the solution 
phase alone; a second step is utilized to provide a 
correction which better enforces the Coulomb cri- 
terion. In effect, these algorithms render the same 
results as the algorithm discussed in the previous 
subsection, since they are based on a penalty regular- 
ization. They render symmetric equations, but at the 
cost of a two-step algorithm which is iterative. 

Table 3. Alternative (symmetrized) nested augmented Lagrangian 
algorithm for frictional contact 

Initialization: 

set A$) = (A, + cNg) from last time step, 
An$‘) = 0, 
r $/CCL = r, 
k=O 

Solve (using a nonlinear solution strategy) for undo,: 

G(u~‘~,,Gu)+ 
s 

[(l$)+a,g(11~~$,))6u~n+ t,(u$k~,)~Gu,]dT =0 
r 

Muiki I) = 
tr” + Al’,k) + c,Au!#) if x E r(k) stld 
A1’j) + t, otherwise 

3. Check for constraint satisfaction: 

IF (g(uLk$,) $ TOLI for all x E r AND llur” +, - urn 11 f TOL2 

for all x E r such that lltrll < p(tNg + A$$)) AND 
lltrll Q (1 + TOL3)p(t-,g + A&)) for all x E r) THEN 
Converge. EXIT. 

ELSE 
Augment and update rrtifk (for all x E r): 

A$’ ‘) = <A$’ + +g(ufi ,)) 

IF (IltTn +Al’,k’+trAu$))l </~l$+‘)) THEN 

AL(:+‘)=Mj-k)+~Au(yk’, 

x E r$al) 

ELSE 

x 4 r::i;,t’) 
ENDIF 
k+k+l 
GOT0 2. 

ENDIF 
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In the algorithm we now consider, we wish to 
exploit the idea that the presence of augmented 
Lagrangians mandates an iterative procedure 
already, without regard to satisfaction of the Cou- 
lomb criterion. Thus, we consider an algorithm which 
will cause the solution phase to involve only symmet- 
ric equations, by eliminating the return map 
altogether from this phase. We then use the augmen- 
tation phase not only to augment the multipliers, but 
to enforce the Coulomb criterion as well. We do this 
by defining rhk, a portion of r which is treated in the 
solution phase as being the part of the interface where 
perfect stick occurs, without regard to the current 
tangential and normal tractions. The remainder of r 
is treated as a slip region, and has fixed tangential 
tractions which satisfy the Coulomb condition 
defined by the current Lagrange multiplier IzN. In the 
first iteration in a given time step, rSticL is taken to be 
all of F (i.e., the entire interface is assumed to stick), 
and further amendments to rsticL are made in the 
augmentation phase, according to the current state of 
the multipliers. Thus, the Coulomb condition is only 
enforced in the augmentation phase, which causes the 
equations of the solution phase to be symmetric. The 
complete algorithm is given in Table 3. 

We reemphasize that the motivation for this 
alternative algorithm is to symmetrize the equations. 
It does not emanate from the penalty regularization 
as naturally as does the primary algorithm, but 
exploits the iterative nature of the augmented 
Lagrangian process in the manner in which it 
enforces the Coulomb friction conditions. More 

will be said about the performance of these two 
approaches in the next section. 

4. NUMERICAL EXAMPLES 

In this section we present some numerical examples 
intended to demonstrate the utility and performance 
of the proposed augmented Lagrangian treatment of 
frictional contact. In these simulations, the finite 
element code FEAP was utilized, which has most 
recently been described in [23]. The discretization and 
subsequent implementation of the contact conditions 
employed in these examples were performed within 
the framework discussed by [18], and is discussed in 
more detail in Appendices A and B. The important 
point to note is that the ideas discussed in the 
previous sections are directly applicable to problems 
involving finite-deformation response and contact of 
multiple deformable bodies, as is demonstrated 
through the following numerical examples and the 
Appendices. 

4.1. Sliding of an elastic block 

As a first demonstration of the performance of 
the techniques discussed in this paper we consider 
the problem of an elastic block sliding against a 
rough rigid foundation. This problem, which has 
been considered previously by [22] and [18] is rather 
simple and idealized, but serves to highlight the 
manner in which the proposed algorithms work in 
practice. 

pz = 60 

r 
Fig. 4. Undeformed and deformed geometries for the e&tic block problem. 
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Fig. 5. Computed contact tractions for the elastic block problem, for the standard regularization (no 
augmentations) and the primary augmented Lagrangian algorithm (four augmentations). 

In this problem, an elastic block is simultaneously 
pushed into the foundation and pulled along it, 
resulting in frictional sliding response at the inter- 
face. The finite element discretization and computed 
response are to be found in Fig. 4. The block, which 
has an elastic modulus of 1000 and Poisson’s ratio of 
0.3, has been discretized using 200 four-node linear 
isotropic elastic elements. A Coulomb friction law is 
presumed to hold between the block and foundation, 
with p = 0.5. As reported in [18] the solution to this 
problem may be obtained in only one load increment 
when using the standard penalization of the Coulomb 
friction law. To conform to the solution of these 
authors, no frictional stress is allowed to develop at 
the first and last nodes of the contact surface. 

In examining this problem the first calculation 
done was one in which the standard penalty method 

was used, with cN = lo* and cr= 104. These values 
exactly correspond to those used by (18) in their 
simulation. The computed contact tractions on the 
frictional interface are shown in Fig. 5, where the 
results of a calculation using these same penalty 
values but employing the (primary) augmented 
Lagrangian algorithm are also shown. It is to be 
noted that these tractions are not the nodal projec- 
tions of the element stresses, but are merely the nodal 
reactions normalized by the element lengths. This 
characterization of the contact tractions was per- 
formed to conform to the technique used by the 
above authors. 

It is to be noted that these results are in accord- 
ance with those reported by [22] and [18]. It is 
also apparent from Fig. 5 that the tractions remain 
essentially unchanged when the augmentations are 

40 - No augmentations.. . . & . . 
1 augmentation - -_D - - 

35 - 2 augmentations - - 0 - - 
3 augmentations - * - 

30 - 4 augmentations & 

2 
2 

25- 

4 20- 

-i 15 - 

10 - 

O- 
G3 

-5 I I I 

0 1 2 3 4 

x 
Fig. 6. Convergence of the tangential displacements on the frictional interface for the elastic block 

problem, using the primary augmented Lagrangian algorithm. 
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X 

Fig. 7. Convergence of the contact tractions for the elastic block problem, using the alternative augmented 
Lagrangian algorithm. 

performed, suggesting that the penalties used are 
adequately enforcing the constraints. Although for 
practical purposes this is certainly the case, it is 
instructive to also examine the convergence of the 
tangential displacements on the interface as the aug- 
mentations are performed. This information is 
reported in Fig. 6. 

As one can see from the figure, the augmen- 
tations actually produce a noticeable change in 
the tangential displacements. The curve correspond- 
ing to the penalty solution (no augmentations) 
is seen to include nonzero nodal displacements 
where stick is to occur, amounting to a slight 

violation of the tangential constraint. As can 
also be seen from the figure, however, only one 
augmentation is required to correct this situation, 
with subsequent augmentations producing no dis- 
cernible change in the displacements on the inter- 
face. Although this is a fairly minor point for 
this problem, this example shows that successive 
applications of the augmentation procedure do 
indeed improve satisfaction of the constraints. In 
the final converged solution, the stick and slip 
regions of the interface are easily discerned from 
Fig. 6, with the last five nodes slipping and the 
remainder sticking. 

45 I I I 

40 - No augmentations. . . . A . * 
1 augmentation - - D - - 

35 - 2 augmentations--Q - - 
3 augmentations - + - 

30 - 4 augmentations d 

2 
E 

25- 
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B ._ a 15 - 
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o-*--QdHdddd ..B.‘=’ 
E-3 -5 . I I I 
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X 

Fig. 8. Convergence of tangential displacements on the frictional interface for the elastic block problem, 
using the alternative augmented Lagrangian algorithm. 
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This example is also convenient for examination 
of the alternative augmented Lagrangian algorithm 
discussed in Sec. 3.3. Figures 7 and 8 show the 
convergence of the contact stresses and tangential 
displacements, respectively, as the result of augmen- 
tations performed according to the alternative algor- 
ithm (using the same penalties as above). Note that 
although the early solutions are clearly inadequate 
due to the initial assumption of stick on the entire 
interface, the algorithm converges quite rapidly and 
after four augmentations produces the correct result. 
The advantage of this algorithm in the current situ- 
ation is that due to the fact that the block is linear 
elastic and the contact area does not change from 
iteration to iteration, the elimination of the return 
map from the solution phase makes the problem 
entirely linear, requiring only one iteration for sol- 
ution for each augmentation. Solution of either the 
standard regularized system or the equations of the 
primary augmented Lagrangian algorithm, on the 
other hand, are nonlinear due to the return map- 
ping present in the frictional response. Thus, for 
problems of this type, the alternative algorithm has 
a strong appeal, and has the advantage that upon 
convergence, the contact constraints will be essen- 
tially exactly satisfied. 

4.2. Upsetting of a ring 

We next consider the problem of the upsetting of 
a ring. In doing so, we wish to further explore the 
ability of augmented Lagrangians to correct underpe- 
nalized solutions, as well as to explore the perform- 
ance of the method in a finite deformation context. 
The problem is displayed pictorially in Fig. 9. In this 
axisymmetric problem, a ring of inner radius 10, 
outer radius 20, and initial height 20 is compressed by 
a rigid plate to 80% of its initial height. Due to 
the symmetry of the problem, only one quarter of 

a) Undeformed mesh 

I I 
b) Frictionless solution 

I I 

c) Frictional solution, /.J = 0.4 

Fig. 9. Initial and deformed geometries for the ring up- 
setting problem, showing both frictionless and frictional 

solutions. 

the mesh shown in Fig. 9 is actually modelled. The 
ring is discretized using four-node finite strain elasto- 
plastic elements of the type discussed in [24], and 
has the following material properties: K = 166670, 
G = 76920, cry = 300, and H (linear hardening 
rate) = 700. 

As indicated in the figure, the problem has been 
run with both frictionless contact and Coulomb 
friction assumed between the sample and the rigid 
plate. It is seen that the response in the frictionless 

65 

60 
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ommal Case, penaJties=l.d7 i\ 

Penalties=l.dS, no augmentation - 0 - 

Penalties=l.d5, 1 augmentation/step - - Q - - 

Penalties=l.dS, 2 augmentations/step - - H - - 

20 ’ I I I I 
0 0.5 1.0 1.5 2.0 
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Fig. IO. Convergence of the load-displacement curve for the frictional ring upsetting problem, using the 
primary augmented Lagrangian algorithm. 
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-6 - Nominal Case, penaltiea=l.d7 _ 

Penalties=l.dB, no augmentation - -Et - 

-8 - Penalties=l.dCi, 1 augmentation/step - - 4 - - 

E3 Penalties=l.d5, 2 augmentations/step - -H - - 

-10 ’ I I I I 

9 12 15 18 21 

Fig. 11. Convergence of the tangential nodal reactions on the contact surface at the final state for the 
frictional ring upsetting problem, using the primary augmented Lagrangian algorithm. 

case is completely homogeneous; no barreling of the 
sample occurs and the net movement of the material 
comprising the ring is outward. In the case with 
friction, however, barreling of the sample is apparent, 
and material flows both outward and inward during 
the process. It is seen then that the introduction of 
friction in this problem has an important effect upon 
response, and thus proper enforcement of constraints 
on the interface is important for a correct solution. It 
is thus the frictional case (with p = 0.4) upon which 
we shall concentrate in assessing the augmented 
Lagrangian algorithm. 

The calculation shown in Fig. 9(c) was performed 
using L,., = or = lo’, using 40 equal increments in the 
prescribed motion of the rigid plate. This combi- 
nation leads to a proper enforcement of the contact 
and frictional constraints. With this information in 

hand, subsequent calculations were done in which the 
contact conditions were intentionally underpenalized 
(using cN = cr = lo’), followed by application of the 
augmentation procedure in order to improve the 
solution. Rather than checking the criteria in each 
step, as suggested in Table 2, these calculations were 
done by simply performing a fixed number of aug- 
mentations in each time step and then proceeding to 
the next step (as before, the loading was applied in 40 
equal increments). The results of these calculations 
(using the primary augmented Lagrangian algorithm) 
are given in Figs 10-12. In these figures, the conver- 
gence of the solution with respect to the number of 
augmentations per step is displayed through examin- 
ation of the load displacement curve for the entire 
process (Fig. 10) and the contact reactions on the 
interface at the final state (Figs II and 12). 

-6 - 

-9 - 

-12 - 
z 
.s 
B -15 - 

-18 - 

-21 - 

-24 - 

E3 

Nominal Case, penalties=l.d’l I 

Penalties=l.d5, no augmentation - u - 

Penalties=l.dB, 1 augmentation/step - - + - - 

Penalties=l.d5, 2 augmentations/step - -H - - 

-27 L I I I I 

9 12 15 18 21 

, 

Radial coordinate 

Fig. 12. Convergence of the normal nodal reactions on the contact surface at the final state for the 
frictional ring upsetting problem, using the primary augmented Lagrangian algorithm. 
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As one can see from the figures, the application of 
the augmentation procedure to an underpenalized 
system corrects a clearly inadequate solution using a 
modest number of augmentations. The benefit of the 
augmented Lagrangian scheme in a situation of this 
type is the added robustness it provides the standard 
penalty method; it enables a satisfactory solution to 
be obtained over a much larger range of penalty 
parameters than does the penalty method alone. 

4.3. Extrusion of an aluminum cylinder 

of 17.78 cm into a conical die with wall angle 5”. The 
mesh, as well as the deformed geometry at various 
stages of the simulation, is shown in Fig. 13. The 
discretization of the billet was performed using 80 
Cnode finite strain elastoplastic elements of the type 
mentioned previously, with the material properties 
of the billet being: K = 63.84 GPa, G = 26.12 GPa, 
er= 31 MPa and H (the linear hardening rate) = 
G/100. The coefficient of friction between the billet 
and the die walls was prescribed as 0.1. 

As a final example demonstrating the augmented 
Lagrangian technique for frictional problems, we 
consider the frictional extrusion of an aluminum 
cylinder into a rigid, conical die. This problem, also 
considered in [13], is one in which the augmentation 
technique actually enables easier solution of the 
equations than does the standard penalty method. 
In this axisymmetric problem, an aluminum billet 
of radius 5.08 cm and initial length 25.4 cm is 
pushed (using displacement control) a total distance 

The interesting feature of this problem is that due 
to the highly plastic response of the billet and the 
shearing near the die walls due to friction, the 
introduction of high penalties on the contact surface 
causes difficulties in the solution of the equations. On 
the other hand, the use of undersized penalties causes 
erroneous predictions of stick regions on the contact 
surface, where a properly penalized solution displays 
no such behavior. The meaning of this is that for 
the case of the standard penalty regularization, the 
problem is extremely sensitive to the choice of the 

b) Dir 5 cm 

a) Undeformed mesh 

c) Disl 

e) Dis acement = 

3 cm 

‘.8 cm 

Fig. 13. Undeformed and deformed geometries for the aluminum extrusion problem. 
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, CT = 107, 140 steps, no augmentation 

0 3 6 9 12 15 18 

Displacement (cm) 

Fig. 14. Load-displacement curves for the conical extrusion problem, using the standard regularization 
and the primary augmented Lagrangian algorithm. 

penalties. After much trial and error involving exper- 
imentation with these penalties, the optimum choice 
of the penalties seemed to be +.,V = 10” and cr = lo’, 
which yielded the solution shown in Fig. 13 in 140 
equal time steps. This choice of load increment 
appears to be near optimal as well; for this choice of 
penalties larger time steps failed to converge at some 
point in the calculation. 

In application of the augmented Lagrangian tech- 
nique (the primary algorithm) to this problem, we 
exploit the opportunity to lower the penalties, 
increase the time step, and correct the solution via 
the augmentation procedure. The results of doing this 
are displayed graphically in the plot of force vs 
displacement given in Fig. 14. In this figure, the 
response computed using the nominal penalties given 
above is compared with the response obtained using 
+.,= lo9 and cr= lo6 with the primary augmented 
Lagrangian algorithm. As can be seen, essentially the 
same solution is obtained using these softer penalties, 
with 4 augmentations per time step, in only one-fifth 
as many time steps. The advantage of the augmenta- 
tion in this problem is that it circumvents a difficulty 
in solving the equations that is unrelated to the 
mechanics of the problem but arises only due to the 
penalty regularization of the friction law. This 
example displays again the enhanced robustness 
afforded the penalty method by the method of 
augmented Lagrangians. 

5. SUMMARY AND CONCLUSIONS 

In this paper, we have presented a framework 
within which the application of the method of 
augmented Lagrangians to frictional contact prob- 
lems is a natural extension of the more classical 
case of frictionless contact. This has been done by 

considering the constraint in the tangential direction 
to be an equality constraint, between the total relative 
tangential velocity and the slip rate computed from 
the laws of evolution for the Coulomb friction 
law. Stated another way, we require that no elastic 
tangential displacement take place on the interface. 
We have also remarked on some alternative im- 
plementations of the method, involving both differ- 
ent enforcements of the Coulomb friction law (see 
Tables 2 and 3) and different augmentation pro- 
cedures (simultaneous vs nested). Altough the latter 
scheme is the one focused upon in this paper, simul- 
taneous iteration may also prove to be fruitful for 
some problems. 

Numerical examples have demonstrated that the 
method is applicable in both small and large defor- 
mations. They have shown that the method is useful 
in correcting underpenalized solutions, and that it 
can in some cases obtain solutions more efficiently 
than the penalty method. As a practical matter, it is 
also pointed out that the technique can be used 
during interactive solution of a contact problem to 
check whether a penalized solution is adequate; if it 
is, application of the augmented procedure will pro- 
duce very little change to the residual and subsequent 
solution vector, which is readily observed by the user. 
It is felt that the chief benefit of the augmented 
Lagrangian procedure for contact problems is the 
added robustness it provides the penalty method, 
while at the same time being a simple procedure 
which introduces no additional equations to the 
discrete system. 
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APPENDICES 

A. Closest point projection to a piecewise linear obstacie 

In the following we expand upon the details necessary to 
implement the definition of gap function discussed in Sec. 
2.2 in a finite element setting. In so doing, we limit ourselves 
to the two-dimensional case, while remarking that generaliz- 
ations to the 3-D case are similarly conceived. 

Suppose that aOg is defined by a series of line segments, 
as shown in Fig. A.!. We then wish, for any x in the 
spatial domain, to define the gap function g(x) in a manner 
consistent with Sec. 2.2. With the usual case of interest in 
mind, we concentrate on the case where x is inadmissible. 
We further note that in practice the admissible region need 
not, and in general will not, be convex. 

As suggested by the figure, we can characterize 806 as 
being defined by N + 1 nodal points yk, and we may define 
the outward normal to a segment between yk and yb + , as v, . 
As also suggested by the figure, if x is in a position such as 
the one shown, the expression for g(x) is easy to find and 
is given by 

g(x) = -%. (x - Yk). (A.1) 

Fig. A.!. Closest point projection to a piecewise linear obstacle. 



The trouble in practice, of course, is that we do not know 
beforehand which k is the appropriate one to use, and we 
recognize immediately that there are some points x for 
which the choice of 1, the closest point projection of x on 
a K, is nonunique. In FEAP, we address these issues by first 

Augmented Lagrangian treatment of frictional contact 115 

the ‘master’ body (2). We generalize eqn (3.6) to two bodies, 
thereby obtaining 

G(‘)(p(‘) , &,W) + ,-32)(u’2’ ad2)) 

tinding the nodal point yt closest to x, which we shah denote 
bv vr . This is done most reliably by a sort through ah nodes 
yt , but since this is also the most expensive technique to use, 
we only perform this type of search once, at the beginning 
of the problem, for all material points of interest. Sub- 
sequent searches for yr for a material point currently at x 
are performed using a method of steepest descent, where the 
search starts at the yr from the last iteration (see [251 for a 
thorough discussion). 

Having found the closest nodal point yr to x, we search 
the local part of dK (corresponding to the two segments 
adjacent to ys) to find 1. This local part of aK may be 
convex or concave with respect to x (see Fig. A.2). 

In case (a) of the figure, definition of g is completely 
unique. If x lies in region A or B, g is given by the usual form 
of the gap function suggested in (A.l). If it lies in region C, 
8 = ys, and g = IIx - yr 11. Case (b) provides a potential 
uniqueness problem. In this case, g, and gr (given by the 
normal projections onto the two segments) are computed, 
and f is determined by the one that is least. If g, = gr, then 
yr is (somewhat arbitrarily) chosen as x2. This is to preclude 
any bias for one segment over the other in the subsequent 
solution. 

We see that in the case of a piecewise linear obstacle, the 
closest point projection problem is quite easily handled, by 
consideration of a local portion of aK adjacent to x. We 
further assert that this procedure is essentially equivalent to 
the so-called ‘master-slave’ characterization of sliding sur- 
faces discussed. for examnle. in 1251 and in [181. In this 
interpretation, x can be thought of as the current position 
of a slave no&, and d K is the master surface. This approach 
is readily extended to multiple deformable bodies by consid- 
ering the facets comprising aK to be the (linear) element 
edges of the ‘master body’ in the current configuration. 
Thus, the masterslave idea may really be interpreted as a 
particularization of the concept of closest point projection 
to the special case where the bodies are discretized by 
bilinear (four-node) elements. 

B. Implementation details of augmented Lugrangians 

We now consider briefly the manner in which the aug- 
mented Lagrangian method has been incorporated into 
FEAP, producing the numerical examples given in Sec. 4. 
This implementation is within the framework described 
in [18], which treats the case of penalized contact with 
friction. 

In order to motivate the treatment, we begin by consider- 
ation of the small deformation frictional contact of two 
contacting bodies, one of which we shall consider to be the 
‘slave’ body (1) and the other of which will be denoted as 

a) C0nve.x b) Concave 

Fig. A.2. Prospective local geometries for closest point determination. 

+C 
J ra) 

[- t$l#‘. &,O) _ @I. a@] &- , (B.1) 

where (.)(I) and (.)c2) denote previously described quantities 
defined-over bodies (1) and (2). respectively. Noting that the 
intearands on the tit&t-hand side of (B.l) are zero in the 
m&s where no c&tact occurs, and that where contact 
does occur the tractions on each body must be equal and 
opposite, we may write 

G”‘(,,‘l’ &,(I’) + G’2’(u’” &,O’) 

= c 
Jr, 

[--f~lBW. &p’_ “(2)) 

- +’ ‘6 (us’ - t$’ )] dF, (B.2) 

where Fc is the portion of F(l) and Ft2) where contact 
occurs. 

In the usual master-slave implementation (including [181) 
the right-hand side integral is replaced by a summation over 
all slave nodes (at current positions x,) which takes the 
following form 

I [_ tpll(‘) . 6(&l _ “(2)) - #I 

r< 

. d(uc’ - I#‘)] dT * t [-t&, - tT,6gT,], (B.3) 

where 
,-I 

n, = the number of slave nodes, 

g,,, = the normal gap function (denoted as g in 
Appendix A) for slave node s, 

g, = the tangential gap function, a new quantity. 

We note that the transition suggested in (B.3). while 
presented in a small-deformation context, results in an 
expression [the right-hand side of (B.3)] which is suitable for 
large deformation problems, provided the involved forces 
and gaps are defined appropriately. Also, we remark that 
tT. is now a scalar, and 6g, represents the variation of 
B’;,, which we consider to -& a- tangential gap function. 
As defined in 1181. a1 has the intermetation of being the 
distance between the-current projection of the material point 
at x, on the master surface and the projection of the same 
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material point on the master surface at the end of the last 
time step, with this distance between the two projections 
being evaluated in the converged geometry of the last time 
step. Put more simply, g, is a measure of the relariue 
tangential motion between x, and the master surface which 
occurs during the time step, just as (B.2) suggests it 
should be. 

In this framework, implementation of penalty and aug- 
mented Lagrangian techniques is very simple, since the 
constitutive relations governing the interface become scalar 
equations. The normal response is handled exactly as dis- 
cussed previously, while the tangential (frictional) response 
is treated analogously to the previous presentations where 
r, was the quantity of interest. Here, or, plays the role of tT, 

and g, plays the role of ttr, +, - urn. Thus, Tables 2 and 3 
still contain the relevant aspects of the implementation of 
augmented Lagrangians in this setting. All constitutive 
equations for the friction law are merely replaced by their 
scalar counterparts, and these equations are assumed to 
hold for quantities de6ned at the slave nodes. 

Finally, we remark that the matrix equations emanating 
from the last expression in (B.3) are obtained by taking 
the indicated variations. Since the gap functions depend 
on the local geometries of both bodies, this operation 
generates the contact forces for both slave and master 
bodies. The calculations needed to do this and the sub- 
sequent linearixations, although lengthy, are standard and 
are given in detail in [18]. 


