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A TIME-REVERSIBLE VARIABLE-STEPSIZE INTEGRATOR FORCONSTRAINED DYNAMICSERIC BARTH�, BENEDICT LEIMKUHLERy, AND SEBASTIAN REICHzAbstract. This article considers the design and implementation of variable-timestep methods forsimulating holonomically constrained mechanical systems. Symplectic variable stepsizes are brie
ydiscussed, we then consider time-reparameterization techniques employing a time-reversible (sym-metric) integration method to solve the equations of motion. We give several numerical examples,including a simulation of an elastic (inextensible, unshearable) rod undergoing large deformations andcollisions with the sides of a bounding box. Numerical experiments indicate that adaptive steppingcan signi�cantly smooth the numerical energy and improve the overall e�ciency of the simulation.Key words. symplectic methods, time-reversible methods, adaptive timestepping, variable-stepsize methods, nonlinear elastic dynamics, rod models, holonomically constrained Hamiltoniansystems, Verlet, leapfrog, SHAKE discretization1. Introduction and Background. In many molecular and mechanical applications,the dynamical paradigm is a conservative mechanical system subject to a �nite number of independentconstraining relations. The positions q 2 RN and momenta p 2 RN of the system evolve accordingto the constrained Euler-Lagrange equations,_q =M�1p; (1.1)_p = �rV (q)� g0(q)T �; (1.2)0 = g(q); (1.3)whereM 2 RN�N is a diagonal mass matrix, V : RN ! R is a potential energy function, and the mconstraints gi(q) = 0, i = 1; : : : ;m, are written compactly as g(q) = 0, with g = (g1; g2; : : : ; gm)T .Besides the con�guration manifold fqjg(q) = 0g, this system possesses two fundamental geometricstructures: (i) it is Hamiltonian, and (ii) it respects a time-reversal symmetry. Recently, the exploita-tion of these geometric structures under discretization has been found to have powerful rami�cationsfor the long-term stability of numerical simulations [26, 28, 11].While mechanical models continue to develop in both accuracy and complexity, the methodsused for propagation in time have remained remarkably unchanged, consisting generally of either�xed timestep integration with a simple scheme such as St�ormer-Verlet (leapfrog), or a low-orderimplicit method such as implicit midpoint, or some other \o�-the-shelf" ODE solving routine. Withsome exceptions (see [18] for a survey of recent work in the area of molecular modeling), there havebeen few successful e�orts to meddle with the standard time-integration framework. Several authors�Department of Mathematics and Computer Science, Kalamazoo College, Kalamazoo, MI 49006,U.S.A. (barth@kzoo.edu).y Department of Mathematics, the University of Kansas, Lawrence, KS 66045, U.S.A.(leimkuhl@math.ukans.edu). Supported by NSF grant no. DMS-9303223.zKonrad-Zuse-Zentrum, Takustr. 7, 14195 Berlin (reich@zib.de).1



2 Barth, Leimkuhler and Reich, 17th March 1998have noted that traditional adaptive techniques for varying the timestep are unsuitable for longerterm simulations using Verlet [29], and other symplectic schemes [8]. Yet many ine�ciencies arecaused by the use of simplistic time-stepping schemes, and a great deal of work on fast evaluation offorce �elds in molecular dynamics and conservative continuum models is wasted as this key element(which determines the total number of force evaluations) is neglected.The force acting on the system (1.1){(1.3) decomposes into external forces, described by theinteraction potential V , and internal forces, de�ned by the Jacobian of the constraint function g0and the vector of Lagrange multipliers �. Momentary increases in either type of force may occur atany instant along the trajectory, for example during collisions of bodies or when a rod or joint issubject to a severe strain, and it is these sporadic events which may determine the allowable timestepfor integration. Although traditional variable stepsize techniques a�ord a means for varying theintegration timestep in response to such time-localized events, these approaches generally sacri�ce thegeometric structures of the phase 
ow. This article describes variable stepsize methods for the time-discretization of (1.1){(1.3), faithful to geometric properties of the continuous system. Our methodsare based on the incorporation of a time reparameterization function which e�ectively rescales thevector �eld. In this setting, sudden strengthening of forces gives rise to more exaggerated dilation inthe time reparameterization, so that �xed-timestep methods (in reparameterized time) can faithfullyresolve rapid time-localized events.Experience with molecular models and with other complex physical systems seems to suggestthe desirability of methods requiring only one force evaluation per timestep. For this reason, wefavor the use of semi-explicit� methods. Such schemes may require the solution of one or severalalgebraic equations (e.g. to satisfy constraint relations), but they only require a single applied forcecomputation at each timestep.The rest of this article is organized as follows. In the next section, we introduce Poincar�e andSundman time transformations, and discuss the discretization of the resulting equations of motion.In x3, we lay out an adaptive-reversible method and discuss some aspects of its implementation.x4 describes the design of a time-reparameterization function appropriate for constrained dynamics.Several experiments illustrate the importance of both timestep adaptation and preservation of geo-metric structure, including (in x5) the simulation of an elastic rod subject to impact with an obstacle(a bounding box).�By this we mean a method that does not require the solution of nonlinear equations in thevariable q



A Variable-Stepsize Integrator for Constrained Dynamics 32. Time-Transformations. Researchers simulating gravitational N-body problems haveoften employed time transformations [6, 32] of the extended phase space. This can either be doneon the level of the vector �eld or on the level of the Hamiltonian (energy)H = pTM�1p2 + V (q)of the system. In particular, the Poincar�e transformation of H gives a new HamiltonianeH � (H � 
)=U;with U a positive, scalar-valued di�erentiable function of positions and momenta, and 
 representinga new variable canonically conjugate to time. The equations of motion are thendqd� = 1UM�1p+ (H � 
)rp( 1U );d
d� = 0;dpd� = � 1UrqV (q)� (H � 
)rq( 1U );dtd� = 1U :Here � can be viewed as representing a \�ctive" time variable and 
 is typically chosen such that eHis equal to zero along the desired solution.These di�erential equations can be integrated using a symplectic discretization scheme with �xedstepsizes in � . This idea has been explored recently by Reich [25] and Hairer [15]. It was found bythose authors that, in order to obtain a semi-explicit symplectic method, a symplectic �rst orderEuler method has to be used [13].The Poincar�e transformation can also be applied to the constrained system (1.1){(1.3) and theresulting equations can be discretized by an appropriate modi�cation [24] of the symplectic Eulermethod as used for the unconstrained formulation.To avoid the restriction to �rst order (or the implicitness of higher order methods) of the sym-plectic approach, we can attempt to simplify the equations along an energy surface. For given initialq(0) = q0 and p(0) = p0 and 
 � 
(0) = H(q0; p0), the terms involving derivatives of 1U drop outand we obtainy (along this trajectory) dqd� = 1UM�1p; (2.1)dpd� = � 1UrqV; (2.2)dtd� = 1U : (2.3)yTime transformations of this type were introduced by Sundman in early theoretical work on thestability of solutions of the 3-body problem [31].



4 Barth, Leimkuhler and Reich, 17th March 1998The solution of (2.1){(2.3) passing through (q(0); p(0)) = (q0; p0) is thus also a solution of thePoincar�e transformed system with eH = 0.Fixed steps of size h in � translate into variable timesteps of size roughly h=U in t; if U ischosen appropriately, many more timesteps will be taken at di�cult points along the constructedapproximate trajectory.Although it is important to recognize that (2.1){(2.3) does not itself constitute a Hamiltoniansystem, this system does possess a time-reversal symmetry. Let Re be the mapping of extendedphase-space that takes (q; p; t) to (q;�p;�t), and let �� be the time � 
ow map of the system (i.e.the mapping which takes a given point of extended phase space to its evolution through � units oftime). Provided U is invariant under Re, the maps obey the equationRe � �� � Re = ��� :Following recent developments [30, 7, 17], we believe that the time-reversal symmetry can play animportant role in accurate long-term integration.An e�cient semi-explicit, time-reversible method for integrating (2.1){(2.3) was proposed in [16].A fully explicit variant of this approach can be found in [14]. In the next section, we describe theextension of these results to constrained systems.3. Time-Reversible Constrained Discretization Methods. The phase spaceof the constrained problem (1.1){(1.3) is the manifold S = f(q; p) 2 R2N jg(q) = 0; g0(q)M�1p = 0g.In complete analogy to the unconstrained problem, the 
ow map �t is a mapping of S and satis�esthe time-reversal symmetry R � �t � R = ��t. Here R maps (q; p) to (q;�p).A popular �xed stepsize integrator for (1.1){(1.3) is the SHAKE discretization [27]:qn+1 = qn + hM�1pn+ 12 ; (3.1)pn+ 12 = pn� 12 � h�rV (qn) + g0(qn)T �n� ; (3.2)0 = g(qn+1): (3.3)The method can be viewed as a mapping of the phase space if we incorporate the following corre-spondence between half and whole timestep momenta:pn = pn� 12 � h2 �rV (qn) + g0(qn)T �n� ; (3.4)0 = g0(qn)M�1pn: (3.5)In this discretization, known as RATTLE [1], �n is a vector of multipliers needed to satisfy (3.5).The symplectic and time-reversible character of this method, viewed as a mapping of S, was shown



A Variable-Stepsize Integrator for Constrained Dynamics 5in [19]. In the discussion which follows, we extend the RATTLE discretization to treat the time-reparameterized equations; SHAKE treatment would be similar.After introduction of a time rescaling via dt = 1U d� , we obtain the constrained system:_q = 1UM�1p; (3.6)_p = � 1U �rV (q) + g0(q)T �� ; (3.7)0 = g(q): (3.8)These scaled equations of motion are time-reversible if the scaling function U satis�es (q; p) =U(q;�p) which we assume from now on.Combining elements of SHAKE/RATTLE discretization and the Adaptive Verlet method of [16],we propose to use the following time-reversible scheme to integrate the equations (3.6){(3.8):qn+1 = qn + h�n+ 12 M�1pn+ 12 ; (3.9)pn+ 12 = pn� 12 � h2 0@ 1�n� 12 + 1�n+ 12 1A�rV (qn) + g0(qn)T �n� ; (3.10)0 = g(qn+1); (3.11)and pn = pn� 12 � h2�n� 12 �rV (qn) + g0(qn)T �n� ; (3.12)0 = g0(qn)M�1pn; (3.13)�n+ 12 + �n� 12 = U(qn; pn+ 12 ) + U(qn; pn� 12 ): (3.14)Note that, as for RATTLE, (3.12){(3.13) are not needed for the propagation of the variable(qn; pn�1=2). We will refer to the scheme (3.9){(3.14) as VRATTLE.The additional variable �n+1=2 serves as an approximation to Un+1=2 and was introduced in[16] to obtain the semi-explicit, time-reversible Adaptive Verlet method. A key advantage of usingthe Adaptive Verlet method for solving a mechanical system is that only one force evaluation isneeded per step. The additional work due to the �-update (3.14) can be reduced to the solutionof a certain quartic polynomial; thus (3.14) results in a semi-explicit method. In force-dominatedcomputations, this is essentially as e�cient as an explicit method. Details on the implementation ofthe semi-explicit method can be found in the Appendix.One could also replace the �-update (3.14) by an explicit formula [14]:�n+1=2 + �n�1=2 = 2U(qn; pn) : (3.15)If this explicit update is used, no additional equations have to be solved. Thus this method isparticularly easy to implement if a constant step-size implementation of RATTLE or SHAKE is



6 Barth, Leimkuhler and Reich, 17th March 1998already available. However, the explicit update might lead to a less stable method than the semi-explicit update (3.14). This is related to the e�ect of step-size oscillation, discussed at the end ofx5. We devote the remainder of this paper to the implementation of the scheme (3.9){(3.14). In thenext section, we consider the selection of a reparameterization function U appropriate for constrainedsystems, and examine the behavior of several variants of the method in a practical case.4. Choice of time reparameterization U . In gravitational problems with few de-grees of freedom, it is common to make U a function of q only. For example, with force a functionof position only, we might control the stepsize based on the largest force:U = maxi ����@V@qi ���� :Notice that in this case, the time-update (3.14) reduces to (3.15) and is thus completely explicit.Alternatives include basing U on the rate of change of arclength along the phase space trajectory,on the maximum rate of change of arclength traversed by any particle in an N-body problem, or onsome other observable quantity which monitors the local di�culty in resolving the trajectory.For constrained systems, the considerations are similar. We still need to take into accountthe unconstrained (applied) forces acting on the particles, but the system is now also subject toconstraint (internal) forces. As a �rst step, one might anticipate that large constraint forces wouldlead to large momenta, so that it would be enough to control the step based on the momenta (andthe unconstrained forces) alone. To show that this approach can fail, we consider the example of adouble planar pendulum swinging in gravity, with constrained equations of motion:m1 _x1 = u1; _u1 = �x1�1 � (x1 � x2)�2;m1 _y1 = v1; _v1 = �y1�1 � (y1 � y2)�2 � 1;m2 _x2 = u2; _u2 = (x2 � x1)�2;m2 _y2 = v2; _v2 = (y2 � y1)�2 � 1;0 = (x21 + y21) � 1;0 = �(x1 � x2)2 + (y1 � y2)2�� 1:This problem was considered in [16] in the more familiar angle-angle formulation, and the uncon-strained (nonseparable) Hamiltonian equations were discretized with the implicit midpoint methodusing time reparameterization based on the size of the vector �eld.We attempted direct integration of the constrained equations, adjusting the timestep based onthe size of the unconstrained vector �eld,U = U1(q; p) �qpTM�2p+ krV (q)k2: (4.1)The ratio of masses m1=m2 was taken to be 1000.
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Figure 4.1. (a) Trajectories from initial position (*) and (b) Energy error for RATTLEand VRATTLE. Peaks in the VRATTLE energy error illustrate that the time reparameterizationfunction of eq. (4.1) does not adequately monitor the di�culty of the integration.Figure 4.1b shows the energy error for trajectories computed with the �xed timestep integratorof (3.1){(3.5) and for VRATTLE with U1 from (4.1). Step size for RATTLE was chosen as theaverage timestep from the VRATTLE integration. In this way, the number of function evaluationsis equivalent for the two methods. Peaks in the energy, corresponding to cusp-points in the positiontrajectories shown in Figure 4.1a, are evident for both methods, although the magnitude of the energyerror is much smaller for VRATTLE. The peaks suggest that the step control function U1 does notadequately monitor variation in the integration di�culty. In U1, we have accounted for kinetic andpotential energy, but have neglected the constraint force. Figure 4.2 shows the magnitude of �n(scaled by the square of the timestep), which is proportional to the constraint force, throughoutthe �xed timestep simulation. Although large multipliers are ultimately re
ected in large momenta,the method does not adapt su�ciently rapidly. This simple example indicates that the constraintforces must be considered in the design of an e�ective step control strategy, at least whenever theconstraints are subject to signi�cant strain.We would like to include the magnitude of the multipliers in the design of U . On the other hand,to be able to apply the adaptive method, we must have a step control function U which depends onq and p only. With this in mind, we observe that the equation (1.3) can be di�erentiated repeatedlywith respect to time t using the time derivatives in (1.1){(1.2), obtaining an equation which can besolved for �, i.e. along solutions,0 = ddt g(q) = g0(q) _q = g0(q)M�1p;and 0 = ddt �g0(q)M�1p� = g00(q)(M�1p;M�1p) + g0(q)M�1(�rV (q)� g0(q)T �):Here g00 represents the tensor second derivative of the constraint function g. Assuming
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Figure 4.2. Variation of Lagrange multiplier �n throughout RATTLE integration.g0(q)M�1g0(q)T is nonsingular, we can solve the latter equation for � as a function of q and p.Because it is an important practical case [3], we specialize this computation to the case ofquadratic length constraints between particles in space with position vectors qi and qj :g(q) = kqi � qjk2 � L2 � ~g(q) � L2: (4.2)We give two lemmas which illuminate the special structure of (1.3) in this case:Lemma 4.1. For a quadratic constraint of the form (4.2), denote G = rqg. The second derivativewith respect to time of this constraint reduces to:d2dt2 g(q) = G( _q) _q +G(q)�q:Lemma 4.2. For a quadratic constraint of the form (4.2), denote G = rqg. For any vector r,G(r)r = 2~g(r):Using Lemma 4.1 and the constrained equations of motion (1.1){(1.3) we have0 = d2dt2 g(q);= G(M�1p)M�1p+G(q)M�1 _p;= G(M�1p)M�1p+G(q)M�1(rV (q) �G(q)T �):We can solve this equation for � in terms of p and q,� = �(q; p) � (G(q)M�1G(q)T )�1 �G(M�1p)M�1p+G(q)M�1rV (q)� : (4.3)We use the notation �(q; p) to distinguish the expression in (4.3) from the vector of Lagrange mul-tipliers �n we seek to compute at each step of the discretization. In this form it is clear that the
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Figure 4.3. Energy error for RATTLE and VRATTLE with step control functions U1 and U2.computation of � does not require a great deal of overhead in addition to what would be required ina standard �xed stepsize (SHAKE/RATTLE) integration. The matrix GM�1GT must be computedand factored anyway if we are using the e�cient SNIP (symmetric Newton) iterative scheme of [3]for solving the nonlinear equations.Although (4.3) could be substituted back into the constrained equations of motion (3.6){(3.8) toeliminate �, there are several de�ciencies to such an approach; in particular the vector �eld would bemore complex, discretization errors can accumulate which eventually violate the constraint condition(3.8), and symplectic or time-reversal symmetries would be destroyed by standard schemes for theresulting system. Instead, we use (4.3) only for the purpose of step size control.To implement the discretization withU2(q; p) � k�(q; p)k2 (4.4)using the �-update (3.14), we require the partial derivatives with respect to p. See the Appendix fordetails. Applying Lemma 4.2 to G(M�1p)M�1p and di�erentiating, we have@U2@p = � 2k�(q; p)k2��(q; p)T (GM�1GT )�1G(M�1p)M�1:Figure 4.3 gives energy error for RATTLE and VRATTLE with step control functions U1 andU2. The peaks in the energy which were present in the RATTLE and VRATTLE{U1 simulations areeliminated with VRATTLE{U2. Figure 4.4 gives the step size throughout the VRATTLE integrationswith the two step control functions. The maximum stepsize with U2 is several orders of magnitudelarger than for U1, while the minimum is several orders smaller. This observation suggests thedesirability of limiting stepsize growth. A mechanism for controlling the maximum and minimumstepsize is described in [16].
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Figure 4.4. Step size for VRATTLE with step control functions U1 and U2.5. An Elastic Rod Model. An example of a conservative elastic dynamics problemis the model of an inextensible, unshearable Cosserat rod as described by Antman [2] and recentlytreated by Dichmann and Maddocks [10]. After spatial discretization, the equations of motion can beviewed as a collection of constrained rigid body motions. The forces are computed from a discretizedinteraction potential. The rod model has several potential biological applications [20, 22].For mechanical systems such as the rod, several authors (see [10, 12, 23]) have proposed the useof implicit integration methods. These methods solve the ODE equations after method-of-lines orother spatial discretization using schemes such as the symplectic-reversible implicit midpoint method(see [10]) or a time-reversible energy-momentum integrator (see [12]). In general, several evaluationsof both the force and constraint functions, as well as their derivatives are needed at each timestep.The implicit methods typically treat all forces and variables uniformly | despite the very di�erentnatures and roles of positions, momenta, and various multipliers. In the case of the impetus-strictionscheme of [10] which enables the treatment of constraints, the complexity of the associated vector�eld is substantially increased and there is a possibility of drift from the constraint manifold. If sucha model were to incorporate long-range interaction potentials (e.g. due to charges placed on therod), the computational costs would be still greater.Compared with explicit or semi-explicit schemes such as leapfrog, implicit schemes sometimesallow larger timesteps to be used, but they generally sacri�ce some accuracy in the highest frequencycomponents. Interactions between modes in nonlinear problems may lead to nonlinear instabilities(e.g. resonances) in large timestep simulations [21]. Slight e�ciency improvements are occasionallypossible from implicit methods in molecular simulation, but for large timesteps, multiple solutions
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Figure 5.1. A Cosserat rod: dynamics are formulated in terms of rigid body motion of amaterial cross-section. The superimposed curves indicate twist.of the nonlinear equations can destabilize the time integration [5].We will examine a constrained model of an inextensible, unshearable elastic rod for which theapplied force arising in a collision determines the proper stepsize. This nontrivial example alsodemonstrates that a semi-explicit, time-reversible rigid body integrator based on the VRATTLEintegrator can provide a sound adaptive framework for conservative multibody integration.The Cosserat theory of rods [2] describes the motion of a rod in terms of the dynamics of amaterial cross section. The dependent variables are vectors z, d1, d2, and d3, all parameterized byarclength. z = z(s) represents the center of mass of the rod cross section at a point s units along thelength of the rod. d1, d2 and d3 are an orthonormal system of directors with d1 and d2 describingthe plane in which the cross section lies and d3 being oriented along the rod \backbone."Antman [2] gives the formulae:@di@s = u� di; i = 1; 2; 3 (5.1)which relate motions in the directors to the strains u = (u1; u2; u3)t associated to bend and twist.The inextensibility and unshearability constraints are expressed byd3 = @z@s :To make explicit the constraints of orthonormality of the system of directors we may write:d1 ? d2;jd1j = jd2j = 1;d3 = d1 � d2:



12 Barth, Leimkuhler and Reich, 17th March 1998We wish to write equations of motion in terms of the center of mass z and the two cross-sectionaldirectors d1 and d2. Speci�cally, we will express the kinetic energy T in terms of the _z, _d1 and _d2,and we can then express the potential energy V of the rod in terms of d1, d2, @d1@s and @d2@s . Theconstraints are written as equations involving only d1, d2, and @z@s . After spatial discretization, wearrive at constrained equations in the form treated in [4].Following the idea of particulation of a rigid body (see, for example, [4]), we express the kineticenergy of each cross section as the sum of the kinetic energies of three appropriately chosen pointsfqig3i=1. These points are then expressed in terms of the dynamical variables d1, d2, z which givesrise to the following expressions for the kinetic energy:T = 12 Z 10 �3 �j _q1j2 + j _q2j2 + j _q3j2� ds= 16 Z 10 ��j _z + �1 _d1j2 + j _z + �2 _d2j2 + j _z � �1 _d1 � �2 _d2j2� ds:Here �1; �2 are appropriatley chosen constants depending on the kinematic properties of each crosssection and the total arclength of the rod is assumed to be normalized to one, with mass density �.The potential energy of the rod is given in terms of u1, u2 and u3 asV = 12 Z 10 �K1u21 +K2u22 +K3u23� ds:We need to obtain formulas for the components of u in terms of the directors. To do this, we used3 = d1 � d2 and solve the constraining relations (5.1) for u:u1 = (d1 � d2) � @d2@s ;u2 = �(d1 � d2) � @d1@s ;u3 = d1 � @d2@s :The six constraints on this system consist ofg1 = d1 � d2;g2 = d1 � d1 � 1;g3 = d2 � d2 � 1;24 g4g5g6 35 = @z@s � d1 � d2:We de�ne the constrained Lagrangian using our expressions for T , V and g byL = T ( _q)� V (q) � Z 10 g(q)T � ds:From which we obtain the canonical momenta p by the usual variational di�erentiation:p = �L� _q =M _q;



A Variable-Stepsize Integrator for Constrained Dynamics 13whereM is a constant matrix. After re-expressing the kinetic energy T as a function of the momenta,T ( _q) = eT (p), we obtain a constrained Hamiltonian system with HamiltonianH = eT (p) + V (q) + Z 10 g(q)T � ds:A natural discretization of this system is via �nite di�erences in s; this corresponds to replacingthe elastic rod by a collection of cross-sectional rigid bodies. In order to obtain second order in thespatial variable, we follow the idea of Maddocks and Dichmann [10] to use values of both q and pat half-steps in �s but to write equations at the even steps. Speci�cally, our constrained spatiallydiscretized Hamiltonian is obtained by replacing integration by summation andp(si)! pi�1=2 + pi+1=22 ;q(si)! qi�1=2 + qi+1=22 ;where the subscripts here index the variables corresponding to successive �nite cross-sections. For theinextensibility constraint, we discretize @z@s (si) by (zi+1=2 � zi�1=2)=�s and use a similar treatmentfor the partial derivatives of d1 and d2 where they arise in the potential energy function. This resultsin a constrained mechanical system to which SHAKE/RATTLE (or VSHAKE/VRATTLE) can beapplied.We can use any of our family of nonlinear solvers (the SOR/Newton solvers) to treat the nonlinearequations at each timestep. As described, the potential energy and constraint functions have a nearestneighbor topology which leads to block tridiagonal constraint Jacobian @G@�n with 6�6 blocks. Seethe Appendix for the de�nition of G.As a test problem for the rod model and the new adaptive-timestep time{reversible integrator forconstrained systems we consider an elastic rod with one end �xed. The resulting strut is placed insidea box whose walls are modeled by a Lennard-Jones potential, typically encountered in molecularmodels, which, for the ith cross-sectional center of mass, makes a contribution to the potentialenergy of the form Vi = � � ��i�12 � 2� ��i�6! :This potential is characterized by a rapidly decaying tail for large separations �i, a steep repulsivewall for small �i, and mildly attractive region at intermediate separations. It can be viewed as avery slightly softened wall. Here � gives the attractive strength and � determines the width of theattractive region. In our simulations we used the values � = 0:1 and � = 0:25. Snapshots from asimulation are shown in Figure 5.2.
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  Figure 5.2. Snapshots from elastic rod simulation.For this system, unlike the pendulum example from x4 in which large constraint forces requiredcareful treatment, the large systematic forces associated with close rod/wall interactions require smalltimesteps for correct resolution of the collisions. In this case it is natural to implement a step controlfunction which monitors some power � of the minimum separation between the rod and the wall,U3 = maxi � 1�i�� : (5.2)For this choice, no additional nonlinear equations need to be solved since �n+1=2 is given explicitlyby equation (3.14).From a vertical initial position, the sections of the rod are assigned horizontal velocities consistentwith the constraints. Figure 5.3 shows the total energy of the rod along RATTLE and VRATTLEtrajectories computed with the same initial stepsize. The rod/wall collision occurs at t � 0:17. This�gure shows that the VRATTLE scheme can improve the robustness of the integration method byproperly reducing stepsize during an event (the collision with the box wall).For smaller initial stepsize, such that the abrupt energy jump shown in Figure 5.3 is absent, rapidvariation in energy is still present. We show in Figure 5.4 error behavior for RATTLE and VRATTLEwith step control function U3 and � = 3:0. Energy error is given for RATTLE with timesteph=0.0029, and VRATTLE with initial timesteps h0=0.02 and h0=0.04. The RATTLE timestep waschosen to integrate over the interval with the same number of steps (and force evaluations) as the
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Figure 5.3. Total rod energy along trajectories computed with RATTLE (���) and VRATTLE(� � � ) with the same initial stepsize. The rod/wall collision occurs at t � 0:17.
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Figure 5.4. Energy error for rod/box collision: RATTLE with stepsize h=0.0029 (|), VRAT-TLE with initial stepsizes h0=0.02 (� � � ), and h0=0.04 (��). The RATTLE timestep was chosenso as to duplicate the number of steps required by VRATTLE (h0=0.02) to cover the integrationinterval. Step control function U3 is used with � = 3.0 .variable-timestep VRATTLE simulation with h0=0.02. The maximum energy error for VRATTLEwith h0=0.04 is smaller than that of RATTLE, even though only half as many steps were required.Notice in all cases, the energy error due to the collisions would be considerably reduced by theadaptive timestep method compared to the �xed step method with the same initial step size.We also incorporated a standard step control based on normed vector �eld and were able tocontrol the energy 
uctuation. However, better results were typically obtained with step controlbased on separation from the bounding walls.
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Figure 5.5. Comparison of work-energy diagrams for RATTLE and VRATTLE with stepcontrol function U3 (� = 3:0).The e�ciency of VRATTLE with respect to maximum energy error is illustrated in Figure 5.5.This work-error diagram shows that the adaptive method outperforms the �xed stepsize method atvarious error tolerances, and that the relative improvement of the adaptive method appears to begreatest with a more severe error tolerance.We next turn to the phenomenon brie
y mentioned in x3. Step-to-step oscillation of the variable� can arise in those situations where the control function U becomes very large, i.e., in the vicinityof collisions. The oscillation can be ameliorated by choosing the initial parameter ��1=2 correctly,for example, we set ��1=2 = U(q�1) + U(q0)2with q�1 obtained by backward extrapolation of the solution through q0.Figure 5.6 shows the value of the variable �n+1=2 and the �ctive timestep h=�n+1=2 over thecourse of a VRATTLE simulation with time reparameterization function eq. (5.2). In the top views,the initial values were taken as (p�1=2; q0; ��1=2) = (p0; q0; U(q0)). In the bottom views, the ini-tialization was done as described above. It is clear from the �gure that, depending on the choice ofinitial values, � can oscillate with substantial amplitude with increasing U , while the amplitude ofoscillation in the �ctive timestep remains essentially constant (but small).The problem of proper initialization of the � variable is discussed in detail in [9] for the AdaptiveVerlet method.6. Conclusion. In this article we described a new variable-stepsize approach for solving theconstrained equations of motion which arise in the dynamics of molecular and mechanical systems.
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Figure 5.6. Time transformation variable � and size of �ctive timestep for improperly initial-ized VRATTLE (top views), correctly initialized VRATTLE (bottom views) with control functionU3 (eq. (5.2)).Variable stepsizes are needed for two reasons: (1) very strong local applied forces present in thesystem (e.g. collisions), and (2) large internal (constraint) forces due to occasional events such aswhen a rod or joint is subject to a high tension. The latter type of problem may occur in constrainedsystems, regardless of the presence or strength of applied forces [4], and would be re
ected in theform of large local Lagrange multipliers along the trajectory. Our view is that when forces of eithertype strengthen during simulation, the stepsize must be reduced appropriately in order to maintainthe stability and accuracy of the numerical method.We presented several formulations for the time reparameterization function suitable for varioussituations in which occasional events in the dynamics require small timesteps for correct numericalresolution. REFERENCES[1] H.C. Andersen, Rattle: a `velocity' version of the shake algorithm for molecular dynamicscalculations, J. Comp. Phys., 52 (1983), pp. 24{34[2] S. Antman, Nonlinear Problems of Elasticity, Springer, New York, 1995[3] E. Barth, K. Kuczera, B. Leimkuhler and R.D. Skeel, Algorithms for constrained moleculardynamics, J. Comp. Chem., 16 (1995), pp. 1192{1209[4] E. Barth and B. Leimkuhler, Symplectic methods for conservative multibody systems, inIntegration Algorithms for Classical Mechanics, Fields Institute Communications, vol. 10,American Mathematical Society, 1996, pp. 25{43[5] E. Barth, M. Mandziuk and T. Schlick, A separating framework for increasing the timestepin molecular dynamics, in Computer Simulation of Biomolecular Systems: Theoretical andExperimental Applications, Volume 3, chapter 4, W.F. van Gunsteren, P.K. Weiner and A.J. Wilkinson, Editors, ESCOM, Leiden, The Netherlands, 1996[6] D.G. Bettis and V. Szebehely, Treatment of close approaches in the numerical integrationof the gravitational problem of N bodies, in Gravitational N-Body Problems, M. Lecar ed.,D. Reidel Publishing Company, Dordrecht-Holland, 1972, pp. 388{405[7] M.P. Calvo and E. Hairer, Accurate long term integration of dynamical systems, Appl. Num.Math, 18 (1995), pp. 95{105[8] M.P. Calvo and J.M. Sanz-Serna, Variable steps for symplectic integrators, in NumericalAnalysis 1991, D.F. Gri�ths and G.A. Watson, Editors, Longman, London, pp. 34{48[9] S. Cirilli, E. Hairer, and B. Leimkuhler, Asymptotic error analysis of the adaptive Verletmethod, technical report, 1998.[10] D.J. Dichmann and J.H. Maddocks, An impetus-striction simulation of the dynamics of an



18 Barth, Leimkuhler and Reich, 17th March 1998elastica, J. Nonlinear Science, 6 (1996), pp. 271{292[11] J. Frank, W. Huang and B. Leimkuhler, Geometric Integrators for Classical Spin Systems,J. Comp. Phys., 133 (1997), 160-172.[12] O. Gonzalez and J. Simo, On the stability of symplectic and energy-momentum algorithmsfor Nonlinear Hamiltonian Systems with Symmetry, Comp. Meth. Appl. Mech. Engr., 134(1996), pp. 197{222[13] E. Hairer, S.P. N�orsett, and G. Wanner, Solving Ordinary Di�erential Equations, Vol. I,second revised edition, Springer-Verlag, 1993[14] Th. Holder, B. Leimkuhler, S. Reich, Adaptive and explicit time-reversible integration, tech-nical report, 1998[15] E. Hairer, Variable time step integration with symplectic methods, Appl. Num. Math., 25(1997), pp. 219{227[16] W. Huang and B. Leimkuhler, The Adaptive Verlet method, SIAM J. Sci. Comp., 18 (1997),pp. 239{256[17] P. Hut, J. Makino and S. Mcmillan, Building a better leapfrog, Astrophysical Journal Letters,443 (1995), p. 93[18] B. Leimkuhler, S. Reich and R.D. Skeel Integration methods for molecular dynamics, inMathematical Approaches to Biomolecular Structure and Dynamics, J. Mesirov, K. Schultenand D.W. Sumners eds., Springer IMA Series, vol. 82, 1996, pp. 161{186[19] B. Leimkuhler and R.D. Skeel, Symplectic numerical integrators in constrained Hamiltoniansystems, J. Comp. Phys., 112 (1994), pp. 117{125[20] I. Klapper, Biological applications of the dynamics of twisted rods, J. Comp. Phys., 125 (1996),pp. 325{337[21] M. Mandziuk and T. Schlick, Resonance in chemical systems simulated by the implicit mid-point method, Chem. Phys. Lett., 237 (1995), pp. 525{535[22] R.S. Manning, J.H. Maddocks and J.D. Kahn, A continuum rod model of sequence-dependentDNA structure, J. Chem. Phys., 105 (1996) p. 5626[23] J.E. Marsden and J.M. Wendlandt, Mechanical integrators with symmetry, variational prin-ciples, and integration algorithms, in Current and Future Directions in Applied Mathemat-ics, M. Alber, B. Hu and J. Rosenthal, eds. Brikhauser, Boston, 1997[24] S. Reich, Symplectic integration of constrained Hamiltonian systems by composition methods,SIAM J. Numer. Anal., 33 (1996), pp. 475{491[25] S. Reich, Backward error analysis for numerical integrators, preprint, 1997[26] R.D. Ruth, A canonical integration technique, IEEE Trans. Nucl. Sci., 30 (1983), p. 2669.[27] J.P. Ryckaert, G. Ciccotti and H.J.C. Berendsen, Numerical integration of the Cartesianequations of motion of a system with constraints: molecular dynamics of n-alkanes, J.Comp. Phys., 23 (1977), pp. 327{341[28] J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, Chapman and Hall,1994.[29] R.D. Skeel, Variable step size destabilizes the St�ormer/leap-frog/Verlet method, BIT, 33 (1993),pp. 172{175[30] D.M. Stoffer, Variable steps for reversible integration Methods, Computing, 55 (1995), pp.1{22[31] K.F. Sundman, Memoire sur le probleme des trois corps, Acta Math, 36 (1912), pp. 105{179[32] K. Zare and V. Szebehely, Time transformations of the extended phase space, Celestial Me-chanics, 11 (1975), pp. 469{482Appendix A: Implementation Details. For the SHAKE/RATTLE discretization, equations(3.1){(3.3) are combined, resulting in the system of nonlinear equations0 = G(�n) = g �qn + hM�1 �pn� 12 � h�rV (qn) + g0(qn)T �n��� :We can solve for the vector of Lagrange multipliers �n using Newton's method:�(k+1)n = �(k)n � @G@�n �1G(�(k)n ): (A.1)Observe that @G@�n = �h2g0(q�)M�1g0(qn)T ;



A Variable-Stepsize Integrator for Constrained Dynamics 19where q� = qn + hM�1(pn�1=2 � h(rV (qn) + g0(qn)T �(k)n )). E�cient SOR/Newton methods forsolving the linear equations (A.1) were studied in [3].Now, turning to the new method, equations (3.11) (together with (3.9)) and (3.14) give thesystem of nonlinear equations0 = G(�n+1=2; �n)� g qn + h�n+1=2M�1pn+1=2!0 = F(�n+1=2 ; �n)� �n+1=2 + �n�1=2 � U(qn; pn+1=2)� U(qn; pn�1=2):As before, we solve these equations with Newton's method:� �n�n+1=2 �(k+1) = � �n�n+1=2 �(k) � 24 @G@�n @G@�n+1=2@F@�n T @F@�n+1=2 35�1 24 G(�(k)n+1=2; �(k)n )F(�(k)n+1=2 ; �(k)n ) 35 :For a general step control function U(q; p), we can write the required partial derivatives as:@G@�n = h�n+1=2 g0(q�)M�1 @pn+1=2@�n@G@�n+1=2 = g0(q�) � h�2n+1=2M�1pn+1=2 + h�n+1=2M�1 @pn+1=2@�n+1=2!@F@�n = � @U@�n= � @U@pn+1=2 @pn+1=2@�n@F@�n+1=2 = 1� @U@�n+1=2= 1� @U@pn+1=2 @pn+1=2@�n+1=2 ;where @pn+1=2@�n = �h2  1�n�1=2 + 1�n+1=2! g0(qn)T@pn+1=2@�n+1=2 = h2�2n+1=2 �rV (qn) + g0(qn)T �n� ;and q� = qn + h�(k)n+1=2M�10@pn�1=2 � h2 0@ 1�n�1=2 + 1�(k)n+1=21A�rV (qn) + g0(qn)T �(k)n �1A :The linear equations can be treated with the same techniques as (A.1).De�ning �(k+1)n = �(k)n +��(k)n , and �(k+1)n+1=2 = �(k)n+1=2 +��(k)n+1=2 we have��(k)n = � @G@�n�1G(�(k)n+1=2; �(k)n )���(k)n+1=2 @G@�n �1 @G@�n+1=2��(k)n+1=2 =  �F(�(k)n+1=2; �(k)n ) + @F@�n T @G@�n�1G(�(k)n+1=2; �(k)n )! = @F@�n+1=2 � @F@�n T @G@�n �1 @G@�n+1=2! :



20 Barth, Leimkuhler and Reich, 17th March 1998In the equations above, the inverse of the Jacobian matrix @G=@�n multiplies two distinct vectors.The matrix-vector product is implemented through matrix factorization and a triangular matrixsolve, rather than inversion. After the factorization of @G=@�n, two triangular matrix solves arerequired to determine the Newton iterates �(k+1)n and �(k+1)n+1=2. Thus, for a general time reparameter-ization function U(q; p), the method requires one extra triangular matrix solve per iteration comparedwith the �xed stepsize method. A variant of the scheme would replace the Jacobian matrix in theNewton iteration by a nearby symmetric matrix, see [3].


