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Abstract—A framework is presented within which the method of augmented Lagrangians is readily applied
to problems involving contact with friction. This method, which has enjoyed considerable success in the
treatment of constrained minimization problems, has been previously applied to problems involving
incompressible flow, incompressible elasticity of solids and even frictionless contact. An additional
challenge to the method is provided by frictional contact problems governed by a Coulomb law, due to
the special form taken by the frictional constraint. This paper describes a new extension of the augmented
Lagrangian technique to frictional problems which is well-suited to finite element implementation. The
proposed treatment inherits the traditional advantages of augmented Lagrangian techniques over penalty
methods; namely, decreased ill-conditioning of governing equations, and essentially exact satisfaction of
constraints with finite penalties. A set of numerical examples is presented in which the utility of the method
is demonstrated even in the presence of finite deformations and inelasticity.

1. INTRODUCTION

The method of augmented Lagrangians, originally
proposed by Hestenes [1] and Powell [2] in the context
of mathematical programming problems subject to
equality constraints, has been known for years to
provide important advantages over the more tra-
ditional Lagrange multiplier and penalty methods.
Extensions of the method of augmented Lagrangians
to mathematical programming problems involving
inequality constraints are also well established and
go back to work of Rockefeller [3] and others; see
e.g., the summary accounts in Bertsekas[4] and
Fletcher [S]. More recently, within the context of
finite element methods, augmented Lagrangian tech-
niques have been successfully applied to incompress-
ible finite deformation elasticity [6, 8], frictionless
contact problems (e.g., [9,10]), and viscoplastic-
ity [11]. All these problems share a common charac-
teristic; namely, a certain key constraint present in
each problem is conveniently enforced by a penaliza-
tion. The advantages of the penalty approach are
obvious: the technique is simple, introduces no
additional equations, and is readily interpreted from
a physical standpoint. Unfortunately, it is also well-
known that penalty methods suffer from ill-con-
ditioning that worsens as penalty values are
increased, while constraints are satisfied exactly only
in the limit of infinite penalty values (see [4] for a
more concrete discussion of these ideas). Thus, for
many problems it may be desirable or even necessary
to consider the augmented Lagrangian technique as
an alternative approach capable of circumventing
these difficulties.

Contact problems with friction in solid mechanics,
the subject of the present investigation, constitute
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physical examples of variational inequalities; see
e.g., the classical work of Duvaut and Lions[12]
and the recent monograph of Kikuchi and Oden
[13]. While instructive, such inequalities are not
amenable to most finite element implementations.
Typically, Lagrange multipliers or penalty regulariz-
ations are introduced to reduce the problem to a
variational equality which can then be handled using
traditional finite element methods, as in [14]. See
[13] for a comprehensive review of these alternative
approaches.

Indeed, the use of a penalization to accomplish this
task is especially attractive in the case of frictional
contact, because the resulting equations suggest a
‘constitutive law’ for the interface which is almost
exactly analogous to those traditionally used in the
theory of plasticity [15]. Return mapping schemes
essential for integrating such equations are also well-
known [16]. Examples of implementations using a
penalty regularization of this type are to be found in
[17] and [18].

In this paper, the natural extension of these ideas
to an augmented Lagrangian framework will be
given. For simplicity, the friction law considered will
be a Coulomb law, with no distinction made between
static and kinematic coefficients of friction. While it
is recognized that mathematical and empirical
difficulties exist with such a characterization [13], it
still enjoys a great deal of engineering utility in the
opinion of the authors.

The description will be given in the follow-
ing manner. Sec. 2 will describe the frictionless con-
tact problem in the context of a finite-deformable
body in contact with a rigid obstacle. Although
essentially a review of known results, this sec-
tion conveniently provides a foundation for Sec. 3,
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in which the frictional contact problem will be
posed and treated in the context of a rigid obstacle
problem in small deformations. This section clarifies
the relation between return mapping algorithms for
frictional problems of the type employed in plasticity
(see Simo and Hughes [7] for a review), and alterna-
tive two-step algorithms of the type reviewed in [13].
New augmented Lagrangian algorithms are devel-
oped within these two approaches. While the latter
class of algorithms have the attractive feature of
leading to symmetric equation systems, the former
appears to exhibit more robust performance, particu-
larly in highly nonlinear problems. It is emphasized
that the small deformation assumption made in
Sec. 3 is only introduced for the sake of convenience;
the augmented Lagrangian framework developed
therein is readily extended to finite deformations. In
fact, Sec. 4, which consists of numerical examples
demonstrating the method, is comprised mostly of
finite deformation simulations. Details pertaining to
the implementation of the proposed methodology are
given in two appendices.

2. AUGMENTED LAGRANGIAN TREATMENT OF
FRICTIONLESS CONTACT

In the following we outline the treatment of fric-
tionless contact by consideration of the rigid obstacle
problem in finite deformations as a model problem.
By carefully stating the problem and motivating the
augmented Lagrangian treatment through presen-
tation of traditional Lagrange multiplier and penalty
techniques, we shall provide a framework within
which frictional effects are conveniently introduced.

2.1. Statement of the obstacle problem in finite
deformations

We consider in this section the problem of finite
deformation of a continuum body constrained by the
presence of a rigid, immovable obstacle. We shall
denote material points in the reference configuration
Q (an open subset of either R?> or R by X (see
Fig. 1). Points in the current configuration are given
by x=¢(X,t), where ¢ has the property that

K (h <0)
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0K (h =0)
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det(Do (X, 1)) > 0 for all ¢, where ¢ is the time variable
(which shall hereafter be suppressed). We denote by
I a section of 0Q which we shall consider to include
all prospective points of contact, and y shall be the
image of I' over ¢. Lastly, we define K, an open
subset of the ambient space which together with dK
comprises the admissible region for the motion of Q.
The remainder of the ambient space is then con-
sidered to be occupied by the rigid obstacle. We
assume that K is invariant with respect to time.

We next consider a scalar-valued gauge function h,
defined on the spatial domain, which has the property
that # <0in K, A =0 on JK, and 4 > 0 outside of
I§. It is assumed for the present that the set KK is
convex. While convenient for the development which
follows, this restriction is not a major consideration
in actual implementations, as we shall later see. The
specific form of the gauge function is not crucial to
what follows; we simply emphasize that for any
admissible point x of the spatial domain, h <0.

With this notation in hand, we are ready to state
the contact conditions:

For all XelI, the admissible deformation

x = (X, ?) satisfies:
h(x) <0, 2.LD
ty=—n(x)-PN>0, 2.1.2)
ty(x)h(x) =0, (2.1.3)
t;=PN+tyn=0, (2.14)

where

P:=first Piola—Kirchhoff stress tensor
n:=outward normal in the current configuration
N:=outward normal in the reference configuration.

It is noted that eqn (2.1.1) represents the impene-
trability condition, (2.1.2) represents the restriction
that the normal component of surface traction be
compressive (note the sign change in the definition
of t,), and (2.1.3) is a condition ensuring that #y

Fig. 1. Notation for the obstacle problem in finite deformations.
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may only be nonzero when h(x)=0. Equations
(2.1.1)~(2.1.3) are therefore recognized as the familiar
Kuhn-Tucker conditions. Equations (2.1.4) merely
asserts that no friction is present.

Accompanying the contact conditions are the
remainder of the governing equations

DivP+f=0inQ,
PN=tonr,,

o=¢onl,, 2.2)
where I', and I', are the portions of dQ on which the
traction and motion, respectively, are prescribed.

Remark 2.1. In this statement we make no restric-
tion on the constitutive law governing P. Thus, this
statement of the problem allows for either elastic or
inelastic response.

We next consider the variational formulation of
this problem. In doing so, however, we first remark
that admissible variations of the motion are con-
strained by the contact conditions. This restriction
takes the form

dpX) n(e(X))<0 on I if h(pX))=0, (2.3)

where 8¢ (X) is an admissible variation of the defor-
mation (implying ¢ =0 on I';).
Keeping this fact in mind, we convert the strong

form of the problem (2.2) into the weak form in the
usual manner to obtain

f P-Grad[éw]dﬂ—j f- 60 dQ
] [

—f t'-a(pdr—ft-afpdr=o, (2.4)
Iy r

which must hold for all d¢ with d¢ =0 on I,
satisfying (2.3).

We assert that (2.4) is difficult to work with in
a finite element setting precisely due to the con-
straint (2.3) on the admissible variations. For this
reason, we shall consider Lagrange multiplier and
penalty methods in the next subsection. However, we
can further investigate the nature of the variational
problem by noting

t-d¢p=—ty0¢0-n on T. .5)

Use of (2.3) together with (2.5) leads to

'[ t-6p dI >0, (2.6)
r

which gives

G(p,d¢)= f P - Grad[é¢] d2
Q
—J f'éwdﬂ—Jl t-dpdl 20, 2.7)
4] Iy

which again must hold for all d¢ such that 3¢ =0 on
I, and (2.3) is satisfied.

It is noted that eqn (2.7) is a variational inequal-
ity precisely of the type considered, for example,
in {13].

2.2. Lagrange multiplier and penalty formulations

In order to remove the rather inconvenient restric-
tion on the variations given by (2.3), we first consider
a formulation in which 4, an additional variable, is
introduced over I'. We demand that the following
conditions be satisfied over I'

iy 0,
h(e(X) <0,

Avh(e(X)) =0. 28

If one considers (2.2) to define the strong form of
the boundary value problem, subject to constraints
(2.8), the following variational equations, corre-
sponding to the Lagrange multiplier formulation,
result

G(o,d9) + j Ande -n(e(X))dr =0, 29)
r
L [bAxMr(@(X)dr =0,  (29.1)

which must hold for all admissible d¢ and 64, where
84, 2 0, is the variation of 4.

We note that the variation of ¢ is unconstrained by
the contact conditions in this case. However, this
comes at the cost of an additional variable and
indefinite structure of the resulting matrix problem.
Although not insurmountable, these difficulties mo-
tivate the consideration of a penalty regularization.

We begin this development by defining g, a func-
tion over the spatial domain which shall hereafter be
referred to as the gap function (see Fig. 2). For any
point x in the spatial domain, we define g(x) as
follows:

g(x)=lx — X|| = min,y, collx—yl. (2.10)

Expressed in words, X is the closest point projection
of x onto the admissible region, and its determination
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K (g(z) = 0)

Fig. 2. Definition of the gap function on the spatial
domain.

in turn defines g(x). Note that if x is admissible,
X=x. As a consequence of this construction,
g(x) 20 is nonzero only if x is inadmissible.

Remark 2.2. This definition of the gap function
demonstrates why the assumption of convexity of K
was made. As we shall see in a moment, the case in
which x is inadmissible is the only case of interest
with regard to the penalty regularization. If the
admissible region were not convex, the definition of
% could be nonunique. In practice, we are really only
concerned with Jocal convexity, and steps can be
taken in the algorithmic setting to remedy the situ-
ation when even this weaker condition is violated.
See Appendix A for further elaboration.

Remark 2.3. Tt is important to note that although
the gauge function h may be defined such that it is
identical to gap function g in the inadmissible region,
in general this need not be the case. For example, one
might conceive of situations in practice where it is
advantageous to use a gauge function 4 distinct from
g in order to define the searching algorithm which
detects contact. Subsequently, g could be used in the
finite element equations to characterize the contact
conditions once contact is detected. In the present
case, the introduction of g converts the inequality
constraint (# <0) to an equality constraint (g =0)
on[l.

With this definition in hand, the penalty regulariz-
ation is achieved by the replacement of eqns (2.8) by
the following

Av=¢yg(e(X)) on T. 2.11)

Remark 2.4. ¢y is known as the penalty parameter.
As ey— 00, g —0 and A is bounded. Thus, as ¢y—c0,
the constraint is increasingly well-satisfied.

Remark 2.5. Note that (2.11) is essentially a
(Yoshida) regularization. The structure of the regu-
larization here is remarkably similar to that of
the viscoplastic regularization used in treatments
of rate dependent plasticity (see [7] for further
discussion).

The variational equation for the penalty method
is now easily obtained by substitution of (2.11)
into (2.9.1)

G(o, 5¢)+j evg(e(X))oe -n(e (X)) dI' =0, (2.12)
r

which must hold for all d¢ such that dp =0 on
I',. We note that (2.12) now only involves the
variable ¢, and no constraints of the nature of
(2.3) are present on the admissible variations. These
facts make (2.12) extremely attractive for finite
element implementations. However, we know that
the constraint #(¢ (X)) <0 on I is satisfied only in
the limit as ¢y—o0, and we further recall the pre-
viously-discussed difficulty that ill-conditioning in-
creases as ¢y increases. It is these considerations
that lead us to turn to the method of augmented
Lagrangians.

2.3. Augmented Lagrangian formulation

The concept of the method is remarkably simple.
Starting with the variational equation (2.9.1), we
append a penalty regularization which renders the
following

G(o, 00) + J (Ay + eng (@ (X))o n(e (X)) dI' = 0.
r
(2.13)

We note that (2.13) is a penalization of the Lagrange
multiplier problem which is exact if the multipliers
are the correct ones [corresponding to the solution of
(2.9.1)]. We can see this as follows. If A is the correct
multiplier, then g =0 on I'. Thus, in the case where
the multipliers are correct, (2.13) attains exactly the
same form as (2.9.1), making it an exact penalization
(see [19]).

The crucial idea in the method of augmented
Lagrangians is to regard 2, as a fixed current estimate
of the correct Lagrange multiplier, and solve the
problem

G(o,d0) + f R+ eng @ (X))
r
3 n(e(X))dl =0, (2.14)

where 1§ > 0 denotes the fixed estimate of the correct
Ay. The superscript ()® reflects the fact that the
search for the correct 1y is an iterative process. One
notes that the term (A¥ + eyg(0(X))) plays the role
of the exact Lagrange multiplier in (2.14). One would
suppose, then, that it is a good approximation to
the correct multiplier, which motivates the update
formula

A%‘+l)=</1%‘)+€1vg>- (215)
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Remark 2.6. () is called the Macauley bracket,
defined as (x) = {{x + x|l Its appearance in (2.14)
is consistent with the interpretation of A® + ¢yg as
the normal contact pressure, which must be positive
[see (2.1.2)].

Remark 2.7. A slight change in the definition of
g is made at this juncture, which accounts for the
slight difference in form between (2.13) and (2.14).
According to the definition of g made in the context
of the penalty regularization, g > 0 is nonzero only
in the inadmissible region. The effect of this, as
can be seen in (2.12), is that a point of I" only has
a contribution to the integral over the contact sur-
face if its current mapping lies in the inadmissible
region. Examination of (2.14) will show that this
is not necessarily the case in the augmented Lagran-
gian formulation due to the presence of Ay. In
fact, one observes from (2.15) that if the old defi-
nition for g were retained, the update formula for
Ay would dictate that A%*? be unamended (and
perhaps nonzero) even if x were admissible. Thus, in
order to conform to the augmented Lagrangian
recipe for treatment of inequality constraints essen-
tially due to Rockefeller[3] (see, e.g.,[19,5]), we
now allow g(x) to be a signed quantity, with magni-
tude equal to the minimum distance between x and
dK. We take g(x) to be positive if x is inadmissible,
and negative otherwise. With this definition, it is
noted that g is now a suitable choice for the gauge
function A, and it is this definition of g that is used
in (2.14). Since this intricacy in the definition of g
is a fairly minor point in practice, the old notation
for g will be retained, but the reader should bear
in mind the changed interpretation in the current
context.

It is important to notice that (2.14) is a nonlinear
equation due to the contact conditions, geometric
nonlinearity, and (perhaps) inelasticity. In general,
then, it will be necessary to solve (2.14) in an iterative
manner. One can easily envision two different sol-
ution schemes; one in which update (2.15) is per-
formed concurrently with the iterations necessary to
solve (2.14), and another in which (2.14) is solved
completely, before update (2.15) is performed. In this
latter scheme, (2.14) and (2.15) are solved recursively
(and completely separately) until convergence is at-
tained. The first approach, which we shall denote
simultaneous iteration, is the one considered for sol-
ution of incompressible Navier—Stokes equations by
Fortin and Fortin[21], and has subsequently been
considered for frictionless contact by [10] and by
[9]. The second approach, which we shall refer to
as nested iteration, is more closely related to
ideas advanced independently by Hestenes[l] and
Powell [2], and will be the approach focused upon in
this paper. Although both techniques have advan-
tages, the nested scheme has the attractive property
of preserving quadratic convergence of the inner loop

Table 1. Nested augmented Lagrangian algorithm for
frictionless contact

1. Initialization:

set AP = (Ay+ eyg) from the last time step,
=0,

2. Solve (using a nonlinear solution strategy) for ¢®:
Gle®, d9) + J. AR + eng (0 DX
r

So -n{e®(X))dr.
3. Check for constraint satisfaction:

IF (g{x) < TOL for all xey) THEN
Converge. EXIT.
ELSE
Augment:
ATV = AR + eng(0®))
kek +1
GOTO 2.
ENDIF

[i.e., solution of (2.14)] when a Newton-Raphson
solution scheme is utilized.

Remark 2.8. In the schemes considered in this
paper, ¢y is fixed throughout the procedure (although
this need not be the case). In practice, ¢y is chosen to
be as large as practical without inducing ill-condition-
ing. The advantage of the current treatment over the
penalty method is that satisfaction of the constraints
can be improved even if ¢y is undersized through
repeated application of the augmentation procedure.
Since these augmentations only change A%, which is
fixed with regard to solution of (2.14), no additional
ill-conditioning of the resulting matrix problem is
induced.

To close the section, we present the nested
augmented Lagrangian algorithm for frictionless
contact in Table 1.

3. AUGMENTED LAGRANGIAN TREATMENT OF
CONTACT WITH FRICTION

In this section we examine the extension of the
framework developed in Sec. 2 to accommodate
frictional effects. In order to simplify the presen-
tation, we shall limit the discussion in this section
to the rigid obstacle problem in small deformations.
The ideas developed herein, however, are readily
extendible to large deformations and contact of mul-
tiple deformable bodies, as shall be demonstrated in
Sec. 4 and in the appendices.

3.1. Statement of the frictional obstacle problem in
small deformations

We now consider the deformation of a body con-
strained by a rigid, immovable obstacle, but assume
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that the displacements of points in the body are
very small. We denote points in the body Q (an
open subset of either R? or R%) as x (see Fig. 3). As
in Sec. 2, we define K as the interior of the admissible
region, and we designate I' as a portion of 0Q
containing all prospective points of contact. We
denote the displacement field over Q by w, and
mention that although u is in general time dependent,
the time argument will be suppressed except when
needed. Outward normals to the body Q shall be
denoted as n(x).

We shall state the normal contact conditions
slightly differently in the current context than was
done earlier by a direct appeal to the concept of a
(signed) gap function. Suppose a point x in I' has an
an initial distance g, = 0 from its closest point on d K
(we assume all points x are in the admissible region
initially). Then g, is a scalar-valued function defined
over I'. The contact conditions in the linear theory
are now given for all xe I by:

g)=u-n—g,(x) <0,
ty(up=—n-o(n =0,

ty(w)g(u) = 0. 3.1

Analogous to (2.2) in the previous section, the state-
ments of local momentum balance and boundary
condition prescription take the form

dive +f=0inQ,
en=tonrl,,

u=idonrl,. (3.2)

Remark 3.1. Again, we make no restrictions on the
constitutive law governing ¢, except that it must be
within the scope of the infinitestimal theory.

We next state the form of the Coulomb friction law
presumed to hold here. We define

tr(u):=—on—tyn

and uy;=u—(u'mn on I 3.3)

K

Fig. 3. Notation for the frictional obstacle problem in small
deformations.
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as the tangential components of the traction (note
the sign change) and displacement, respectively.
This provides the necessary notation to define the
Kuhn—Tucker conditions for Coulomb friction

D:=|tr| — uty <0, (3.4.1)
fp=¢ 5% o, (3.4.2)

£>0, (3.4.3)

E6=0 (3.4.4)

We recognize (3.4.1) as the familiar Coulomb fric-
tion condition, with u >0 being the coefficient of
friction. Equations (3.4.2) and (3.4.3) mandate that
slip occur in the direction opposite that of the applied
tangential traction, and eqn (3.4.4) enforces the con-
dition that slip may only occur when ¢ = 0, i.e., when
fItrll = uty. If ||t; ]| < uty, then perfect stick occurs,
and u;=0.

Remark 3.2. In interpreting (3.4.1)(3.4.4), the
analogy of rigid—perfectly plastic response from the
theory of plasticity may prove useful. Here, @ plays
the role of the yield criterion, and i, plays the role of
the (deviatoric) strain rate. Note that all of the
deformation that occurs is inelastic.

Remark 3.3. An important distinction between the
current formulation and usual treatments of metal
plasticity is also noted. We remark that flow rule
(3.4.2) is non-associated since there is no irreversible
slip allowed in the normal direction, as would be
mandated by using & itself as the flow potential
(see [15]). Thus, the extraction of a maximum dissipa-
tion principle appears impossible except in the case of
ty = constant. In this sense, the current formulation
bears a close resemblance to a Drucker-Prager type
of constitutive law.

To construct the weak form, we first note that the
admissible variations are again constrained

Su-n<OonT ifg(u)=0. (3.5

Proceeding in the usual manner then yields the
following

G(u, du)= J a - grad[éu} dQ
Q

—'[ f'5udQ—J t-dudr
o r,

=j [=tyn-Su—ty-Su]dl  (3.6)
r
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which must hold for all usuch thatdu=0on T, and
(3.5) is satisfied. We note that ¢, and t, in the
right-hand side of (3.6) are determined through
eqns (3.1) and (3.4.1)(3.4.4).

As was the case in frictionless contact, (3.6) is
difficult to work with due to restriction (3.5). This
motivates the use of a penalty regularization.

3.2. Penalty regularization of the frictional obstacle
problem

One could follow the procedure suggested in
Sec. 2 and introduce independent variables Ay and
Ar on the frictional interface I This procedure,
corresponding to the Lagrange multiplier treatment
of the frictional obstacle problem, would result in

G(u, Su) =f [—Ayn-du—Ay-du;ldll (3.7)

subject to, for all xe I’

g <0 (3.8.1)
Ay=0 (3.8.2)

ing=0 (3.8.3)

@ = i) — piy <O (3.8.4)
u,=¢a%¢ (3.8.5)

£>0 (3.8.6)

(=0 (38.7)

This approach, while viable, suffers from possible
indefinite structure in the resulting matrix problem.
We thus introduce a penalty regularization in which
the Kuhn-Tucker unilateral constraint conditions
(3.8.1)+(3.8.3), and the slip rule (3.8.5) are replaced as
follows:

ty=ey<g) (3.9.1)

® =ty — pty <0 (3.9.2)
i 1

b= 5@ = i (3.9.3)

£20 (3.9.4)

(b =0 (3.9.5)

We note that (3.9.1) is an identical treatment of the
normal contact constraint as that given in (2.11),
keeping in mind that the appearance of the Macauley
bracket in (3.9.1) is due to the fact that g is now a
signed quantity. Equation (3.9.3) is a penalization of
the constraint suggested by (3.8.5), and is satisfied
exactly only in the limit e — 0.

Remark 3.4. Some authors (see, for example, [18])
have felt it convenient to interpret ¢, as a physical
stiffness corresponding to the stiffness of junctions at
the interface. In this interpretation, (1/e;) ty is the
elastic part of the relative velocity at the interface. In
our current treatment, however, we wish to allow no
such elastic motion on the interface. Thus, in the
context now being considered, ¢ is best thought of
as strictly being a penalization, induced mathemat-
ically to ensure that the slip rate equals the relative
velocity.

We now wish to consider the integration algorithm
necessary to solve equality (3.6) (with variations no
longer constrained by the contact conditions), where
ty and t; are given by (3.9.1)3.9.5). In general,
we solve this problem incrementally over the time
interval

N
[0’ T] = L=)1 [tn’ tn+l]'

In each time increment, we start with (3.6) being
satisfied at time ¢#,, and wish to enforce satisfaction of
(3.6) at 1,,, subject to laws of evolution (3.9.1)-
(3.9.5). We shall utilize a backward Euler integration
scheme to integrate equations (3.9.1)-(3.9.5) and
employ a return mapping strategy; such approaches
are now well known and have been used extensively
in the theory of plasticity (see [7]). Extension of these
ideas to the frictional contact problem is straightfor-
ward and has been discussed in detail in [17] and [18].
The following variational problem results, where
{u,, ty,, t;, } are given at ¢,

G(un+,,6u)=J [—ty,, mwéu—t,  -dus]dl,
r
(3.10)

where the right-hand side of (3.10) is evaluated by
setting

ty, . = €n<g8(Wy 1)) (3.11)
and by defining the trial ‘stick’ state as
2 =t +er(ug, ,, ~ug,),
P = ItF | — pty, - (3.12)
The return mapping is completed by setting
. 7
tr, =t — AL — (3.13)
leg I
where
0 ifer <0,
Al ={pu ) (3.19)
L if gyl 50,
€r +
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A simple calculation shows that the above algor-
ithm requires that |t || =puty, , if &7 >0, and
tr,, =0if ¢, =0

We note, however, that just as in the case of
frictionless contact, the kinematic constraint for parts
of I' that stick (the perfect stick requirement) is only
accurately satisfied as e¢;— o0, which engenders ill-
conditioning. Thus, as was done in Sec. 2, we shall
consider application of the method of augmented
Lagrangians to frictional contact.

3.3. Augmented Lagrangian formulation

We begin discussion of the augmented Lagrangian
formulation for frictional problems by rewriting the
equation to be solved for contact problems involving
friction

G(u,+1,5u)=J [—ty,, mou—ty  -dug]drl.
r
(3.15)

In the present context, we recognize that zy and
t; must be redefined such that they include con-
tributions due to both the penalization and the
Lagrange multipliers. In the case of #, this is easily
performed by using the augmentation scheme already
discussed in Sec. 2. In view of eqn (2.14) we thus
write
ty={Ay+€xg>. (3.16)
In the case of t;, we turn our attention to eqn
(3.9.3). We recall that this equation amounts to a
penalization of the constraint requiring the computed
slip rate to equal the tangential velocity. In the case
that @ < 0, this equation penalizes the constraint that
i, = 0. In the present case, we alter (3.9.3) such that
only the penalized part of t, appears on the right
hand side. Assuming that t; decomposes additively
into its penalty and Lagrange multiplier parts, and
denoting the Lagrange multiplier part of t; by i, we
write down the augmented Lagrangian statement of
the friction law

ty={Ay+exg>, (3.17.1)

@ = ||t;|| —uty <0, (3.17.2)
) ] 1.,

iy — ca—t—rcp =-€—T(tT— i), (3.17.3)

£20, (3.17.4)

{d=0. (3.17.5)

Again we are interested in integrating eqns
(3.17.1)(3.17.5) between ¢, and ¢, , in the algorith-
mic setting. Application of a backward Euler scheme
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to (3.17.3), and subsequent utilization of the return
mapping scheme alluded to previously gives

o =LAn, . eng@,,)>  (318.1)
te
tr,,, =tr, +Air+ er(AuT— A¢ i t,;,,*'”>, (3.18.2)
T +1
where
AlT = }'Tn +1 }'Tn’
Auy= ur, ., —Uur,
7, =t, +Adr +er Aup, (3.19)

and A&, the consistency parameter, is given by

0 ifdriE <0

_ trial
A =12 if dtial > 0

€r

(3.20)

with @12, simply being D(tF |, 1y ).

In examination of these expressions, we note that
tr, is in practice the converged sum of the penalty and
Lagrange multiplier contributions from the last time
step, and is completely fixed with regard to determi-
nation of the state at ¢, ,. We further assert that is
the context of nested augmented Lagrangian schemes,
Ay is fixed with regard to the solution phase (as is
Ay). Thus, the use of equations (3.18.1)+(3.20) in the
course of solving (3.15) constitutes determination of
t;, ., and ¢ty  within a displacement-driven frame-
work just as in the case of the normal penalty
regularization, with the appropriate consideration of
the multiplier contributions.

Remark 3.5. 1t is noteworthy that an increment of
Ar, Ay, appears conveniently in (3.19) rather than
the multiplier itself. This seems intuitively reasonable
due to the fact that the constraint involved here is
expressed in terms of time derivatives of quantities,
rather than in terms of undifferentiated quantities (as
is the case with the normal contact constraint). It is
this increment in the multiplier, rather than i , ,
which is actually stored and augmented in the im-
plementation proposed here.

In order to complete the description of the algor-
ithm the update formulas must be prescribed. The
treatment of the normal contact is identical to that
already discussed in the frictionless case, and the
update formula for 4y is given in (2.15). In order to
determine the update for AA; we first note that if the
multipliers are the correct ones, 47, ,, =t;, and
Ar, =t;. Then t;  =t, + Aly, with Ad; now de-
noting the exact change in the multiplier from ¢, to
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t,,,. Comparison with (3.18.2) suggests the proper
update formula for the tangential multipliers

tnal(k)

AL D = AP + ¢; <A"(715) AL® “tzf.f())") (3:21)

Tn 41

where Auf, A¢®, and t£*“ are given in (3.19) and
(3.20), computed using u®, . It is important to note
that this update is done (with a return mapping, if
necessary) so that the Coulomb condition is satisfied
by A%*Y and A§%D.

As was the case in frictionless contact, the solution
of (3.15) involves solving a highly nonlinear set of
equations. As a result, the issue of whether simul-
taneous or nested iteration should be used becomes
important. We shall herein consider only the tech-
nique of nested iteration, but remark in passing that
schemes based upon simultaneous iteration are easily
conceived in the present framework. Summarizing the
information discussed above, we present the (pri-
mary) nested augmented Lagrangian for frictional
contact contact in Table 2.

Remark 3.6. Note that as a consequence of the
nested approach, the multipliers are completely fixed
during the solution phase. Transmittal of information
from the penalty terms to the multipliers occurs
during the augmentation procedure, creating new
‘best estimates’ of the correct multipliers. In such a
way, we see that in the first augmentation iteration
during a time step, all information about the change
in contact tractions during the step is contained in the

penalty terms. As augmentations continue, however,
this information is transferred into the multipliers
via the augmentation procedure, so that when con-
vergence is achieved the multipliers are the con-
tact tractions, while the penalty terms are essentially
Zero.

Remark 3.7. Note that the conditions for con-
straint satisfaction given in step 3 of Table 2 amount
to checks of the impenetrability condition and the
perfect stick condition (satisfaction of the Coulomb
condition is guaranteed by the construction of t;). In
a computational environment, one could preset the
indicated tolerances and check these constraints auto-
matically in the manner indicated. In practice, it is
convenient (particularly in the case of interactive
computing) to simply continue the augmentation
process until successive augmentations yield little or
no discernible change in the solution.

We note once more that the advantage of the
algorithm lies in the fact that ¢y and ¢; (which are
considered to be fixed) are chosen as large as possible
without inducing ill-conditioning. Improvement of
constraint satisfaction is attained through the aug-
mentation procedure, without significantly aitering
the conditioning of the matrix equations emanating
from (3.15). Furthermore, if the solution in step 2
of Table 2 is carried out in a Newton—Raphson
scheme, utilizing a consistent linearization of the
equations, the rate of convergence within step 2 will
be asymptotically quadratic, as in the case of the

Table 2. Primary nested augmented Lagrangian algorithm for frictional
contact

1. Initialization:

set AQ = Ay +eyg) from last time step,

AP =0,
k =0.

2. Solve (using a nonlinear solution strategy) for ul*) ;:

G@u®.,,éuw) +'[ KAP + e4g@®, | )Dou-n+t, (¥ ) du;)dr =0
r

where t(u®), ) is given by (3.18.1)~(3.20) using AP for Ai,.

3. Check for constraint satisfaction:

IF (g(u®, )< TOLLI for all xe ' AND |ug, ,,

—ug, || <TOL2

for all xeTI such that |t;| < u({eyg + l,,,)) THEN

Converge. EXIT.

ELSE
AUGMENT (for all xeT'):
AP =0 + eng @ )

ALP + e AUP if it +Ai.§}‘)+e,-Au§P || < pal+»

AL = 7T MM 4 ¢ Aup
lItr, + ALP + e, AufP |
ke<k +1
GOTO 2.
ENDIF

pAg+ Y — ¢, otherwise

CAS 42/1—H
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penalty regularization. In fact, one further notes that
if no augmentations were performed in any time step,
the method reduces to the penalty regularization.

Despite these advantages, we assert that solution of
(3.15), due to return mapping (3.18.1)—(3.20), inherits
a somewhat unsavory characteristic of the penalty
regularization; namely, nonsymmetric tangent stiff-
nesses are obtained in the consistent linearization of
(3.15) in the case where part of I slips (see, e.g., [18]).
This nonsymmetry arises from linearization of the
return map, so one alternative might be to eliminate
the return map in the solution of (3.15). This motiv-
ates the consideration of an alternative scheme for
augmented Lagrangian treatment of contact.

The variation of the algorithm which we shall
consider resembles, in some ways, algorithms dis-
cussed in [13], and presented in more detail in [20] and
[22]. In these treatments, a return mapping is not
performed using the current normal tractions, thus
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eliminating the troublesome nonsymmetric nature of
the return map emanating from the nonassociated
flow rule discussed earlier. Instead of this return
mapping, the Coulomb condition is enforced with
respect to a previously-obtained estimate of the nor-
mal tractions, which is held fixed in the solution
phase. Based upon the solution to this problem, these
algorithms compute new estimates of the normal
tractions, which are then used as data in order to
define the friction law for the next solution phase.
The key idea of these algorithms is that strict enforce-
ment of the friction law is not made in the solution
phase alone; a second step is utilized to provide a
correction which better enforces the Coulomb cri-
terion. In effect, these algorithms render the same
results as the algorithm discussed in the previous
subsection, since they are based on a penalty regular-
ization. They render symmetric equations, but at the
cost of a two-step algorithm which is iterative.

Table 3. Alternative (symmetrized) nested augmented Lagrangian
algorithm for frictional contact

1. Initialization:

set AP = {1y +¢eyg) from last time step,

Aﬂa(,‘-)) =0,
rgujck =T,

2. Solve (using a nonlinear solution strategy) for u) :

Gy, ,,du)+ J (AR + exg @ )0u n+ t,u¥)  dusldr =0
r

where

t, + AP + e AP ifxe ¥,

®) y— ;
truas 1) {A}.‘,’f’ + t7, otherwise
3. Check for constraint satisfaction:

IF (g},

<TOLI for all xe I’ AND |u,, ,, —uy, | < TOL2

for all xe T such that |t;| < uleyg +A¥> AND
[trl < (1 + TOL3)uleyg + 4§D for all xeI') THEN

Converge. EXIT.
ELSE

Augment and update I, (for all xeT'):

A =R+ CNg(“E.kll»

IF (Jt;, + AAY + e, Au || < uA%+Y) THEN

AAEHD = AAP 4 ¢; Augp),

ket 1
xe§LY

ELSE

tr, + AAP + e; AuP

AR+ =

x¢ Ly
ENDIF
k<k +1
GOTO 2.
ENDIF

ity + ALY + e, Au |

Wt
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In the algorithm we now consider, we wish to
exploit the idea that the presence of augmented
Lagrangians mandates an iterative procedure
already, without regard to satisfaction of the Cou-
lomb criterion. Thus, we consider an algorithm which
will cause the solution phase to involve only symmet-
ric equations, by eliminating the return map
altogether from this phase. We then use the augmen-
tation phase not only to augment the multipliers, but
to enforce the Coulomb criterion as well. We do this
by defining I, , a portion of I' which is treated in the
solution phase as being the part of the interface where
perfect stick occurs, without regard to the current
tangential and normal tractions. The remainder of I’
is treated as a slip region, and has fixed tangential
tractions which satisfy the Coulomb condition
defined by the current Lagrange multiplier Ay. In the
first iteration in a given time step, 'y is taken to be
all of I' (i.e., the entire interface is assumed to stick),
and further amendments to Iy, are made in the
augmentation phase, according to the current state of
the multipliers. Thus, the Coulomb condition is only
enforced in the augmentation phase, which causes the
equations of the solution phase to be symmetric. The
complete algorithm is given in Table 3.

We reemphasize that the motivation for this
alternative algorithm is to symmetrize the equations.
It does not emanate from the penalty regularization
as naturally as does the primary algorithm, but
exploits the iterative nature of the augmented
Lagrangian process in the manner in which it
enforces the Coulomb friction conditions. More

will be said about the performance of these two
approaches in the next section.

4. NUMERICAL EXAMPLES

In this section we present some numerical examples
intended to demonstrate the utility and performance
of the proposed augmented Lagrangian treatment of
frictional contact. In these simulations, the finite
element code FEAP was utilized, which has most
recently been described in [23). The discretization and
subsequent implementation of the contact conditions
employed in these examples were performed within
the framework discussed by [18], and is discussed in
more detail in Appendices A and B. The important
point to note is that the ideas discussed in the
previous sections are directly applicable to problems
involving finite-deformation response and contact of
multiple deformable bodies, as is demonstrated
through the following numerical examples and the
Appendices.

4.1. Sliding of an elastic block

As a first demonstration of the performance of
the techniques discussed in this paper we consider
the problem of an elastic block sliding against a
rough rigid foundation. This problem, which has
been considered previously by [22] and [18] is rather
simple and idealized, but serves to highlight the
manner in which the proposed algorithms work in
practice.

py = —200
p. =60
ﬁ‘r
|
T 1 T 77
INEENNEN
11T 1 1 17
NN NNNRN
RN

Fig. 4. Undeformed and deformed geometries for the elastic block problem.
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300 r : . r . : .

I Normal pressures, penalty solution ——f— 1

250 Tangential stress, penalty solution ~—{— n

I Normal pressures, 4 augmentations — - — i}

200 - Tangential stress, 4 augmentations — ¥ — 7

150 - -
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Fig. 5. Computed contact tractions for the elastic block problem, for the standard regularization (no
augmentations) and the primary augmented Lagrangian algorithm (four augmentations).

In this problem, an elastic block is simultaneously
pushed into the foundation and pulled along it,
resulting in frictional sliding response at the inter-
face. The finite element discretization and computed
response are to be found in Fig. 4. The block, which
has an elastic modulus of 1000 and Poisson’s ratio of
0.3, has been discretized using 200 four-node linear
isotropic elastic elements. A Coulomb friction law is
presumed to hold between the block and foundation,
with u = 0.5. As reported in [18] the solution to this
problem may be obtained in only one load increment
when using the standard penalization of the Coulomb
friction law. To conform to the solution of these
authors, no frictional stress is allowed to develop at
the first and last nodes of the contact surface.

In examining this problem the first calculation
done was one in which the standard penalty method

was used, with ¢y =10® and ¢;= 10°. These values
exactly correspond to those used by [18] in their
simulation. The computed contact tractions on the
frictional interface are shown in Fig. 5, where the
results of a calculation using these same penalty
values but employing the (primary) augmented
Lagrangian algorithm are also shown. It is to be
noted that these tractions are not the nodal projec-
tions of the element stresses, but are merely the nodal
reactions normalized by the element lengths. This
characterization of the contact tractions was per-
formed to conform to the technique used by the
above authors.

It is to be noted that these results are in accord-
ance with those reported by {22] and [18). It is
also apparent from Fig. 5 that the tractions remain
essentially unchanged when the augmentations are

45 v T v T . : i
40 No augmentations---- & - - - _
- 1 augmentation — —0 — - J
3 2 augmentations — - <~ - — 4
[ 3 augmentations — -§- — ..
30 4 augmentations ——f—— -
£ 2 ]
Q20 ]
i _
A 15k ]
10 =
5 0 -
0 B —
E-3 5 - ) | ‘ . ) . ‘ ]
0 2 3 4

x

Fig. 6. Convergence of the tangential displacements on the frictional interface for the elastic block
problem, using the primary augmented Lagrangian algorithm.
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-50 | E
i Pressure, no augmentations: - A- -
-100 - Pressure, 2 augmentations — ¢— N
[ Pressure, 4 augmentations —¥— .
-150 | Tangential stress, no augmentations- - 4&- - -
r Tangential stress, 2 augmentations — ¢— L
-200 | Tangential stress, 4 augmentations —F— A7
2250 " 1 n 1 1 1
0 1 2 3 4

X

Fig. 7. Convergence of the contact tractions for the elastic block problem, using the alternative augmented
Lagrangian algorithm.

performed, suggesting that the penalties used are
adequately enforcing the constraints. Although for
practical purposes this is certainly the case, it is
instructive to also examine the convergence of the
tangential displacements on the interface as the aug-
mentations are performed. This information is
reported in Fig. 6.

As one can see from the figure, the augmen-
tations actually produce a noticeable change in
the tangential displacements. The curve correspond-
ing to the penalty solution (no augmentations)
is seen to include nonzero nodal displacements
where stick is to occur, amounting to a slight

violation of the tangential constraint. As can
also be seen from the figure, however, only one
augmentation is required to correct this situation,
with subsequent augmentations producing no dis-
cernible change in the displacements on the inter-
face. Although this is a fairly minor point for
this problem, this example shows that successive
applications of the augmentation procedure do
indeed improve satisfaction of the constraints. In
the final converged solution, the stick and slip
regions of the interface are easily discerned from
Fig. 6, with the last five nodes slipping and the
remainder sticking.

45 v T Y T : ' ;
40 + No augmentations -« - - & - - - -
i 1 augmentation —~ - — - J
3 - 2 augmentations — - <- - — 6 .
[ 3 augmentations — ¥ — I
30 4 augmentations ——&— I-I =
L f j
T 25| T
:E: I -
g 20t ]
e - ]
a 1B _
10 .
5 .
0 4
E-3 s } ) 1 ‘ . ‘ 1 ‘ 4
0 1 2 3 4

x

Fig. 8. Convergence of tangential displacements on the frictional interface for the elastic block problem,
using the alternative augmented Lagrangian algorithm.
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This example is also convenient for examination
of the alternative augmented Lagrangian algorithm
discussed in Sec. 3.3. Figures 7 and 8 show the
convergence of the contact stresses and tangential
displacements, respectively, as the result of augmen-
tations performed according to the alternative algor-
ithm (using the same penalties as above). Note that
although the early solutions are clearly inadequate
due to the initial assumption of stick on the entire
interface, the algorithm converges quite rapidly and
after four augmentations produces the correct result.
The advantage of this algorithm in the current situ-
ation is that due to the fact that the block is linear
elastic and the contact area does not change from
iteration to iteration, the elimination of the return
map from the solution phase makes the problem
entirely linear, requiring only one iteration for sol-
ution for each augmentation. Solution of either the
standard regularized system or the equations of the
primary augmented Lagrangian algorithm, on the
other hand, are nonlinear due to the return map-
ping present in the frictional response. Thus, for
problems of this type, the alternative algorithm has
a strong appeal, and has the advantage that upon
convergence, the contact constraints will be essen-
tially exactly satisfied.

4.2. Upsetting of a ring

We next consider the problem of the upsetting of
a ring. In doing so, we wish to further explore the
ability of augmented Lagrangians to correct underpe-
nalized solutions, as well as to explore the perform-
ance of the method in a finite deformation context.
The problem is displayed pictorially in Fig. 9. In this
axisymmetric problem, a ring of inner radius 10,
outer radius 20, and initial height 20 is compressed by
a rigid plate to 80% of its initial height. Due to
the symmetry of the problem, only one quarter of

L ] 1
L I ]
a) Undeformed mesh
L L 1
[ I ]
b) Frictionless solution
L 1 ]
1T s
T
181
ll ITL }
Ty 11i
I
il
L ] ]

c) Frictional solution, 4 = 0.4

Fig. 9. Initial and deformed geometries for the ring up-
setting problem, showing both frictionless and frictional
solutions.

the mesh shown in Fig. 9 is actually modelled. The
ring is discretized using four-node finite strain elasto-
plastic elements of the type discussed in[24], and
has the following material properties: K = 166670,
G =76920, 0,=300, and H (linear hardening
rate) = 700.

As indicated in the figure, the problem has been
run with both frictionless contact and Coulomb
friction assumed between the sample and the rigid
plate. It is seen that the response in the frictionless

65
I
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3 L
3 40
5 L Nominal Case, penalties=1.d7 —&——
" Penalties=1.d5, no augmentation — O — ]
30 -
L Penalties=1.d5, 1 augmentation/step — - ¢~ - —
25 ’d Penalties=1.d5, 2 augmentations/step — —  — ~ 7
E4 r 1
20 " 1 " 1 " 1 :
0 0.5 1.0 1.5 2.0

Loading head displacement

Fig. 10. Convergence of the load-displacement curve for the frictional ring upsetting problem, using the
primary augmented Lagrangian algorithm.
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Fig. 11. Convergence of the tangential nodal reactions on the contact surface at the final state for the
frictional ring upsetting problem, using the primary augmented Lagrangian algorithm.

case is completely homogeneous; no barreling of the
sample occurs and the net movement of the material
comprising the ring is outward. In the case with
friction, however, barreling of the sample is apparent,
and material flows both outward and inward during
the process. It is seen then that the introduction of
friction in this problem has an important effect upon
response, and thus proper enforcement of constraints
on the interface is important for a correct solution. It
is thus the frictional case (with u = 0.4) upon which
we shall concentrate in assessing the augmented
Lagrangian algorithm.

The calculation shown in Fig. 9(c) was performed
using €y = €7 = 10, using 40 equal increments in the
prescribed motion of the rigid plate. This combi-
nation leads to a proper enforcement of the contact
and frictional constraints. With this information in

hand, subsequent calculations were done in which the
contact conditions were intentionally underpenalized
(using ey = ¢, = 10%), followed by application of the
augmentation procedure in order to improve the
solution. Rather than checking the criteria in each
step, as suggested in Table 2, these calculations were
done by simply performing a fixed number of aug-
mentations in each time step and then proceeding to
the next step (as before, the loading was applied in 40
equal increments). The results of these calculations
(using the primary augmented Lagrangian algorithm)
are given in Figs 10-12. In these figures, the conver-
gence of the solution with respect to the number of
augmentations per step is displayed through examin-
ation of the load displacement curve for the entire
process (Fig. 10) and the contact reactions on the
interface at the final state (Figs 11 and 12).

-3
6 4
9+ .
12 F .
g s 4
2
S -15 | 1
<
é -
-18 - Nominal Case, penalties=1.d7 —-6—— \\ T
1 Penalties=1.d5, no augmentation — 3 — 4
I Penalties=1.d5, 1 augmentation/step — - - - — ]
E3 24 Penalties=1.d5, 2 augmentations/step — — & — - T
.27 " 1 " 1 L | n
9 12 15 18 21

Radial coordinate

Fig. 12. Convergence of the normal nodal reactions on the contact surface at the final state for the
frictional ring upsetting problem, using the primary augmented Lagrangian algorithm.
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As one can see from the figures, the application of
the augmentation procedure to an underpenalized
system corrects a clearly inadequate solution using a
modest number of augmentations. The benefit of the
augmented Lagrangian scheme in a situation of this
type is the added robustness it provides the standard
penalty method; it enables a satisfactory solution to
be obtained over a much larger range of penalty
parameters than does the penalty method alone.

4.3. Extrusion of an aluminum cylinder

As a final example demonstrating the augmented
Lagrangian technique for frictional problems, we
consider the frictional extrusion of an aluminum
cylinder into a rigid, conical die. This problem, also
considered in [13], is one in which the augmentation
technique actually enables easier solution of the
equations than does the standard penalty method.
In this axisymmetric problem, an aluminum billet
of radius 5.08cm and initial length 254cm is
pushed (using displacement control) a total distance

of 17.78 cm into a conical die with wall angle 5°. The
mesh, as well as the deformed geometry at various
stages of the simulation, is shown in Fig. 13. The
discretization of the billet was performed using 80
4-node finite strain elastoplastic elements of the type
mentioned previously, with the material properties
of the billet being: K = 63.84 GPa, G = 26.12 GPa,
oy=31MPa and H (the linear hardening rate) =
G/100. The coefficient of friction between the billet
and the die walls was prescribed as 0.1.

The interesting feature of this problem is that due
to the highly plastic response of the billet and the
shearing near the die walls due to friction, the
introduction of high penalties on the contact surface
causes difficulties in the solution of the equations. On
the other hand, the use of undersized penalties causes
erroneous predictions of stick regions on the contact
surface, where a properly penalized solution displays
no such behavior. The meaning of this is that for
the case of the standard penalty regularization, the
problem is extremely sensitive to the choice of the

b) Displacement = 4.45 cm

B —— |

d) Displacement = 13.35 cm

a) Undeformed mesh

¢) Displacement = 8.9 cm

Tt
i

1T

T
’e
T

e) Displacement = 17.8 cm

Fig. 13. Undeformed and deformed geometries for the aluminum extrusion problem.
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Fig. 14. Load-displacement curves for the conical extrusion problem, using the standard regularization
and the primary augmented Lagrangian algorithm.

penalties. After much trial and error involving exper-
imentation with these penalties, the optimum choice
of the penalties seemed to be ey = 10'° and ¢; = 107,
which yielded the solution shown in Fig. 13 in 140
equal time steps. This choice of load increment
appears to be near optimal as well; for this choice of
penalties larger time steps failed to converge at some
point in the calculation.

In application of the augmented Lagrangian tech-
nique (the primary algorithm) to this problem, we
exploit the opportunity to lower the penalties,
increase the time step, and correct the solution via
the augmentation procedure. The results of doing this
are displayed graphically in the plot of force vs
displacement given in Fig. 14. In this figure, the
response computed using the nominal penalties given
above is compared with the response obtained using
ey=10° and ¢; = 10° with the primary augmented
Lagrangian algorithm. As can be seen, essentially the
same solution is obtained using these softer penalties,
with 4 augmentations per time step, in only one-fifth
as many time steps. The advantage of the augmenta-
tion in this problem is that it circumvents a difficulty
in solving the equations that is unrelated to the
mechanics of the problem but arises only due to the
penalty regularization of the friction law. This
example displays again the enhanced robustness
afforded the penalty method by the method of
augmented Lagrangians.

5. SUMMARY AND CONCLUSIONS

In this paper, we have presented a framework
within which the application of the method of
augmented Lagrangians to frictional contact prob-
lems is a natural extension of the more classical
case of frictionless contact. This has been done by

considering the constraint in the tangential direction
to be an equality constraint, between the total relative
tangential velocity and the slip rate computed from
the laws of evolution for the Coulomb friction
law. Stated another way, we require that no elastic
tangential displacement take place on the interface.
We have also remarked on some alternative im-
plementations of the method, involving both differ-
ent enforcements of the Coulomb friction law (see
Tables 2 and 3) and different augmentation pro-
cedures (simultaneous vs nested). Altough the latter
scheme is the one focused upon in this paper, simul-
taneous iteration may also prove to be fruitful for
some problems.

Numerical examples have demonstrated that the
method is applicable in both small and large defor-
mations. They have shown that the method is useful
in correcting underpenalized solutions, and that it
can in some cases obtain solutions more efficiently
than the penalty method. As a practical matter, it is
also pointed out that the technique can be used
during interactive solution of a contact problem to
check whether a penalized solution is adequate; if it
is, application of the augmented procedure will pro-
duce very little change to the residual and subsequent
solution vector, which is readily observed by the user.
It is felt that the chief benefit of the augmented
Lagrangian procedure for contact problems is the
added robustness it provides the penalty method,
while at the same time being a simple procedure
which introduces no additional equations to the
discrete system.
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APPENDICES

A. Closest point projection o a piecewise linear obstacle

In the following we expand upon the details necessary to
implement the definition of gap function discussed in Sec.
2.2 in a finite element setting. In so doing, we limit ourselves
to the two-dimensional case, while remarking that generaliz-
ations to the 3-D case are similarly conceived.

Suppose that dK is defined by a series of line segments,
as shown in Fig. A.l. We then wish, for any x in the
spatial domain, to define the gap function g(x) in a manner
consistent with Sec. 2.2. With the usual case of interest in
mind, we concentrate on the case where x is inadmissible.
We further note that in practice the admissible region need
not, and in general will not, be convex.

As suggested by the figure, we can characterize J¥ as
being defined by N + 1 nodal points y,, and we may define
the outward normal to a segment between y, and y, . ; as v,.
As also suggested by the figure, if X is in a position such as
the one shown, the expression for g(x) is easy to find and
is given by

g(x) = —v (X = ¥i)- (A1)

YN+1

Fig. A.l. Closest point projection to a piecewise linear obstacle.
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The trouble in practice, of course, is that we do not know
beforehand which & is the appropriate one to use, and we
recognize immediately that there are some points x for
which the choice of X, the closest point projection of x on
JIK, is nonunique. In FEAP, we address these issues by first
finding the nodal point y, closest to x, which we shall denote
by y;. This is done most reliably by a sort through all nodes
¥, but since this is also the most expensive technique to use,
we only perform this type of search once, at the beginning
of the problem, for all material points of interest. Sub-
sequent searches for y; for a material point currently at x
are performed using a method of steepest descent, where the
search starts at the y; from the last iteration (see [25] for a
thorough discussion).

Having found the closest nodal point y; to x, we search
the local part of dIK (corresponding to the two segments
adjacent to y;) to find ®. This local part of K may be
convex or concave with respect to x (see Fig. A.2).

In case (a) of the figure, definition of g is completely
unique. If x lies in region A or B, g is given by the usual form
of the gap function suggested in (A.1). If it lies in region C,
f=y; and g =[x —yz||. Case (b) provides a potential
uniqueness problem. In this case, g, and g, (given by the
normal projections onto the two segments) are computed,
and g is determined by the one that is least. If g, = g,, then
y; is (somewhat arbitrarily) chosen as %. This is to preclude
any bias for one segment over the other in the subsequent
solution.

We see that in the case of a piecewise linear obstacle, the
closest point projection problem is quite easily handled, by
consideration of a local portion of 0K adjacent to x. We
further assert that this procedure is essentially equivalent to
the so-called ‘master-slave’ characterization of sliding sur-
faces discussed, for example, in [25] and in [18). In this
interpretation, x can be thought of as the current position
of a slave node, and 8K is the master surface. This approach
is readily extended to multiple deformable bodies by consid-
ering the facets comprising K to be the (linear) element
edges of the ‘master body’ in the current configuration.
Thus, the master—slave idea may really be interpreted as a
particularization of the concept of closest point projection
to the special case where the bodies are discretized by
bilinear (four-node) elements.

B. Implementation details of augmented Lagrangians

We now consider briefly the manner in which the aug-
mented Lagrangian method has been incorporated into
FEAP, producing the numerical examples given in Sec. 4.
This implementation is within the framework described
in[18], which treats the case of penalized contact with
friction.

In order to motivate the treatment, we begin by consider-
ation of the small deformation frictional contact of two
contacting bodies, one of which we shall consider to be the
‘stave’ body (1) and the other of which will be denoted as

Yi-1 K Yisr

a) Convex

the ‘master’ body (2). We generalize eqn (3.6) to two bodies,
thereby obtaining

GOEY, 5uV) + GOu®, 5u)

=J. [P0 - Su® — - SuP]dr
rw

+I [— 1@ 5u® — @ - suP)dI,  (B.1)
o

where () and (-)® denote previously described quantities
defined over bodies (1) and (2), respectively. Noting that the
integrands on the right-hand side of (B.1) are zero in the
regions where no contact occurs, and that where contact
does occur the tractions on each body must be equal and
opposite, we may write

GO, SuP) + GOWD, su?)
=J [— 10D - 5@ — u®)
re

—t 5@ — @) dr,

where I, is the portion of I'" and I'® where contact
occurs.

In the usual master-slave implementation (including [18])
the right-hand side integral is replaced by a summation over
all slave nodes (at current positions x,) which takes the
following form

(B.2)

J. [—9a® - 5D — u?) — ¢
fe

S — o) T = 3 [~ 1x,085, — tr,085,], (B.3)
where =t

n, = the number of slave nodes,

gy, = the normal gap function (denoted as g in
Appendix A) for slave node s,

g7, = the tangential gap function, a new quantity.

We note that the transition suggested in (B.3), while
presented in a small-deformation context, results in an
expression [the right-hand side of (B.3)] which is suitable for
large deformation problems, provided the involved forces
and gaps are defined appropriately. Also, we remark that
t;, is now a scalar, and &g, represents the variation of
&1,» which we consider to be a tangential gap function.
As defined in (18], g7, has the interpretation of being the
distance between the current projection of the material point
at x, on the master surface and the projection of the same

b) Concave

Fig. A.2. Prospective local geometries for closest point determination.
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material point on the master surface at the end of the last
time step, with this distance between the two projections
being evaluated in the converged geometry of the last time
step. Put more simply, gr, is a measure of the relative
tangential motion between x, and the master surface which
occurs during the time step, just as (B.2) suggests it
should be.

In this framework, implementation of penalty and aug-
mented Lagrangian techniques is very simple, since the
constitutive relations governing the interface become scalar
equations. The normal response is handled exactly as dis-
cussed previously, while the tangential (frictional) response
is treated analogously to the previous presentations where
t, was the quantity of interest. Here, ¢, plays the role of t7,

and g, plays the role of u;, _, —uy,. Thus, Tables 2 and 3
still contain the relevant aspects of the implementation of
augmented Lagrangians in this setting. All constitutive
equations for the friction law are merely replaced by their
scalar counterparts, and these equations are assumed to
hold for quantities defined at the slave nodes.

Finally, we remark that the matrix equations emanating
from the last expression in (B.3) are obtained by taking
the indicated variations. Since the gap functions depend
on the local geometries of both bodies, this operation
generates the contact forces for both slave and master
bodies. The calculations needed to do this and the sub-
sequent linearizations, although lengthy, are standard and
are given in detail in [18].



