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SUMMARY 

A model based on the penalty method for 3-D contact problems with friction is proposed. The friction forces 
are assumed to follow the Coulomb law, with a slip criterion treated in the context of a standard return 
mapping algorithm. Consistent linearization of the field equations is performed which leads to a fully 
implicit scheme with non-symmetric tangent stiffness which preserves asymptotic quadratic convergence of 
the Newton-Raphson method. Numerical results are obtained for some representative examples and 
compared with existing solutions. 

1. INTRODUCTION 

In the past decade considerable effort has been invested in understanding contact problems with 
friction, which is evident from the numerous contributions which have appeared (see Reference 34 
for an extensive bibliography list), and although a high level of understanding has been achieved, 
presented, for example, by Kikuchi and Oden,13 certain problems still await to be solved. This 
mostly applies to three-dimensional contact problems with friction in the presence of large 
deformations. Even for non-frictional contact problems, a consistent linearization of the field 
equations in the Newton-Raphson numerical algorithm leads to intricate expressions (see 
Reference 32 for two-dimensional and Reference 22 for three-dimensional applications). Recently, 
non-linear kinematics was included for two-dimensional contact problems with friction by Ju  and 
Taylor' and Wriggers et al.33 Problems associated with consistent operators are avoided in 
explicit algorithms where complicated two- and three-dimensional contact-impact problems 
have already being solved (see e.g. References 9 and 1). 

The aim of this paper is to provide a framework for contact problems with friction, which can 
be successfully applied for a class of problems where a deformable three-dimensional structure is 
in frictional contact with rigid bodies of a general three-dimensional shape. By choosing the 
penalty method we expect successful application for problems not involving high normal forces 
(e.g. thin sheet metal forming is one possible area of interest). Our main concern is the 
development of a reliable and efficient numerical algorithm that can deal with a continuous 
change of the direction and sign of the frictional force. Kinematical non-linearity associated with 
surface curvatures is avoided through discretization of the rigid body surface by a sufficient 
number of triangular facet elements. 

The layout of the paper is as follows: In Section 3, a framework for the plasticity theory of 
friction is proposed, based on additive decomposition of the relative tangential velocities into 
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elastic and inelastic parts, i.e. gT = g+ + g;. In such a situation, the constitutive equations for 
contact with friction take the simple format of classical theory of elastoplasticity. 

Numerical integration of the constitutive equations relying on operator-split methodology is 
presented in Section 4. The elastic predictor-plastic corrector procedure is generalized for contact 
with friction. 

Formulation of the complete boundary value problem generalized to large-deformation 
problems (details may be found in References 23 and 24) and the displacement-based finite 
element approximation are briefly reviewed in Section 5. 

Numerical examples are provided in Section 6. It is shown that the present algorithm can be 
successfully applied to contact problems in which a continuous change of the direction and sign of 
the friction forces occurs in large-deformation applications. For the realistic examples of the 
forming of thin sheet, capabilities are foreseen for the modelling of highly complex processes 
involving contact with friction. 

2. PRELIMINARIES 

2.1. Remarks on the computational contact mechanics 

We consider the contact problem with friction between two bodies where one is practically 
non-deformable compared to the other and can be regarded as rigidt, which can be classified as a 
unilateral contact problem. By disregarding rigid body movements we shall treat the rigid body 
as fixed in space, which simplifies the notation for interface kinematics. 

We define the distance between the bodies as a function 

g N  = ( f  - x")" on dx( i2 , )  = ax(@) n dx(Q") (1) 
where g N  is the gap between the bodies, x(ns) and x(i2") is the configuration mapping of the slave 
and master bodies, respectively, and N is the normal vector on the master surface. 

Introducing the notation pN = p - N for the contact force acting on the slave body, the contact 
condition can be stated in the standard Kuhn-Tucker form 

g N 2 0 ,  P N < O ,  P N ' g N = O  (2) 
which may be viewed as two complementary unilateral constraints: the kinematic condition of no 
penetration, and the static condition of compressive normal force. Incorporation of form (2) of the 
contact condition within an appropriate functional, leads to a category of mathematical pro- 
gramming problems of finding the constrained minimum of the appropriate functional, where (1) 
is the constraint condition and normal forces pN can be recognized as Lagrange multipliers. A 
discrete version of the Lagrange multiplier method for three-dimensional contact problems with 
friction was employed by Chaudhary and Bathe.3 Apart from an extended number of unknowns, 
this approach can cause difficulties in the solution phase due to the appearance of zeros on the 
diagonal of the associated algebraic system. We note that kinematical constraint (1) in this 
method is exactly satisfied. 

By choosing the penalty method the constraint condition (1) is relaxed and the constraint space 

X = { t ler lgN 2 0 on x (d i2 , ) )  (3) 

tFollowing standard terminology (see Reference 9) we shall call the rigid body the master body and the deformable body 
the slave body. The same master-slave terminology applies to the surfaces of interest and to the nodes of discretized 
models. 
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for which the approximation functions are sometimes difficult to generate, is extended onto the 
whole space “Y-, 

which allows a classical displacement-based finite element formulation. 
Furthermore, the elastoplastic form of the constitutive model for friction described in Section 3, 

can be viewed as a regularization procedure in which an essentially non-differentiable functional 
representing the virtual work of the frictional forces is approximated with the regularized one 
depending upon a real parameter k, > 0 (see Reference 13). This makes numerical techniques, 
specifically the Newton-Raphson method, effective for this class of problems, as will be shown in 
Section 6. 

The elastoplastic character of the constitutive law for dry friction has a physical justification by 
relation to the deformation of asperities on contact interfaces, which consists roughly of a 
reversible part due to elastic deformations of asperities and an irreversible part due to plastic 
deformation, damage and fracture of asperities. This fact is confirmed by experimental evidence 
and recognized in recent formulations of frictional laws (see References 6,8, 12,13,18,26 and 33). 

“Y- = {q:x(O)-+ R31q = 0 on  XI,)} (4) 

3. PLASTICITY THEORY OF FRICTION 

Following standard formalism of the theory of elastoplasticity, additive decomposition of the 
tangential velocity at  the contact interface is adopted, i.e. 

where g, = (I - N@N)-u. 
Furthermore, a perfect friction law is assumed (in the sense as introduced by Curnier6) stating 

that the friction force is proportional to the normal force and is independent of the other state 
variables, which leads to the slip criterion 

where r characterizes the adhesion. 

simple format of classical elastoplasticity 
With these assumptions introduced, the constitutive equations for frictional contact take the 

i = j h ( g y ,  r )  (7e) 
Here, DT = - kT(I - NON) and DN = - k,NON are the tangential and normal parts of the 
elastic modulus tensor, $(p, r )  is the slip potential and the function h ( g ; ,  r )  defines the hardening 
(softening) law. Finally, loading/unloading conditions may be formulated in the standard 
Kuhn-Tucker form 

4 < 0 ,  3 2 0 ,  + 4 = 0  (8) 
For convenience, the basic equations governing the constitutive model for the plasticity theory 

of friction have been summarized in Table I. 
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Table I. Constitutive model for the plasticity theory of friction 

(i) Additive decomposition of the displacement rate 

& = i; + if 
(ii) Linear constitutive equation 

= DNU&, 

= Drh;, 

DN = - k"@N 

DT = - kT(I - N@N) 

(iii) Slip criterion and hardening law 

4(P,  r, = I/ h 11 + "F 11 PN 11 - 
i. = y h ( g f ,  r )  

(iv) Flow surface and flow rule 

$ ( P 3  r )  = II h II - r 

(v) Kuhn-Tucker loading/unloading conditions 

$GO,  j > O ,  j $ = O  

Following standard arguments of rate-independent plasticity and under conditions of frictional 

(9) 

(10) 

slip without hardening, the following rate form is obtained 

where 
p = D e P . u  

DeP = - kT(I - TOT - N@N) - v,k,T@N - k"@N 

Evidently, the non-associative slip rule (7d) results in non-symmetry of the slip modulus tensor 
which is defined by (10) under the conditions of frictional slip. 

4. NUMERICAL INTEGRATION ALGORITHM 

By making the contact problem with friction equivalent to the classical theory of elastoplasticity 
in Section 3, numerical integration of the constitutive equations for frictional contact problems 
may follow the standard techniques employed in elastoplasticity. We refer to References 28, 30 
and 19, for a discussion on the recent advances and details of implementation. For completeness, 
the equations governing a one-step Euler backward scheme are summarized: 

In addition, the constraint condition 

4 ( P n + l , r n + l )  = O  
must be satisfied. 
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4.1. Stress update algorithm 

Particularly suitable for implementation are procedures connected with general operator-split 
methodology, where the original problem of evolution is solved through composition, applying 
first the elastic and then the plastic algorithm. We summarize the basic equations for the radial 
return method proposed by W i l k i n ~ , ~ ~  restricting attention to non-hardening frictional slip which 
is particularly interesting as it defines the generalized Coulomb law of friction. 

4.2. 

Elastic predictor 
Calculating increments of displacement in the contact region x (  nc), we obtain trial elastic 
forces 

p:?: = p, + D . U , + ~  (12) 

Plus t ic corrector 
In the plastic corrector phase, a trial elastic stress p:?: is radially projected onto the slip 
surface 

PT"+l = VFIIPe:IIITn+l (13) 

where the normal 

defines the slip direction. 

Consistent tangent operator 

The numerical updating procedure described in Section 2.1 leads to the incremental response 
function 

ii(Pn,un,U--n)= lIPTn+lllTn+l + lIPN,+IIINn+l 
Making use of the relationship 

and applying the chain rule of differentiation in 

we obtain the consistent tangent modulus for frictional slip 

D*ep = - k*(I T - Tn+ 1 @Tn+ 1 - Nn+ ,@Nn+ 1 )  - v,krqTn+ 1@Nn+ I 

where 

Observe that the consistent modulus (18) differs from the continuum tangent modulus (10) by 
the factor k j  which reduces the stiffness in the tangential plane perpendicular to the slip direction. 
For large displacement increments k; can become considerably less than kT, i.e. k,* < kT, so that 
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use of kT instead of k+  may cause loss of the quadratic rate of convergence typical for the 
Newton-Raphson method. 

The algorithm is summarized in Box 1. 

Box 1. Numerical integration procedure for the plasticity theory of 
friction 

0 Update configuration 

X n + l  = xP!1 + U P 1 1  

0 Elastic stress 

p',f': = pn + D.U,+l 

0 Check for slipping 

IF  4',?: = l l p F ~ l /  + ~ ~ l ~ p ~ ~ ~ ~ ~ l  GO 

Set (Oln+ = (0) :p: then EXIT 

ELSE 

0 Plastic corrector phase 

Remark 1.  The consistent tangent modulus (18) is equivalent to the consistent modulus obtained 
by Curnier and Alart' through kinematic considerations. 

5. FORMULATION OF THE BOUNDARY VALUE PROBLEM AND 
FINITE ELEMENT DISCRETIZATION 

In this section we present a variational formulation for large-deformation problems in the 
presence of large strains and unilateral contact with friction, as a basis for finite element 
discretization. As has been usually done in metal plasticity, we chose a logarithmic strain as the 
strain measure (see Reference 24 for details concerning the utilization of the logarithmic strain in 
finite strain elastoplasticity). Restriction to unilateral contact allows use of linear contact 
kinematics, which greatly simplifies the treatment of three-dimensional problems and leads to 
rank-one updates of the tangent stiffness according to equations (9) and (10). 
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5.1. Weak form of the boundary value problem 

The strong form of the boundary value problem, written in spatial description 

with boundary conditions 

and 

1 I 
a - n  = i on &(a,) 

x = x  on WQJ 
a * n  = 0 if gN > 0, on dx(Qc)  

a - n  = p if g N  < 0, on dx(Rc) 

takes the classical weak form (see Reference 16) 
" L " 

(22) 
- 
t * q d a  - J P*tlda J x ( a w  X ( W  

G(z,q) = j (o:Vq - pb*q)du - 
x ( W  

where q E V and 9'" is the space of all admissible variations. 

description may be written (see Reference 24 for details) as 
The linearized form of the functional G(x,  q) at the known configuration x = in the spatial 

where a(') is the fourth-order tensor given by 

a!?) 1Jkl = h < o ) e P  ljkl - qjkl + (Sikgjjl (24) 

with h(0)ep as the standard elastoplastic constitutive moduli and 

m i j k l  = + ( c i k 6 j f  + f f i l s j k  + c j k a i l  + c j l 8 i k )  (251 

The term C($ q) has a standard interpretation as an unbalanced force at the configuration i ,  while 
the terms on the left-hand side of the equation (23), linear in u, provide the tangent stiflness. 

From Sxcn, Vu : a('): Vq du we recover the material and geometrical parts of the tangent stiffness, 
respectively: 

MK = jX,., Vsu:(h(o)eP - m):Vsqdv 

G K  = jx(o, Vu:(a@l):Vqdv (27) 

(26) 

where v" denotes the symmetric part of V. The term 

tl da ' K  = 1 . DeP * 

x ( a w  
provides the tangent stiffness due to frictional contact. 

Analogously, we obtain the residual forces as 

6 = jx(Q) 6 :  Vsq du - ExTd 
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where EXT6 is the virtual work of the external loading and contact forces 

t - q  da + f -  x(an.) 

5.2. Finite element discretization 

Following a standard methodology (see References 2, 10 or 35), we introduce the space 
-trh c V" as a finite-dimensional approximation to -tr described in equation (4). Furthermore, let 
subspace V h  be generated through spatial finite element discretization in the current configura- 
tion x ( Q )  = u YE4 x(Qe) ,  with ~ ( 0 , )  n x(Q, )  = 8 if a # b, so that over a typical element x(Q,)  we 
have the interpolation 

where Na are the standard shape functions. 
Contact conditions are discretized by controlling the penetration of the slave nodes into the 

master surface. Further simplification is introduced by monitoring only the nodal forces devel- 
oped due to frictional contact, which are assumed to follow the constitutive model described in 
Sections 3 and 4. 

Tangent stifness matrix. Representing the discrete gradient operators VSuh and Vuh in the form 
NEN NEN 

VsuhIxln,) = C Buua, VU"IX(R.) = 1 Guua 
a = l  a =  1 

we may write the tangent operator of equations (26) and (27) in the matrix format 

ke = Mke + Gke (33) 

where 

B;f[h(O'"P - m] BbdU (34) 

(35) 

X(%?) s Mke = [Mk:b] = 

Gk" = [Gk,',] = I G;f[i]G,d~ 
x(&) 

are the standard material and geometrical element stiffness matrices, respectively. A discrete 
version of equation (28) follows directly from equation (18): 

(36) CKs = D*"P 

The global stiffness matrix is obtained by applying the finite element assembly operator l o  

NEL SNOD 

e =  1 s= 1 
K = A (k") + A ('K') (37) 

Residual vector. The discrete version of equations (29) and (30) supplies the element residual 
force vector 

(38) f e  = INTfe - EXTfe 
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where 

INTfe = {'"f;) = 1 B;f {6)dv, 

EXTfe = {EXTf;} = j N,{pb}dv + j N,{i)da (40) 

(39) 
X W . )  

,762,) x w . )  

are the element internal and external force vectors, respectively. The global residual vector is 
obtained by adding the contribution of the contact forces at the slave nodes 

NEL SNOD 

F = Fnodal + A (f") + A ('F') 
e =  1 s =  1 

6. NUMERICAL EXAMPLES 

In this section several numerical examples are presented to assess the accuracy and robustness of 
the constitutive model and the numerical scheme adopted. All problems presented include large 
deformations and offer a severe test for any computational model dealing with frictional contact. 

In all examples a full Newton-Raphson method is employed, with unsymmetric tangent 
stiffness arising from the non-associated frictional contact law described in Section 3. Conver- 
gence of the finite element solution is established on the basis of the standard Euclidean norm of 
the out-of-balance forces. The use of consistent tangent moduli [equations (18) and (19)] is shown 
to be of utmost importance for preserving the quadratic rate of convergence typical for the 
Newton-Raphson method. 

Example 1 .  Lateral compression of a cantilever beam subject to end moment 

A straight beam clamped at one end and subject to an end moment at the other is laterally 
compressed by frictional flat rigid punches which are moved in the first loading increment by 
I U,I = 0.004 on both lateral sides of the beam and then kept fixed. The geometry, material 
characterization and finite element model are given in Figure 1. The beam is modelled with 20 

Geometrv: 

L = 6.0 

B = 0.8 punch 

n = 0.3 

E = 2.22222 lo5 
Material properties: 

Y = 0.0 
Loading conditions: 

End moment M. = 4rEI /L 
M I 2  

Figure 1. Lateral compression of a cantilever beam subject to end moment: geometry, material characteristics and finite 
element discretization 
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triangular constant membrane strainsonstant curvature shell elements with symmetry employed 
along the central axis. The coefficient of friction vF at the interface between the beam and punches 
is varied betweell 0.0 and 0.3. An applied moment M, = 4nEI/L will force the beam to deform 
into a full closed circle for vF = 0.0. The final deformed configurations for various coefficients of 

Figure 

E - 
x" 

3.0 

2.5 

2.0 

1.5 

1 .o 

0.5 

0.0 

-- - 

-0.5 

1 0 1 2 3 4 5 6 

XI, (m) 

2. Lateral compression of a cantilever beam subject to end moment: Deformed configurations for M / M ,  = 1.00 

Figure 3. Lateral compression of a cantilever beam subject to end moment: Deformed configurations and friction forces 
at nodes for vF = 0.05. (a) M / M ,  = 0.20; (b) M / M ,  = 0.40; (c) M / M o  = 0.60; (d) M / M ,  = 0.80; (e) M / M o  = 1.00 
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friction are depicted in Figure 2. Depending on the lateral compression and coefficient of friction, 
the frictional forces strongly influence the shape of the final equilibrium configurations. Figures 3 
and 4 show the equilibrium configurations and frictional forces at nodes throughout the process 
of loading, for coefficient of friction vF = 0.05 and vF = 0.02, respectively. It is important to 
observe that the frictional forces are continuously changing in magnitude and direction which 
creates severe complexities for the numerical algorithm. 

All results in this example are obtained by applying equal increments of the end moment M and 
automatically reducing the step if convergence is not obtained within 10 iterations. A standard 
check for residual norm with convergence tolerance RTOL = 1.0 x is performed. The 
number of load increments required to attain the final equilibrium configuration corresponding 
to M / M ,  = 1.0, as a function of the coefficient of friction vF, is given in Table 11. It should be 
noted that the number of loading increments reaches highest value for the medium value of the 
friction coefficient vF = 0030 which is connected with the appearance of large incremental 

C 

Figure 4. Lateral compression of a cantilever beam subject to end moment: Deformed configurations and friction forces 
at nodes for vF = 0.02. (a) M / M o  = 0.20; (b) M / M ,  = 0.40; (c) M / M ,  = 060, (d) M / M o  = 0.80 (e) M / M o  = 1.00 

Table 11. Number of loading increments for various vF in Example 1 

VF 0.300 0.100 0.050 0.030 0.020 0.010 0.001 
ninc 20 34 29 55 36 34 21 
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displacements complemented with the frequent interchanges between stick.and slip conditions. 
The speed of convergence of the Newton-Raphson method measured in residual norms is 
illustrated for two typical load steps in Table 111. Due, probably, to the fact that within our 
approach (see Reference 25 for details) the rotational field for the finite element employed is not 
consistently linearized (as has been done in Reference 5) the apparent rate of convergence appears 
to be superlinear. 

Example 2. Plane strain stretching of a thin sheet b y  a cylindrical punch 

The geometry and material characterization for this example are shown in Figure 5. The 
analysis is performed employing a 3-D formulation, restricting the deformations to be symmetric 
along the line X, = 0 and imposing plane-strain boundary conditions in direction X , .  This 
problem, typical for thin sheet metal forming applications, is solved by discretizing the blank with 
240 thin-shell finite elements and using 122 and 64 triangular flat elements to discretize the 

Table 111. Residual norms for two typical load steps in 
Example 1 

n,, v, = 0.3 ( M / M ,  = 0-3) vF = 0.05 ( M J M ,  = 0.3) 

1 0.124E - 01 0'622E - 02 
2 0.128E - 01 0.129E - 01 
3 0.171E - 03 0.239E - 03 
4 0.226E - 04 0.154E - 04 
5 0.804E - 06 0.617E - 06 

Gcomelry: 
L. = 59.18mm 
B. = 4 Omm 
t- = 1.2mm 

R, = 50.8mm 
Rd = 6.35mm 

Malerial properties: 
E = 2.1 x i0St4/mrn' 
Y = 0.3 
L+ = 520 (3.28.10-'+ iP]a'sN/mm' 

Fixed dirplicemanl UI 
B o u n d q  conditions: 

Figure 5. Plane strain stretching of a thin sheet by a cylindrical punch: geometry and material characteristics 
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surfaces of the punch and die, respectively. Spatial discretization of the problem is depicted in 
Figure 6. Results are obtained for the no-friction case and for a coefficient of friction vF = 0.3. 
Figure 7 gives deformed meshes for different values of punch displacement. Although friction does 
not influence the overall deformation energy visible in Figure 8 through values of the punch force, 
it highly influences the deformation patterns, as can be seen in Figure 9. To attain the 
final deformed configuration for punch displacement I), = 0-5L with convergence tolerance 

Figure 6. Plane strain stretching of a thin sheet by a cylindrical punch Spatial finite element discretization of blank and 
punch and die surfaces 

Figure 7. Plane strain stretching of a thin sheet by a cylindrical punch Deformed finite element meshes at various stages 
of punch displacement. Each quadrilateral consists of two triangles 

5 

4 

1 

0 

0.0 0.1 0 9  0.3 0.4 0 5  

Punch travel. Us/Lo 

Figure 8. Plane strain stretching of a thin sheet by a cylindrical punch Punch force versus punch displacement curves for 
frictionless membrane solution and for bending solution with vF = 0.30 and no friction case. Membrane solution is taken 

from h e  et al.” 
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4 ./z?$.z-l ...... DpRd.3 - -- - - ---- - opn-o.5 

/ ....,....,....,...., ' . . . I  

Original distance, XI/L, 
0.0 02 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0 8  1 0  

Original distanca, Xl/L. 

Figure 9. Plane strain stretching of a thin sheet by a cylindrical punch Distribution of thickness true strain plotted over 
the initial configuration at various stages of punch displacement. (a) no friction; (b) vF = 0.30 

Geometry: 
R, = 59.18mm 
1, = 1.Omm 

R,, = 50.80mm 
R,, = 33.90mm 
Rd = 6.35mm 

Material properties: 

E = 69004N/mm' 
Y = 0.3 
B = 589. (1.0.10-* + ~P)o.z16N/mm2 

Figure 10. Stretching of a circular thin sheet by an elliptical punch: geometry and material characteristics 

RTOL = 1.0 x l o w 3  for the case vF = 0.3, a total number of 68 increments of punch displacement 
were needed with 4 1  iterations per increment. 

Example 3. Stretching of a circular thin sheet by an elliptical punch 

The geometry and material characteristics for this example are shown in Figure 10. The 
elliptical punch surface is defined in the initial configuration by (XI  / 59~18)~  + (X,/39.45)' 
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+ [ ( X ,  - 59.18)/59.1812 = 1 with minor axis/mujor axis = 2 /3. The analysis is performed 
employing a 3-D formulation, restricting the deformations to be symmetric along the lines XI 
= 0 and X ,  = 0. This problem can be considered as an intermediate stage in the forming of thin 

sheet metal products where the geometry of the punch initiates a behaviour which deviates from 
axisymmetric conditions. From a numerical point of view this necessitates full three-dimensional 
analysis with appropriate algorithmic treatment of the contact problem with friction. To solve 
this problem we discretize the blank with 736 constant-strain triangular finite elements and use 
2145 and 612 triangular flat elements to discretize the surfaces of the punch and die, respectively. 
Spatial discretization of the problem is depicted in Figure 11. Results are obtained for coefficients 

Figure 11. Stretching of a circular thin sheet by an elliptical punch (a) Spatial finite element discretization of blank and 
punch and die surfaces; (b) Finite element mesh and boundary conditions for the model of the blank employed in 

computation 

Figure 12. Stretching of a circular thin sheet by an elliptical punch: Deformed finite element meshes at various stages of 
punch displacement for vF = 0.30. (a) D, = 20 mm; (b) D, = 30 mm; (c) D, = 40 mm 
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Figure 13. Stretching of a circular thin sheet by an elliptical punch: Punch force versus punch displacement curves for 
hemispherical and elliptical punch with vF = 0.30 and 0.05 

0 8  , 
a 0.5 

0.4 

i 3 0.3 

0.2 

0.1 

0.0 . . . - . .  
0.0 0.1 0 2  0 3  0.4 05 0.8 0.7 0.8 09  1.0 

1- w, XI/'% 

0.6 

c 0.5 

i 
0.4 

i O1 
02 

0.1 

0.0 

0.0 01  0 2  0 3  0 4  05 0 8  0 7  0.8 09  1 0  

lnidial pDstioh XI& 

0.8 

0.5 

c 
0.4 

UI 

.a 
- 

0.3 
s 
E 

B 
2 0.2 

0.1 

0.0 

0.4 

d 
0.3 

g - 
d 

f o'2 

3 
0.1 

0.0 

0.0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 0 9  1.0 

1- Parwon. XI/% 

0 0  0 1  0 2  0 3  OA 05 0 8  0 7  0.8 0 9  1.0 

lnilbl polllon. X& 

Figure 14. Stretching of a circular thin sheet by an elliptical punch Distribution of true strain in directions XI  and X, 
for vF = 0.30 plotted over the initial configuration at various stages of punch displacement. (a) XI-radial strain, 

(b) XI-circumferential strain; (c) X,-radial strain, (d) X,-circumferential strain 
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of friction vF = 030 and 0.05. Figure 12 gives the deformed meshes for different values of punch 
displacement for the vF = 0.30 case. 

The punch force versus punch displacement diagram presented in Figure 13 gives a comparison 
between the results obtained by stretching a circular sheet with an elliptical punch and those 
obtained by hemispherical punch stretching with a spherical radius identical to the major radius 
of the elliptical punch. Both punch geometries were tested for vF = 030 and 0.05. Only a minor 
influence of the friction coefficient on the deformation energy can be observed with a pronounced 
effect on the maximum value of the punch force. Significant difference between the corresponding 
punch force values in hemispherical and elliptical punch stretching signals a uniform strain 
distribution and economical usage of material based on predominant biaxial stress states in 
hemispherical punch stretching. 

The true strain distribution along the major and minor axes is shown in Figures 14 and 15, 
respectively, for various punch displacements. Overall, the strain distribution follows trends 
typical for an equivalent axisymmetric hemispherical punch stretching problem, with a slight 
increase of the strain level along the minor axis. For vF = 030 and for punch displacement 
D, > 30 mm, we observe from Figure 14(c), a typical localization behaviour along the minor axis 
where strain accumulates in a narrow zone, reaching high levels and leading to failure. Spread of 
the localization zone is depicted in Figure 16(b), which shows the contour plots of thickness over 
the initial configuration. The appearance of localization and the associated failure of the circular 
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Figure 15. Stretching of a circular thin sheet by an elliptical punch Distribution of true strain in directions XI and X, 
for vF = 0.05 plotted over the initial configuration at various stages of punch displacement. (a) XI-radial strain, 

(b) XI-circumferential strain; (c) X,-radial strain, (d) Xpircumferential strain 
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Figure 16. Stretching of a circular thin sheet by an elliptical punch: Contour plots of thickness for vF = 0.30 plotted over 
the initial configuration at various stages of punch displacement. (a) D, = 30 mm; (b) D, = 40 mm 
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Figure 17. Stretching of a circular thin sheet by an elliptical punch: Contour plots of thickness for vF = 005 plotted over 
the initial configuration at various stages of punch displacement. (a) D, = 30 mm; (b) D, = 40 mm 

thin sheet stretched by the elliptical punch prior to a similar failure of the thin sheet stretched by 
the hemispherical punch may be explained by a relaxation of conditions of axisyrnmetry which 
are known to suppress localization. We note that the early appearance of strain localization close 
to the minor axis of the elliptical punch gradually spreads in the circumferential direction, while 
in the hemispherical punch stretching strain localization appears abruptly in the whole ring of 
finite elements which is in an identical stress state. For vF = 0.05, although high strain levels are 
achieved as depicted in Figure 15, no localization is detected up to D, = 40.0 mm. This results in a 
uniform thickness distribution (see Figure 17) which is the objective of industrial thin sheet 
forming operations. 
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A standard check of the residual forces based on the Euclidean norm was performed in this 
example with convergence tolerance RTOL = 1.0 x and 1.0 x loe7  for the case vF = 0.30 
and 0.05, respectively. To satisfy these convergence tolerances 4-8 iterations were typically 
needed. The final configuration corresponding to a punch displacement D, = 40.0 mm is attained 
with a total number of 159 and 112 increments for the case vF = 0.30 and 0.05, respectively. From 
Table IV, which shows the required number of loading increments corresponding to the total 
value of the punch displacement D,, it can be seen that the number of increments grows as the 
punch displacements D, increase beyond 300 mm. This is more pronounced for the vF = 0.30 
case, which is connected with an emerging localization pattern of deformation. The rate of 
convergence of the Newton-Raphson method measured in residual norms is illustrated for four 
typical load steps in Tables V and VI. Whenever the solution is within the radius of convergence, 
a quadratic rate of asymptotic convergence is exhibited. We note that line searches were not 
performed in these examples. Finally, it should be emphasized that the present algorithm allows 
for new nodes entering contact at any iteration within the increment which is reflected in a sudden 

Table IV. Number of loading increments for various punch displacements D, 
in Example 3 

D, (mm) 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 
ninc ( v F =  0.05) 13 23 33 43 53 63 80 112 
nine (vF = 0.30) 14 24 36 47 57 77 119 159 

Table V. Residual norms for four typical load steps for vF = 0.30 in Example 3 

nil D, = 10.0 mm D, = 20.0 mm D, = 35.0 mm D, = 40.0 mm 

1 0688E - 01 0.428E - 01 
2 0628E - 01 0440E - 01 
3 0'185E - 01 0.229E - 01 
4 0910E - 03 0'667E - 03 
5 0'790E - 05 0'751E - 04 
6 0.516E - 06 
7 
8 

0.675E - 01 
0.485E - 01 
0.658E - 01 
0494E - 02 
0.547E - 03 
0.299E - 04 
0.740E - 07 

0.795E - 01 
0.757E - 01 
0'128E + 00 
0.113E - 01 
0.939E - 02 
0.567E - 03 
0'181E - 03 
0'467E - 06 

Table VI. Residual norms for four typical load steps for vF = 0.05 in 
Example 3 

1 0'714E - 01 
2 0'548E - 01 
3 0'230E - 01 
4 0.585E - 01 
5 0'162E - 04 
6 0.284E - 06 
7 0.867E - 08 
8 

0.810E - 01 0.134E + 00 0.134E + 00 
0'834E - 01 0107E + 00 0.931E - 01 
0'451E - 01 0133E + 00 0.266E + 00 
0.244E - 02 0148E - 01 0'221E - 01 
0'118E - 03 0.191E - 02 O'llOE - 02 
0.108E - 06 0510E - 04 0'502E - 02 
0'515E - 10 0648E - 07 0'125E - 04 

0.258E - 07 
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increase in the residual norm (as may be observed for iteration 3 of D, = 40.0 mm from Table V) 
and obviously destabilizes the convergence process. 

7. SUMMARY AND CONCLUSIONS 

A model for three-dimensional contact problems with friction based on the penalty method has 
been proposed and applied to the unilateral contact of flexible three-dimensional structures. Such 
a situation typically arises in thin sheet metal forming operations. Due to the intrinsic similarity 
between friction and classical elastoplasticity the constitutive model for friction can be construc- 
ted following the same formalism. This fact has been realized early and used extensively in various 
approaches to the solution of frictional contact problems (see e.g. References 4,6,8, 13, 14,18,27 
and 33). A numerical algorithm for the plasticity theory of friction based on Wilkin~’~’  radial 
return is described and a non-symmetric consistent tangent stiffness is derived, which has proved 
to be crucial for preserving the quadratic rate of convergence typical for the Newton-Raphson 
method. 

The most important feature of the proposed algorithm is the possibility of successfully tackling 
the problems where sharp changes in the magnitude and direction of the frictional forces appear, 
as has been shown in Example 1. Although the curvature of the rigid surface is expected to 
influence the stability of the algorithm, in the realistic Examples 2 and 3, where frictional forces 
suffer continuous changes out of the tangential plane on the rigid surface, accurate and stable 
solutions have been achieved in a reasonable number of loading increments when the curved rigid 
surface has been discretized with a sufficient number of flat triangular elements. 

In terms of future research we mention the possibility of including a more general constitutive 
model for friction and generalization to three-dimensional frictional contact problems which 
include non-linear contact kinematics. 
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