
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, VOL. 31, 547-572 (1991) 

CONTACT-IMPACT BY THE PINBALL ALGORITHM WITH 
PENALTY AND LAGRANGIAN METHODS 
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Department of Civil Engineering, The Robert R.  McCormick School of Engineering and Applied Science, The Technological 
Institute, Northwestern University, Evanston, Illinois 60208-3109, U.S.A. 

SUMMARY 

Contact-impact algorithms, which are sometimes called slideline algorithms, are a computationally time- 
consuming part of many explicit simulations of non-linear problems because they involve many branches, so 
they are not amenable to vectorization, which is essential for speed on supercomputers. The pinball 
algorithm is a simplified slideline algorithm which is readily vectorized. Its major idea is to embed pinballs in 
surface elements and to enforce the impenetrability condition only to pinballs. It can be implemented in 
either a Lagrange multiplier or penalty method. It is shown that, in any Lagrange multiplier method, no 
iterations are needed to define the contact surface. Examples of solutions and running times are given. 

1. 1NTRODUCTION 

The interaction of bodies in impact-penetration is treated by special algorithms, often called 
slideline algorithms, which enforce the constraint that the two bodies cannot occupy the same 
space at the same time. Lagrange multiplier,'. penalty' and p r ~ j e c t i o n ~ . ~  techniques have all 
been proposed to enforce this constraint. Usually the interpenetration condition is imposed on 
the piecewise linear or quadratic approximation to the surfaces by the finite element mesh. For 
problems which include large relative motions between the two bodies and erosion of elements, it 
becomes difficult and time consuming to keep track of which elements should be involved in the 
impact calculations. This computational expense is magnified by the fact that these slideline 
algorithms have many branches, and hence are difficult to vectorize. In dynamic finite element 
programs with explicit time integration, many of the element and nodal calculations can be 
vectorized; therefore, if the slideline calculations are not vectorized they can consume a con- 
siderable percentage of the total computation time. 

In this paper, a new contact-impact procedure called the pinball algorithm is described; a short 
description was previously given by Belytschko and Neal.' The thrust of the pinball algorithm is 
to allow vectorization of as much of the slideline calculations as possible. This is accomplished by 
greatly simplifying both the search for the elements involved in the impact and in the enforcement 
of impenetrability with the use of spheres, or pinballs, embedded in the elements in the slideline 
calculations. The search then requires only a simple check on the distances between pinballs to 
determine interpenetration. A similar idea has also been used in the two-dimensional NABOR 
algorithm,6 but the NABOR method used an ad hoc method based on spheres for the determina- 
tion of stresses in the continua and did not use a surface normal. In the pinball algorithm the 
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element spheres are used only in the contact algorithm, while standard continuum mechanics is 
used for the continuum elements. 

We will begin with a general formulation of the contact-impact problem and its semi- 
discretization by a weak inequality. The natural discrete form which emanates from this 
variational inequality is the well known Lagrange multiplier form of the contact problem. This 
form is used to show some important and useful facts which apply to any Lagrange multiplier 
problem: 

(i) in an explicit method, the contact surface is dejined by the overlap of the contacting bodies 
when integrated without interaction; in other words, subject to some restrictions, there is no 
need for iteration in an explicit method for contact-impact; 

(ii) according to a linearized stability analysis, the stable time step for the central difference 
method is not decreased by a Lagrange multiplier method. 

A penalty method was used in most of our work with the pinball algorithm. It is shown that the 
addition of the penalty, in contrast to the Lagrange multiplier method, always decreases the 
stable time step. In addition, upper bounds on the penalty force which are based on physics and 
the characteristics of explicit procedures are given; these upper bounds usually decrease the stable 
time step by less than 25 per cent as compared to the unpenalized problem. 

Several numerical examples are given. The first example is one-dimensional; its purpose is to 
compare projection and various penalty methods and to examine the stability conditions derived 
here. The remaining examples are quite complex and examine the applicability of the method to 
problems with erosion and shell buckiing(sing1e-surface slideline). Timing studies on these 
problems show an almost fivefold speed-improvement over the Belytschko-Lin algorithm, which 
corresponds to approximately a factor of two on total running time. 

2. GOVERNING EQUATIONS 

We consider the problem of two bodies RA and QB which can impact and contact. The methods to 
be developed are applicable to any number of bodies but we restrict the formal development to 
two bodies for simplicity of notation. The spatial (Eulerian) co-ordinates are denoted by x i ,  and 
the velocity ui is given by 

(1) 0. = x .  
1 1  

where superscript dots denote material time derivatives. The density is denoted by p and the body 
forces by b,. The stress state is described by the Cauchy (physical) stress aij and the velocity strain 
(rate-of-deformation, stretching tensor) E i j  is used to measure the deformation. The two bodies are 
governed by the momentum equation, the kinematic relations and the constitutive equation, 
which are, respectively 

(2)  o ~ ~ , ~  + bi = p2ii in RA u RB := R 

i . .  = - (v  i ,  + v jSi ) :=  v( i , j )  in QA u QB 

in RA u RB 
(3) 

(4) 

Equation (3) can be substituted into (4) to provide a set of 5 (9) equations in two (three) 
dimensions, respectively, in the unknowns vi and cij. The initial conditions on the dependent 
variables are 

o,(O) = oQ in QA u RB (54  
aij(0) = a: in QA u QB 
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Equation (1) can be used to obtain the co-ordinates of all points throughout the evolution of the 
problem from the velocities. 

Impenetrability of the two bodies then requires that 

QAnQB = 0 (6) 

ui = U :  on rt u r:i:= rvi for i = 1 to 3 (7a) 

aijn,j = rf on r;4 u rE:= rli for i = 1 to 3 (7b) 

g = ufnf + u?nr G 0 on r, (8) 

a =  -z$= - z , B > o  o n r ,  (9) 

The contact surface at any instant is designated by To. The boundary conditions are then given by 

where 

T: = a t n f  n: 

r A =  r,Ur;ur; 
r c n r ; 4 n r k = o  

Similar relations hold for domain B. 

3. VARIATIONAL INEQUALITY AND DISCRETE INTERPOLANTS 

The weak form of the contact problem is obtained from the principle of virtual work by 
appending the Lagrange multiplier term 6( Ag). We consider the trial functions to be kinematically 
admissible functions, so ui E V and 1 E A where 

As indicated above, these functions need only be piecewise continuous and satisfy essential 
boundary conditions. The variations (or test functions) 6ui E Yo, S A  E A, where 

v0 = { d o i :  ~ u ~ E c O ,  6ui = 0 on rvi} 
A, = {6A:  6;1~C- ' ,  SA G 0 on r,} 

We define the virtual work by 

6 w = s W'"' + 6Jv - 6 W'"' (13) 
(see Belytschko') where 

r r 
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The weak form for the contact problem is then given by 

for all ~ V E  Yo, ~ A E A , ,  then the momentum equation #), traction boundary conditions (7b) 
and contact surface inequalities (8) are satisfied. 

The equivalence of this weak form to the governing partial differential equations is demonstrated 
in Reference 14. 

Semidiscretization and time integration 

using an elementwise separation of variables, so that 
In the usual manner for finite element discretizations, the velocity field is approximated by 

u ~ ( x ,  t )  = 1 N ; ( x )  v y I ( t )  = Neve  
I 

where ve is related to the global matrix of nodal velocities by the Boolean connectivity matrix 

vp = Lev (19) 
It is also convenient to use the 'assembled' shape functions N given by 

so that we can write 
N = l N e L e  

e 

u i (x ,  t )  = N ( x ) v ( t )  

4. LAGRANGE MULTIPLIER METHOD 

Discretization 

The Lagrange multiplier field A( x)  is approximated by 

L ( x )  = NA(x)2 (22) 
Since no derivatives of A appear in the variational statement, NA can be a C - '  function. 
Substituting (21) and (22) into (17) yields 

f + Mi + GT2 = 0 (23) 
Gv < 0 

where 

G = jrC(NA))'D.Ndr 

In addition, we have the requirement emanating from (9) that 
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In writing (26), we assume that the interpolant (22) is of low order (piecewise constant or bilinear), 
so that (26) is implied by (9). For higher order interpolants, such as bicubics, such a simple 
correspondence is not available. 

Remark 1. In equation (23),  GTk represents the discrete contact forces, which vanish whenever 
3, = 0. Equation (24) is the discrete counterpart of equation (8). 

The construction of the Lagrange multiplier (interface traction) interpolants poses an inter- 
esting and challenging problem. The main difficulty in the large displacement problem arises from 
the fact that the nodes of the two bodies are usually not contiguous, as shown in Figure 1. Simo 
et aL8 have proposed an interesting idea where the interpolant for A is developed by constructing 
an intersurface mesh which consists of the projections of the nodes of RA and RB onto Tc; see 
Figure 2. Even in two dimensions, this technique is quite awkward because when nodes become 
nearly contiguous the sizes of the A elements become very disparate and it is difficult to determine 
when a >. element should be annihilated. In three dimensions, such methods would have to be 
combined with automatic mesh generators such as Dedekind tessellation, for constructing a mesh 
from the complicated pattern of nodes would be a formidable task without a powerful technique. 
Thus this process would be useful only in static problems where only order of 10' steps are used in 
a calculation. In dynamic explicit calculations, where the number of steps is generally of order lo4 
to lo5, simpler techniques are essential. 

We have therefore chosen to use a modified master-slave concept to define the 2 interpolant. 
Body A is designated the master surface and on TA n rc we interpolate A by 

A=An (27) 

where fi are projections of the element interpolants of body A onto the surface. In the problems 
solved here, 8-node hexahedra were used, so 6 are the two-dimensional bilinear shape functions. 
The matrix G is then 

since fi = n - N. 

consists of two submatrices 
The matrix G can be integrated by Lobatto quadrature; see hug he^.^ The matrix G then 

GAB = (fiA)TSIBdR 
Jr . 

CY 23553 hrnesti 

SP 
Figure 2. I z  mesh Figure 1. Siideiine with non-contiguous nodes 
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where G, is diagonal and positive definite. If the nodes are coincident, G A B  is also diagonal and 
positive definite. 

The central difference, explicit method with variable time steps will be used. The updating 
formulas for this method are 

(30) 

(31) 

1 (32) 

p+ 1/2 - n- 1/2 - v + At"i" 
d"+l = d" + At"v"+ 1/2 

At" = +(At"-1/2 + At"+1/2 

t" = CAt" 
n 

(33) 

The application of these integration formulas to the semidiscrete Lagrange multiplier form of 

(354 

Gy"+1/2 < 0 (333) 

1" 2 0 (354 
In addition, the other dependent variable, the stress field oii, must be updated. We will also write 
this update in central difference form. 

the contact-impact problem, equations (2), (3) and (26), yields 

) + At"(f" + GT1") = 0 M ( p +  1/2 - f -  1/2 

- 
o n + l  = on + A t n $ n + 1 / 2 ( v n + 1 / 2 ,  0" ) (36) 

where the superposed bar indicates these deviations from the central difference formula. In 
practice the update is not strictly a central difference formula because of techniques such as radial 
returng and due to the asynchronization that comes about since only the stress at t" is available 
during the stress update unless an iterative procedure is used. 

Non-iterative determination of Lagrange multipliers 

In the following, we show that in explicit, central difference integration, the contact surface can 
be determined by the uncoupled integration of the two bodies without iteration: the surface 
projected from the volume of interpenetration of the uncoupled update of the two bodies 
corresponds to the contact surface. Furthermore, the Lagrange multipliers are directly determin- 
able and will have the correct sign. First we show that the Lagrange multipliers are directly 
determinable on the contact surface. We restrict all matrices to those nodes of RA and RE which 
lie on re, since the equations of the remaining nodes are not affected by contact in an explicit 
algorithm. Furthermore, since friction is not considered, only the velocity components normal to 
Tc appear in the equations. Equation (35b) can be written as 

G,v;+'/~ + GAB~;+1/2  < 0 (37) 
For the interpenetrated nodes the equality (it will be shown next that the Lagrange multipliers 
will be of the correct sign) is assumed to hold. Then (37) can be used to express v;+ l l2  in terms of 

(38) 

v n +  l / 2  
B ,  

,.;+ 112 = - GA 1 G p+ 1/2 
AB B 
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since GA is positive definite; for nodes originally not in contact a constant appears on the RHS 
but it is ignored here. Equations (35) are now partitioned in the same way as v, so 

(39a) MAAv, + At"(fI+ GAS") = 0 

MBAvB + At"(f: + GiBA") = 0 
" n +  1/2 - v"- 112 

Substituting (38) into (39a) yields 

MAG,'GT,BAvB - At"(f1 + GAS") = 0 (404 

(40b) ) 1" = GA' -MM,G,'GiBAV, - f i  (b, 
Equation (40b) can be used to eliminate S in (29b), yielding 

(MB - G;,G,'MAG;'GAB)AvB + At"(f: - GABGL'fI) = 0 141) 
Equation (41) can be used to obtain A v B  without knowledge of the Lagrange multipliers. 

It is now proven that on the nodes which penetrate according to an uncoupled integration of 
the two bodies, the Lagrange multipliers will be negative (compression). To demonstrate this, the 
accelerations of the uncoupled system at which the contact constraint is violated are denoted by 
P A  and PB, SO 

- I  

H A  = - M,'fA (424 

P B  = - Mi'fB (42b) 

(43) 

I -  

Violation of the constraint (37) implies 

?;AsA + ?;ABsB 2 o 

C A M i l T A  + CABMilTB < o 

aA + M; ' (TA + ?;A;) = 0 

88 + M i  '(TB + G i B ; )  = 0 

(?;,a, + EABaB) + (EAM~'TA + ?;ABM~'TB) + A; = 0 

where the 'tildes' on the matrices designate those parts of the original matrix at which the 
constraint is violated. Substituting (42) into (43) gives 

(44) 

Now consider the equations which give the accelerations a that satisfy the constraints, namely 
(39): 

(454 

(45W 

(46) 

Premultiplying (45a) by ?;A and (45b) by GAB and summing yields 

where 

A = ? ; A M ~ ' ~ A  + GA,M~'?;IB 

In the above, the first term vanishes by (43) for nodes which remain in contact, while the second 
term is negative according to (44), so 

A X 2 0  (47) 
When the meshes in bodies A and B are coincident, A is diagonal and positive definite. Hence, (47) 
implies that 2, 2 0 for all nodes previously in contact which interpenetrate. Thus if the contact 
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equality constraint is applied at  all nodes where the disjoint analysis of bodies A and B indicates 
penetration, then the Lagrange multipliers at those nodes will satisfy the contact force inequality 
(26). Hence, no iterations are needed by explicit procedures under these circumstances. This fact 
adds to the attractiveness of the ALE and 'adaptive' schemes proposed by Haber" and Kulak," 
respectively, where nodes of the contacting bodies remain coincident. 

Remark 2. Note that the stress update is not modified by the contact algorithm, which only 
changes the velocities at step n -t 1/2. The stresses used to compute f" depend on a", which is a 
function of v"- '/' (see (36)). 

Remark 3. The lack of symmetry arising from the designation of a master surface can be 
eliminated by using a two-path algorithm in which A and B are sequentially designated as the 
masters and the update is obtained by averaging the two updates. 

5. STABILITY OF THE LAGRANGE MULTIPLIER METHOD 

The critical time step for the Lagrange multiplier method in the case of continuing contact can be 
obtained by examining the linear homogeneous problem associated with (23) and (24); release 
does not affect the stiffness of nodes so it need not be considered. In the linear case f = Kd, so we 
have the constrained problem 

Mt" + Kd" + GR" = 0 (4W 

(48b) GTi  = 0 

The central difference method is stable if 

(see Reference 7) where mi and pi are the frequencies and fractions of critical damping in the 
natural modes. The frequencies of the natural modes in the unconstrained problem are deter- 
mined from the eigenvalue problem 

KZ = WTMZ (50) 

In the case of two disjoint bodies, QA and QB. the K and M matrices would be the uncoupled 
stiffness and mass matrices of the two bodies, respectively. 

The eigenvalue problem associated with the frequencies of (48) is 

It follows immediately from the Rayleigh nesting theorem that the frequencies of (51), Wi, are 
nested by the frequencies mi, so 

- 
a m a x  Wmax (52)  

Hence, on the basis of a linear analysis, the Lagrange multiplier method should not decrease the 
stable time step and the stable time step for the mesh can be obtained by element-based 
procedures (see Reference 7). However, numerical experience suggests that the non-linearities of 
contact-impact do reduce the time step slightly. 
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6. PENALTY METHOD 

We first consider a generalized variational form that encompasses both the Lagrange multiplier 
form and a penalty. It is obtained by adding penalties to (17): 

where pi, i = 0 to 2, are parameters to be selected. Rather than employing slack variables, we 
tacitly append Heaviside step functions to g, i.e. 

9 + g H ( g )  (54) 

The terms in the above contact integral can be identified as (i) po, the coefficient of the Lagrange 
multiplier term; (ii) pi,  the penalty on the rate of the interpenetration; (iii) p 2 ,  the penalty on the 
interpenetration. 

We first consider the case when p2 = 0. The equations are then 

f + Mi + p o G T 1  + p i G v  = O  (554 

G v G O  (55b) 

(56) 
In the Lagrange multiplier method, the contact force is given by (56) with p o  = 1, p1 = 0. The 
above is an augmented Lagrangian of the type extensively described by Bertsekas." In these 
methods, the constraint (55b) can be satisfied by an iterative procedure on 1, where 

The contact force is now given by 

f, = poGT1 + p ,  GV 

In contrast to Bertsekas," we do not introduce slack variables for the inequality constraints, 
because, as described previously, when explicit time integration is used, the nodes at  which the 
inequality holds automatically separate. Thus the constrained problem needs to be dealt with 
only at the nodes which are not separating, i.e. where g < 0. 

When p z  = 0, the contact problem is governed by the relative velocities between the impacting 
bodies. The objective is to bring the relative velocities g to zero, for it is this condition which is 
most important to determining the stress waves which emanate from impact; any interpenetration 
is secondary since wave generation does not depend on interpenetration. In fact, it is undesirable 
to induce oscillations in the velocity on the contact interface in the process of exactly satisfying 
the interpenetration condition. 

7. PINBALL ALGORITHM 

The main idea of the pinball algorithm is to enforce the impenetrability condition and define the 
interpenetration g via a set of spheres, or pinballs which are embedded in the finite elements, as 
shown in Figure 3. By enforcing the contact constraint on the spheres rather than the elements 
themselves, the time required by the contact algorithm can be greatly reduced because: (i) the 
determination of whether interpenetration has occurred becomes a simple check of the distance 
between two pinballs, (ii) when combined with a penalty method, it involves almost no iterative 
calculations or conditional statements, so it is much more amenable to vectorization. 
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Figure 3. The pinball concept shown in two dimensions 

The pinball algorithm is used in conjunction with the assembled surface normal algorithm of 
Belytschko and which assembles an approximate normal to outside surfaces. The normal is 
non-zero only on nodes on outside surfaces, and pinballs are placed only in elements with at least 
one node with a non-zero normal. 

The hexahedral elements used in this formulation are described in detail by Flanagan and 
Belyt~chko. '~ A sphere, or pinball, is embedded in each of these hexahedral elements of the mesh. 
These pinballs are then be used to determine which elements are involved in the contact. The 
centre and radii of the sphere are given in element e by 

respectively, where Ci are the co-ordinates of the centre of the sphere, xSi are the co-ordinates of 
node Z of element e, R is the radius of the pinball and V' is the volume of eletnent e. 

The centre of each sphere is simply the average of its nodal co-ordinates while the radius is 
determined by setting the volume of the resulting sphere equal to the volume of the element itself. 
For elastic-plastic problems most of the element deformation can be considered nearly incom- 
pressible; therefore, the element volume, and also the radii of the pinballs, will change little over 
the course of the simulation. For this reason, we calculate the radii only once and consider them 
to be constant thereafter. The centres of the pinballs, however, are calculated every time step. For 
materials with substantial compressibility this assumption of nearly constant volume would be 
incorrect and the radius for each element would have to be recalculated every few steps. 

The detection of the impacting pairs is, computationally, a very simple procedure. The distance 
between the centres of each slave pinball and each master pinball is calculated and then compared 
with the sum of the radii of the two elements. Interpenetration has occurred when 

(59) 

where d is the distance between the centres of elements 1 and 2 and R , ,  R ,  are the radii of 
elements 1 and 2. Note that in this procedure the masters and the slaves may be penetrated by 
more than one element during a time step. 

d < R ,  + R ,  
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The penetration depth of the two elements is easily calculated. Consider two interpenetrating 
pinballs, 1 and 2, in Figure 4, with the velocities v1 and v,; the normals of the associated surfaces 
are n, and n,. The position vectors of the centres of the two pinballs are given by C, and C,. The 
penetration is given by g and is defined as the relative displacement of the centres of the pinballs in 
the average normal direction needed to eliminate interpenetration, so that the following equation 
determines g: 

dTd = ( R ,  + R,), 
where 

d = C, - C2 + gn 
where 

where 11 . 11 designates the length of a vector. The penetration depth g can be determined by 

g = - b + JbT-. 
where 

b = nT(C, - C,) 

c = IIC1 - Cz ( 1 ’  - ( R ,  + R,)’ 

Note that only the positive sign on the radical in (63) need be considered; the negative root 
corresponds to a negative value of g which is irrelevant. 

The rate of penetration is computed by 

where v p ) ,  I = 1 to 8, are, the nodal velocities of element j .  
The quantity g can also be considered to be given by the time integral of g: 

where t ,  is the time when penetration begins. In a surface-based slideline algorithm, g is not path 
independent. To see this, consider the path shown in Figure 5. If node A traverses the path (1 to 3) 

Figure 4. Interpenetration of two pinballs 
Figure 5. Penetrating node with path 

dependent penetration depth 
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and n, is chosen as the normal along (1 to 2) and nb as the normal along (2 to 3), then when node A 
exits the penetrated body g = a - b. In a more complicated path, the value of g at exit would 
depend on the point at which the normal used in computing g switches from n, to nb, but in 
general it would not vanish at exit. The pinball algorithm provides a natural and unique way of 
computing g: it is simply and uniquely computed by (61). 

8. PENALTY PARAMETERS AND STABILITY 

One of the major disadvantages of penalty methods is that few guidelines are available to provide 
a good penalty parameter. In this section a procedure for choosing the appropriate penalty 
parameter is presented based on limiting the impact to plastic impact (zero coefficient of 
restitution on the pinball level) and minimizing the decrease in the stable time step. 

To obtain estimates on the stable time step, the element eigenvalue inequality,' which bounds 
the maximum eigenvalue of the system, will be used. This eigenvalue inequality theorem is not 
limited to element level submatrices. The submatrices may be smaller assemblages of elements 
such as groups of two elements. For any subsystem or element the eigenproblem is 

KSxS = (U')~M'X' (68) 
where o' is the subsystem frequency, xs is the subsystem eigenvector and K', Ms are the subsystem 
stiffness and mass matrices, respectively. The system eigenvalues are then bounded by the 
subsystem eigenvalues. 

o m a x  8 S , a x  (69) 
where US,,, is the maximum of all the eigenvalues of all the subsystems. Furthermore, if these 
subsystem matrices are assemblages of element matrices then the element eigenvalue inequality 
gives 

US,,, a k a x  (70) 
To obtain a sharp bound on the stable time step, two-element assemblages rather than single 
elements are used. 

[KL + K"pxS = ( C O ~ ) ~ M ' X ~  (71) 
where KL is the stiffness of the assemblage (or subsystem) of contacting elements and K; is the 
penalty stiffness; we have ignored damping. 

Since the determination of the eigenvalue of such a subsystem would be quite difficult, it is 
desirable to find a form of K; that gives an upper bound on the frequency, o', and which can be 
obtained by assembling element level penalty stiffnesses. Such a matrix is given by the diagonal 
absolute fow sum matrix 

Since K' is a diagonal matrix we can find element penalty stiffnesses for each of the two elements 
that, when assembled, will form Ks, so the stability problem reduces to finding the maximum 
frequency of the element matrices. 

[K: + Ke]xe = (we)'Mexe (73) 
A proof that the maximum frequency of (73) will bound the maximum frequency is given by 
Neal. 
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1 
4 1 

Penalty spring 

Figure 6. One-dimensional impact problem of two elements 

To illustrate the method, consider two one-dimensional2-node bar elements. The two elements 
and a penalty spring are shown in Figure 6. The mass and stiffness matrices of the subsystem are 
given by 

1 0 0 0  

Ms=--[ pAL 0 1 0 0 ] 
2 0 0 1 0  

0 0 0 1  

(74) 

where p, A, L and E are the density, cross-sectional area, length and modulus of the elements, 
respectively. 

For the particular case of the two bar elements with the penalty between nodes 2 and 3, the 
penalty stiffness for the standard penalty method is given by 

where p 2  is the penalty parameter as defined in the previous section. The eigenproblem of 
equation (71) results in a cubic equation for the eigenvalues. The diagonal row sum form of the 
penalty stiffness matrix is given by 

It is apparent that this matrix can be assembled from element level penalty stiffnesses given by 

K'=[ 0 0  ] . '=[  2 P 2  0 0 0 ]  
0 2Pz 
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The element eigenvalue problem is 

so 

where 

f i= -  P2L 
E A  

From equation (80) we can see that if fl is zero then the maximum frequency reduces to 2c/L, 
which is the maximum frequency for the unconstrained problem. Substituting equation (80) into 
equation (49) with p = 0 gives the stable time step with the penalty 

As can be seen, the introduction of the penalty always decreases the stable time step: if f i  > 0, then 
At < L/c .  

The stability condition provides one guideline as to the magnitude of the penalty parameter. By 
solving equation (82)  for the penalty parameter f l  we get 

where f = l/f$ andf ,  is the Courant number. 
To test the stability criteria derived above, the one-dimensional example described in Sec- 

tion 10 was tested with the penalty formulation. The minimum penalty parameter, 6, that results 
in an instability as predicted by equation (83) is compared to numerical detection of instability in 
Figure 7. As can be seen from Figure 7, the stability analysis given above will not guarantee 
stability. 

The second condition on the penalty force emanates from energy conservation. In order to 
preserve stability the penalty force cannot increase the energy. This corresponds to requiring that 
the coefficient of restitution does not exceed 1-0, and in fact it will be noted that for a semidiscrete 

- Numerical 

0 4 0.6 0 8 I n  
Courant number, fc 

1 2  

Figure 7. Linearized stability compared to numerical stability 
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system plastic impact is appropriate. To ensure energy conservation, note that 

TP = e2T  (84) 
where T is the kinetic energy before impact, Tp is the kinetic energy after impact (relative to the 
centre of mass), and e is the coefficient of restitution. If we consider impact as shown in Figure 6, 
equation (84) is equivalent to 

(85)  

(see Greenwood”), where u2 and u3 are the velocities before impact and 0 ;  and u s  are the 
velocities after impact. Since e d 1 ,  

e(02 - u 3 )  = ( 0 :  - 0 ; )  

(02  - 0 3 )  B ( 0 5  - 0 ; )  (86) 

The post impact velocities for the penalty method are given by 

where FP is the penalty force given by 

FP 
2 - - At-- 

m2 

- 

FP 
= v3 + A t -  

m3 

F p = p ( ~ 2 - ~ 3 ) = - - - ( ~ 2 - ~ 3 )  PEA 
L 

where x2 and x3 are the positions of nodes 2 and 3. Substituting (87) into (86) and solving for the 
penalty force yields the condition that 

Furthermore, if we restrict the coefficient of restitution to e = 0 (plastic impact), we obtain the 
condition 

FP < FZrit (90) 
Note that this condition cannot be established at the beginning of a problem since the 

constraint depends on the nodal velocities at the time of impact. This condition must be satisfied 
each time two nodes initially impact. The stable p 2  is calculated first by equation (83). Then the 
penalty force is calculated by equation (88). Thl: maximum allowable penalty force which does 
not increase kinetic energy is determined by equation (89) and the minimum of these two forces is 
then used. 

This energy bound on the penalty force was tested numerically for the example described in 
Section 10; the results are shown in Figure 8. It can be seen from this figure that the predicted 
stability limits match the numerical results very closely if the coefficient of restitution is limited to 
values between 0 and 1. 

The maximum frequency of the hexahedral element is given by Flanagan and Belytschko16 in 
terms of a reduced eigenvalue problem. 
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Figure 8. Linearized stability compared to numerical stability with zero coefficient of restitution 

where 

a , .  I J  = B .  II B .  J I  (93) 

and where w,,, is the maximum frequency, p and V are the element density and volume, A and p 
are the Lame constants, respectively, and Bit is the gradient operator where the small indices 
ranges over the spatial co-ordinates and the upper case indices range over the nodes of the 
element. The original eigenvalue problem in terms of the stiffness matrix is written as 

(94) K .  11jJ . U .  JJ = kui ,  

In Neali4 we derive a diagonal form of the element penalty stiffness given by 

To find the eigenvalues of the element with penalty force effects, the following eigenvalue problem 
is written: 

where f are the eigenvalues of this new problem. Since this penalty stiffness is diagonal the 
addition to the usual stiffness will result in a shift of the usual eigenvalues k. 

Emax = kmax + 3 ~ 2  (97) 

The frequency of the element with penalty stiffness effects is then given by (91) in terms off,,,. 

Remark 4. The inability of the linearized stability analysis to predict the correct critical time 
step for a penalty method, as in the Lagrange multiplier method, stems from the fact that the 
impact process is inherently non-linear. If the penalty force exceeds FEri,, the impacting nodes will 
impact and release within the same time step with an apparent coefficient of restitution which 
exceeds 1. This violates the physics of impact and leads to violation of conservation of energy. 
Therefore, a linearized stability analysis is adequate only when the nodes remain in contact. 

Remark 5. Although imposing (89) satisfies conservation of energy, the penalty force should be 
limited by (90) because the coefficient of restitution for impact of explicitly integrated semi- 
discretized systems should be plastic with e = 0. This results from the physics of wave propaga- 
tion and the properties of explicit integration. Two surfaces which impact cannot release until the 
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rarefaction waves reach the impacting surface. Since the rarefaction waves are generated at free 
surfaces by the reflection of the compressive waves generated by impact, and the free surfaces are 
at least one node away from the area of impact, in the discrete model the Courant stability 
condition implies that rarefaction waves cannot reach the impact area in fewer than two time 
steps from the time of impact. Hence, in an explicitly integrated discrete mesh, impact is plastic 
with a vanishing coefficient of restitution. 

Remark 6 .  The restriction (90), i.e. that impact is plastic, forces the discrete impact process to be 
non-conservative, i.e. to dissipate energy. Thus, even elastic impact becomes a dissipative process 
in the semidiscrete model. This anomaly is a consequence of the fact that the impact condition 
g = 0 applies only to a set of measure zero (the surface of the impacting bodies) in the PDEs, but 
applies to a finite volume in the semidiscrete system. 

Remark 7 .  Equation (89) provides a natural way for providing a penalty force which is a 
function of g. Using F!,it as defined by (89) is excessive when the meshes are not coincident, but 
applying a fraction of this value in combination with a penalty based on g is advantageous. In 
fact, the relative magnitudes can be adjusted to critically damp the impact process. However, a 
rate-based penalty does retard the release process. 

9. PENALTY IMPLEMENTATION OF PINBALL METHOD 

The implementation of the penalty method in the pinball method is described here. The penalty 
force on any pinball is applied to all nodes of each element. The force is proportional to the 
penetration depth and is given by 

FP = ( P l i  + P 2 9 h  (98) 
where n is given in equation (62) and 

B B A ~  
PZ = 7 (99) 

and B, A and V are the bulk modulus, area of the impacted surface and volume of the element, FP 
is the penalty force on the pinball. In the present context, the properties of two pinballs must be 
considered, so the penalty parameter will be given by 

(100) P 2  = 3P(B,Rl  + B2R2) 
where B , ,  B2 are the bulk moduli of the impacting pinballs, and R , ,  R2 are the radii of the 
impacting pinballs. Equation (98) gives the contact force that will be applied in opposite 
directions to each of the two impacting pinballs. This force is then divided among the eight nodes 
of each element. 

FZP = &FP n = 1 , s  (101) 

where FiP are the element level penalty forces on local node n of the element. These forces are then 
assembled to the global force vector as usual. A flowchart of the impact algorithm is given in 
Table I. 

The penalty force is divided among the eight nodes of the hexahedron to preserve the symmetry 
of the underlying linearized system. Since the position of the pinball depends on the eight nodes of 
the hexahedron, the linearized equations would not be symmetric if the force were subdivided 
only among the surface nodes; an alternative algorithm where C depends only on the surface node 
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Table I. Slideline algorithm 

1. If this is the first step, use the element volume to calculate a radius for all elements on the slideline. 
2. Calculate element normals for all elements. Elements with zero normals are eliminated from 

consideration in the contact search. 
3. Calculate the centre of all elements with non-zero normals. 
4. Put elements into appropriate cells. 
5. Loop through elements of each cell to determine the penetrating pairs of elements. 
6. Calculate the contact forces to be applied to the nodes of impacting element pairs. 
7. Return to main driving routine. 

Table 11. Explicit algorithm with slideline 

1. Initialization. 
2. Calculate the external nodal forces. 
3. Compute the internal nodal force array. 

a. Calculate the element stresses. 
b. Compute the element nodal forces arising from the element stresses. 
c. Assemble the element nodal forces to the internal nodal force array. 

4. Call the slideline algorithm to calculate the contact forces and add them to the external force array. 
5. Compute the nodal accelerations. 
6. Integrate the accelerations to obtain the nodal velocities and displacements. 
I .  Go to 2. 

velocities and hence the penalty forces are distributed only to the surface nodes is now under 
investigation, Belytschko and Bindeman. ’ 

The penalty forces, along with the forces arising from element stresses and externally applied 
loads, are used in the calculation of the nodal accelerations. Therefore the contact routine appears 
in the algorithm immediately before the nodal accelerations are calculated. The flowchart of the 
complete explicit algorithm with the contact algorithm is given in Table 11. 

10. NUMERICAL EXAMPLES 

In order to test the accuracy and efficiency of the proposed contact procedure several problems 
were examined. The first problem considered was the impact of two one-dimensional bars 
consisting of ten elements each. This problem was considered in order to compare two different 
methods of enforcing the impenetrability constraint: the penalty method and the projection 
method. This contact constraint is the only non-linearity that appears in the problem. As can be 
seen in Figure 9, one of the bars is given an initial velocity so that it impacts with the second bar. 
The material properties are such that the wave speed in the two bars is 10.0 m/sec. 

Figures 10 to 12 give the velocity time histories for the nodes at the midpoint of the first rod 
(x = 5-0), at the interface on the first rod (x = 10-0) and at the midpoint of the second rod 
(x = 15.5). As can be seen from Figure 11, the penalty method gives a rather noisy solution at 
the contact interface yet this does not appear to have much effect away from the contact zone 
(see Figures 10 and 12). The results for the Lagrange multiplier method were nearly identical to 
the projection method and therefore were not included in the results. 

The second problem considered was of a copper rod impacting a steel plate at high velocity. 
The rod projectile consisted of 414 elements while the plate or target was modelled by 1428 
elements. The geometry and the material properties for each of the objects are given in Table 111. 
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Figure 9. One-dimensional impact problem 
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Figure 10 Projection and penalty methods at midpoint 
of first rod 
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Figure 11 .  Projection and penalty methods at interface 
on first rod 

Figure 12. Projection and penalty methods at midpoint 
of second rod 

Table 111. Geometry and material properties of penetration problem 1 

Projectile (rod with a round nose) Target (plate) 

Length = 4.900 in 
Width - 
Thickness - 
Radius = 0500in 
Density 
Bulk modulus 
Shear modulus 
Plastic modulus = - 

1.43OOe + 5 psi 
Yield stress 
Ultimate stress = 

2-03OOe + 5 psi 
Initial velocity 

- - 

- -  

= 8.31e - 3 lb-sec2/in4 
= 2.0739e + 7 psi 
= 6.38OOe + 6 psi 

= 2-03OOe + 4 psi 

= 5-5566e + 4 in/= (xcomponent) 
- 5.5566e + 4 in/sec (2-component) 

3.950 in 
7.900 in (half plate is modelled) 
0.375 in 

7.34e - 3 lb-sec2/in4 
2.42OOe + 7 psi 
9.3OOOe + 6 psi 
13OOe + 5 psi 

1~6OOOe + 5 psi 
6-53OUe + 4 psi 

0 0  

.- 

The evolution of the problem is shown in Figure 13. In this example problem and the one that 
follows a von Mises yield criterion is used with isotropic, piecewise linear hardening. The yield 
stress and plastic modulus for each material are given in Table 111. The material hardens until the 
effective stress is equal to the ultimate stress, at which point the material is considered perfectly 
plastic. When the effective strain of an element reaches the maximum allowable effective strain, 
the element is eroded, that is the stress in the element is considered zero from that time on. The 
maximum allowable effective strain used for steel is 1.0 while that used for copper is 2.0. 
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Figure 13. Example problem 1 at times 0, 25 and 54 psec 

Table IV. Timing studies for penetration problems 

Algorithm Example 1 Example 2, mesh 1 Example 2, mesh 2 

Previous method 34.7 sec 94.4 sec 302.2 sec 
Pinball algorithm 22.0 sec 40.4 sec 143.0 see 

This problem was also examined by Belytschko and Lin4 with their projection method and a 
comparison of running times for both the methods is given in the first column of Table IV. As can 
be seen from this table, the new algorithm is substantially more efficient than the previous one on 
a vectorized machine. For this comparison, both algorithms were implemented into the three- 
dimensional finite element code WHAM3D and run on a Cray X-MP/14 with the CFT77 
compiler. The differences in running times are due only to the different slideline algorithms. For 
unvectorized runs, the new algorithm is only marginally more efficient than the previous method. 
When the vectorized compiler is used, however, the old version of the slideline algorithm 
consumes nearly 50 per cent of the total CPU; for the new procedure this value has been reduced 
to only 15 per cent in the vectorized run (see Figures 14 and 15). 

In the third example problem, the impact of a steel rod into a thick steel plate was considered. 
The geometry and material properties are given in Table V. Two meshes were considered for this 
problem; the two meshes are described by Table VI. The evolution of the problem is shown in 
Figure 16 and the second two columns of Table IV give the comparisons of CPU requirements 
with the Belytschko-Lin method. The difference in the improvement compared to the previous 
example is probably due to the fact that a higher percentage of elements are in the target. 

The dynamic Hertz problem, which consists of the impact of an elastic sphere with a rigid wall, 
was examined to test the accuracy of the new algorithm. Ten degrees of the sphere are modelled 
with 499 elements as shown in Figure 17. All of the nodes in this model are constrained in the 
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Figure 14. CPU requirements of the Belytschko-Lin Figure 15. CPU requirements of the pinball algorithm 
algorithm 

Table V. Geometry and material properties of thick target penetration problem 

Projectile (rod with a round nose) Target (plate) 

Length = 4.04Oin 0600 in 
Width = -  5.600 in (half plate is modelled) 
Thickness = -  1WO in 

= 0.201 in - Radius 
Density = 7.3Oe - 4 Ib-sec2/in4 7.3Oe - 4 Ib-sec2/in4 
Bulk modulus = 2.381Oe + 7 psi 
Shear modulus = 1.1630e + 7 psi 
Plastic modulus = -- 1.5OOOe + 5 psi 

Yield stress 1.6OOOe + 5 psi 
Ultimate stress = 3.1OOOe + 5 psi 

2.778e + 7 psi 
1.136e + 7 psi 

1.4300e + 5 psi 
= 25000e + 5 psi 

1.8500e + 5 psi 
Initial velocity = 55566e + 4 in/sec (x-component) 0.0 

- 55566e + 4 in/sec (z-component) 

Table VI. Meshes used for thick penetration problem 

Projectile 
Mesh number elements Target elements 

1 128 2688 
2 918 4320 
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Figure 16. Evolution of example problem 2 at times 0.0 and 1.5e - 4 sec 

E = lo00 psi 
U =  0.3 

p = 0.01 Ibf-sec2/in4 
vo = 2.0 inlsec. 

Radius = 5.0in 

Figure 17. Elastic impact of sphere (dyn’amic Hertz problem) with rigid wall 

circumferential direction; the nodes along the diameter are also constrained in the radial 
direction. Figure 17 also gives the material properties and dimensions of the sphere. The contact 
radius as a function of time is compared for the numerical simulation and the analytical result18 
in Figure 18. 

The final example problem is that of a box beam impacting a rigid wall as shown in 
Figure 19.’9*20 The mesh consists of 756 shell elements described in Reference 21 and due to 
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Figure 18. Radius of contact as function of time for dynamic Hertz problem 

Rigtd Wall 7 

W Attached Mass, M '7 Attached Mass 

- L  

Beam Section 

INITIAL CONDITIONS 

V = 15 .64ds  

MATERIAL GEOMETRY 

E: = 2.06 x 10'l N/m2 L = 0.15 rn 
n = 0.3 a = 0.03 rn 
ro = 7840kg/rn3 

sy = 2.0 x lo8 N/m2 
Fp = 6.3 x lo8 N/m2 
M = 1400kg 

t = 0.0015 rn 

Figure 19. Box beam problem 
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symmetry only one quarter of the beam is modelled. This example was performed to demonstrate 
the capability of the new algorithm to simulate the contact of shell elements. The modifications of 
the pinball algorithm which are necessary for this application to shell elements are described by 
Sarwas." Figure 20 gives the acceleration of the rigid mass as a function of time. Figure 21 shows 
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Figure 20. Acceleration of the attached mass 

Figure 21 (a). Evolution of box beam to 3.84 msec 

that as the beam buckles the shell elements come into contact with one another. The times of 
these plots correspond to the times given on the x-axis of Figure 20. For this problem the entire 
mesh is considered as a single surface slideline, so contact between any two elements in the mesh is 
possible. 
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Figure 21(b). Box beam at 4.8 msec and 5.76 msec 

1 1. CONCLUSIONS 

The problem of contact-impact has been investigated, starting with the weak inequality which 
leads to the Lagrange multiplier form. The following are the major findings. 

1. For contact of coincident meshes, no iteration is needed in an explicit integration procedure 

2. A useful upper bound can be set on the penalty by the constraint that the impact of nodes is 

3. Very good bounds for the stable time step can be obtained by diagonalizing the penalty 

The major breakthrough of this paper is the demonstration that a contact-impact algorithm 
can be simplified dramatically by interpreting the interpenetration g between the bodies as the 
interpenetration of spheres embedded in the elements. This simplifies the contact-impact al- 
gorithm and facilitates vectorization. Computer times for large three-dimensional problems show 
a fivefold speedup in the slideline algorithm and as much as a factor of two in total running time. 
The method is primarily intended for problems where sliding and friction are not crucial, such as 
penetration and crashworthiness. The effect of oscillations normal to the interface which will 
undoubtedly accompany sliding of two plane bodies has not been studied. 

to determine the contact surface. 

plastic. 

stiffnesses and adding them to the element. 
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