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CALCULATION OF IMPACT-CONTACT PROBLEMS OF 
THIN ELASTIC SHELLS TAKING INTO ACCOUNT 

GEOMETRICAL NONLINEARITIES WITHIN THE CONTACT REGION 
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Lehrgebiet fiir Baumechanik, Universitiit Hannover, Fed. Rep. Germany 

During impact of elastic bodies, contact stresses are transmitted in time-depending contact surfaces. 
In many impact contact problems, large displacements and rotations appear only in the contact surface 
and in a certain neighbourhood. Therefore, it is efficient to consider geometrical nonlinearities only in 
this region, and to describe the remainder of the body within the geometrical linear theory. This leads 

to substructure techniques where only properties of the nonlinear elements need be modified during 

the impact contact process. 
The principle of virtual work for nonlinear thin shells is expressed using the total Lagrangian 

formulation, and the geometrical nonlinearity of thin shells is described in the frame of moderate 

rotation theory. 
The contact conditions lead to inequalities for the normal stresses and displacements in the contact 

interfaces. Therefore, the numerical algorithm involves two superposed iterations: for the computation 
of contact forces and contact areas and for the geometrical nonlinearity. The iteration procedure has to 
be carried out in each time step. 

The spatial discretization using finite element techniques leads to a system of ordinary differential 
equations which is integrated over the time using the Newmark algorithm. 

Numerical results were obtained for the impact contact problem of spherical shells. For these 
examples, the impact forces and the contact pressure distribution are presented for several parameter 
combinations. Results are controlled by conservation laws in integral form, and compared with results 
from geometrical linear theory. 

1. Introduction 

The treatment of impact problems is of growing interest in modern technology. To 
guarantee the safety of structures-e.g. containments in reactor engineering-against striking 
objects, one needs large scale experiments. Frbm such measurements, assumptions for the 
impact forces over the time are deduced. In view of high costs for experiments, questionable 
extrapolations for the impact forces of different systems are sometimes introduced for the 
response analysis. Therefore, numeiical algorithms are necessary which allow to calculate all 
time dependent quantities during the impact-contact process. Because of changing contact 
surfaces during impact and complicated structures, FE-discretizations are advantageous. 
During the impact process there exist time-dependent contact regions within which the contact 
stresses are transmitted. The contact surfaces are a priori unknown. The contact conditions are 
given in the form of inequalities for displacements and contact stresses. This leads to an 
iterative algorithm for the determination of contact regions and stresses in each time step, so 
that nonlinear algebraic systems arise even in the case of a geometrically linear description of 
the systems in the frame of continuum mechanics. Such linear impact-contact problems of 
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Fig. 1. Geometrically nonlinear description of contact surface and a sufficient neighbourhood. 

elastic bodies were treated by Wriggers El]. Especially two spherical shells impacting a rigid 
wall, i.e., the case of two disconnected contact regions was investigated using FE-displacement 
models, introducing the contact conditions directly. A substructure technique was used so that 
contact algorithms only concerned the contact domains whereas the remaining domains could 
be pre-eliminated in advance. 

Hughes, Taylor et al. [Z, 31 treated impact-contact processes of axisymmetric elastic bodies 
within a geometrically nonlinear theory. Here, contact conditions for the contact stresses are 
introduced via Lagrangian multipliers in the variational functional, and special contact 
elements are developed. 

In this paper impact-contact problems of thin elastic shells are investigated within a 
geometrically nonlinear bending theory, or more exactly, within a moderate rotation theory. 
Compared with the magnitude of the bodies concerned, the contact surfaces are small in many 
cases. Often large displacements and rotations arise only within and near the contact regions. 
This is, for example, valid for impact-contact problems of thin spherical shells. Therefore, it is 
efficient to consider geometrical nonlinearities only in contact regions. The remainder of the 
body can be described within a geometrically linear theory, see Fig. 1. A considerable 
reduction of computational effort can be achieved by taking advantage of the nonlinear 
localization, using a modified substructure technique. Clough and Wilson [4] and Noor [S] 
discussed substructure concepts applied to dynamic response analysis of structures with local 
nonlinearities. The substructure technique will be used in this paper within the direct dynamic 
analysis of subsequent contact configurations. The direct analysis involves the step-by-step 
integration of the equations of motion. In this case a substructure technique analogous to 
static condensation can be used. Nonlinear properties of the elements only arise within and 
near the contact domains whereas the linear remainders can be pre-eliminated in the same 
way as in the overall geometrically linear theory for shells. 

2. The contact problem 

The step-by-step integration of the equations of motion for the discretized system in the 
impact-contact process implies the solution of a contact problem at each time step. In the 
contact regions, certain inequalities for displacements and stresses must be fulfilled. In this 
paper, friction is excluded. This problem is treated by Stein and Wriggers in [6]. 

2.1. Contact conditions 

The following inequalities must be satisfied during the impact process, see Fig. 2. 
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tN=t.n S 0 on as, #C 

Fig. 2. Contact conditions. (a) Condition for normal stresses; (b) Kinematical condition. 

(i) Adhesion and friction are not permitted; therefore, only compression stresses are 
transmitted, 

t,=t*nlO ondI3,. 

(ii) Penetrations of material points 

u,-AX,50 onaB, 

with 

u,=u*n 

and 

AX,=(+-X)-n. 

2.2. Contact algorithm 

(2.1) 

are not permitted, 

(2.2) 

(2.3a) 

(2.3b) 

The direct implementation of the above contact conditions into the FE-algorithm leads to 
the following iteration scheme at a time step. Substructure technique is treated in Section 5. 

(1) Assume contact surface JB,. 
(2) Solve the associated boundary value problem by FEM. 
(3) Calculate normal stresses tN on aB,. 
(4) Check condition (2.1) (no adhesion!) 

if violated: release points where tN > 0: go to (2) 
if satisfied: go to (5). + 

(5) Check condition (2.2) (no penetration!) 
if violated: increase dB,: go to (2) 
if satisfied: iteration finished. 
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3. Geometrically nonlinear theory of thin shells 

Nonlinear shell theories were developed first for stability analysis, [7. 81. In this theory the 
only nonlinear terms in the membrane strains yea are w,, - w,~ whereas the changes of 
curvatures K,~ remain linear. It is difficult to derive nonlinear shell theories of consistent 

accuracy for different orders of error magnitudes with respect to characteristic measures of the 
shell. 

In this paper we assume thin shells, linear and isotropic elastic material, and small strains, 
so that the specific elastic potential energy is given by a quadratic functional of the strains. 
Based on works of Koiter [9] and John [lo], Pietraszkiewicz [ 1 I. 121 gave four stages of 
consistent nonlinear theories where the rotations in the frame of Kirchhoff-Love hypothesis 
are used as a measure for classification. 

3.1. Moderate rotation shell theory 

The shell strain energy function (3.1) for isotropic elastic material with the above assump- 
tion was given by Koiter [9] for a consistent linear first-approximation theory (small strains) 

(3.1) 

with the components of elasticity tensor 

@b _ H - 
E 

2(1+ V) 
a”Aa”@ (3.2) 

The same form of the strain energy was derived by Pietrasciewicz [IO] using error estimates of 
the stresses and their derivatives which were introduced by John [9]. Using the strain energy 
function (3.1), the constitutive equations for the stress results are obtained 

(3.3) 

and the stress couples 

(3.4) 

In the above relations the assumption of small strains was used everywhere in the shell, but 
no restrictions for the magnitude of rotations of material elements were made. In many 
engineering problems of thin shells, rotations of the middle surface can be of considerable 
magnitude. Therefore, it is reasonable to use shell equations resulting from consistently 
restricted rotations of different order of magnitude. Pietraszkiewicz [l I] give a classification of 
approximated shell equations in terms of the finite rotation vector a, which is defined by the 
angle of rotation CO with respect to the axis of rotation described by a unit vector e, 

fl = sin we. (3.5) 
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Let the small parameter 8 have the form [lo] 

865 

(3.6) 

where 

6J 

h is shell thickness, 
L the smallest wave length of deformation pattern, 
d the distance of the considered point from the lateral boundary, 
7 the maximum eigenvalue of the Green strain tensor of the shell and 
R the characteristic radius. 
The magnitude of the rotation angle in terms of 6 can be classified as 

(i) 0 IO(6*) small rotations, 
(if) w = O(6) moderate rotations, 

‘(!iii w 7 CB{x8) large rotations, 
(3.7) 

1v 0’ finite rotations. 

In this paper a moderate rotations theory is used. Expanding (3.5) into Taylor series at 
= 0 one obtains in the case of moderate rotations, 

sin 0 = w + O(a3), cosw = 1+0(7Y2). (3.8) 

With the further assumption that the rotation around the normal vector is small, while the 
rotations around tangents to the middle surface are moderate, one gets the nonlinear surface 
strain tensor 

in the frame of moderate rotation theory [ll]. Here, 

(3.9) 

(3.10) 

is the linear strain tensor with the surface curvature tensor bup, and the displacement gradients 
of the middle surface ~~1~. (P_ are the linearized rotations of the normal to the surface 

(~a = w,, + b^,u, . (3.11) 

Within the moderate rotation theory, the curvature strain tensor of the middle surface 

K4 = -3% + (PPIa) (3.12) 

remains linear. 
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3.2. Incremental principle of virtual work for the shell in elasto-kinetics 

In the following, an incremental principle of virtual work is derived in a ‘total Lagrangian 
representation (T.L)’ which has been discussed by Bathe, Ramm and Wilson [13], Larsen and 
Popov [14], Klee, Paulun and Stein [15] and others. Here, the total Lagrangian formulation 
will be used in the frame of moderate rotation theory for shells. 

From Fig. 3 one gets the relations 

‘x=“x+‘u. 

‘x=‘x+Au, 

2u=1u+Au. 

The principle of virtual work for the neighbouring configuration can be written as 

With the 

I ('N"" 26y,B + ‘Ma’ 26~,p) da = 
44 I Y 

‘f - S2u da + ~ ph 2ii - S2u da. 
I 

definition of increments 

AN”fl := 2Na6 _ IN”“, AM”” .= 1 M”fi _ ‘M”” , 

AY,, := ‘yelp - ‘yup, AK,~ := ‘K,~ ~ ‘K,~, 

we obtain from (3.14) 

I [(‘N”O + AN”@)*6y,, + (‘Map + AM”‘)‘~K,,] da 
Y 

lnitlal current conflguration 

space fixed 

carteslan 

Fig. 3. Configurations of a deformable solid, e.g. a shell. 

(3.13a) 

(3.13b) 

(3.13c) 

(3.14) 

(3.15) 

(3.16) 
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According to moderate rotation theory, one gets the strains of the middle surface for the 
neighbouring configuration as 

2yap = 2emp + ycp, 2q+ = ‘&a + A&, + 8’~ + Adhi + &p) (3.17) 

and the increments 

AyaP = A&, + i(Aqct ‘40~ + ‘(P~AGQ + AcpmA4op). (3.18) 

The variation of these quantities yields 

6A~,p = ~AK,~ 

and 

‘SY,, = SAY,, . 

SAymP can be splitted into the following linear and nonlinear terms 

Then the work principle can be written as 

f 
[(IN”’ + AN@)(SAy$ + SAY!:) + (‘M@ + AM@)~AK,~] da 

.M 

= I ‘f*SAuda+ ph’ii-6Auda 
“& I _l4 

or in the alternate form 

f 
(AN”‘GA yap + AM”‘SAtcmp) da + ‘N”@&j y$- da 

“44 J “4x 

(3.19) 

(3.20a) 

(3.20b) 

(3.21) 

(3.22a) 

(3.22b) 

(3.23) 

= ‘f * 6Au da + 
5 

ph’ii * 6Au da - 
“44 5 

(‘NapSAy& + ‘M”fiaA~,~) da. (3.24) 
“44 
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Introducing the constitutive relations (3.3) and (3.4) 

AN@ = hH”P”SAy,, , (3.2Sa) 

AM”@ = h3HffflAsAK 
12 h 3 s (3.2%) 

leads to the material dependent work principle, i.e., the first variation of the kinetic potential 

Following Bathe, Ramm and Wilson 1131, the first term on the left-hand side is linearized as 

I hH”PAs(Ay$SAyk6+ . ..)da -t .a. = .. -. 
# 

(3.27) 

In the linear case, we have to put A&, here instead of Ayf;p_ The linearization necessitates a 
post-iteration process in order to fulfil the equitibrium conditions. 

3.3. Formulation for axisymmetric spherical shells 

In the axisymmetric case, we have the conditions u z = 0, (- 1 +).z = 0 which simplify the 
formalism. Then the metric coefficients of a spherical shell are (see [l], e.g., and Fig. 4) 

a II - - I 7 a” = p sirt2 sjr 7 
a I’ = .*I = I) (3.28) 

Fig. 4. Geometry and base vectors of a spherical shell. 
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and the curvature coefficients are 

b; = b;= -I 
1.’ 

b: = b; = 0 . 

The linearized components of the strain tensors (3.10) are 

869 

(3.29) 

811 = u1,1+; 7 (3.30a) 

O,,=ru,sin~cos~+rsin*~w (3.30b) 

and 

2 w 
~,II-;&,I-~ 

> 
, 

~~~~ - rsinFcos$w,I -2sin~cos~u,-sin*fw 
> 

(3.31a) 

(3.31b) 

The components of the linearized rotations (3.11) are 

‘p1= w.+ (p2=0. (3.32) 

Then, the components of the nonlinear strain-tensor within the moderate rotation theory are 

Yll = 811 +t(P1’P1, (3.33a) 

Y22 = 022 * (3.33b) 

For the linear and nonlinear terms of the variated strain increments, (3.22) we get 

SAY?~ = SAe,, + 1q4q~, (3.34a) 

tidy:2 = SAtL (3.34b) 

and 

SAY T‘i” = A~WP,, (3.35a) 

NL _ 6Ay,, -0. (3.35b) 

The relevant components of the elasticity tensor of the isotropic shell are in the axisymmetric 
case 
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H 1111 E 
=-yz, H 

1122 VE 1 
= I r2 sin' s/r ’ 

H 2222 E 1 
= 1- r4 sin s/r ’ 

(3.36) 

4. Finite-element formulation of the axisymmetric problem 

The discretization is realized by cubic polynomials for the displacements. 

4.1. Element model 

Between the normed coordinates 4, Fig. 5, and the arc length, we have the relation 

S = J??Ok + Si = Z?Ok + ASjti = R(O, + 48ilJi) . (4.1) 

The displacements are discretized by means of Hermitian interpolation polynomials 

HI= 1-3[2+2[3, Hz= 5-2.95’. 

H,= 3t2 - 25’ , H4= -5’ + 5’ . 

For the element i we get the displacement model 

IH3iAsiH4I 0 I 0 
I 

(i) 
-__+____+-___-___~__--:-_--------r--___~_______ 

I HI I ASiHz I 0 I 0 1 H3 I ASiH4 

or 

- (1) 
hk) 
U.s(k) 

w(k) 

W.*(k) 
&k-l) 

U,s(k+l) 

w(k+ I) 

_ W.s(k + I)_ 

(4.2) 

Fig. 5. Axisymmetric spherical shell element. 
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Then the discretized strains follow by differentiation according to the geometric relations. For 
linear strain measures, the matrix representation for an element i is 

For the nonlinear strain measures we get with (3.32) and (4.2) 

or (pl = 4p:d(‘), for the terms (3.33a), (3.34a) and (3.35a) 

lyll = [hi + $(4p; l$)4p;](i) 1$(i), 

SAy:l = [h: + (~0: %),:](“Ai?“‘, 

SAY 7: = [(q~;A6)qp:](‘)A6(‘) . 

Thus we have got the following matrices for the variation of linear strain increments 

aAeL(i)= [ii!] = ~“~‘~‘*lliydll_V4i1Y/11 
with (d ‘$pb: fjL@) = H(i) + ! 1 

(8 
0’ = H(i) + HL(‘) 

, 
0’ 
0’ 

and for the variation of nonlinear strain increments 

(4.3) 

(4.5a) 

(4.5b) 

(4.5c) 

(4.7) 

(4.8) 

The strains (membrane strains and changes of curvature) in the current configuration (index 1) 
are 

lYl1 
I NL(i) 
e = 

[ 1 lY22 

‘KII 
= lHNL(‘) 1$(i) = (H + _!!L)(i) Id(i) . 

(4.9) 

‘K22 
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The constitutive relations (3.3) and (3.4) for an element i can be written in matrix notation 

with the submatrix 

L;=h[/]. 

The principle of virtual work (3.27) can now be written for an element i in the form 

I ,,~’ (GAeL)‘CAeL da + (SAeNL)‘C ‘eNL da 

= I ~, GAv'f29 da + I 6Au’fl’& da - (SAeL)‘C ‘eNL da 
“M’ 

With the previously introduced strains we get 

I ~uL GA6’(HL)‘C~LA6 da + 
I 

SA6’(HNL)‘C, ‘HNL ‘6 da 
.a’ 

= I 6Ai3'~tt da + I c3A;Wf2~ da - 
.M’ 441 I 

GAti’(HL)‘C’HNL- ‘6 da. 
,641 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

In the following we give a more detailed form of the terms in (4.13). 
(i) Calculation of the term 

6W, = I i$AG’(fiL)‘CfiLA6 da 
.M’ 

with HL = (H + H”) gives 

6W, = I sAG’{H’CH + (HL)‘CH + H’CHL + (HL)‘CHL}AG da. (4.14) 
.ul 

Here, the first term contains the linear stiffness matrix. The following terms are caused by the 
linearized nonlinear strain components. As HL is a sparsed (4 x 8)-matrix, we can simplify the 
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first term in (4.14): 

(4.15) 

I h’h21 I H""h,(q; ‘6)qp: 
+ ZPZ2h@, ‘iT)& I 

In an analogous way, the terms (HL)‘CH and (HL),CHL are treated. So we finally get for FW,, 

= I mu’ GAV^{H’CH + H”“qc: ‘d[(h, + (qp: ‘i?)&o; + qlh; 

= (aAGt)(i)(K + lKL)(i)AG(i) . (4.16) 

In the last line of (4.16), the condensation into the linear stiffness matrix and a linearized 
geometrical matrix is introduced. 

(ii) Calculation of the term 

SW,= I ,441 
SA6'(HNL)'C, ‘,yL ‘6 da 

SW,= I mu’ N” SA y?t da = 
I 

N”(qp:Alj)t(~:iTAG da 
JX’ 

with 

N” = ,-, ‘,y ‘5 = ff”” (h: + ;(q’j ‘6)&) ‘6 + H’122(h; ‘6). 

(4.17) 

(4.18) 

We finally get 
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SW,= 
I 

GAv’(HNL)‘C, ‘HP;‘= ‘6 da 
“lt’ 

= I GAiY{H”“[h: + $(qP ‘6)qi]‘G + H”“hi ‘i?}q’q~O:Ai? da 
“til 

= (&jit)(‘) l$p-(‘)A$(i) . 

The last line in (4.19) shows the condensation into a non-linear matrix ‘KNL. 
(iii) Calculation of the third term on the right-hand side gives 

SW,= 
I 

SA6’(HL)‘C ‘HNL ‘6 da 
AC’ 

= I liAiY{H’CH + (HL)tcH + ;H’cHL+ $(HL)‘cHL}‘G da. 
A’ 

Again, the first term contains the linear stiffness matrix. 

I GAZ’(l%L)‘C ‘HNL ‘6 da 
A’ 

= I 6AiY{H’CH + H”“4p 
.M! 

(4.19) 

(4.20) 

+ H”22q” ‘iT[q,hS + $hzqO:]}‘i? da 

= aA$‘(i)(K ‘6 + ‘k)(i) . (4.21) 

The interelement geometrical continuity conditions and the geometrical boundary con- 

ditions are realized by Boolean matrices B (I) So we arrive from element oriented nodal . 
displacement vectors tici’ at the global reduced nodal displacement vector v 

;(I) = BWv (4.22) 

The principle of virtual work leads to the assembled linear stiffness matrix 

K = 5 B(i)‘@)@‘) , 

i=l 

the linearized geometrical stiffness matrix 

(4.23) 

1~ = 5 @i)‘(l& + lKNL)(i)B(i) , 

,=I 

(4.24) 
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the mass matrix 

and the right-hand side vectors 

(4.26) 

From d’Alembert’s principle we get the kinetic equihbrium conditions 

ilr12~_tfK+1K)A~=2f-fk-Ki~~ (4.27) 

In the linear case ‘K and ‘k disappear. 
The step-by-step solution over the time with a numerical integration method-here the 

Newmark-method [I@---leads, in the linear case, to the linear matrix equations 

(4.28a) 

with 

‘ii= u&if+K (4.28b) 

and 

“f = “f - K lo t Mfal 'ti t a2 $7) . (4.28~) 

Applying substructure technique, the out-of-contact-surfaces can be pre-eliminated during the 
whole contact process so that the computation effort is decisively reduced [4]. 

The numerical effort for nonlinear kinetic problems is considerable because of no&near 
systems of equations in each time step. One can reduce the nonlinear systems if nonlinearities 
are of more local character, as in the case of the changing contact area and its neighbourhood 
in our impact problem. Clough and Wilson [4] discussed different substructure techniques for 
nonlinear subdomains. In this paper a special version is given for step-by-step integration, 

The linear system of equations (4.28a) re_sulting from the Newmark-meth~ can be conden- 
sed like in the static case. ~ubst~~tu~ng K yietds 
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2x::l= [jtl (3.1) 
where nonlinear terms should only be contained in substructure h. This static condensation can 

also be applied in the present dynamic calculation with the Newmark-method. From the first 
equation of (5.1) we get 

Au, = i,;(ja - &AvJ (5.‘) 

and from the second, i.e., 

&aAv, + &Avb = fh 

with (5.2) we obtain 

K*Avh = f: , 

with the definitions 

(5.3) 

and 

(5.3a) 

fh* = fb - k&&,K,~fa (5.4b) 

The nonlinear stiffness properties only have influence on K”, so we can sum up on the left- 

and right-hand sides, and we get the system 

‘kAvb = j, (5.h) 

with 

‘~=K*+~K; j,,=f;-‘kb. (5.5b) 

This system is much smaller than the whole system in the following examples of impacting 
bodies. One has to realize that nonlinearities are considered only in a linearized form. so that 
a post-iteration-as proposed by Bathe, Ramm and Wilson [13]-may be necessary. 

The equilibrium equation which has to be used in the ‘total Lagrangian’ formulation is 

Mi;“’ + (K + ‘K) dv (r) = ‘f _ k(‘-l) _ k#” (5.6) 

where 

i;“’ = aO(dv(‘) + Au”-“) _ a, ‘2; _ a2 ‘jj, (5.7a) 

Au”’ = &,(‘-I)+ &,“‘. (5.7b) 
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v(r-l) = $, + A&l) (5.7c) 

where du”’ denotes the postiteration increment. With (4.28) and (5.7) a system of linear 
equations for dv”’ can be obtained: 

(1K + g) &,“’ = “f- &+‘-1) _ (K”-” _ *K) . (5.8) 

Applying the substructure technique one gets with (5.4) 

k &,6” = f; _ Knave-“- &f-l) _ ‘k) . (5 *9) 

5.2. Calculation of the nodal contact forces 

The iterative algorithm for the determination of contact stresses has been discussed in 
Section 2. Now the related matrix formulation can be given in the frame of substructure 
technique. 

Assuming that c nodes are in contact at a given time, the inequality (2.2) has the form 

2vnc = AX,, , (5.10) 

where n denotes the normal direction to the surface, and AX,, is a column matrix containing 
the differences, between coordinates of the surface and the shell in the initial configuration. In 
the numerical algorithm, the contact surface which has been calculated the time step before, is 
used as initial contact surface for the next time step. With (3.13b) we get 

Av,, = AX,, - &. (5.11) 

Substructuring (5.5) and adding the unknown vector of the nodal contact forces 2f,C yields 

(5.12) 

Inserting (5.11) into (5.12) leads to an equation for the contact-force vector 

where fi = (@‘. The contact force vector ‘fnc can also be obtained by solving (5.12) with a 
modified Gauss elimination method after introducing (5.11) into (5.12). The nodal contact 
forces must now fulfil inequality (2.1). If this condition is violated for one or more nodal points 
of the assumed contact surface, the contact is released at these points. After this newly defined 
contact area, the nodal contact force can be calculated. This iteration has to be carried out 
until (2.1) is fulfilled for all nodal points being in contact. 

Next, the no-penetration-condition (2.2) has to be checked for nodal points outside of the 
contact area. For this aim, Avbmc must be calculated from (5.12). Then condition (2.2) has to be 
checked for nodal points near the previously calculated contact area. If condition (2.2) is 



878 E. Stein, P. Wriggers, Calculation of impact-contact problems of thin elastic shells 

violated, the points which try to penetrate the surface are assumed to be points of the contact 
area. Then a new iteration for the determination of the associated nodal contact forces has to 
be carried out. If condition (2.2) is fulfilled, the contact iteration in the considered time step 
has converged. 

6. Examples 

The developed algorithm for contact-impact problems is applied to a spherical shell 
impacting a rigid plane with a velocity ti,. 

The shell and the system parameters are shown in Fig. 6a. The shell is described by 40 finite 
elements. Near the contact surface, the number of elements is increased, so that a sufficient 
number of contact nodes is available. 

A parameter study in which the angle p is varied shows that in the cases considered here, a 
minimum angle /3 = 35” should be used. For larger angles of p, the results do not differ from 
the solution obtained with p = 35” (see Fig. 6b). 

In Fig. 7, the total impact force is displayed versus time for the linear and nonlinear cases. 
The maximum total impact force decreases in the nonlinear solution, while the time of 

impact increases. This fact, resulting from the softening behaviour of the shell, is in cor- 
respondence with the conservation law of linear momentum for the whole elastic shell. 

system parameters: 

r = 2. . 100 kN/m' 

P : 10.0.10~kg:m 

v = 0.3 

IS = .lm 

Discretlzatlon with 

LO ring elements, 

160 DOFs. 

n linear theory 

II near theory 

actual’contact surface 

Computing time 

Fig. 6. Spherical shell impacting a rigid plane (a) before impact; (b) during impact. 
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In Fig. 8, the maximum total impact forces which have been calculated within linear and 
nonlinear theory are compared, depending on the ratio R/h. In this parameter study, the total 
mass of the shell was kept constant. 

The differences between linear and nonlinear solutions increase with the ratio R/h. This 
result shows the growing influence of the nonlinear membrane strains and stresses in 
comparison with the bending stresses, which remain linear in the moderate rotation shell 
theory. Therefore, the nonlinearly and linearly computed total impact forces for a ratio 
R/h = 10 are equal. The contact pressures are shown in Fig. 9 at different times for a shelf with 
h = 0.001. The peak of the contact pressures appears at the boundary of the contact 
surfaces-a shell-like phenomenon-which is in contrast to the contact pressure. distribution of 
solid elastic bodies. This was also shown by Updike and Kalnins [17] for the case of static 
contact of a spherical shell with a rigid plate. In this paper, the influence of transverse shear 
deformations was studied numerically. 
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