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SUMMARY 
The detailed discretization of contact zones with contact stiffness based on real physical characteristics of 
contact surfaces can produce stiffness tenns which induce illconditioning of the global stiffness matrix. 
Moreover the consistent treatment of frictional behaviour generates non-symmetric tangent stiffness 
matrices due to the non-associativity of the slip phase. Other non-symmetries are due to the coupling terms 
and to the dependencies on various parameters that can be involved. To overcome these difficulties almost 
consistent techniques based on two-step algorithms have been proposed in the past. Here an augmentation 
technique is proposed which takes into account micro-mechanical effects, and permits the symmetrization of 
the tangent stiffness during frictional slip phase. 
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INTRODUCTION 

Contact mechanics is a research field that has recently received a strong impulse for the solution 
of large problems and for the detailed analysis of forces and heat transmission mechanisms. The 
field can be subdivided into different research areas: the enhancement of the contact search 
algorithms, the formulation of contact constraints, the linearization of the equation set. Recently 
microscopical phenomena which take place in the contact zone have also attracted attention. 

Several approaches are actually proposed for the numerical treatment of contact con- 
s t r a i n t ~ . ' ~  Here a formulation is presented dealing with coupling effects between thermal and 
mechanical fields. The thermomechanical stiffness is based on microscopic mechanisms of force 
transmission and heat exchange. Using a microscopic approach and combining it with a statist- 
ical description of the parameters involved, constitutive laws have been formulated to deal with 
the normal and tangential contact stiffness, and the thermal contact resistance. In more detail, 
experimentally and theoretically well-founded micromechanical and microthermal laws have 
been adapted here to FE discretization. Based on these laws the non-linear macroscopic related 
stiffnesses are calculated with dependence on changes in significant parameters. For a detailed 
discussion on the micromechanical approach see References 5-7. 

Below, the physical laws are used in contact elements with linear geometry and consistent 
linearizations of the geometrical and physical terms are carried out. The geometry of the contact 
is an extended version of the basic one presented in Reference 8. 
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CHARACTERISTICS OF CONTACT LAWS 

When taking into account contact phenomena at the microscopic level a general compact form of 
the normal, tangential and thermal laws in the contact interface r, can be obtained by defining 
three functions, fn,f; and f,,, as follows: 

where fn,ft and fh denote the normal contact force, the tangential force and the heat flux across 
the apparent contact area A. Moreover gn,gt and gh denote the mean planes approach which 
corresponds to the normal displacement, the tangential displacement and the temperature jump 
across the contact. Finally t ,  represents the temperature of the gas inside the microcavities. More 
details on how to formulate such laws can be found in References 5-7. 

Applied to numerical computations, the physical approach leads frequently to stiffness terms 
which are several orders of magnitude larger than the stiffness terms coming out of the 
discretization of the solids; hence the global stiffness matrix becomes ill-conditioned and lack of 
convergence may ensue. For instance, considering the normal contact stiffness for metallic 
materials, stiffness terms coming out either from micromechanical laws with common surface 
finishing, or from the necessity to limit unrealistic surface penetrations, assume usually very high 
values. The problem has been managed using either quadruple preci~ion,~ or the augmented 
Lagrangian technique." The latter method permits the analysis to deal with low stiffness 
parameters which do not correspond to the physical ones. The satisfaction of the constraint 
conditions is then imposed within an iteration inside the time step. In this iteration the forces due 
to the contact stiffness are imposed as external ones. When convergence within the step is 
achieved, the equilibrium is obtained for contact forces imposed as external forces, and the 
penalty stiffness is not involved anymore, because the relative displacement field in the contact 
zone is zero (see also References 10-12). The augmentation technique proposed for the microm- 
echanical approach" is a modification of the standard procedure. In this case the constraint 
conditions take into account the real stiffness of the microasperities, and the approach of the 
mean planes surfaces. 

It should be remarked that if the real tangent stiffness matrix is known, the equilibrium 
iteration has a quadratic rate of convergence near the s o l ~ t i o n , ~  whereas the augmented 
Lagrangian iteration has a linear rate of convergence. The theoretical possibility to nest together 
iteration and augmentation loops is not convenient because the augmented Lagrangian iteration 
lacks a quadratic rate of convergence. 

Considering the frictional behaviour again, numerical problems occur in the stick phase due to 
the high tangential stiffness. The simple Coulomb's law considers no displacement in this phase, 
i.e. infinite stiffness. Using a micromechanical model an elastic deformation of the contacting 
asperities can be considered, but even in this case the tangential stiffness generates ill-condition- 
ing of the global stiffness matrix. 

Moreover with Coulomb's law during the slip phase we have no dependence of the tangential 
forces on the tangential displacement. On the other hand a dependence comes from the normal 
approach, which modifies the slip limit. The fact that sliding of the surfaces does not produce 
dilatancy leads to an unsymmetric stiffness matrix. This non-symmetry appears even if more 
sophisticated dependencies'. l 3  are used. The symmetrization of the problem requires an algo- 
rithm which assumes no dependence on the normal approach; this means that the iteration loop 
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should be carried out using a constant normal force, even if the normal force varies. In such a case 
the tangent stiffness matrix due to friction is zero. This two-step procedure has been used in the 
past.3* l4 

Also, for the frictional behaviour an augmentation technique can be used to exactly satisfy the 
theoretical  condition^,'^ and in this case too the algorithm can be adapted to impose real physical 
deformation of the asperities. Moreover, the symmetrization using the two-step technique can 
also be used within the augmentation 100p.l~ Here, a new technique for symmetrization is 
proposed that seems to give a better rate of convergence. 

Within the context of thermomechanical problems the contact thermal resistance usually does 
not cause numerical problems. The thermal stiffness can be predefined as an input parameter, or 
computed on a micromechanical base, as reported in References 5 and 6. However, augmentation 
can be applied also to the thermal relationship. 

PROBLEM DEFINITION 

We consider two generic bodies B" (c1 = 1,2), the associated displacement field u", and the 
temperature fields ta. The two bodies can have contact along predefined contact zones I-:. 

A general form of the mathematical problem can be obtained by minimization of a functional 
for the frictionless case which takes into account the continuum and the contact zones. In the case 
of coupled problems with friction we use the principle of virtual work which leads to 6 W, = 0. 
The weak form of the heat equation will be denoted by SW, = 0. Moreover the contact 
contribution can be evidenced distinguishing between the continuum part, 6 w", and the contact 
part, 6Wrc. 

a =  1 
(4) 

L 

6 W*(u, t )  = c 6W"(Ua,  t") + 6 w&', d, t', t 2 )  = 0 
a= 1 

Of course the contact contribution involves only the part of the boundary where the contact is 
closed, i.e. the following inequality should be checked 

gn G 5 ( 5 )  

where 5 is the initial mean planes distance. This relationship takes into account the microscopic 
roughness of the surface, and means that the contact is closed when the computed mean planes 
distance is less than or equal to the initial asperities height. A criterion more often employed, e.g. 
for the standard penalty approach, is 

g n  G 0 (6) 

which means that contact is active when penetration starts. 

AUGMENTED LAGRANGIAN FORMULATION 

The augmented Lagrangian technique is a procedure that can be used to avoid ill-conditioning of 
the global stiffness matrix when constraints are present. It permits the contact conditions to be 
satisfied while avoiding the use of high penalty values that can occur when limiting undesirable 
surface penetration or the requirement to impose the real physical stiffness of contact surfaces. 
Application of this procedure to frictionless contact can be found in Reference 12. Extension to 
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the frictional case has been more recently l6 Moreover particularization to the 
microscopical constitutive law for normal stiffness is proposed in Reference 10. Here we focus on 
the frictional part, with consideration of the microscopical constitutive law and symmetrization 
of the stiffness matrix. 

The augmentation technique with a micromechanical model requires a new constraint condi- 
tion. If the computation is carried out using a normal stiffness not corresponding to the real one, 
we have to distinguish between the geometrical approach coming out from the stiffness used for 
the augmentation loop, gn+, and the real microscopical approach due to the normal contact 
forces, gn. The convergence of the augmented loop is hence obtained when the two approaches 
are equal. It should be remarked that in the standard augmented approach the target value is 
fixed, no penetration of the surfaces takes place, i.e. 

gn+ = 0 (7) 

Instead with the micromechanical approach the target value is a function of the pressure, which 
involves a new non-linearity. Using equation (1) to solve for gn we can write 

(8) gn+ (u1,u2) - gn(fn, A )  = 0 

This procedure is described in more detail in Reference 10. 
The same method can also be used for the tangential part. Using Coulomb's law the stick phase 

is governed by a dummy tangential stiffness, and the augmentation loop should move the elastic 
stick displacement back to zero, 

gi+ (ul, u2) = 0 (9) 
Considering a micromechanical law the elastic stick displacement should correspond to the 
elastic displacement of the microscopic asperities. In such a case using equations (1) and (2) we 
amve at 

gt+(u',u2) - gt(fi,fn,A) = 0 (10) 

When slip takes place equations (9) and (10) are still valid if the slip part of the tangential 
displacement is removed, see also equation (13). 

Finally the activation of the thermal field does not depend on an inequality involving thermal 
unknowns. It depends on the fact that the gap is open or closed, i.e. on the same inequality that 
rules the normal contact. The same criteria can be used for the thermal field, but in this case we 
have to consider the fact that the temperature jump across the contact is different from zero. This 
means we always have to satisfy a condition like 

gL+(U1,U2) - gh(fh,fnrft,tg,A) = 0 (1 1) 

The simplest constitutive equation for the real temperature jump gh could depend on a predefined 
constant stiffness. However the real physical behaviour requires that gh should at least depend on 
the normal force. 

The geometrical approach is defined evaluating the distance of two points lying in the normal 
direction of surfaces r,' and r:. 

gn+ = {F' - ul)*n for (u2 - u')-n < 0 
for (uz - u')-n 2 0 

where n is the normal to the surface T$ computed in the projection point. 
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The tangential displacement is defined by 

where t is the tangent unit vector computed in the projection point on r,' and g(":* represents the 
slip part of the displacement, that has to be removed for stiffness computation. 

Finally in the case of a coupled analysis the temperature jump across the contact is defined as 

The system of equations defining the problem is then given by the weak forms describing 
mechanical and thermal behaviour of the bodies, plus constraint conditions for normal, tangen- 
tial and thermal contact. 

2 

dW,(u,t) = C hWG(ua,ta) + 6W~(u1,uZ,t1 , t2)  = o 
a =  1 

2 

s ~ T ( u , t )  = 1 sw;(ua,ta) + 6 ~ ~ ( u ' , u ~ , t l , t ~ )  = o 
a= 1 

subject to h+ = Qh+ - gh = 0 

This set of equations can be used also as a starting point for a formulation of contact without 
a microscopical contact law. In such a case we simply have to impose 

gn = gt = 0 (16) 

which means 

The temperature jump across the contact should be different from zero, as remarked previously, 
otherwise it means that no thermal contact resistance is involved. Hence the simplest formulation 
requires the definition of a constant contact thermal conductivity H and leads to 

fh = Hgh (1 9) 

Then the thermal constraint condition becomes 

The contact contribution can be expressed using the virtual work of the contact forces. Equation 
(4) leads then to the augmented Lagrangian formulation 

6W&,t) = C 6G(Ua,fO) + jrc(p.6gn+ + p&+)dr + (En+&,+ + X t + b t + ) d r  = 0 
2 

(21) 
a= 1 J-rc 

2 

a =  1 
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E, x and y represent normal, tangential and thermal penalty parameters, respectively, used within 
the augmentation loop. The first integral represents the virtual work of the augmented forces, 
pn,p, and Ph, which are assumed to be known for the moment. The second one represents the 
virtual work due to the penalty stiffness. 

The equilibrium iteration within the step can be carried out by updating the augmented forces 
at each iteration. In such a way we obtain only a linear rate of convergence. It is usually more 
effective to split augmentation and iteration loops within the time step. Then, the equations 
within a time step are solved using an external augmentation loop. Equilibrium iterations, with 
a quadratic rate of convergence, are carried out after each augmentation. 

The new set of augmented forces is computed as follows: 
i 
a a + l  a 

pL+' = + &n:+l 

i 
a + l  a a 

p;+1 = pk+' + yh:+' 

where the current status is identified by time step t + 1, augmentation a + 1 and iteration i + 1. 
We have to remark that n + , t +  and h+ are non-linear functions; thus the update procedure is 
different from the standard one." 

The updating scheme for the constraint condition for the iteration i + 1 is the following: 
i + l  i + l  
a + l  a + l  a + l  

n:+l = S n +  1 + 1  - 9 n  f + l  

i + l  i + l  
a + l  a + l  a + l  

t i+ '  = S:+" - g;+' 

i + l  i + l  
a + l  a + l  a + 1  

h i + '  =S;'+' --;+I 

We remark that the update criterion considers the physical approach target value as a constant 
within iterations. New target values are determined at each augmentation. 

The fully coupled system of equation (21) leads to a non-symmetric tangent operator when 
linearized. This is due to the coupling terms, and to dependencies on geometrical and thermal 
quantities, see e.g. References 5,6 and 13. 

It has been proved that for some classes of coupled problems it may be effective to employ 
a staggered procedure." In such cases the coupling terms disappear, and it would be interesting 
to check the possibility to symmetrize the problem entirely. Disregarding coupling terms we still 
have a non-symmetric formulation. The first cause is the dependence of (1)-(3) on the apparent 
area. This effect only occurs when large deformations are present,' but it has a limited influence, 
see Reference 18, and thus can be disregarded. Another cause is associated with the gas 
temperature which affects the heat exchange through the gas in the micro~avities.'~ Also this 
influence is very small and can be neglected. The most significant cause is due to the influence of 
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normal forces on the tangential force during the slip phase. Some techniques are available in the 
literature to symmetrize these dependencies.’*. 

The basic technique of symmetrization of the frictional equation set during the slip phase 
considers a different update scheme for the normal contact force and the normal force used to 
compute the frictional slip limit. Using a consistent approach the normal force is computed 
within the iteration to check if the slip limit has been reached, 

i +  1 i +  1 
a +  1 a +  1 

f : 2 x  = F(f :+I) (28) 

Here the generic function F has been particularized for Coulomb’s law using the constant friction 
coefficient p, 

i + l  i+ 1 
a +  1 a+ 1 

f:&:=Pf:+l 

In the case of the standard procedure without augmentation the previous relationship yields 
i + l  i+ 1 

f ;zx = Pf :+ 

This relationship implies a dependence on the current normal approach, and then the unsymmet- 
ric terms appear. To avoid it a so-called two-step algorithm was proposed in Reference 14 in the 
case of no augmentation. The method solves the frictional behaviour using not the current 
normal force but the normal force of one step behind, 

i +  1 

f ;;A = Pfk  (3 1) 

Of course this strategy affects the rate of convergence. It can also be used in the case of the 
augmentation technique, i.e. 

i+ 1 
a +  1 

f = P f L  

More recently a different technique has been proposed in Reference 16. Considering that the 
augmentation loop is nested inside the time step loop, and that usually the augmented step is an 
equilibrated one, it can be used as a ‘more recent’ solution point for the normal force. 

i +  1 
a +  1 a 

f = P f  :+ (33) 

In this procedure the pressure used for determining the maximum admissible tangential force lags 
one augmentation step behind the current status. Both these choices imply that the first solution 
phase is frictionless. However it can be shown that if the first augmentation is frictionless then 
some difficulties arise in the second one, due to the sudden change in the tangential force. This fact 
can destabilize the solution and may lead in some cases to divergence. 

The crucial point for symmetrization is that when the slip takes place we have to use a constant 
normal force for computing the slip limit. It could be reasonable to use a “more recent” normal 
force instead of the normal force of the previous augmentation. 
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To use a more recent value for the normal force, probably nearer to the solution value, we 
propose to take the last value available in the iteration loop. This means that when the slip occurs 
we compute the maximum allowable tangential force, and then keep the value constant for the 
remaining iterations. 

i + l  i 
a +  1 a +  1 

fI%!x = Pf:+I (34) 

where f is the iteration value at which slip started. Examples have shown good results, and 
convergence was achieved also for cases where the other algorithms failed. 

FINITE ELEMENT FORMULATION 

The finite element model can be formulated within a general framework for large def~rrnations;~ 
however we restrict ourselves to the case of small strains and displacements to focus on the basic 
algorithm features. We therefore extend the simple element used in References 10 and 19. In the 
case of contact surfaces being parallel to the x-axis we have 

g n +  = ~2 - YI = (Y2  + ~ 2 )  - (Y1  + 01) (35) 
where Y, u and y denote the initial vertical position, the current vertical displacement and the 
current vertical position of the node, respectively. By defining vectors U, containing the current 
node position and vectors N, T, H, containing constant coefficients 

we can write equation (1 2) as 

N =  

gn+ = U 3  

t.], 0 1 T =  

0 

In a similar way we obtain from equations (13) and (14) 

g,+ = UIT - g:yP 

gh+ = UfH 

- 1  0 
0 1 1, H = [ "  0 

0 0 
0 1 

Using equations (4), (21) and (37)-(39) we express the contact contributions of the active contact 
elements as follows: 

where n, is the number of contact elements, A is the element area and u represents an operator 
that selects and suitably assembles only the active (closed) element contributions. 
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The discretization of the continuum problem can be represented in a general form2' as 
2 C 6 W~(U', t") = GUTM(u, t )  (43) 

u =  1 

2 1 6 W+(uU, ta )  = GUTT(u, t )  
a= 1 

(44) 

Equations (40)-(44) permit one to obtain the discretized form of the global problem given by 
equation (21). This leads, for arbitrary virtual quantities 6U, to the vector equations 

nc 

M(u,~)  + [(Pn + &n+)A]cN + u [dUT(pt + xt+)AIcT = 0 

The algorithmic treatment of the problem requires the linearization of the equation set (4). 
From the contact contribution in matrix form (equations (40)-(42)) and the chosen contact 
geometry we obtain the contact tangent stiffness contributions. The normal contact gives 

+ 6UT(pn + &n+)AA],N (46) 
Due to the chosen contact element geometry and to the solution scheme p., E and A are constants. 
Disregarding second-order terms and using equations (25) and (37) to express n+ we obtain 

n, nc nc u [GUTEA~+A],N = u [6U~EAgn+A],N = u [GU%&(AUfN)A],N (47) 
c =  1 c =  1 c=  1 

Rearrangement of equation (47) permits to obtain the tangent stiffness matrix 
nc u [~UZ(EANN~)AUJ, *KTn = u ( E A N N ~ ) ~  

c =  1 c =  1 

The frictional contribution depends on the current status: in the stick phase the tangential slip, g:liP, 
is zero, and the linearization carried out following the same guidelines of the previous one yields 

nc 

A[l..(p' + xt+)6gt+ d r ]  *KY:ck = u ( x A n T I c  (49) 

In the slip phase a dependence on the normal force appears. Using Coulomb's law this can simply 
be evidenced in the following way: 

c =  1 

ft Pf* w - - = - gn+ gt+ =- -  x x x  
With equation (50) the linearized form of equation (41) is 

nc 

A[ IrC(pt + xt+)6gt+ d r  ( w A t +  Sgn+)dT *KITLfP = u (puATNT), (51) 
c =  1 

Finally the linearized form of the thermal contribution is 
nc 

A[jrc(ph + Yh+)dgh+ d r  * K T h  = u (yAHHT)c 1 c= 1 
(52) 
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The algorithm is described in detail in Box 1. 

Box 1. Scheme of the algorithm 

Initialize algorithm 
set initial values 
LOOP over time step: t = 1, . . . , total load condition 

LOOP over augmentations: a = 1, . . . , convergence 
LOOP over iterations: i = 1, . , , , convergence 

solve 
i + l  i + l  i f 1  O + l  O + l  i +  1 
0 + 1  a + l  no O + l  a + 1  

M = M ( u ~ + ' , ~ ' + ~ ) +  u 6UT[(p?' +&n:+')AN+(p?' + ~ n y ' ) A T ] = 0  
I-1 

i + l  i + l  i +  I 
m + l  n + l  nc a t 1  a + 1  

t= T(d+l,t'+l) + u GUf(ph+' + yh:+')AH = 0 
c- 1 

fulfilling constraint conditions (8),(10),(11) 
check for convergence: IIM + T 11 Q TOL *convergence 

END UWlP 
LOOP over contact elements: k = 1, n 

update augmented forces: 
i 

.+l a (1 a + l  o LI . + I  (I a 
1 

t + l  + &n;+l pi+' = p:+1 + Xt: f '  p F 1  = ph ' + l  + Yh:+' P:+l = P" 

update physical approaches: 
IF standard way: 

1 i i  
a+ 1 0+1  P a  

g a l  =g"(f:'.A) g:+' =gt(f:+', f a + ' , A )  

ELSE IF symmetric way without thermal field:" 
1 
( I a  a+  1 o +  1 

gif'  = g . ( f :+ ' ,A)  g:+l = St(f:", f:+'.4 

I 
0 0 a .  . + I  

I grl = g.,,(f;+l, f:+l,t:+l.A) 

ENDIF 
check constraint condition: 

END LOOP 
END LOOP 

END LOOP 
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2 

EXAMPLES 

The numerical computations have been carried out to demonstrate the influence of different 
contact features. To do this we decided to focus on the contact mechanics; thus we have 
eliminated non-linearities within the continuum formulation and have used simple tests with 
geometrically linear behaviour. 

The elastic block on a rigid foundation is a widely used test example for these purposes.*’ The 
test considers a block 4 units wide and 2 units high (Figure I). Idealized mechanical parameters 
often used for the block are: elastic modulus E = loo0 force/length2 and Poisson’s coefficient 
v = 0 3 .  These parameters characterize a very deformable continuum medium. We have carried 
out a series of numerical tests using these data. Furthermore some other results have been 
obtained using the more realistic compression modulus of steel. 

The block is discretized by using four-node isoparametric elements in the plane stress 
condition. Contact features have been studied using penalty as well as micromechanical 
normal stiffness5-’ methods. Frictional effects have been included using a penalty stiffness 
in the normal direction with Coulomb’s law or normal and tangential micromechanical stif- 
fnesses. Furthermore, augmentation techniques have been applied to these four cases. All data 
involved in the description of the contact interface are collected in Table I. Such data can be 
obtained from measurements of the microscopical surface shape and hardness tests, see e.g. 
Reference 22. 

Compared to the basic example2’ some modifications have been introduced concerning the 
boundary conditions. Frictional effects are applied all along the contact area and either the 
vertical load or the imposed displacement at the top are applied along the entire upper edge of the 
block (see Figure 1). 

In the first series of tests a uniform vertical displacement of 0.32 has been applied. The energy 
tolerance to stop equilibrium iterations within the augmentation loop has been set to le - 25 
which denotes the limit in double precision computations due to round-off errors. In such a way 
the order of magnitude of the minimum value obtainable for the residual norm is le - 12. 

Results of the first four tests (nos. 1,2,3,4 in Table I) are collected in Table 11. It is evident in 
these examples that the frictional effects have a small influence on the rate of convergence. The 
micromechanical contact law, reported in Figures 2 and 3, is strongly non-linear; hence more 

b 
4 

4 

Figure 1. Discretization of the elastic block on rigid foundation 
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Table I. Contact parameters of the examples 

N Features Value 

1 

2 

3 

4 

5 

6 

7 

8 

Frictionless penalty 
Normal penalty 
I -+ Coulomb's friction 
Normal penalty 
Tangential penalty 
Coulomb's friction coefficient 
Frictionless micromechanical 
Mean RMS surface roughness 
Mean equivalent absolute slope 
Hardness parameter C 1 
Hardness parameter C2 
3 + micromechanical friction 
Tangential elastic stiffness 
Initial shear strength 
Final shear strength 
Initial coefficient of microfriction 
Final coefficient of microfriction 
Hardening exponential constant 
Hardening linear constant 
1 with augmentation 
Target stiffness 
Augmentation penalty 
Penalty increment ratio 
2 with augmentation 
Target normal stiffness 
Target tangential stiffness 
Augmentation normal penalty 
Augmentation tangential penalty 
Tangential penalty increment ratio 
3 with augmentation 
Non-linear target stiffness 
Augmentation penalty 
Penalty increment ratio 
4 with augmentation 
Non-linear target normal stiffness 

le + 10 

le + 10 
le + 10 

0.1 

478e - 7 
0.072 

6.271e + 6 
- 0.229 

le + 7 
0 
0 

0.1 
01  
0 
0 

00 
l e + 4 +  l e + 6  

1 -  10 

le + 7 
le + 7 
le + 5 
l e  + 2 
1 - 2  

0 - 4 e + + l  
l e + 4 -  l e + 6  

1 -  10 

0 -  4e+ 11 
Non-linear target tangential stiffness 
Augmentation normal penalty 
Augmentation tangential penalty 

0 + 4e + 11 
le + 9 

le + 4 + le + 6 

iterations have to be performed to achieve convergence. However, the rate of convergence near 
the solution point is quadratic due to consistent linearization (Figure 4). 

Within the augmentation technique it is important to determine the proper value of the penalty 
term. If it is chosen too low then the convergence rate is very poor. Comparisons for different 
values of the penalty parameter in test no. 5,  see Table I, can be deduced from the results collected 
in Table III. The case of penalty without friction has been tested by varying the penalty parameter 
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Table 11. Residual norm for test nos. 1,2,3 and 4 

1 2 3 4 
~ ~ ~~~~~ 

0.156e + 4 0156e + 4 0.156e + 4 0.156e + 4 
0.167e - 11 0.99Oe + 1 0.664e + 6 0.685e + 6 
0-416e - 12 0-471e + 1 0-224e + 5 0.224e + 5 
- 0.401e - 12 0759e + 4 075% + 4 
- - 0*26oe+4 026oe+4 
- - 0.876e + 3 0876e + 3 
- - 0.276e + 3 0276e + 3 
- - 0.71Oe + 2 0.711e + 2 
- - 0.101e + 2 0-131e + 2 
- - 0311e + 0 0.242e + 1 

- 0322e - 3 0-139e - 2 
- - 0.344e - 9 0912e - 8 

- 0.486e - 12 0.186e - 10 

- 

- 

O.O@*O l.O@-6 2,0@-6 

Phyricrl rpprorch 

Figure 2. Normal contact force versus physical approach 
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Figure 3. Normal contact stiffness versus physical approach 

during the augmentations. Table I11 depicts the residuals of the constraints during the augmenta- 
tion loop and the number of iterations required to achieve convergence at each augmentation 
step. The final penetration obtained is le - 17 which is a very good approximation. Note that the 
computational effort depends strongly on the value selected for the penalty parameter. 

The possibility to increase the initial penalty value within an augmentation loop may lead to 
a better rate of convergence. Unfortunately it is not a simple task to establish a good strategy for 
increasing the penalty value and for stopping this process at a certain level. Some preliminary 
results on the choice of the penalty parameter are reported in Wriggers and No~r-Omid.’~ Thus 
this is a field in which some efforts should be spent, because until now there are no well-set 
criteria. However as argued from a comparison of the reported results the augmentation 
technique is really advantageous. To increase the penalty means to disturb somehow the solution 
process. Hence it can be done only during the first augmentations. The criterion adopted here 
stops the increment when the maximum admissible value, as stated in Reference 23, is reached, or 
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when the rati 

1 0 - 1 3 1  
0 5 10  

Iteration# 

Figure 4. Convergence rate for test no. 3 of Table I 

5 

between the previous and the current approach is less tha 0-25. This criterion 
allows only one increment at the first augmentation in each test. The effect of the penalty value 
used for augmentations on the normal approach is shown in Figure 5. 

The group of examples no. 6 of Table I are similar to the ones in group no. 2, but here the 
augmentation technique has been applied to improve the results of normal and tangential contact 
effects. Due to the chosen contact parameters and load conditions, slip is activated in the main 
part of the contact zone. Hence the unsymmetric terms in contact tangent matrix strongly 
influence the solution. Comparisons of different solution strategies are reported in Table IV. The 
examples show a certain sensitivity to the contact parameters. Many difficulties come from the 
jumps of tangential forces during augmentations. These jumps determine sometimes the gap 
opening in certain zones; due to this the solution does not converge. This effect takes place when 
using a symmetrization technique proposed in References 14 and 16, where the first augmentation 
is frictionless, then in the second augmentation a big jump in the contact forces occurs. To avoid 
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Table 111. Residual of constraints and number of iterations for test no. 5 

Penalty le  + 4 Penalty le  + 5 Penalty le  + 6 Penalty le  + 4 Penalty le  + 5 
no increment no increment no increment increment 10 increment 10 

- 
3 

0.698e - 1 
2 

0.336e - 2 
2 

0.158e - 3 
2 

0.754e - 5 
2 

0-369e - 6 
2 

0.171e - 7 
2 

0.814e - 9 
2 

0-388e - 10 
2 

0.185e - 11 
2 

0.879e - 13 
2 

0.418e - 14 
2 

0.197e - 15 
Tot. iterations 

25 

3 
073oe - 2 

2 
0363e - 4 

2 
0181e - 6 

2 
0898e - 9 

2 
0447e - 11 

2 
0.222e - 13 

2 
O.llle - 15 
- 
- 
- 
- 
- 
- 
- 
- 

- 
- 

15 

3 
0.733e - 3 

2 
0.366e - 6 

2 
0.183e - 9 

2 
0.915e - 13 

2 
0457e - 16 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

11 

3 
0.698e - 1 

2 
0.347e - 3 

2 
0.173e - 5 

2 
0.860e - 8 

2 
0428e - 10 

2 
0.213e - 12 

2 
0.106e - 14 

2 
0.533e - 17 
- 
- 
- 
- 
- 
- 
- 

- 

17 

3 
0.730~ - 2 

2 
0365e - 5 

2 
0182e - 8 

2 
0.911e - 12 

2 
0455e - 15 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

11 

Penalty le  + 6 
increment 10 

3 
0-733e - 3 

2 
0'366e - 7 

2 
0.183e - 11 

2 
0.916e - 16 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

9 

gap opening a suitable combination of normal and tangential penalty parameters should be 
chosen. An alternative way can be the use of an active set strategy, which permits traction forces 
in contact zones during the iterations. Then the solution can be obtained even if the contact forces 
oscillate with changing sign. The main problem using this strategy is that it is not easy to 
determine if the contact opening is the correct solution or if it is due to oscillations of contact 
forces. 

The results reported in Table IV show that the convergence rate is quite slow without increase 
of the tangential contact stiffness. In this case the unsymmetric formulation, the symmetric one 
proposed in Reference 16 or the one proposed by us give about the same efficiency. With a higher 
tangential stiffness the problem does not converge due to the opening of some contact elements 
within the iterations. The effectiveness of the proposed symmetrization is evidenced when an 
increase of the penalty parameter is adopted. In this case the low starting value avoids gap 
opening during the first augmentation. Then the increase of the penalty parameter improves the 
convergence rate. In fact, using the same number of iterations in the case without a tangential 
penalty increase we are able to fulfil the constraint up to 0.315e - 10 instead of 0.127e - 5. 
Moreover in this case the proposed symmetrization technique presents almost the same conver- 
gence rate as the unsymmetric one. Considering the number of iterations within the augmenta- 
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:.:::I . , . , . ; . , . , II 

10-20 
1 8 1 1  1s 21 28 

AugmOntOtiOn8 

Figure 5. Normal approach with augmentations for test group no. 5 

tions the proposed symmetrization also seems to be less sensitive than the other one with resp ct 
to the disturbance induced by the update of the penalty parameter. 

The effectiveness of the augmentation technique with a micromechanical contact law has been 
demonstrated in Reference 10. Test no. 7, for which the results are reported in Table V, considers 
a frictionless contact with micromechanical contact law. The decrease of the residual of the 
constraints also shows in this case the necessity to increase the penalty stiffness. Due to the 
micromechanical law the target value for the approach is not zero, but is a variable which evolves 
during the simulation (see also Reference 10). The final target value for the physical penetration is 
4e - 7. Also in this set of tests the algorithm has permitted only one increase of the penalty during 
the first augmentation. 

Test no. 8 collects examples of contact with friction based on a micromechanical contact law. 
The augmentation technique is used for both normal and frictional contact behaviour. The 
efficiency of the proposed technique to symmetrize the contact stiffness matrix during the slip 
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Table IV. Residual of constraints and number of iterations for test no. 6 
~~ 

Target stiffness: normal le + 7, tangential le + 7 

Normal penalty le  + 5 
Tangential penalty le + 2 

Normal penalty le + 5 
Tangential penalty le + 2 

Tangential penalty increment 2 

Unsymmetric Symmetric16 Symmetric Unsymmetric Symmetric16 Symmetric 

3 
0737e - 2 

2 
0.209e - 3 

2 
0.155e - 3 

2 
0.487e - 4 

2 
0-236e - 4 

2 
0.137e - 4 

2 
0.108e - 4 

2 
0717e - 5 

2 
0661e - 5 

2 
0.590e - 5 

2 
0.329e - 5 

2 
0-308e - 5 

2 
0.289e -. 5 

2 
0.272e - 5 

2 
0.255e - 5 

2 
0.239e - 5 

2 
0.224e - 5 

2 
0.211e - 5 

2 
0.127e - 5 

__ 
- 

Tot. iteration 
39 

3 
0.730e - 2 

2 
0.249e - 3 

2 
0.195e - 3 

3 
0.144e - 3 

2 
0.530e - 4 

2 
0.253e - 4 

2 
0145e - 4 

2 
0.108e - 4 

2 
0.736e - 5 

2 
0664e - 5 

2 
0582e - 5 

2 
0.337e - 5 

2 
0.309e - 5 

2 
0.289e - 5 

2 
0.272e - 5 

2 
0.255e - 5 

2 
0239e - 5 

2 
0225e - 5 

2 
0.211e - 5 

2 
0.124e - 5 

42 

3 
0.737e - 2 

2 
0209e - 2 

2 
0.159e - 3 

2 
0.515e - 4 

2 
0212e - 4 

2 
0.129e - 4 

2 
O.1OSe - 4 

2 
0.723e - 5 

2 
0.649e - 5 

2 
0.593e - 5 

2 
0.336e - 5 

2 
0302e - 5 

2 
0288e - 5 

2 
0.272e - 5 

2 
0.255e - 5 

2 
0239e - 5 

2 
0-225e - 5 

2 
0211e - 5 

2 
0.130e - 5 

-. 

- 

39 

3 
0737e - 2 

2 
0.341e - 3 

3 
0.106e - 3 

3 
0345e - 4 

2 
0179e - 4 

4 
0.923e - 5 

4 
0'466e - 5 

4 
0.146e - 5 

2 
0274e - 6 

2 
0.699e - 7 

2 
0.153e - 7 

2 
0.326e - 8 

2 
0.694e - 9 

2 
0.148e - 9 

2 
0315e - 10 
- 
- 
- 
- 
_. 

- 
- 
- 
- 
- 

39 

3 
0.730e - 2 

2 
0.249e - 3 

5 
0.476e - 2 

4 
0.215e - 2 

2 
0'130e - 3 

2 
0544e - 4 

3 
0 4 3 e  - 4 

2 
0.325e - 4 

4 
0'914e - 5 

4 
0-445e - 5 

4 
0.140e - 5 

2 
0'276e - 6 

2 
0.7OOe - 6 

2 
0.149e - 7 

2 
0.313e - 8 

2 
0658e - 9 

2 
0-138e - 9 

2 
0.291e - 10 
- 
-. 

- 

- 

49 

3 
0.737e - 2 

2 
0.341e - 3 

3 
0.120e - 3 

3 
0.320e - 4 

2 
0.177e - 4 

4 
0.918e - 5 

4 
0.469e - 5 

4 
0.148e - 5 

2 
0.271e - 6 

2 
0.773e - 7 

2 
0.185e - 7 

2 
0-324e - 8 

2 
0-648e - 9 

2 
0.108e - 9 

2 
0.281e - 10 
- 
__ 
- 
- 
- 
- 
- 
- 
- 

- 

39 
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Table V. Residual of constraints and number of iterations for test no. 7 
~~ 

Penalty le + 4 Penalty le + 5 Penalty le + 6 Penalty le  + 4 Penalty le + 5 Penalty le  + 6 
no increment no increment no increment increment 10 increment 10 increment 10 

2 
0.296e + 5 

2 
0.141e + 4 

2 
0671e + 2 

2 
0.319e + 1 

2 
0.152e + 0 

2 
0.724e - 2 

2 
0-345e - 3 

2 
0.164e - 4 

2 
0.782e - 6 

2 
0372e - 7 

1 
0.372e - 7 

1 
0.177e - 8 
Tot. iterations 

22 

2 
0.309e + 4 

2 
0154e + 2 

2 
0.76% - 1 

2 
0.380e - 3 

2 
0.18% - 5 

2 
0.941e - 8 

1 
0941e - 8 

1 
0.461e - 10 
- 
- 
- 
- 
- 
- 
- 
- 

14 

2 
0.310e + 3 

2 
0155e + 0 

2 
0772e - 4 

2 
0386e - 7 

2 
0.192e - 10 

1 
0.192e - 10 

1 
0451e - 13 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

12 

2 
0.296e + 5 

2 
0.147e + 3 

2 
0.732e + 0 

2 
0.364e - 2 

2 
0-181e - 4 

2 
0.901e - 7 

2 
0-448e - 9 

1 
0 4 8 e  - 9 

1 
0.186e - 11 
- 
- 
- 
- 
- 
- 

16 

2 
0.309e + 4 

2 
0154e + 1 

2 
0.771e - 3 

2 
038% - 6 

2 
0192e - 9 

1 
0192e - 9 

1 
0-103e - 12 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

12 

2 
031Oe + 3 

2 
0155e - 1 

2 
0.768e - 6 

2 
0381e - 10 

1 
0379e - 10 

1 
0.27Oe - 12 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

10 

phase can be deduced by comparing results collected in Table VI. The symmetrization technique 
proposed in Reference 16 has also been tried, but no convergence has been achieved. This occurs 
because the problem is very sensitive to the contact force variations. The jump of the tangential 
force at the first augmentation causes numerical oscillations and divergence of the solution when 
the solution shifts from the frictionless to the frictional state. 

Other tests carried out using realistic material and contact parameters of steel have shown the 
same trend. Examples with thermal coupling have shown a small influence on the convergence 
rate. This is due to the fact that ill-conditioning problems are mainly due to the mechanical 
field. 

CONCLUSIONS 

A technique to symmetrize a thermomechanical contact problem is presented. Symmetrization 
and augmentation are combined in a sujtable way to permit good rates of convergence and to 
avoid ill-conditioning of the global stiffness matrices. The effectiveness of penalty updates has also 
been shown. The methods have been applied to  different problems with linear geometry. 
However, from the theoretical point of view no further difficulties are involved when using the 
proposed method in a fully non-linear formulation. 
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Table VI. Residual of constraints and number of iterations for test 
no. 8 

Normal penalty le + 9 
Tangential penalty le + 4 

Normal penalty le + 9 
Tangential penalty le + 6 

Unsymmetric Symmetric Unsymmetric Symmetric 

5 
0.296e + 4 

5 
0.145e + 3 

3 
0.291e + 2 

3 
0-682e + 1 

2 
0-188e + 1 

2 
0367e + 0 

2 
0-177e + 0 

2 
0-561e - 1 

2 
0.178e - 1 

2 
0567e - 2 

2 
0’180e - 2 

2 
0574e - 3 

2 
0.182e - 3 

2 
0-582e - 4 

2 
0.185e - 4 

2 
0-589e - 5 

2 
0-188e - 5 

2 
0597e - 6 

2 
0.1% - 6 

2 
0605e - 7 
Tot. iterations 

48 

5 
0.296e + 4 

5 
0.145e + 3 

3 
0419e + 2 

3 
0.913e + 1 

2 
0.218e + 1 

2 
0.633e + 0 

2 
02ooe + 0 

2 
0.635e - 1 

2 
0.201e - 1 

2 
0.m - 2 

2 
0.204e - 2 

2 
0648e - 3 

2 
0.206e - 3 

2 
0.656e - 4 

2 
0.209e - 4 

2 
06W - 5 

2 
0.211e - 5 

2 
0.673e - 6 

2 
0.214e - 6 

2 
0.681e - 7 

48 

4 
0-301e + 2 

5 
0228e + 1 

2 
0675e - 1 

2 
0-675e - 4 

2 
Q263e - 6 

2 
0.117e - 8 

1 
0117e - 8 

1 
0-845e - 11 
- 
- 
- 
- 

- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

19 

4 
0-302e + 2 

5 
0.225e - 1 

2 
0.216e + 0 

2 
0-158e - 1 

2 
0466e - 2 

2 
0604e - 3 

2 
0-605e - 4 

2 
0-153e - 4 

2 
0.314e - 6 

2 
0.322e - 6 

2 
0138e - 7 

2 
0573e - 8 

2 
0612e - 9 

2 
0-801e - 10 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 
- 

33 
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