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Making use of a perturbed Lagrangian formulation, a finite element procedure for contact problems
is developed for the general case in which node-to-node contact no longer holds. The proposed
procedure leads naturally to a discretization of the contact interface into contact segments. Within the
context of a bilinear interpolation for the displacement field, a mixed finite element approximation is
introduced by assuming discontinuous contact pressure, constant on the contact segment. Because of
this piece-wise constant approximation, the gap function enters into the formulation in an ‘average’
sense instead of through a point-wise definition. Numerical examples are presented that illustrate the
performance of the proposed procedure.

1. Introduction

Current finite element formulations for contact problems based on either the classical
Lagrange parameter procedure [1-3, 12, 20] or the penalty-function method [4-6, 11], are
characterized by a point-wise enforcement of the contact-constraint condition, in the sense
that penetration of the bodies is established on a nodal basis. Moreover, in this methods the
recovery of the contact pressure over the element from the contact nodal forces generally
requires an additional procedure. Within the framework of classical Lagrange multiplier
methods the contact condition is exactly satisfied by transforming the constrained problem into
an unconstrained one with the introduction of additional variables (Lagrange multipliers).
These extra variables add computational effort to the solution process which often requires
special procedures to handle the presence of zero diagonal terms. Penalty methods, on the
other hand, enable one to transform the constrained problem into an unconstrained one
without introducing additional variables. The constraint condition is now satisfied only
approximately for finite values of the penalty parameter. The main difficulty associated with
these methods, however, lies in the poor conditioning of the problem as the penalty is
increased to more accurately enforce the constraint condition. This is a well-understood
phenomenon, particularly in the context of the incompressible and nearly incompressible
problem in solid and fluid mechanics (e.g. see [15, 22, 25] for a review). Recently, augmented
Lagrangian procedures have been proposed as a promising way to partially overcome these
difficulties and ‘regularize’ the penalty formulation (e.g. see the survey in [7, 8]).

Within the framework of linearized kinematics, it is possible to restrict the finite element
formulation of contact problems by assuming that node-to-node contact occurs. This is in fact
the case often considered in the literature [1, 2, 4, 6, 12, 20, 21]. In the general context of fully
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nonlinear kinematics, however, it is no longer possible to place such a restrictive assumption
on the formulation. Several schemes have been devised. particularly from the computational
side [5, 11}, which are capable of enforcing the contact conditions in the general situation for
which node-to-node contact does not hold. In this paper, a novel approach for the enforce-
ment of the contact constraint in this general context is presented, based on a perturbed
Lagrangian formulation. We recall that the perturbed Lagrangian is obtained from the
classical Lagrangian functional by regularization with a quadratic (positive) term in the
Lagrange multiplier vector (see, e.g. [15. Section 3.2; 22]).

Our formulation may be summarized as follows. On the basis of the perturbed Lagrangian
formulation of the contact problem, a mixed finite element approximation is introduced in
which the contact pressure is independently approximated over the contact interface. Such an
approach requires a special treatment of the contact surface, now viewed as an assembly of
contact segments which are unambiguously defined for the general situation where node-to-
node contact does no longer hold. As in the treatment of the incompressibility constraint
several approximation schemes are possible within the context of a perturbed Lagrangian
formulation (e.g. see [15, Chapter 3; 22; 25]). Confining our attention to the case of a bilinear
isoparametric interpolation for the displacement field, it is assumed that the contact pressure is
constant on each contact segment. As a result of this piece-wise constant approximation of the
contact pressure, discontinuous across contact segments, the contact constraint is enforced in an
‘average’ sense on each contact segment. In effect, the average gap over a contact segment is
the crucial kinematic variable on the basis of which penetration between the two bodies is
established.

The formulation advocated in this paper is intended for the general case of fully nonlinear
kinematics, although for simplicity in the presentation attention is restricted to the linear case.
This approach is applicable to contact problems involving two deformable bodies, as well as
problems involving a deformable body subjected to unilateral constraints. Furthermore,
although the contact pressure does not enter into the formulation explicitly it can be
consistently recovered via the augmented Lagrangian procedure.

The numerical examples presented in Section 5 are intended to demonstrate the differences
in performance of the procedure advocated here relative to established nodal penalty
methods.

2. Perturbed Lagrangian formulation

In this section we develop the variational equations governing the contact problem with
linearized kinematics, based on the use of a perturbed Lagrangian procedure. First, we briefly
summarize some kinematic relations which are necessary for the description of the contact
constraint condition. For simplicity, we shall confine our attention to the case of linear
kinematics. In addition, we restrict ourselves to frictionless contact problems throughout the
developments that follows.

2.1. Contact kinematics

Consider two bodies with initial configurations denoted by 2, 2°CR?>, and displacement
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fields given by
u'=a'(x"), x'eN'; u’=a*(x?), x*ef’. 2.1

Further, assume that the bodies are in contact along a surface ¥ with unit normal field n(x).
This contact surface—not known in advance—may be characterized as follows. One assumes
that there are parts of the boundary 4.2' and 4.£2” in the initial configurations 2' and £° of
the two bodies, which may be defined a priori, so that their images contain the contact surface;
that 1s,

ye=a'(a.2") N a*(8.42%) . 2.2)
The normal vector field to y° is given by
n=Vy @)yl 2.3)

Let ¢' and £ be the traction vectors acting on the boundaries @#'(3.£2') and #*(3.£2%) of the
bodies in contact through the surface y°. Further, let go(x) be the initial gap between the two
bodies. Then, the local form of the contact condition may be formulated as follows

g=[w-u'l'n+g=0 and t'*n=-¢+-n<0 ony°, (2.4a)

where g gives the current value of the gap. The current gap and the contact force are related
through the inequality conditions

{[uz_w]-wgﬁo > fn=-rn<0, (24b)

[u>—u']l*n+g>0 >t n=--n=0.

Introducing the notation A =t'-n=—t>-n for the contact force acting on y¢, the contact
conditions (2.4a) and (2.4b) may be expressed in the following equivalent (Kuhn-Tucker) form

gA=0, A=<0, g=0 on y°. (2.5)

The form (2.5) of the contact condition is best suited for applications and immediately leads
to a variational formulation in terms of Lagrange parameters. By a slight abuse in notation we
shall employ again the same symbol A for the Lagrange parameter.

REMARK 2.1. The space of kinematically admissible variations or test functions for the
problem at hand are defined as

VA= 404> R g4t =0}, A=1,2, (2.6)
where 4,02 is the part of the boundary with prescribed displacements @#*|,,04 = #*. Typically,

an appropriate choice for V* is H'(£2*), see e.g., [23, Chapter 5]. Note that V* (A = 1, 2) are
unconstrained configuration spaces which must be further restricted to account for the contact
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constraint. The Lagrangian formulation discussed below avoids the introduction of this
constraint and enables one to work directly with the unrestricted spaces V* as defined in (2.6).

2.2. Perturbed Lagrangian formulation

Throughout this section we consider the case of an elastic material with stored energy
function given by W(x, V°u), where a superposed S indicates the symmetric part. Ignoring for
the moment the interaction between bodies, the total potential energy associated with each
body in its final configuration & = 4*(x*) is given by

ﬁA(ﬁA)EJ de—j pb‘“'u"dv—-f t—A-u"da, A=12, (2.7)
nt nA 3,07

where b is the body force, t* is the surface traction specified on the part of the boundary
3,42*, and p is the density. One of course requires that ¥*N d,02* =0 (A = 1,2).

In order to build the contact constraint (2.5) into a variational formulation without
restriction the spaces of kinematically admissible variations V#, we introduce a Lagrangian
functional II.(&', 4% A), depending on a positive parameter € >0, and defined by expression

2 i
(@, @ )= S H“(&A)+j /\{[uz—u‘]-n+g0}da-5~j A?da. 2.8)
A=1 yc 6 yc

The last term in (2.8) depending on € has the form of a penalty term and serves the purpose of
regularizing the classical Lagrangian. One refers to the functional II.(4', 4° A) as a perturbed
Lagrangian, and expects that as € > the solution obtained from (2.8) will converge (in the
sense of weak convergence) to the solution obtained by the classical Lagrange multiplier
method. For a discussion of this and related questions in the context of linear problems, we
refer to [15].

REMARK 2.2. The stiffness matrix for the discrete problem arising from the classical
Lagrangian multiplier method always contains zero diagonal terms. The solution of the
algebraic problem often requires special strategies, particularly in the three-dimensional
situation. From a computational standpoint the addition to the Lagrangian of the ‘penalty
term’ depending on ¢, leads to positive-definite stiffness matrices for the descrete problem with
nonzero diagonal terms.

For each € >0, the equilibrium configurations and corresponding contact pressures,
(&%, 42, A.), are characterized by rendering the perturbed Lagrangian I1.(i., 42, A.) stationary.

€3 uG’

Accordingly, at (@., @42, A.) the following conditions must hold

DAHE-nAE—C—i-HE(ﬁ;‘Jr.an, A)| =0, A=1,2, 2.9)
d¢ £=0
d .
Dllg=—I(al,A\.+&)| =0. (2.10)
d¢ £=0
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From conditions (2.9) and (2.10) and the expression (2.8) for II, one obtains the following two
variational equations which form the basis of the mixed finite element approximation dis-
cussed in this paper

2
G =3 DAﬁA-n’H-J Adn*-n')nda=0, (2.11a)
A=1 ¢

k4

Ae
GZEJCq[—;—+[ﬁZ—‘i]-n+g0]da=0. (2.11b)

In what follows, for notational simplicity we shall drop the subscript € in A, and @2 .

3. Mixed finite element formulation

In this section we consider a mixed finite element formulation for the numerical solution of
the class of contact problems outlined in Section 2, based on the variational equations (2.11).
To this end, we first examine some basic kinematic notions involved in the approximation of a
typical slideline (i.e., contact surface). An essential feature that characterizes the approach
proposed herein is the use of an ‘intermediate’ contact surface which arises naturally from our
discretization of the contact interface into ‘contact segments’, as illustrated in Fig. 1.

Fig. 1. Discretization of the contact interface into contact segments.

For simplicity, throughout the present development attention is focussed on the 4-node
isoparametric element. The proposed mixed finite element approximation based on equations
(2.11) will then be characterized by assuming constant contact pressures on each segment of
the interpolated slideline.

3.1. Kinematics of the slideline: Intermediate contact surface

During the deformation process, the two bodies £2' and 2* under consideration come into
contact along the surface y° which for the continuum problem is defined by (2.2). Consider
now a standard finite element discretization of the bodies 22 defined as

ar=~ 0, 04n0t=9, i#j, A=12. 3.1)
t=1
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As a result of this discretization, the parts of the boundary 40; and a7 which according to
(2.2) contain y¢, are replaced by polygonal approximations in which the vertices are nodal
points. Further, due to the numerical formulation of the contact conditions involving a penalty
term, conditions (2.4) do not exactly hold and penetration of one body into the other
necessarily occurs. The question then arises as to how the contact interface and its cor-
responding normal field may be unambiguously characterized. A procedure often employed is
to arbitrarily select either one of the surfaces a2; or 3027 as contact surface. This surface is
often referred to as master surface. The choice of master surface is apparent in the case of
unilateral (rigid) constraints or when one of the bodies in contact is much stiffer than the
others. For cases in which the bodies in contact possess similar stiffness, the choice is no longer
obvious and may indeed bias the results. These difficulties have motivated the use of
‘symmetric treatments’ of the slideline such as the ones advocated in [5, 11]. The procedure
proposed herein, on the other hand, replaces the notion of master surface by the intermediate
contact surface.

Geometry of a typical contact segment. The description of the slideline that characterizes the
procedure proposed herein is illustrated in Fig. 1, where a possible general discretization of
the contact interface is shown. As indicated in Fig. 1, the contact interface is divided into
contact segments which will allow a smooth definition of the gap function. A typical contact
segment, shown in Fig. 2, is defined as follows.

Consider two adjacent elements in the slideline with straight edges defined by their nodes
x3—x! and x3— x2, respectively. Here, the superindices {1, 2} refer to the body on which the
variable is defined. Let &' and x> be the orthogonal projections of the nodes x3 and x} onto the
edges x} — x| and x3 — x3, respectively, as shown in Fig. 2. The contact segment is defined to be
the quadrilateral specified by the points {¥', x}, ¥2, x3}. The new nodal points ' and x? are
obtained as a linear combination of the form

=(l-a*)xt+a’x3, a*€]0,1], A=12. (3.2)

Expressions for the coefficients a* may be found in Table 1. Similarly, the displacement
vector at the new nodes &' and x? is given in terms of the nodal displacements #{ and u?% of a

i
Xz

Fig. 2. Geometry of a typical contact segment.
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Table 1
Definition of a contact segment—planar case

Projection of a node onto the opposite element edge:

,_ (e2—xi)- (3 xi) , (d=x)(xi-xd

a'= , a’=
et~ xiP lIx3 - x3P

Coordinates of the segment nodes:

¥4 = (1—-a®)xt +a’x?, xi, xi

Tangent and normal vectors:
Xz x 1

2 — “

A =e3><t"‘.

Initial gaps:

gh=lxi—-x3.  gd=Ixi-#|.

typical 4-node isoparametric element by
it =(1—-a™ut+a*u3, A=12. (3.3)

Relative to a typical contact segment, we introduce tangential and normal unit vectors t* and
n* given for the planar case by the expressions

x5 - x4

2~ ”

Here, é; denotes the unit vector normal to the plane in which motion takes place. With the aid
of (3.4), the gaps g; and g, at the edges of the segment are obtained according to

tA_

nt=éxt*, A=12. (3.4)

g=[ui-a'l-n'+gi=[ui~(1-aYul-a'ul] -n'+gi.

g=lus—a’]-n*+ gi=[ui~ a’us— (1 - a*)ui]-n*+ g5, 3-5)

where the initial gaps g¢ and gj are defined in terms of the initial geometry as in Table 1. Once
the geometry of a typical contact segment has been defined the interpolation of the relevant
quantities within the contact segment may be accomplished as follows.

3.2. Interpolation within a contact segment
Let us first introduce an intermediate contact line parametrized within the contact segment s

by & - yi(¢), with parameter ¢ chosen for convenience as &€ € [0, 1], and such that

d K 2
(§) = Lstl H y (g) - Lsr . (36)

£=0 =1

d'y,
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where
£=1

L= [dys(¢)/dél| d¢ . (G.7)

£=0

Denoting by u*(¢), £ €0, 1], the displacement of body 2* within the contact segment, the
gap g(£) is obtained according to

g(€) = [u*(¢)— u'(£)) - n(§)+ go(£), - (3.8

and the ‘variation’ of the gap given by (3.8) is computed with the aid of the directional
derivative formula as

8g @) =[n*¢)—n'()]-n(é). 3.9)

Nothing has been said so far about the explicit construction of the contact line ¢ - y5(é).
Since its derivatives are specified by (3.6), one may interpolate this curve by Hermite
polynomials once the position of its end points at ¢ =0 and £ = 1 has been selected. That is,
set

y'=(1-p)'+px3,  y'=(1-B)x:+ B, (3.10)

where B €[0, 1], is a pre-specified parameter. The limiting choices of 8 =0, 1 correspond to
selecting one of the two surfaces in contact as interpolated surface. The selection of the
appropriate 3 should be made on the basis of the relative stiffnesses of the bodies in contact.
Introducing the notation L, = |ly*— y||, £ > ¥5(¢£) may be defined by the interpolation

2

YY) = Z‘ va(@y* + L, A% ()", (.11a)

A=
where {v, v,, 6, 0} are the classical Hermite polynomials given by

r(é)=1-32+28, w€)=38+28, (3.11b)
6:(£)=¢(1-¢), 0:(6)=&4(1-¢).
Note that by evaluating the integral (3.7) with the aid of the trapezoidal rule we obtain
L, = L,=|y>— y!|l. In the next section, it will be seen that the interpolation of £ — y$(£) is not

explicitly needed in the final form of the finite element approximation since the integrals over
the segment are approximated by the trapezoidal rule.

3.3. Finite element approximation

Upon introduction of the finite element discretization (3.1), the discrete version of the
variational equations (2.11) may be expressed as
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Eiotal Stotal

Gi=> G+ | Alp*—-9n']'ndlr=0,
e=1 s=1 798

(3.12)

Stotal

As
G,~ > qs[~:+(u2—ul)'n]df=0.

s=1 795§

Here, E,.. refers to the total number of elements in the discretization, S, refers to the total
number of contact segments in the slidelines, and G° denotes the restriction of G, to an
element e. For the 4-node isoparametric element the displacement field is approximated
according to the standard C° interpolation

4
ut(x)| =2 Nixui, A=12, (3.13)
nt  I=1

e

where N4(x) are the shape function for the element 2% of body 2*. Such an interpolation
leads to well-known expressions for the element stiffness matrix and residual force vector (e.g.,
see [19]).

The essential point in the present development pertains to the approximation within a
typical contact segment of the contact pressure A,. In the context of the linear approximation
for the displacement field, our fundamental assumption is that the contact pressure is constant
within the contact segment; i.e.,

A, =A(x)

4s = Constant . (3.14)

Since no derivatives of A appear in (2.11a) and (2.11b) no inter-segment continuity needs to be
enforced on A,. Accordingly, the discrete equation (3.12), reduces to

A,
G;zj qs[~?+ (u? - u’)'n] dr=0 for any s€{L, ..., Swul. (3.15)

s

Therefore, as a result of the approximation (3.14), the contact pressure within a typical
segment is given by the integral expression

1

A=t | @-wyndr==] g@lavi@nag e, (3.16)

s Vs s v ¢=0

where the gap function g(¢) is given by (3.8). Our final approximation is concerned with the
way in which (3.16) is computed. By evaluating (3.16) with the aid of the trapezoidal rule the
final result takes the simple form

A:s‘:%e(gl-”—gZ)Ee-g_s9 (3.17)

where g, and g, are the gaps at the edges of the segment given by (3.5). It then follows from
(3.17) that within a contact segment the contact pressure is constant and proportional to the
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Table 2
Contact surface—finite element approximation

Approximation of average gap g; by trapezoidal rule:
& =3git+g).

Residual forces due to contact:

4
Ge E"ELsgs 2 L/ 74 ce7,
'y‘; I=]
where
— H
ei=-31-an', es=-in*+a'n)

average gap g,. By evaluating the integral terms over y§ appearing in (3.12), with the aid of the
trapezoidal rule, the discrete variational equations (3.12) take the final form

Eroral Statal

Z G+ 2 A, [E 7 c:] (3.18a)
s=1
4

-——+ 2 cu; =0 forany s€{l,..., Swwl- (3.18b)

where the expressions for the residual contact forces have been summarized for convenience in
Table 2. Equations (3.17) and (3.18) complete the proposed finite element approximation based
on the perturbed Lagrangian formulation (2.11) for the contact problem.

4. Penalty procedure via perturbed Lagrangian

To discuss the penalty solution procedure for the nonlinear system arising from (3.18a) and
(3.18b), it is convenient to rephrase this problem in matrix notation as

=9'[G+CA}=0, (4.1a)

A
stq‘{ _A Czu} ~o, (4.1b)
€
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where
1"=[1’;“"’1’t5lolaﬂ]’ ut:[u;""’u'Emtal]’

9'=[q1, - Gseal » A=A Asaal - 4.2
Here, G denotes the residual force vector for the unconstrained problem obtained from the
element contributions by the standard assembly procedure. In addition, C is a (Sial X Eiotar * 1)
matrix, where n is the spatial dimension of the problem, which expresses globally the local
contact conditions, and is obtained by assembly of the vectors cj.

A penalty procedure may now be recovered from equations (4.1a) and (4.1b) by exploiting
the partitioned structure of this system and eliminating the Lagrange parameters at the local
level. Solving for A, from equation (4.1b) and substituting back into (4.1a) yields the following
nonlinear reduced system

7'[G+ e(CCHu]l=0. (4.3)

Equation (4.3) has a structure which typically arises in the treatment of the contact problem by
the ‘pure’ penalty method. It should be carefully noted, however, that in the perturbed
Lagrangian formulation employed here leading to equation (4.3), the contact condition is
enforced in an average sense over the contact segment. This is reflected in the use of the
average gap g, defined by (3.17) and results in an expression for the matrix C different from
the one corresponding to a standard penalty approach [5]. The reduced nonlinear system (4.3)
may now be solved with the aid of Newton’s method leading to the algorithm summarized, for
convenience, in Table 3.

It is well known that as the penalty parameter € — « the condition number of the tangent
matrix for the penalty method tends to infinity. Thus, the crucial step in the penalty iteration
procedure is the selection of the penalty parameter €. This choice is discussed at length in the
optimization literature [13,14]. In the context of finite elements procedures applied to
structural problems the optimal choice for the penalty has been discussed in e.g. [9, 10] and
recently for contact problems in [12]. Useful guidelines for a selection of the penalty
parameter in practical situation are also contained in [5]. To some extent, the intrinsic
difficulties associated with the penalty iteration procedure can be circumvented by the
augmented Lagrangian iteration. These and related topics are discussed in [7].

Table 3
Penalty iteration

Update displacements:
w0 = 4 _[K + eCOCON G + CRAD) .
Check for penetration:

g-(k+l) = [C(k+l)]tu(k+l) .

Update Lagrange multipliers:

AGTD = g lerD)
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REMARK 4.1. In the actual implementation of the penalty iteration method summarized in
Table 3 the check for penetration should be performed in the initialization phase on the
undeformed configuration to exclude rigid-body motions.

REMARK 4.2. In many contact problems the number of degrees of freedom in the slideline
is small compared to the total number of degrees of freedom in the discretization. In the
context of linear analysis, static condensation [24] may be used to obtain a reduced system of
equations that contains only the nodes of the slideline as unknowns, see e.g., [1, 12]. Splitting
the unknowns of the problem into two sets, one denoted by subscript ¢ and associated with the
nodes in the slidelines, and the other denoted by subscript a and containing the remaining
unknowns, one obtains at an intermediate step of the Gaussian elimination process

[ch'*' Ec(k)(c(k))t](u(k+l)__ u(k)) - _ [éc+ C(k)A(k)] , (4_4)
where _ _
K.=K.~ K.K.K, G.=G:~KiKi.G.. (4.5)

This small system of equations is now used in the contact iteration process. Obviously, the
matrix K., has to be stored to avoid recomputations which would otherwise eliminate the
advantage of the static condensation procedure.

REMARK 4.3. An alternative form of the penalty iteration for the contact problem arises by
exploiting the special structure of the tangent matrix. The essential point to note is that the
tangent matrix. The essential point to note is that the tangent matrix K¢ = K + eC*(C®)'
may be assembled by a sequence of rank one updates of the form

Stotal

C(k)(C(k))t 2 (c )(k)(c )(k)t

With the aid of the Sherman—-Morrison formula for the inverse of a rank-one updated matrix,
the inverse of the tangent matrix may be readily obtained as the result of the following
updating procedure

€
1+ e(r)®(e*)®

(Ks)—l — (Ks~1)—1 _ (rs)(k)(rs)(k)t , 5= 1, o Smml ) (46)

where
(r ) =K (c)®. 4.7)

The advantage of this solution strategy is that the factorization of the matrix K for the
unconstrained problem needs to be performed only once. Note that this procedure entails the
solution of the system (4.7) for each contact segment. Thus, it becomes economical only when
the number of degrees of freedom in contact is small compared to the number of overall
unknowns. In addition, from a practical standpoint, its application to large problems only
makes sense in conjunction with the static condensation procedure discussed in Remark 4.2. It
should be noted that in this procedure K* must be regular.
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5. Numerical examples

In this section we compare the performance of the procedure developed in this paper with
traditional penalty methods in which the contact constraint is enforced on a nodal basis. For
this purpose we consider first the indentation of a rigid punch into an elastic foundation for the
case when nodes of the two bodies lying in the contact interface are not aligned. Two
alternative implementations of the classical nodal penalty methods are considered which difter
in the particular treatment given to the slideline. The traditional approach in which a master
and a slave contact surface are defined a priori, and a symmetric treatment of the slideline
employed in [5, 11] in which the role of master and slave surface is sequentially interchanged.
To illustrate the overall performance of the proposed procedure in a practical situation, we
conclude this section with an example which involves contact of two flexible bodies and
includes rate independent elastoplastic behaviour.

EXAMPLE 5.1. Rigid punch on an elastic foundation. If attention is restricted to the
particular case of linear kinematics, it is possible to enforce the contact conditions on a
node-to-node basis. However, in the more general context of large deformations, a node-to-
node treatment is no longer possible. Thus, with an eye directed towards nonlinear ap-
plications (to be considered in a forthcoming paper), we address in this example performance
in the general case not restricted to node-to-node contact.

For this purpose we consider the indentation of a rigid punch with the foundation first
modeled by two elements, as shown in Fig. 3(a). The elastic properties of the foundation
were taken as E=1-d+35, and »=0.5, and the penalty parameter was chosen as € =
1-d+7. The results obtained with the procedure advocated here and with the nodal penalty
approach with single and double pass on the slideline are shown in Figs. 3(b)-3(d). In the

b b
(A) (€
a a

b b
(B) (D)

Fig. 3. Rigid punch problem. 3-element mesh. (a) Finite element mesh. (b) Proposed procedure based on perturbed
Lagrangian formulation. (c) Penalty formulation with symmetric (2-pass) treatment of the slideline. (d) Penalty
formulation with traditional (1-pass) treatment of the slideline.



176 J.C. Simo et al., Perturbed Lagrangian formulation of contact problems

present approach use of the average gap g defined by (3.15) results in the penetration profile
depicted in Fig. 3(b). The profile corresponds to an intermediate situation between the total
penetration obtained with the nodal penalty approach and single pass, as shown in Fig. 3(d),
and the absence of penetration obtained with the double-pass technique shown in Fig. 3(c).
For subsequent refinement of the mesh one obtains the profiles shown in Figs. 4 and 5. In the
one-pass calculation the surface of the foundation is taken as the master surface.

b b
(A) ()
a a
b b
(8) (D)

Fig. 4. Rigid punch problem. 1l-element mesh. {(a) Finite element mesh. (b} Proposed procedure based on
perturbed Lagrangian formulation. (c) Penalty formulation with symmetric (2-pass) treatment of the slideline. (d)
Penalty formulation with traditional (1-pass) treatment of the slideline.

[TT[T] s

b R
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Fig. 5. Rigid punch on elastic foundation. 69-element mesh. (a) Finite element mesh. (b) Proposed procedure
based on perturbed Lagrangian formulation. (c) Penalty formulation with symmetric (2-pass) treatment of the
slideline. (d) Penalty formulation with traditional (1-pass) treatment of the slideline.
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The vertical displacement of the punch for increasingly refined meshes has been tabulated in
Table 4 for the three approaches considered. The solution obtained in the case of node-to-
node contact, for which all three approaches coincide, is also included in Table 4 for
comparison purposes. The proposed procedure shows the closest agreement with the node-to-
node approach. We note that the exact solution for the indentation of a rigid punch on an elastic
half space may be found in [17, p. 73].

EXAMPLE 5.2. Flexible punch on an elastoplastic foundation. As our final example we
consider the indentation of a flexible punch into an elastoplastic foundation. Our purpose is to
illustrate the performance of the proposed procedure in a more realistic situation that involves
(a) general (as opposed to node-to-node) contact, (b) inelastic (nonlinear) material response
and (c) two deformable bodies in contact.

The finite element mesh, shown in Fig. 6, consists of 120 bilinear isoparametric elements.
The elastoplastic response of the foundation is characterized by a pressure-independent
von-Mises yield condition with kinematic/isotropic saturation hardening. The material proper-
ties of the model are also shown in Fig. 6. The mixed finite element formulation for this type
of elastoplastic model is discussed in [26].

For comparison purposes the problem is first solved ignoring inelastic effects. The deformed
finite element mesh and stress contours for the vertical stress corresponding to the elastic case

Elastoplastic foundation : Material properties.

Bulk modulus (K) 8000.00
Shear modulus (G} | 5000.00
Yield stress {(Oy) 5.00
Lineor hardening (H) | 100.00

75,
10, ___,}
Y {
T
a.
i8.
} 29 ?

Fig. 6. Indentation of a flexible punch on an elastoplastic foundation. Finite element mesh. 120 bilinear iso-
parametric elements.
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Fig. 7. Indentation of a flexible punch. (a) Deformed finite element mesh for the case of an elastic foundation. (b)
Stress contours of the verticle stress o, for the case of elastic response of the foundation.
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Fig. 8. Indentation of a flexible punch. (a) Deformed finite element mesh for the case of elastoplastic response of
the foundation. (b} Stress contours of the vertical stress o,, for the case of elastoplastic response of the foundation.
{c} Elastoplastic response of the foundation: yield surface.
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are shown in Figs. 7(a) and 7(b). The analogous results for the elastoplastic case are shown in
Figs. 8(a) and 8(b), and the plastic region is depicted in Fig. 8(c). Although no closed-form
solution for this problem exists, a comparison between Fig. 7(b) and Fig. 8(b) reveals that the
vertical stresses in the plastic case are considerably mitigated below the punch, as one would
expect. One should note that the mesh is not fine enough to obtain an accurate resolution of
the stress. This is apparent in the contact interface.

The above results demonstrate that the proposed procedure for the analysis of contact
problems is capable of handling a wide range of engineering applications. These include
situations in which both bodies are flexible, with nonlinear inelastic behavior, and a general
treatment of the slideline not restricted to node-to-node contact.

6. Concluding remarks

(1) The mixed approximation to the perturbed Lagrangian proposed in this paper has been
discussed for the particular case of a linear approximation to the displacement field and
constant-contact pressure over the contact segment. Related work in the context of the
incompressible problem suggest higher-order interpolation schemes. Typically, one may wish
to consider a quadratic approximation for the displacement field in conjunction with linear
contact pressure distributions over the contact segment.

(2) For the sake of simplicity in the presentation, attention has been restricted to the case of
linear kinematics. The proposed procedure, however, is particularly useful in the finite case
where node-to-node contact can no longer be assumed.

(3) The final solution algorithm has been formulated on the basis of a penalty procedure
obtained from the mixed formulation by eliminating the contact pressure at the element level.
Alternative iterative algorithms based on the use of augmented Lagrangian procedures are
explored in [16].

Table 4
Nodal penalty versus proposed method

Number of Perturbed One-pass Two-pass Node-to-
elements Lagrangian penalty penalty node
2 Va 1.015x 1072 1.623x 1072 6.623x 107? —
s 1.254x 1072 1.621 x 1072 8.882x 107? —
8 Vo 9.580 % 1073 8.442 % 1073 8.109 x 10™3 —
Us 9.273x 107 6.914x 1073 8.105x 107? —
32 ¥z 1.089 x 1072 9.687 x 107 9.614 x 10~ —
v, 1.089 x 1072 1.046 x 1072 9.614x 107 —
88 0s 1.162 x 1072 1.256x 1072 1.101 % 1072 1.167x 107

s 1.162x 1072 1.256x 1072 1.101 x 1072 1.167x 107




180 J.C. Simo et al., Perturbed Lagrangian formulation of contact problems
References

[1] A. Francavilla and O.C. Zienkiewicz, A note on numerical computation of elastic contact problems, Internat.
J. Numer. Meths. Engrg. 9 (1975) 913-924.

[2] S.K. Chan and L.S. Tuba, A finite element method for contact problems of solid bodies: 1. Theory and
validation,” Internat. J. Mech. Sci. 13 (1971) 627-639.

[3] T.J.R. Hughes, R.L. Taylor, J.L. Sackman, A. Curnier and W. Kanoknukulchai, A finite element method for a
class of contact-impact problems, Comput. Meths. Appl. Mech. Engrg. 8 (1976) 249-276.

[4] J.T. Oden, Exterior penalty methods for contact problems in elasticity, in: K.J. Bathe, E. Stein and W.
Wunderlich, Eds., Nonlinear Finite Element Analysis in Structural Mechanics (Springer, Berlin, 1980).

[5] J.0. Hallquist, NIKE2D: An implicit, finite-deformation, finite-element code for analyzing the static and
dynamic response of two-dimensional solids, Rept. UCRL-52678, University of California, Lawrence Liver-
more National Laboratory, 1979.

[6) N. Kikuchi and J.T. Oden, Contact problems in elastostatics, in: J.T. Oden and G.F. Carey, eds., Finite
Elements: Special Problems in Solid Mechanics, Vol. IV (Prentice-Hall, Englewood Cliffs, NJ, 1984).

[7] M. Fortin and R. Glowinsky, Augmented Lagrangian Methods (North-Holland, Amsterdam, 1983).

[8] R. Glowinski and P. le Tallec, Finite elements in nonlinear incompressible elasticity, in: J.T. Oden and G.F.
Carey, eds. Finite Elements: Special Problems in Solid Mechanics, Vol. IV (Prentice-Hall, NJ, 1984).

[9] C.A. Felippa, Error analysis of penalty function techniques for constraint definition in linear algebraic
systems, Internat. J. Numer. Meths. Engrg. 11 (1977) 709-728.

[10] C.A. Felippa, Iterative procedures for improving penalty function solutions of algebraic systems, Internat. J.
Numer. Meths. Engrg. 12 (1978) 821-836.

[11] S.W. Key, HONDO II, a finite element computer program for the large deformation dynamic response of
axisymmetric solids, Rept. SAND78-0422 Sandia Laboratories, Albuguerque, NM, 1978.

[12] P. Wriggers and B. Nour-Omid, Solution methods for contact problems, Rept. No. UCB/SESM 84/09, Dept.
Civil Engineering, University of California, Berkeley, CA 1984.

[13] D.G. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 2nd ed., 1984).

[14] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods (Academic Press, New York,
1982).

[15} G.F. Carey and J.T. Oden, Finite Elements, Vol. II (Prentice-Hall, Englewood Cliffs, NJ, 1982).

[16) P. Wriggers, J.C. Simo and R.L. Taylor, Penalty and augmented Lagrangian formulations for contact
problems, in: Proceedings NUMETA Conference, Swansea, 1985.

[17] K. Girkmann, Flichentragwerke (Springer, Vienna, 4th ed., 1956).

[18] P. Wriggers, Zur Berechnung von Stoss- und Kontaktproblemen mit Hilfe der Finite-Element Methode,
Bericht Nr. F81/1, Forschungs- und Seminarberichte aus dem Bereich der Mechanik der Universitdat Han-
nover, Hannover, 1981.

[19] O.C. Zienkiewicz, The Finite Element Method (McGraw-Hill, London, 3rd ed., 1977).

[20] S. Valliappan, I.LK. Lee and P. Boonlualohr, Non-linear analysis of contact problems, in: R.W. Lewis, P.
Bettess and E. Hinton, eds., Numerical Methods in Coupled Systems (Wiley, New York, 1984).

[21) N. Kikuchi, A class of rigid punch problems involving forces and moments by reciprocal variational
inequalities, J. Struct. Mech. 7 (1979) 273-295.

[22] J.T. Oden, N. Kikuchi and Y.J. Song, Penalty-finite element methods for the analysis of Stokesian flows,
Comput. Meths. Appl. Mech. Engrg. 31 (1982) 297-329. ’

[23] J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity (Prentice-Hall, Englewood Cliffs,
NJ, 1983).

[24] E. Wilson, The static condensation algorithm, Internat. J. Numer. Meths. Engrg. 8 (1974) 199-203.

[25] J.N. Reddy, On penalty function methods in the finite element analysis of flow problems, Internat. J. Numer.
Meths. Fluids. 2 (1984) 151-172.

[26] J.C. Simo and R.L. Taylor, Consistent tangent operators for rate-independent elastoplasticity, Comput. Meths.
Appl. Mech. Engrg. 48 (1985) 101-118.



