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Abstract

This work presents a frictional extension of an improved conservative integration framework for dynamic contact,

extending the details of the frictionless scheme to encompass Coulomb stick/slip friction and the associated conser-

vation/dissipation. It addresses algorithmic details that do not appear in the frictionless context, establishing an ap-

propriate and objective treatment of relative tangential motion that is necessary to rigorously ensure conservation of

angular momentum in the fully discrete setting. It also further extends the functionality of a discrete contact velocity

term proposed in the frictionless implementation, using it to preserve conservation or dissipation locally as warranted

by the frictional model and effectively enabling an enforcement of the contact constraints independent of energy

considerations. The result is a robust implicit algorithmic framework for dynamic frictional impact, viable for large

deformation analysis, appropriately conservative or dissipative for both stick and slip phenomena on a local scale, and

readily extensible to more complex frictional models.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

There exists currently a growing body of computational work in non-linear dynamics that utilizes a class

of conservative integration methods, i.e. methods that are designed to better emulate a given physical system

by algorithmically preserving a particular set of physically motivated quantities by construction. One such

method, introduced for elastodynamics by Simo and Tarnow [16] and generalized by Gonzalez [8], es-
tablishes a means of preserving algorithmic versions of the system energy as well as the linear and angular

momenta over a discretized bulk continuum. The method is well conceived, as energy is often the defining

metric for determining numerical stability in a system, and a number of sources [6,8] have demonstrated

the possibility of �instability�, in the form of boundless energy growth, that can result from an ad hoc
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application or extension of a traditional linear integration method to a system with even relatively simple
non-linearities.

The non-linearities associated with dynamic impact are relatively complex, even given the simplest

mathematical description. In the most basic form a contact problem must define or determine the time

of initial contact and release for each of a potentially changing but common set of surface points on a pair

of colliding bodies, and also consider the magnitudes and directions of any associated contact effects, all of

which are generally unknown and characterized by both spatial and temporal discontinuities. The contact

entities themselves are also heavily influenced by the associated bulk media, and successful description of

the former necessitates a careful consideration of the latter. A few contact descriptions, notably Armero
and Petocz [1], Laursen and Chawla [10], Demkowicz and Bajer [7], and Laursen and Love [11], have

chosen to consider frictionless dynamic impact under the auspices of a conservative system, extending the

framework to incorporate the conserving mathematical idealization of a frictionless surface interaction.

It might seem a contradiction of sorts to extend such algorithms to the realm of physically dissipative

phenomena, whose presence tends to �naturally� stabilize their respective systems and appears to obviate the

need for a conserving application. Developments in the interest of controlling numerical dissipation (e.g.

[3,4]) lead to the conclusion that, given suitable a priori energy estimates for the effects of a given dissipative

phenomena, it is possible to accurately render these effects by capturing the dissipative values within a
conservative context, free from the parameter-dependent numerical dissipation inherited from traditional

temporal integration schemes. This approach has been recently applied to bulk elastoplasticity in such

works as Meng and Laursen [14] and has been advocated for friction by both Armero and Petocz [2], and

Chawla and Laursen [5] as extensions of their respective frictionless works.

These frictional extensions, however, make the same concessions as their respective frictionless foun-

dations in the treatment of the contact interface. As discussed in Laursen and Love [11], the method of

Laursen and Chawla [10] partially compromises the normal contact constraints in the interest of making a

consistent accounting of system energy. In retaining this discrete overlap through the frictional extension,
Chawla and Laursen [5] are forced to concede algorithmic conservation of angular momentum for fric-

tional traction, in large part due to the unfortunate selection of non-invariant algorithmic description for

the relative tangential motion. Armero and Petocz [2] do maintain conservation of momenta through a

more judicious frame-indifferent discretization of the tangential rate terms, but retain the algorithmic ar-

tifacts of their frictionless case, namely a localized storage of non-physical surface energy in the regular-

ization potential and the associated caveat that complete energy balance is only achieved upon full release

of the contact constraints. In addition, their treatment of frictional energy change only adheres to the

continuum estimate of energy dissipation in a qualitative sense, ensuring a consistently dissipative treat-
ment over the course of a contact event, but not quantifying the dissipation in relation to the established a

priori estimates.

In Laursen and Love [11], we treated the frictionless impact problem by using a discrete contact velocity

term as a means of resolving conservation of energy without placing undue constraint on the normal

contact forces. In this extension to frictional problems, we will show that with careful discretization of a

frictional system, it is possible to apply the discrete contact velocity framework so that the discrete system

not only conserves both linear and angular momentum, but respectively conserves or dissipates energy

appropriate to the local frictional phenomenon. The energy dissipation is quantitatively established by a
direct discretization of the continuum dissipation estimates, thus correctly capturing physical dissipation in

the regularization limit.

Section 2 provides the notational foundation for the subsequent algorithmic development, outlining the

virtual work description and contact kinematics for generalized dynamic contact with Coulomb friction. The

continuum system is then systematically discretized in Sections 3.1 and 3.2, culminating with the addition of

the discrete velocity update in Section 3.3. The remaining portions of Section 3 describe the algorithmic

details necessary to ensure momentum conservation and consistent energy dissipation (Sections 3.4 and 3.5
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respectively), outline a regularization of the discrete constraints (Section 3.6), and provide a summary of the
process. The numerical examples of Section 4 demonstrate the situationally dependent conservative/dissi-

pative behavior captured by the algorithm for a sampling of dynamic frictional impact problems.

2. Consistent impact systems

This section establishes our notation for the equations governing the contact of solids, with extensive

consideration of the continuum formulation of large deformation contact as described by Laursen and
Simo [12] and extrapolated in frictional investigations by both Chawla and Laursen [5], and Armero and

Petocz [2]. Although a Coulomb law is presented here, the subsequent algorithmic development should be

sufficiently general as to be extensible to more complex frictional contact models.

2.1. The virtual work description

To begin, we define open sets XðiÞ � Rnsd , i ¼ f1; 2g, nsd ¼ f1; 2; 3g, to denote reference configurations of

two bodies with boundaries oXðiÞ individually subdivided into non-intersecting regions CðiÞ
r (Neumann

boundary), CðiÞ
u (Dirichlet boundary), and CðiÞ

c (contact boundary), each invariant with time and satisfying

CðiÞ
r [ CðiÞ

u [ CðiÞ
c ¼ oXðiÞ: ð1Þ

Given time interval I ¼ ½0; T 	, and appropriate spaces for admissible deformations u
ðiÞ
t and admissible

variational functions u

 ðiÞ

, the weak form of the dynamic contact problem can be thus expressed for each

body (i):

Find u
ðiÞ
t such that for all u


 ðiÞ
:

hðq0
_VV t � f tÞ;u


 iðiÞ þ hDutSt;GRAD½u
 	iðiÞ � h�ttt;u

 iðiÞCr

¼ htt;u

 iðiÞCc

: ð2Þ

In (2) and throughout we make use of a shorthand description of integral products,Z
XðiÞ

ð�Þ � ð�ÞdXðiÞ :¼ h�; �iðiÞ and

Z
CðiÞ

ð�Þ � ð�ÞdCðiÞ :¼ h�; �iðiÞC : ð3Þ

Values in (2) include reference density, q0; local material velocities, V t ¼ _uut; and a representation of the

second (symmetric) Piola–Kirchhoff stress, denoted St. Herein we consider an unforced system, with con-

stant zero values for prescribed body force ðf tÞ and boundary traction ð�tttÞ, and no imposed boundary
displacements ðCðiÞ

u ¼ ;Þ. The unprescribed contact surface tractions ðttÞ are typically described through a

set of spatial geometric constraints dependent upon the unknown deformation mappings u
ðiÞ
t .

The variational form in (2) is composed of integral virtual work functions with the left hand side,

summed over each of the i contacting bodies, representing the total virtual work of the combined non-

contact forces on the system,

Gðut;u

 Þ :¼

X2
i

hq0
_VV t;u


 iðiÞ
h

þ hDutSt;GRAD½u
 	iðiÞ
i
: ð4Þ

We use a standard Lagrangian description for the contact surfaces, designating the material points as

X 2 Cð1Þ
c and Y 2 Cð2Þ

c , respectively. Quantities on Cð2Þ
c are mapped from Cð1Þ

c through a closest point pro-

jection minimization
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YðX ; tÞ :¼ arg min
Y2Cð2Þ

c

uð1Þ
t ðXÞ

�� � uð2Þ
t ðYÞ

��: ð5Þ

Summing the right hand side of (2) and establishing force balance (tð1Þ ¼ �tð2Þ :¼ t) along the shared

contact surface (Cð1Þ
c ¼ Cð2Þ

c :¼ Cc), yields a single integral expression for the virtual work of contact:

Gcðut;u

 Þ :¼ � t; u


 ð1Þ
ðXÞ

�
� u


 ð2Þ
ðYðX; tÞÞ

�� 	
Cc

: ð6Þ

The contact problem is thus compactly stated in virtual work terms:

Find u
ðiÞ
t , subject to the contact constraints, such that for all u


 ðiÞ
:

Gðut;u

 Þ þ Gcðut;u


 Þ ¼ 0: ð7Þ

2.2. Definitions on the contact surface

We decompose (5) into a unit direction vector m aligned with the contact surface normal on Cð2Þ
c and with

a gap function magnitude, g,

uð1Þ
t ðXÞ � uð2Þ

t ðYðX ; tÞÞ ¼ �gm; ð8Þ
and adopt the convention whereby m is directed outward of Xð2Þ such that the �gap� is negative (g < 0) for

admissible (i.e. non-penetrated) deformations. Manipulation of (8) defines a geometric description of the

gap magnitude,

g ¼ �m � uð1Þ
t ðXÞ



� uð2Þ

t ðYðX ; tÞÞ
�
: ð9Þ

Following Laursen and Simo [12], we parameterize of the projection contact surface (Cð2Þ
c ) in reference

variables na, (a ¼ 1, nsd � 1), and derive nsd � 1 spatial vectors sa through differentiation of (8) within this

parameterization, maintaining the closest-point minimization (indicated with the overbar notation) such

that

sa :¼ uð2Þ
t;a ð�nnðX ; tÞÞ: ð10Þ

Through this derivative definition, the tangential vectors sa are orthogonal to the surface normal m,

however, the resulting convected basis will not in general represent an orthonormal space, and requires
consideration of the associated metric and its inverse,

mab :¼ sa � sb; ½mab	 ¼ ½mab	�1
; ð11Þ

in order to define the dual basis,

sa :¼ mabsb: ð12Þ
(note that here the summation convention is implied on repeated indices). The contact forces, t, can now be

decomposed in terms of normal and tangential parts, with respective normal (tN) and tangential (tTa)
magnitudes, i.e.

t ¼ tNm � tTas
a: ð13Þ

Variations of the important surface quantities, namely the gap function g and the projected surface

parameterization �nn, can be generated as directional derivatives aligned with deformation variation u


.

Consider

dg ¼ �m � u

 ð1Þ

ðXÞ
�

� u

 ð2Þ

ðYðX ; tÞÞ
�

ð14Þ
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and

Aab d�nna ¼ sb � u

 ð1Þ

ðXÞ � u

 ð2Þ

ðYðX ; tÞÞ
� �

þ gm � �u

 ð2Þ
;b ðYðX ; tÞÞ

� �
; ð15Þ

where the symmetric matrix Aab and its inverse Aab are defined as

Aab :¼ mab þ gm � ½uð2Þ
t;abðYðX ; tÞÞ	 and ½Aab	 :¼ ½Aab	�1

: ð16Þ

Temporal derivatives (denoted with a superimposed dot) are calculated in the same manner, yielding a

local description for a gap rate, vN ¼ _gg and local measures of relative tangential motion, or slip rates,

va
T ¼ _nn

a
in terms of material velocities V ðiÞ ¼ _uu

ðiÞ
t :

vN ¼ _gg ¼ �m � ½V ð1ÞðXÞ � V ð2ÞðYðX ; tÞÞ	 ð17Þ
and

Aabva
T ¼ Aab

_nn
a ¼ sb � ½V ð1ÞðXÞ � V ð2ÞðYðX ; tÞÞ	 þ gm � ½�V

ð2Þ
;b ðYðX ; tÞÞ	: ð18Þ

The slip rates can then be used in the definition of a relative and frame indifferent slip velocity as pro-

posed in Laursen and Simo [12]. In this case we facilitate our development with a notably different con-

stitutive decision and opt for a completely spatial definition of the slip velocity through use of the spatial

metric mab. Consider the definition

vT :¼ vb
Tsb ¼ mabv

b
Ts

a: ð19Þ
The descriptions in (14) and (15) are now combined with the contact force decomposition (13) and

substituted into the variational equation to elicit a new description for the virtual work of contact in terms
of the surface variations,

Gcðut;u

 Þ ¼

Z
Cc

½tN dg þ tTa d�nna	dCc: ð20Þ

The equivalence of (6) and (20) rests upon a pair of complementarity conditions,

tNg ¼ 0 and tTag ¼ 0; ð21Þ
which establish that the contact force magnitudes (non-zero only during contact) and the gap functions g
(negative only when out of contact) cannot be mutually non-zero in the continuum description. The dili-

tational components of the tangential variation (the last term in each of (15) and (16)) can thus be con-

sidered as zero over the contact surfaces, validating the virtual work description (20).

2.3. Contact constraints

We apply a standard set of Kuhn–Tucker conditions in terms of the kinematic geometry, first in the

normal direction, which remains the same for both frictionless and frictional contact:

g6 0;

tN P 0;

tNg ¼ 0;

tNvN ¼ 0:

ð22Þ

The tangential constraints are governed by a particular choice of frictional law, chosen here as classical

Coulomb friction and governed by defining a relationship between the slip velocity as defined in (19) and
the Euclidean normalized (k � k) tangential portion of the contact force vector, tT ¼ tTas

a, where
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vT ¼ f
tT

ktTk
; ð23Þ

or, in component form,

va
T ¼ fmabtTb

½tTcm
cqtTq 	

�1=2
: ð24Þ

Manipulation of (24) reveals an alternate form that defines f as a (notably non-negative) norm of the slip

velocity. Evolution of tangential motion and forces is thus governed by the following stick/slip conditions

(in component form)

U :¼ ½tTam
abtTb

	1=2 � ltN 6 0;

f :¼ ½va
Tmabv

b
T	

1=2 P 0;

Uf ¼ 0:

ð25Þ

The stick parameter U in (25)1 is defined so as to maximize the tangential force at a constant coefficient of

friction multiple l of the normal force tN. The consistency condition (25)3 ensures that negative U are

associated with zero tangential motion, or �stick� friction, while positive values of f, indicative of �slip�
motion between the contact surfaces, corresponds with a maximum application of tangential surface force

ktTk ¼ ltN.

2.4. Conservation and consistent dissipation

Under the current presumptions of free (unforced) motion, the continuum system (7) adheres to a set of

physically motivated balance laws, including the global balance of linear momentum, Lt, and of angular

momentum, J t, each related to the state of the system by definitions

Lt :¼
X2
i

Z
XðiÞ

qðiÞ
0 V ðiÞ

t dXðiÞ ð26Þ

and

J t :¼
X2
i

Z
XðiÞ

qðiÞ
0 uðiÞ

t � V ðiÞ
t dXðiÞ: ð27Þ

Thermodynamic consistency for an unforced system requires that total system energy, Etot
t , either remain

constant or decrease. We expect the former for elastic bulk descriptions (by definition) and for frictionless

contact phenomena, and the latter for physically dissipative inelastic bulk descriptions and frictional

contact. Total system energy is defined as a sum of kinetic (Kt) and internal (Eint
t ) energies,

Etot
t ¼ Kt þ Eint

t ; ð28Þ
with kinetic energy arising from the material velocities such that

Kt :¼
1

2

X2
i

hq0V t;V tiðiÞ ð29Þ

and where the time derivative of the internal energy can be expressed in terms of an internal dissipation

function, Dint
t P 0, and an integral-valued internal stress power, Pint

t :

dEint
t

dt
¼ Pint

t �Dint
t ¼

X2
i

hDutSt;GRAD½V t	iðiÞ �Dint
t : ð30Þ
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We continue development by precluding internal dissipation, (Dint
t ¼ 0), and make suitable substitutions for

the variations u


into the variational equation (7) to demonstrate that the continuum system, subject to the

constraints (22) and (25), will completely conserve both linear and angular momenta, and will exhibit a

quantifiable contact-associated energy dissipation Dc
t according to the equation

dEtot
t

dt
¼ �Dc

t ¼ �
Z

Cc

ðltNfÞdCc 6 0: ð31Þ

The energy dissipation in (31) requires the evolution of frictional slip, and will be zero for stick friction

(f ¼ 0) or in the absence of friction (l ¼ 0).

Our goal in the subsequent algorithmic development is to preserve not only the conservative charac-

teristics of the bulk continuum and normal contact constraints, but to also suitably approximate the

frictional dissipation as both dissipative and proportional to the localized slip motion and tangential

contact forces, as suggested by the continuum estimate in (31).

3. Algorithmic development

The following is a frictional extension of the frictionless algorithmic development in Laursen and Love

[11], and similarly presumes direct application of the conservation arguments for non-linear elastodynamic

continuua as constructed by Simo and Tarnow [16]. In the development we are careful to use objective

descriptions of the discrete tangential variations and discrete tangential motions on the fashion of Armero
and Petocz [2], thus ensuring conservation of angular momentum in the force vectors as well as in the

discrete velocity updates which are constructed from an analogous framework.

3.1. System discretization within an energy–momentum framework

To establish a suitable framework for a spatial finite element discretization we once again consider the

variational form of the momentum equation (2). In standard fashion we introduce finite dimensional ap-

proximations for the deformation (uh
t ), and the variation (u


 h
), within the appropriate discrete functional

spaces so that

uh
t ¼

Xnnod
A¼1

NAdAðtÞ ð32Þ

and

u

 h

¼
Xnnod
A¼1

NAd


A: ð33Þ

The displacement vector dAðtÞ and variational vector d


A contain values for each of the nsd spatial dimen-

sions and correspond with a nodally discrete local vector value indexed by A ¼ f1; . . . ; nnodg. Discrete

material velocity values follow the description vAðtÞ ¼ _ddAðtÞ and can be used as approximations to their

continuum counterparts through suitable weighting by finite element shape functions NA, each of which is

expressed over the domain X
ð1Þ [ X

ð2Þ
. We will maintain a notation that designates unindexed state vectors

(dðtÞ, d


and vðtÞ) as global compilations of their respective state values over all nodes and for each spatial

dimension, giving each a total vector length corresponding to the number of nodal equations (nneq ¼
nsd � nnod).

We adopt in large part a traditional notation for temporal discretization, first subdividing the time

period I into discrete n-indexed time steps ½tn; tnþ1	, and denoting the length of each increment with
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Dt ¼ tnþ1 � tn. Approximations of ‘‘endpoint’’ state values corresponding with these particular time points
are similarly indexed, such that dn � dðtnÞ, vn � vðtnÞ. etc. Intermediate points in time are then described

with the aid of a single parameter, a 2 ½0; 1	, such that tnþa ¼ tn þ aDt, and intermediate state values can be

approximated through a similar convex combination of the endpoint values, e.g.

dnþa ¼ adnþ1 þ ð1� aÞdn; a 2 ½0; 1	: ð34Þ
In anticipation of a conservative structure, we use subscript brackets to denote a state that is associated

with an intermediate configuration and/or time but for which a convex combination approximation is not
suitable, as in the example of a general and fully discrete description of the stress tensor, S½nþa	, where

S ½nþa	 � SðdðtnþaÞÞ 6¼ aSnþ1 þ ð1� aÞSn: ð35Þ

A truncated Taylor�s series expansion in time completes the temporal discretization with a suitable

approximation for time derivatives of the state variables:

vnþ1=2 � ð _ddÞnþ1=2 ¼
1

Dt
dnþ1½ � dn	 þOðDt2Þ;

ð _vvÞnþ1=2 ¼
1

Dt
½vnþ1 � vn	 þOðDt2Þ:

ð36Þ

Given (32)–(36), and adopting a midpoint equilibrium configuration a ¼ 1=2, we consider a full discreti-

zation of the internal virtual work expression (4) as

Ghðdnþ1=2; d


Þ ¼

Xnnod
A¼1

Xnnod
B¼1

1

Dt
MAB½vnþ1B

�
� vnB 	 þ f int

½nþ1=2	A

�
� d


A: ð37Þ

The nodal mass contributions MAB in (37) assume a standard form

MAB ¼ hq0NA;NBi; ð38Þ
and the nodal internal forces f int

A are given by

f int
½nþ1=2	A

¼
Xnnod
B¼1

GRAD½NB	dT
nþ1=2B

S½nþ1=2	;GRAD½NA	
D E

: ð39Þ

S½nþ1=2	 represents an algorithmic form of the internal stresses as subject to an obstensibly midpoint-oriented

discretization of the constitutive relationship. We presume a suitable discretization such that this ap-

proximation of the second Piola–Kirchhoff stress is conservative and second order accurate in time ac-
cording to the elastodynamic developments of Simo and Tarnow [16] and Gonzalez [8].

3.2. Contact surface discretization

Adopting a midpoint configuration, we similarly discretize the contact virtual work expression (6) ac-

cording to the expression

Gh
cðdnþ1=2; d



Þ ¼ �

Xnnod
A¼1

f c½nþ1=2	A
� d


A; ð40Þ

which we describe using a set of definitions synonymous to those in Laursen and Simo [12], constructing the

nodal contact forces f c
A from an integration of discrete normal (NA), and dilitational/tangential (Da

A)

contributions of the tractions on the contact surface,

f c
½nþ1=2	A

¼
Z

Cc

tNN ½nþ1=2	A

�
� tTaD

a
½nþ1=2	A

�
dCc: ð41Þ
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To complete the discretization we can evaluate the contact integral with a set of nint contact quadrature points
X l 2 Cð1Þ

c , and denote associated evaluations with a similar superscript. We then construct the nodal contact

forces as a sum of the quadrature point contributions, representing a weight of integration for each quadr-

ature point with wl and resolving the parameter transformation with a quadrature Jacobean representation

jl. Summing over all quadrature points yields a fully discrete description for the nodal contact forces

f c½nþ1=2	A
¼
Xnint
l¼1

wljl tlNN
l
½nþ1=2	A

h
� tlTa

Dal
½nþ1=2	A

i
: ð42Þ

The directional contributions are in turn defined pointwise in terms of the surface geometry (normal and

tangential vectors m and s as well as gap function g) through a nodal projection operator, PA:

NA :¼ PAm;

TaA :¼ PAsa;

AabD
a
A :¼ TbA þ gNA;b;

Aab :¼ mab þ ðgm � sa;bÞ:

ð43Þ

The projection operator, as described in Laursen and Love [11], is defined over all nodes in the mesh (nnod),
but potentially non-zero only for nodes associated with the contact surface. The specific definition of the

operator and of its spatial derivative on the contact surface both depend upon the body associated with the
given node A and essentially maintain the equal and opposite nature of the contact surface forces. For

nodes A on Cð1Þ
c we define

PA ¼ NAðXÞ and PA;b ¼ 0: ð44Þ
Points X on Cð1Þ

c are independent of the contact projection parameter associated with the index b and thus

the spatial derivative is zero. For nodes A on Cð2Þ
c we define

PA ¼ �NAðYðX ; tÞÞ and PA;b ¼ �NA;bðYðX ; tÞÞ: ð45Þ
The projection operator also provides a means of discretizing the kinematic surface variables in terms of

nodal displacements. From the descriptions in Section 2.2, we establish discrete descriptions of the surface

normal and tangential basis

m ¼ � 1

j g j
Xnnod
A¼1

PAdA; ð46Þ

sa ¼ �
Xnnod
A¼1

PA;adA; ð47Þ

which in turn require a definition for the magnitude of the gap function

j g j ¼
Xnnod
A¼1

Xnnod
B¼1

PAPBdA � dB

" #1=2
: ð48Þ

Gap and slip variations are simply derived through use of nodal variations, d


A,

dg ¼ �m �
Xnnod
A¼1

PAd


A ¼ �

Xnnod
A¼1

NA � d


A; ð49Þ

d�nna ¼ Aab sb �
Xnnod
A¼1

PAd


A

 
þ gm �

Xnnod
A¼1

PA;bd


A

!
¼
Xnnod
A¼1

Da
A � d



A; ð50Þ
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which applies similarly for the gap and slip rates using nodal velocities:

vN ¼ �
Xnnod
A¼1

NA � vA; ð51Þ

va
T ¼

Xnnod
A¼1

Da
A � vA: ð52Þ

The description (41) and (43) thus yields a direct discretization of the contact virtual work, leaving the

magnitudes of the discrete contact surface forces tN and tTa as variables to be determined by local algo-
rithmic enforcement of the contact constraints:

Gh
cðdnþ1=2; d



Þ ¼ �

Xnnod
A¼1

f c½nþ1=2	A
� d


A ¼

Xnint
l¼1

tlN dgl½nþ1=2	

h
þ tlTa

d�nnal
½nþ1=2	

i
: ð53Þ

3.3. The velocity-update form

Whereas the temporal approximation for the velocity in (36)1 is derived from a system with presumedly

continuous derivatives, we note, as in Laursen and Love [11], that solid impacts are generally characterized
by instantaneous changes in velocity at the contact surface, as warranted by the persistency condition (22)4.

As in the previous manuscript, we consequently append a discrete contact velocity, vc, to the velocity/dis-

placement relationship in the equations of motion in order to represent these effects. Consider first the

variational momentum equation, fully discretized and expressed in displacement form, i.e. in terms of

endpoint displacements (dnþ1) but excluding endpoint velocities (vnþ1):

Ghðdnþ1=2; d


Þ þ Gh

cðdnþ1=2; d


Þ ¼

Xnnod
A¼1

Xnnod
B¼1

2

Dt
MAB

��
� vnB þ

1

Dt
DdB

�
þ f int½nþ1=2	A

þ f c½nþ1=2	A

�
� d


A ¼ 0:

ð54Þ
In this form, the momentum equations can be solved in terms of the displacement increment, Dd ¼ dnþ1 �
dn. We address the inclusion of the discrete contact velocities after convergence of the displacements,

suitably adjusting the post-contact velocities vnþ1 according to the formula

vnþ1A ¼ �vnA þ
2

Dt
DdA þ vcA: ð55Þ

In a spatially discrete system, a temporally discrete velocity jump must be represented nodally and thus

correlates to a jump in momentum as weighted by the contributing nodal masses. As in the frictionless case,

we require the that the momentum changes induced by these contact velocities assume the same balanced

form as the discrete contact forces, with the notable selection of the endstate (nþ 1) configuration and not

the midpoint (nþ 1=2) configuration. We further presume that the relative magnitudes of the normal and

tangential contributions remain consistent with the local contact force magnitudes at the quadrature points,

and thus we can represent the magnitude of the change as a multiple of the contact force terms through a
local variable j:

Xnnod
B¼1

MABv
c
B ¼

Xnint
l¼1

wljljl tlNN
l
½nþ1	A

h
� tlTa

Dal
½nþ1	A

i
: ð56Þ

The effect of this term essentially mimics the initiation of an impact induced stress/velocity wavefront and

the initial stages of wave propagation. We note that through the prescription in (56), these effects are
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described in the discrete system based on the local nodal geometry of the contact surface designated by the

projection shape functions PA within the definitions of NA and Da
A. Note however, that velocity update

effects will not remain local, but will be propagated through the bulk media over the course of a single time

step, given the coupling of internal and contact surface nodes through the mass matrix MAB. The common

practice of using a lumped mass matrix (as in the examples of this manuscript) serves to eliminate the nodal

coupling to thus localize the internal velocity updates, and it also simplifies the extraction of the contact

update values from (56) by trivializing the inversion of MAB. For relatively low material wavespeeds and/or

small time steps actual wave effects themselves will indeed be limited to the vicinity of the contact surface
during a given time step; however as wave speeds grow large, particularly in the rigid body limit, the

physical wavespeed effects are likely to be systemic even within a single step, and can only be suitably

distributed algorithmically using a consistent mass matrix. Therefore we note that the algorithmic con-

venience of a lumped mass matrix may only be conditionally suitable for velocity-update calculations.

We also note that the j values in (56) can be related directly to the impulse magnitudes p in the notation

of the frictionless development [11] through the contact force terms, where pN ¼ jtN.

3.4. Momentum conservation

In Laursen and Love [11] the discrete contact velocity term provides additional and necessary latitude

for the enforcement of the normal contact constraints under the stricter confines of energy conservation.

We wish to adhere to nearly the same requirements for the tangential constraints, enforcing conservation

conditions locally for stick friction and allowing dissipation consistent with the continuum solution for slip

friction. The conditions can be generated as in the previous manuscript, by considering a sequence of

variational substitutions into the fully discretized local equations, (54) and (55), and presuming the use of a

conserving methodology in the determination of the internal force vector f int such that the internal term
generates a change in internal potential for the energy argument and vanishes for the momentum argu-

ments. The momentum discussion is relatively straightforward.

For example, presuming arbitrary translations, d


A ¼ g, (g spatially constant), the discrete system (54) can

be shown to demonstrate conservation of linear momentum when

Lnþ1 � Ln :¼
Xnnod
A¼1

Xnnod
B¼1

MABv
c
B

"
þ Dtf c

½nþ1=2	A

#
¼ 0: ð57Þ

Similarly, presuming arbitrary rotations, d


A ¼ g � dnþ1=2A , (g spatially constant), the discrete system can be

shown to demonstrate conservation of angular momentum when

Jnþ1 � Jn :¼
Xnnod
A¼1

Xnnod
B¼1

MABðdnþ1A

"
� vcBÞ þ Dt dnþ1=2A

�
� f c½nþ1=2	A

�#
¼ 0: ð58Þ

From conditions (57) and (58) it is apparent that the discrete structure of both the contact force vector and

the velocity update are crucial to enforcement of the momentum conservation conditions. In both cases the

discrete definitions ((42) and (56)) inherit the �equal and opposite� nature of contact in the continuum

through the definition of the projection operator in (44) and (45). For each quadrature point on the shared

contact surface, equally weighted contributions from nodes on both contacting bodies will cancel, i.e. for a
generic configuration,

Xnnod
A¼1

N l
½nþc	A

¼ 0 ð59Þ
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and Xnnod
A¼1

Dal
½nþc	A

¼ 0: ð60Þ

By definitions (41) and (56) we then find that over all points in the contact surface,Xnnod
A¼1

f c
½nþ1=2	A

¼ 0 ð61Þ

and Xnnod
A¼1

Xnnod
B¼1

MABvc ¼ 0; ð62Þ

effectively establishing the condition for linear momentum conservation (57) independent of the contact
force and velocity update magnitudes. The angular momentum conditions must be handled more carefully.

Consider first the cross product summation over the contact forces,Xnnod
A¼1

dnþ1=2A � f cA½nþ1=2	 ¼ �
Xnnod
A¼1

Xnint
l¼1

wljl tlNN
l
½nþ1=2	A

h
� dnþ1=2A � tlTa

Dal
½nþ1=2	A

� dnþ1=2A

i
: ð63Þ

Expanding N according to the definition (43)1 and taking advantage of the discrete surface normal

description (46) yields

Xnnod
A¼1

N ½nþ1=2	A � dnþ1=2A ¼
Xnnod
A¼1

P½nþ1=2	Am½nþ1=2	 � dnþ1=2A

¼ m½nþ1=2	 �
Xnnod
A¼1

P½nþ1=2	Adnþ1=2A

 !

¼ m½nþ1=2	 �


� g½nþ1=2	m½nþ1=2	

�
¼ 0; ð64Þ

whereas expanding the components of Da from the definitions in (43) and the tangent description (47) yields

terms that cancel locally, namely

Xnnod
A¼1

Tb½nþ1=2	A � dnþ1=2A ¼
Xnnod
A¼1

P½nþ1=2	Asb½nþ1=2	 � dnþ1=2A

¼ sb½nþ1=2	 �
Xnnod
A¼1

P½nþ1=2	Adnþ1=2A

 !

¼ sb½nþ1=2	 �


� g½nþ1=2	m½nþ1=2	

�
ð65Þ

and

g½nþ1=2	
Xnnod
A¼1

N ½nþ1=2	A;b � dnþ1=2A ¼ g½nþ1=2	
Xnnod
A¼1

P½nþ1=2	A;bm½nþ1=2	 � dnþ1=2A

¼ g½nþ1=2	m½nþ1=2	 �
Xnnod
A¼1

P½nþ1=2	A;bdnþ1=2A

 !

¼ g½nþ1=2	m½nþ1=2	 �


� sb½nþ1=2	

�
¼ sb½nþ1=2	 � g½nþ1=2	m½nþ1=2	: ð66Þ

This convenient result is a direct consequence of adopting the dilitational form (15) for the tangential

contact force, despite the apparent redundancy of the latter term (given that in contact, g ¼ 0 in the
continuum form).
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We see a similar set of results for the velocity update contributions,Xnnod
A¼1

Xnnod
B¼1

MABdnþ1A � vcB ¼ �
Xnnod
A¼1

Xnint
l¼1

wljljl tlNN
l
½nþ1	A

h
� dnþ1A � tlTa

Dal
½nþ1	A

� dnþ1A

i
; ð67Þ

and note that the arguments proceed similarly, with an obvious contingency on the nþ 1 configuration. As

in the case of linear momentum, angular momentum is again conserved independent both of the contact
forces and of the choice of relative velocity update values jl, and thus

Jnþ1 � Jn ¼ 0: ð68Þ

3.5. Ensuring energy consistency

To establish an algorithmic system that is consistent with physical expectations, we must establish fully

discrete a priori estimates of contact dissipation. The total dissipation can be considered as a sum of local

quadrature point contributions,

Dc
½nþ1=2	 ¼

Xnint
l¼1

Dcl

½nþ1=2	: ð69Þ

For stick friction at a quadrature point, we expect no local dissipation, i.e.

STICK : Dcl

½nþ1=2	 ¼ 0; ð70Þ
while for slip friction, we establish our estimate with a midpoint discretization of continuum estimate (31),

so that

SLIP : Dcl

½nþ1=2	 ¼ ltNf½nþ1=2	

 �l

: ð71Þ
Then we return again to the momentum equation (54) and choose the set of local displacement incre-

ments, d


A ¼ DdA as variations. Substituting velocity values where appropriate through (55) and presuming a

conserving integration of the internal energy, we can quantify the actual algorithmic energy loss as a

function of the contact force and discrete contact velocity vectors, such that

Etot
nþ1 � Etot

n :¼
Xnnod
A¼1

Xnnod
B¼1

MAB
2

Dt
DdB

�"
� vnB þ

1

2
vcB

�
� vcA þ DdA � f c½nþ1=2	A

#
: ð72Þ

We would like to ensure that this algorithmic energy loss directly represents the estimated contact
dissipation over a time step, so that

Etot
nþ1 � Etot

n ¼ �DtDc
½nþ1=2	: ð73Þ

The energy balance condition (73) contains a useful set of unknowns, namely the local magnitudes, jl, that

define the contact velocity terms, vc. To extract these values, we resolve definition (72) into vector com-

ponents using a second quadrature summation (indexed k) as well as a matrix inversion of the mass term.

As in the frictionless case we simplify notation by introducing quadratic coefficients (Akl, bl, cl, with no sum
implied on quadrature point indices k and l):

Akl :¼ 1

2

Xnnod
A¼1

Xnnod
B¼1

wlwkjljkM�1
AB tlNN

l
½nþ1	A

h
� tlTa

Dal
½nþ1	A

i
� tkNN

k
½nþ1	B

h
� tkTb

Dbk
½nþ1	B

i
;

bl :¼
Xnnod
A¼1

wljl
2

Dt
DdA

�
� vnA

�
� tlNN

l
½nþ1	A

h
� tlTa

Dal
½nþ1	A

i
;

cl :¼ DtwljlDcl

½nþ1=2	 þ
Xnnod
A¼1

wljl tlNN
l
½nþ1=2	A

h
� tlTa

Dal
½nþ1=2	A

i
� DdA:

ð74Þ
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Values jl can then be chosen to satisfy the coupled quadratic equations

Xnint
l¼1

Xnint
k¼1

ðAkljkjlÞ
"

þ bljl þ cl
#
¼ 0; ð75Þ

constructing the velocity update vc in (55) so that the unintended algorithmic dissipation has been, in es-

sence, �returned� to the discrete system as a modification to the kinetic energy. Local enforcement of (75) at

each quadrature point l succumbs easily to linearization and thus to solution by a Newton–Raphson or
similar iterative solver, using the same solution selection criteria as in the frictionless case [11]. As in that

case, however, solutions are only guaranteed to exist under the provision that the system without the ve-

locity update (where jl ¼ 0) is overly dissipative, i.e. when

cl 6 0: ð76Þ

Our notation will presume that time-discrete gap and slip rates that are independent of the contact velocity

updates, thus coefficients cl are more simply written using definitions (50) and (52) for stick and slip cases

coinciding with (70) and (71) respectively:

STICK : cl ¼ �Dtwljl tNvN½nþ1=2	

�
þ tTav

a
T½nþ1=2	

�l
; ð77Þ

SLIP : cl ¼ �Dtwljl tNvN½nþ1=2	

�
þ tTav

a
T½nþ1=2	

� ltNf½nþ1=2	

�l
: ð78Þ

3.6. Discrete constraint enforcement

The evolution of the contact force magnitude terms (tN and tTa) is governed by respective sets of contact

constraints (22) and (25) which in the continuum case prevent interpenetration of the two bodies while

simultaneously ensuring conservation of energy for frictionless constraints and consistent dissipation in the

presence of friction. Discretization of the system, however, introduces a potential discrepancy in achieving

the combined goals of local constraint enforcement and global energy conservation, as encountered in the
considerations of frictionless dynamic impact by both Armero and Petocz [1] and Laursen and Chawla [10].

The contact velocity term alleviates this discrepancy, allowing for full enforcement of the contact con-

ditions for each algorithmic state, within the limits of an algorithmic regularization. Consider, for example,

an augmented Lagrangian formulation for frictional contact (see [15]). We can adopt the normal con-

straints directly from the frictionless case, expressing normal force tN as a function of a penalty value �N
and positive portions of the the gap function (as selected by the MacAulay bracket h�i), as well as a fixed

multiplier iterate kðkÞ
N :

tN ¼ hkðkÞ
N þ �Nðgnþ1 � hgniÞi: ð79Þ

This regularization will reproduce the impenetrability condition (22)3 at the end-step (time tnþ1) for newly

initiated contact but reverts to an enforcement of the persistency condition (22)4 for continued contact. We

note that this strategy of enforcing an initial endstep constraint (gnþ1 6 0) and then enforcing a zero rate of

change in the constraint for subsequent steps is equivalent (in the regularization limit) to a repeated direct

enforcement of the constraint, albeit more heavily prone to errors generated by incomplete enforcement of
the constraint in the first step. The benefit, however, is that the normal contact force is consequently always

positive by definition, and is only applied when the mid-point gap rate is also positive (vN½nþ1=2	 > 0), thus

assuring that the normal contribution to the contact dissipation in (77) and (78) is of the appropriate sign,
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independent of the presence of friction. Table 1 enumerates the possible conditions that can arise from

algorithmic enforcement of the gap constraints along with the corresponding local contact force values, and

a more detailed description can be found in Laursen and Love [11].

Akin to the methods of Jones and Papadopoulos [9], we address Coulomb friction as an analog to al-

gorithmic plasticity, establishing the Coulomb limit as a yield surface. We couch this approach in an

Augmented Lagrangian regularization, prescribing a trial state ttrTa
as a function of penalty value �T, the

algorithmic gap rate va
T½nþ1=2	, and a set of fixed multiplier iterates kðkÞ

Ta
according to the definition

ttrTa
¼ kðkÞ

Ta
þ �Tmab½nþ1=2	v

b
T½nþ1=2	

: ð80Þ

We then determine a trial value for the stick parameter as a function of the trial tangential force magni-
tudes,

Utr
½nþ1=2	 ¼ ttrTa

mab
½nþ1=2	t

tr
Tb

h i1=2
� ltN; ð81Þ

and examine the stick–slip criterion through the trial parameter.

IF Utr
½nþ1=2	 < 0 THEN (STICK)

we adopt the trial state as the true state, i.e.

tTa ¼ ttrTa
; ð82Þ

ELSE (SLIP)
we distribute a Coulomb traction magnitude ltN according to the relative component sizes of the trial

state, i.e.

tTa ¼
ltNttrTa

�Tf½nþ1=2	
: ð83Þ

ENDIF

Substituting the STICK trial case into (77) yields

cl ¼ �Dtwljl tNvN½nþ1=2	

�
þ kðkÞ

Ta
va
T½nþ1=2	

þ �Tf
2
½nþ1=2	

�l
; ð84Þ

similarly for the SLIP trial in (78),

cl ¼ �Dtwljl tNvN½nþ1=2	

0
@ þ

ltNkðkÞ
Ta
va
T½nþ1=2	

�Tf½nþ1=2	

1
A

l

: ð85Þ

Table 1

Summary of contact conditions

Gap conditions Description Normal contact force, tN

gn < 0, gnþ1 < 0 Out of contact 0

gn < 0, gnþ1 P 0 New contact kN þ �Ngnþ1 P 0

gn P 0, gnþ1 < 0 Complete release 0

06 gn 6 gnþ1 Persistent contact kN þ �N DtvN ½nþ1=2	 P 0

0 < gnþ1 < gn Releasing 0
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It would seem that there is nothing to preclude the possibility of a localized product kðkÞ
Ta
va
T½nþ1=2	

from being

negative and thus contributing negative dissipation (i.e. generated energy) to a system regularized by

Augmented Lagrangians. This condition can only occur, however, in a case where the relative slip velocity

va
T½nþ1=2	

has reversed direction between iterates of the augmented multiplier, and does not represent a

physically viable converged state. It is a trivial algorithmic matter to completely eliminate the possibility of

generated energy by setting the multiplier iterate kðkÞ
Ta

to zero whenever it is inappropriately signed relative to

the slip velocity, (a situation analogous to zeroing the multipliers on the normal constraints when current

values for the contact forces result in separation). With this addendum, the contact formulation will never
violate the dissipation criterion (76), and we can be assured that total energy dissipation will be consistent

with our discrete a priori estimate upon application of the velocity update.

3.7. Algorithmic summary

The frictional Velocity Update algorithm can be summarized as follows.

For each time step t 2 ½tn; tnþ1	:

1. Implicitly solve equilibrium equation (54) for displacements dnþ1, using an acceptable regularization to

enforce the normal and tangential constraints directly, precluding interpenetration in the regularized lim-

it. Identify conditions of STICK or SLIP friction locally according to the regularized description of Utr.

2. Assemble coefficients Akl, bl, and cl of the coupled quadratic impulse equation according to the defini-

tions (74), with the allowable contact dissipation determined by (71) in the case of slip friction or set to

zero for local stick conditions.

3. Implicitly solve the quadratic impulse Eq. (75) for the contact impulse magnitudes jl using an iterative

(e.g., Newton–Raphson) solver and following the solution selection criterion outlined in Laursen and
Love [11]. Note that consistent-tangent linearizations of (75) are documented in Love [13].

4. Assemble the global contact velocity vector (vc) from the locally defined nodal contributions

vcA ¼
Xnnod
B¼1

M�1
AB

Xnint
l¼1

wljljl tlNN
l
½nþ1	B

h
� tlTa

Dal
½nþ1	B

i
: ð86Þ

Note that the assembly requires an inversion of the mass matrix.

5. Update the end-state system velocities (vnþ1) from the displacement and contact velocity values accord-

ing to the equation

vnþ1A :¼ �vnA þ
2

Dt
DdA þ vcA: ð87Þ

6. Increment tn ! tnþ1, Repeat until tn ¼ T .

4. Numerical examples

The following section includes three examples intended to demonstrate the successful extension of the

velocity update algorithm to dynamic friction in two and three dimensions, as well as to illuminate the

algorithmic distinction between dissipative and conservative behavior given conditions of frictional slip and
stick behaviour, respectively. It is to be noted that all examples utilize conservative elastodynamic inte-

gration over the interior of each contacting body.
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4.1. Dynamic ring impact: Penalty enforced friction

For our first example, we revisit the ring impact problem from Laursen and Love [11], introducing a

Coulomb coefficient of friction l ¼ 0:5 in addition to the material and geometric data listed in Table 2. Two

rings are set with initial relative configurations demonstrated by Fig. 1, and the first is given an initial

downward velocity in order to initiate an oblique impact in free motion. The contact constraints are en-

forced by means of a penalty method in both the frictionless and frictional simulation, thus admitting

minor penalty-scaled overlaps of the two rings. The limited regularization does not inhibit the energy
conservation properties in the fully conservative frictionless case, as noted from the energy graph in Fig.

2(a), and although algorithmic penalty dissipation would be difficult to differentiate from physical dissi-

pation in the frictional case, the partial plot of total energy as calculated without the use of the velocity

update routine (included in Fig. 2(b)) indicates that a penalty dissipation is indeed being restored in the

updated case, although approximately 5% of the original kinetic energy in the system is being dissipated as

Table 2

Data for ring impact problem

Ring (1) Ring (2) Scaled units

Young�s modulus, E 1000 1000 M/[LT2]

Poisson�s ratio, m 1/6 1/6 –

Density, q 0.1 0.1 M/L3

Material wavespeed, x 100 100 L/T

Initial velocity, v0 f0;�4g f0; 0g L/T

Center coordinates, x0 f0; 0g f10;�20g L/T

Ring radius, r 10 10 L

Ring thickness, t 0.3 0.3 L

# of circular elements, nel;c 78 78 –

# of radial elements, nel;r 3 3 –

Courant number, Dtcr �0.008 �0.008 T

Fig. 1. Ring impact problem, initial configuration.
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a result of slip friction. Note also that Fig. 3 indicates full conservation of angular momentum despite the
admitted penalty overlaps.

A sequence of dynamic configurations for the frictional simulation is supplied in Fig. 4, and displays

some notable qualitative variations from its frictionless counterpart in Fig. 5. As might be expected, the

presence of friction induces a rotational mode in each of the two rings, as evidenced by the relative motion

of the tag element. It is also interesting to note that the frictional interface transmits a great deal more of the

original kinetic energy from the first ring to the second, as evidenced by the post-contact motions in each

simulation and verified by again comparing the energy in each ring in Fig. 2(a) and (b).
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Fig. 2. Ring impact: total energy (a) frictionless and (b) Coulomb friction.
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Fig. 3. Ring impact, angular momentum.
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4.2. Stick/slip example: Friction blocks

Although relatively contrived, the next example is designed to compare the algorithmic treatment of

stick and slip friction. The simulation consists of two three-dimensional elastic blocks (Fig. 6) that impact

with relative tangential motion. The base of the larger block is fixed, and the smaller block is given an initial

rigid-body velocity that initiates a glancing impact. The larger block initially occupies the cubic space

Fig. 4. Friction ring impact, dynamic configurations.

Fig. 5. Frictionless ring impact, dynamic configurations.
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defined by diagonal corner points f0; 0; 0g and f2:0; 2:0; 1:0g and the smaller block is similarly defined by

points f0:5; 0:0; 1:25g and f1:5; 1:0; 2:25g. Table 3 lists the pertinent material data.

Frictional block simulations for both STICK (Coulomb coefficient l ¼ 0:8) and SLIP (Coulomb coef-

ficient l ¼ 0:2) are presented in tandem in Fig. 7. In the former case tumbling behavior of the top block is

initiated during the first in-contact time step (t 2 ½0:2; 0:3	) due to the stick phenomena, whereas in the latter

case, the tumbling behavior is not initiated until a later time step (t 2 ½0:6; 0:7	) when the relative tangential

motion has been sufficiently slowed to the stick regime. The energy plots of Figs. 8 and 9 clearly demon-
strate the algorithmic conservation of energy for the full stick case and consistent dissipation for slip

simulation.

Figs. 8 and 9 also contain, for comparison, simulations run using a Newmark scheme (b ¼ 0:25, c ¼ 0:5)
with a similar, albeit non-conserving model for frictional contact. Note that not only is energy dissipated

and then numerically created by the Newmark scheme, but the inaccuracies of the scheme also serve to

entirely obscure the dissipative effects associated with the change in the frictional coefficient (the changes

are minor enough that the graphs appear nearly identical).

4.3. Frictional golf ball simulation

The final example is a more whimsical (although potentially lucrative) one, again taken as an extension

of a problem in Laursen and Love [11]. It is well-known among golfers that a well-struck iron shot will

Fig. 6. Friction blocks, initial configuration.

Table 3

Material data for frictional blocks

Value Scaled units

Bulk modulus, K 3333 M/[LT2]

Shear modulus, G 5000 –

Density, q 100 M/L3

Initial velocity, top block, v0 f0:0; 1:5;�1:0g L/T
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Fig. 7. Frictional block impact, STICK and SLIP simulations.
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induce backspin on the golf ball, a desirable effect that minimizes rolling of the ball when it lands on the
putting green. It is difficult, however, to differentiate between the conditions that promote this spin––on one

hand, frictional surface interactions between the dimpled ball and a grooved club face often provide suf-

ficient tangential leverage to induce spin; while in other circumstances, suitably large deformations cause a
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Fig. 8. Frictional block impact: STICK friction energy plot.
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Fig. 9. Frictional block impact: SLIP friction energy plot.

2244 G.R. Love, T.A. Laursen / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2223–2248



redistribution of golf ball mass such that the spherical symmetry of the ball is broken and normal surface

forces can induce spin.

In Laursen and Love [11] we presented frictionless analysis of a ball and club system that failed to

produce an appreciable rotation in the simulated golf ball (Fig. 10), belying the second argument some-

what, although the gross simplifications to the material model makes the result far from definitive. (Full
material and geometric data for the problem is also included in the original manuscript.) Introduction of an

arbitrarily chosen Coulomb coefficient l ¼ 0:5 does, however, appear to produce the desired effect, as can

be observed visually from the series of cross-sectional ball configurations in Fig. 11. Fig. 12 offers more

evidence to this effect with a snapshot of the velocity profiles at time t ¼ 4:0 ms. The top figure plots the

velocity of the ball in the y-plane horizontal to the page, which demonstrates, in conjunction with overall

motion to the right (indicated by positive values), also a counterclockwise spin as indicated by the smaller

values at the top of the ball and larger values at the bottom. This observation is further confirmed in the

bottom figure which similarly plots the velocities, this time in the z-plane vertical with the page, with
negative values (down) on the left-hand side and positive values (up) on the right.

The energy plot for the frictional simulation is provided in Fig. 13 and includes the frictionless simu-

lation data for comparison. Approximately 1.2% of the initial system energy is lost due to frictional contact

dissipation.

Fig. 10. Golf simulation, initial configuration.

Fig. 11. Frictional golf simulation: cross-sectional ball deformation.
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Fig. 12. Frictional golf simulation: velocity spin profiles.
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Fig. 13. Golf simulation: frictional and frictionless energy.
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5. Concluding remarks

With this manuscript we proffer the velocity update method as a complete framework for the treatment of

dynamic impact problems. The method makes an accurate accounting of system energy and momenta

through the discretization process, thus ensuring proper treatment during numerical simulations and in

turn assuring numerical stability. It is designed to accurately reflect the properties of the continuum system,

most notably a direct enforcement of the dynamic impact constraints and a localized representation of

frictional energy dissipation that discerns conservative stick behaviour from dissipative slip. These prop-
erties have been fully implemented for both two and three dimensional systems using both penalty and

augmented Lagrangian regularizations. It is our expectation that the velocity update method for the contact

interface will be particularly useful in conjunction with energy-consistent methods for dissipative bulk

media, where localized energy has a significant effect on deformations.
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