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Making use of a perturbed Lagrangian formulation, a finite element procedure for contact problems 
is developed for the general case in which node-to-node contact no longer holds. The proposed 
procedure leads naturally to a discretization of the contact interface into contact segments. Within the 
context of a bilinear interpolation for the displacement field, a mixed finite element approximation is 
introduced by assuming discont~naous contact pressure, constant on the contact segment. Because of 
this piece-wise constant approximation, the gap function enters into the formulation in an ‘average’ 
sense instead of through a point-wise definition. Numerical examples are presented that illustrate the 
performance of the proposed procedure. 

1. Introduction 

Current finite element formulations for contact problems based on either the classical 
Lagrange parameter procedure [l-3, 12, 203 or the penalty-function method [4-6,11], are 
characterized by a point-wise enforcement of the contact-constraint condition, in the sense 
that penetration of the bodies is established on a nodal basis. Moreover, in this methods the 
recovery of the contact pressure over the element from the contact nodal forces generally 
requires an additional procedure. Within the framework of classical Lagrange multiplier 
methods the contact condition is exactly satisfied by transforming the constrained problem into 
an unconstrained one with the introduction of additional variables (Lagrange multipliers). 
These extra variables add computational effort to the solution process which often requires 
special procedures to handle the presence of zero diagonal terms. Penalty methods, on the 
other hand, enable one to transform the constrained problem into an unconstrained one 
without introducing additional variables. The constraint condition is now satisfied only 
approximately for finite values of the penalty parameter. The main difhculty associated with 
these methods, however, lies in the poor conditioning of the problem as the penalty is 
increased to more accurately enforce the constraint condition. This is a well-understood 
phenomenon, particularly in the context of the incompressible and nearly incompressible 
problem in solid and fluid mechanics (e.g. see [l&22,25] for a review). Recently, augmented 
Lagrangian procedures have been proposed as a promising way to partially overcome these 
difficulties and ‘regularize’ the penalty formulation (e.g. see the survey in [7,8]). 

Within the framework of Zinearited ~~~e~u~~c~, it is possible to restrict the finite element 
formulation of contact problems by assuming that node-to-node contact occurs. This is in fact 
the case often considered in the literature [l, 2, 4, 6, 12, 20, 211. In the general context of fully 
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nonlinear kinematics, however, it is no longer possible to place such a restrictive assumption 
on the formulations Several schemes have been devised. particularly from the computatioi~~~~ 
side ES, II]+ which are capable of enforcing the contact conditions in the general situatiorl for 
which node-to-nude contact dues not hold. In this paper, a novel approach for the enforce- 
ment of the contact constraint in this general context is presented, based on a ~ertz~r~~~~ 
Lagrangian formuIation. We recall that the perturbed Lagrangian is obtained from the 
classical Lagrangian functional by ~e~u~u~~zu~~o~ with a ~24ff~r~r~c (positive) term in the 
Lagrange multiplier vector (see, e.g. 115, Section 3.2; 221). 

Our formulation may be summarized as follows. On the basis of the perturbed Lagran~ian 
formulation of the contact problem, a mixed finite element approximation is introduced in 
which the contact pressure is independently approximated over the contact interface, Such an 
approach requires a special treatment of the contact surface, now viewed as an assembfy of 
contact segments which are ~nambiguousiy defined for the general situation where node-to- 
node contact does no longer hold, As in the treatment of the incompressibiIity constraint 
several approximation schemes are possible within the context of a perturbed Lagrangian 
formulation (e.g. see [15, Chapter 3; 22; 251). Confining our attention to the case of a bilinear 
isoparametric interpolation for the displacement field, it is assumed that the contact pressure is 
cu~~~~~~ on each contact segment. As a result of this piece-wise constant approximation of the 
contact pressure, discontinuous across cmtact segments, the contact constraint is enforced in an 
‘average’ sense on each contact segment. In effect, the au~rage gap over a contact segment is 
the crucial kinematic variable on the basis of which penetration between the two bodies is 
estabiished. 

The formuIation advocated in this paper is intended for the general case of futfy nonIi~ear 
kinematics? aIthough for simplicity in the presentation attention is restricted to the linear case, 
This approach is applicable to contact problems invoIving two d~formabIe bodies, as we11 as 
problems involving a deformable body subjected to unilateral constraints. Furthermore, 
although the contact pressure does not enter into the formutation explicitly it can be 
consistently recovered via the augmented Lagrangian procedure. 

The numerical examples presented in Section 5 are intended to demonstrate the differences 
in performance of the procedure advocated here relative to established nodal penalty 
methods. 

In this section we develop the variational equations governing the contact problem with 
linearized kinematics, based on the use of a perturbed Lagrangian procedure. First, we briefly 
summarize some kinematic relations which are necessary for the desc~ption of the contact 
constraint condition. For simplicity, we shall confine our attention to the case of linear 
kinematics. In addition, we restrict ourselves to frictionless contact problems throughout the 
developments that follows. 

Consider two bodies with initial con~g~rations denoted by fz’, tin2 C R’+ and displacement 
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fields given by 

u’ = $(&T’), X’E 0’ ; u2= i2(x2), X2EJZ2. (2.1) 

Further, assume that the bodies are in contact along a surface yc with unit normal field E(X). 
This contact surface-not known in advance-may be characterized as follows. One assumes 
that there are parts of the boundary &R’ and &fin2 in the initial configurations 0’ and a2 of 
the two bodies, which may be defined a priori, so that their images contain the contact surface; 
that is, 

yc = ri’(d&‘) n s2(acLl’). (2.2) 

The normal vector field to yc is given by 

n = vY”wllvY”wll . (2.3) 

Let t’ and t2 be the traction vectors acting on the boundaries G”(&fi’) and &2(&J22) of the 
bodies in contact through the surface y”. Further, let go(x) be the initial gap between the two 
bodies. Then, the local form of the contact condition may be formulated as follows 

g=[u2-u*]*n+go~o and t’*n --C**R CO on ye, (2.4a) 

where g gives the current value of the gap. The current gap and the contact force are related 
through the inequality conditions 

[Az+.+go=o =, f”a=--t2’n<o, 

[Az#‘]*pt+go>O * t’*n=-t*.. =o. 
(2.4b) 

Introducing the notation A = t’. n = -t2 l n for the contact force acting on y’, the contact 
conditions (2.4a) and (2.4b) may be expressed in the following equivalent (Kuhn-Tucker) form 

gA=O, AGO, gz-0 on y”. (2.5) 

The form (2.5) of the contact condition is best suited for applications and immediately leads 
to a variational formulation in terms of Lagrange parameters. By a slight abuse in notation we 
shall employ again the same symbol h for the Lagrange parameter. 

REMARK 2.1. The space of kinematically admissible variations or test functions for the 
problem at hand are defined as 

VA=(rlA:~A_,~31rjAfa~A=0), A=1,2, (2.6) 

where &flA is the part of the boundary with prescribed displacements irAJafi~ = UA. Typically, 
an appropriate choice for VA is H ‘(L?“), see e.g., 123, Chapter 51. Note that VA (A = 1,2) are 
unconstrained configuration spaces which must be further restricted to account for the contact 
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constraint. The Lagrangian formulation discussed below avoids the introduction of this 
constraint and enables one to work directly with the unrestricted spaces VA as defined in (2.6). 

2.2. Perturbed Lagrangian for~ulatiorz 

Throughout this section we consider the case of an elastic material with stored energy 
function given by W(x, V’u), where a superposed S indicates the symmetric part. Ignoring for 
the moment the interaction between bodies, the total potential energy associated with each 
body in its final configuration uA = &“(x”) is given by 

(2.7) 

where bA is the body force, FA is the surface traction specified on the part of the boundary 
JaA, and p is the density. One of course requires that yc n ~33~ = 0 (A = 1,2). 

In order to build the contact constraint (2.5) into a variational formulation without 
restriction the spaces of kinematicalfy admissible variations VA, we introduce a Lagrangian 
functional &(ii’, Ii*, A), depending on a positive parameter E > 0, and defined by expression 

lL(i’,i’,~)~A~,nu(iA)+l A{[u'-u']-n+g.)da-i/ A'da. 
Ye YE 

(2.8) 

The last term in (2.8) depending on E has the form of a penalty term and serves the purpose of 
reg~Za~z~~g the classical Lagrangian. One refers to the functional H,(&‘, ri*, h) as a ~rt~r~ed 
Lagrangian, and expects that as ~+a the solution obtained from (2.8) will converge (in the 
sense of weak convergence) to the solution obtained by the classical Lagrange multiplier 
method. For a discussion of this and related questions in the context of linear problems, we 
refer to [15]. 

~E~A~~ 2.2. The stiffness matrix for the discrete problem arising from the classical 
Lagrangian multiplier method always contains zero diagonal terms. The solution of the 
algebraic problem often requires special strategies, particularly in the three-dimensional 
situation. From a computational standpoint the addition to the Lagrangian of the ‘penalty 
term’ depending on E, leads to positive-definite stiffness matrices for the descrete problem with 
nonzero diagonal terms. 

For each E >O, the equilibrium configurations and corresponding contact pressures, 

( rii, fiz, A,), are characterized by rendering the perturbed Lagrangian ZI.(tif, riz, A,) stationary. 
Accordingly, at (&f, a:, &) the following conditions must hold 

(2.10) 
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From conditions (2.9) and (2.10) and the expression (2.8) for 17,, one obtains the following two 
variational equations which form the basis of the mixed finite element approximation dis- 
cussed in this paper 

G1= i o,jja.l]n+j/ h,[+$]*nda=O, 
A=1 YC 

G2= -\‘+[a:-l:].n+g,]da=O. 
E 

(2.11a) 

(2.1 lb) 

In what follows, for notational simplicity we shall drop the subscript E in A, and li$ . 

3. Mixed finite element formulation 

In this section we consider a mixed finite element formulation for the numerical solution of 
the class of contact problems outlined in Section 2, based on the variational equations (2.11). 
To this end, we first examine some basic kinematic notions involved in the approximation of a 
typical slideline ( i.e., contact surface). An essential feature that characterizes the approach 
proposed herein is the use of an ‘intermediate’ contact surface which arises naturally from our 
discretization of the contact interface into ‘contact segments’, as illustrated in Fig. 1. 

Fig. 1. Discretization of the contact interface into contact segments. 

For simplicity, throughout the present development attention is focussed on the 4-node 
isoparametric element. The proposed mixed finite element approximation based on equations 
(2.11) will then be characterized by assuming constant contact pressures on each segment of 
the interpolated slideline. 

3.1. Kinematics of the slideline: Intermediate contact surface 

During the deformation process, the two bodies a1 and 0’ under consideration come into 
contact along the surface yc which for the continuum problem is defined by (2.2). Consider 
now a standard finite element discretization of the bodies flA defined as 

i#j, A=l,2. (3.1) 
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As a result of this discretization, the parts of the boundary ~90: and &!f which according to 
(2.2) contain yc, are replaced by polygonal approximations in which the vertices are nodal 
points. Further, due to the numerical formulation of the contact conditions involving a penalty 
term, conditions (2.4) do not exactly hold and penetration of one body into the other 
necessarily occurs. The question then arises as to how the contact interface and its cor- 
responding normal field may be unambiguously characterized. A procedure often employed is 
to arbitrarily select either one of the surfaces &Zb or a02 as contact surface. This surface is 
often referred to as master surface. The choice of master surface is apparent in the case of 
unilateral (rigid) constraints or when one of the bodies in contact is much stiffer than the 
others. For cases in which the bodies in contact possess similar stiffness, the choice is no longer 
obvious and may indeed bias the results. These difficulties have motivated the use of 
‘symmetric treatments’ of the slideline such as the ones advocated in [.5, 111. The procedure 
proposed herein, on the other hand, replaces the notion of master surface by the intermediate 
contact surface. 

Geometry of a typical contact segment. The description of the slideline that characterizes the 
procedure proposed herein is illustrated in Fig. 1, where a possible general discretization of 
the contact interface is shown. As indicated in Fig. 1, the contact interface is divided into 
contact segments which will aiiow a smooth definition of the gap function. A typical contact 
segment, shown in Fig. 2, is defined as folfows. 

Consider two adjacent elements in the slideiine with straight edges defined by their nodes 
X; - xi and X; - XT, respectively. Here, the superindices {1,2} refer to the body on which the 
variable is defined. Let R’ and X2 be the orthogonal projections of the nodes xi and xi onto the 
edges xi - xi and x: - xf, respectively, as shown in Fig. 2. The contact segment is defined to be 
the ~~a~rilatera~ specified by the points {X1, xl, X2, x9. The new nodal points Z1 and 2’ are 
obtained as a linear combination of the form 

X -“=(~-cY~)x‘?+(Y~x$, CY~E[O,I], A= 1,2. (3.2) 

Expressions for the coefficients CY~ may be found in Table 1. Similarly, the displacement 
vector at the new nodes 2’ and i2 is given in terms of the noda displacements U? and u$ of a 

Fig. 2. Geometry of a typical contract segment. 
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Table 1 
Definition of a contact segment-planar case 

Projection of a node onto the opposite element edge: 

*’ = 
(xi - rf) m (x: - xl) 

Ilx:-xtlP 
*2 = (x3 - r:> ’ (xi - x:> 

Ilr”2 - d112 * 

Coordinates of the segment nodes: 

x -A = (I- aA)& + cuAx4, x:, 2. 

Tangent and normal vectors: 

lnitial gaps: 

typical 4-node isoparametric element by 

u -“=(~-cx~)~?+Lu~u$, A-1,2. (3.3) 

Relative to a typical contact segment, we introduce tangential and norn~~Z unit vectors tA and 
nA given for the planar case by the expressions 

A=l,2. (3.4) 

Here, 83 denotes the unit vector normal to the plane in which motion takes place. With the aid 

of (3.4), the gaps gt and gz at the edges of the segment are obtained according to 

gl=f~:-~‘]~n’+g~~~u:-(l-a’)u:-a’u:]*n’+g~, 

g,=[u:-~2]~n~+g~~[u~-~~u~-(1-~~)u~]’Il”+g~, (3.5) 

where the initial gaps gl: and gg are defined in terms of the initial geometry as in Table 1. Once 
the geometry of a typical contact segment has been defined the interpolation of the relevant 
quantities within the contact segment may be accomplished as follows. 

Let us first introduce an intermediate contact line parametrized within the contact segment s 
by &-+ r”s(t), with parameter .$ chosen for convenience as 5 E [0, 11, and such that 

(3.6) 
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where 

I 

C=l 

L, = kW(WSI/ d5. (3.7) 
&=O 

Denoting by gA(f), 5 E 10, 11, the dispIacement of body ftA within the contact segment, the 
gap g(t) is obtained according to 

g(5) = W(5) - &91 l 45) + so(S) Y (3.8) 

and the ‘variation’ of the gap given by (3.8) is computed with the aid of the directional 
derivative formuia as 

Q(5) = k?‘(5) - rt’(5)l l 45> * (3.9) 

Nothing has been said so far about the explicit construction of the contact line t+ Y:(S). 
Since its derivatives are specified by (3.6) one may interpolate this curve by Hermite 
polynomials once the position of its end points at 5 = 0 and 5 = 1 has been selected. That is, 
set 

y’=(l--/?)r’+pxl, y”=(1-p)x:+p~2, (3.10) 

where /3 E [0, 11, is a pre-specified parameter. The limiting choices of p = 0, 1 correspond to 
selecting one of the two surfaces in contact as interpolated surface. The selection of the 
appropriate j3 should be made on the basis of the relative stiffnesses of the bodies in contact. 
Introducing the notation Ls = i/y” - yl/, 5 + y@) may be defined by the interpolation 

(3.1 la) 

where {v,, v2, &, k?,} are the classical Hermite polynomials given by 

v&) = 1 - 3t2 + 2t3, 745) F 3t2 + 25” , (3.1 lb) 

@s(r) = s$(l - 0’ 3 fm) = 5”U - s> * 

Note that by evaluating the integral (3.7) with the aid of the trapezoidal rule we obtain 
L, = Ls = lb’- ~‘11. In the next section, it will be seen that the interpolation of 5 + r:(t) is not 
explicitly needed in the final form of the finite element approximation since the integrals over 
the segment are approximated by the trapezoidal rule. 

3.3. Finite element ~p~roxi~u~io~ 

Upon introduction of the finite 
variational equations (2.11) may be 

element discretization (3.1) the discrete version of the 
expressed as 
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e=l s=l Jy: 

G2= 
A* 

-;+(r+d)v~ dT=O. 1 
(3.12) 

Here, &M refers to the total number of elements in the discretization, S,,,,, refers to the total 
number of contact segments in the slidelines, and G’ denotes the restriction of G1 to an 
element e. For the 4-node isoparametric element the displacement field is approximated 
according to the standard Co interpolation 

UAW = i N:(x)u:, A= 1,2, 
n: I=1 

(3.13) 

where N?(x) are the shape function for the element 02 of body aA. Such an interpolation 
leads to well-known expressions for the element stiffness matrix and residual force vector (e.g., 
see [19]). 

The essential point in the present development pertains to the approximation within a 
typical contact segment of the contact pressure A,. In the context of the linear approximation 
for the displacement field, our fundamental assumption is that the contact pressure is constant 
within the contact segment; i.e., 

A, = A(x)/,: = Constant. (3.14) 

Since no derivatives of A appear in (2.11a) and (2.11b) no inter-segment continuity needs to be 
enforced on A,. Accordingly, the discrete equation (3.12), reduces to 

-‘+(u’-ul)*n 1 dT=O for any sE{l,... . sota,> . 
E 

(3.15) 

Therefore, as a result of the approximation (3.14) the contact pressure within a typical 
segment is given by the integral expression 

As =;j- (u’- u’).n d+j; 
s r: 

s 5 o s(5)kW(5)ld~ll d[, (3.16) 

where the gap function g(s) is given by (3.8). Our final approximation is concerned with the 
way in which (3.16) is computed. By evaluating (3.16) with the aid of the trapezoidal rule the 
final result takes the simple form 

A, = i&+ gd = q%, (3.17) 

where gl and gz are the gaps at the edges of the segment given by (3.5). It then follows from 
(3.17) that within a contact segment the contact pressure is constant and proportional to the 
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Table 2 
Contact surface-finite element approximation 

Approximation of average gap & by trapezoidal rule: 

g* = :(g‘ + g2). 

Residual forces due to contact: 

where 

Tangent stiffness due to contact: 

where 

average gap & By evaluating the integral terms over r; appearing in (3.12), with the aid of the 
trapezoidal rule, the discrete variational equations (3.12) take the fina form 

(3.18a) 

G 
A* 4 r: - -+ C c; + uI = 0 for any s E (1, . . . , StotaJ, (3.18b) 
l I=1 

where the expressions for the residual c~~~~c~~~~ce~ have been summarized for convenience in 
Table 2. Equations (3.17) and (3.18) complete the proposed finite element approximation based 
on the perturbed Lagrangian formulation (2.11) for the contact problem. 

4, Penalty procedure via perturbed Lagrangian 

To discuss the penalty solution procedure for the nonlinear system arising from (3.18a) and 
(3.18b), it is convenient to rephrase this problem in matrix notation as 

Gi=q”[G+CA]=O, (4.la) 

G*=qt 
[ 
-~$C’u =o, 

E 1 
(4.lb) 
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where 

(4.2) 

G denotes residual force for the problem obtained the 
element by the assembly procedure. addition, C a (S,,,,, X Etotal * n) 

matrix, where II is the spatial dimension of the problem, which expresses globally the local 
contact conditions, and is obtained by assembly of the vectors c;. 

A penalty procedure may now be recovered from equations (4.la) and (4.lb) by exploiting 
the partitioned structure of this system and eliminating the Lagrange parameters at the local 
level. Solving for A, from equation (4.lb) and substituting back into (4.la) yields the following 
nonlinear reduced system 

$[G + E(CC’)U] = 0. (4.3) 

Equation (4.3) has a structure which typically arises in the treatment of the contact problem by 
the ‘pure’ penalty method. It should be carefully noted, however, that in the perturbed 
Lagrangian formulation employed here leading to equation (4.3) the contact condition is 
enforced in an average sense over the contact segment. This is reflected in the use of the 
average gap & defined by (3.17) and results in an expression for the matrix C different from 
the one corresponding to a standard penalty approach [5]. The reduced nonlinear system (4.3) 
may now be solved with the aid of Newton’s method leading to the algorithm summarized, for 
convenience, in Table 3. 

It is well known that as the penalty parameter E + w the condition number of the tangent 
matrix for the penalty method tends to infinity. Thus, the crucial step in the penalty iteration 
procedure is the selection of the penalty parameter E. This choice is discussed at length in the 
optimization literature [13, 141. In the context of finite elements procedures applied to 
structural problems the optimal choice for the penalty has been discussed in e.g. [9, lo] and 
recently for contact problems in [12]. Useful guidelines for a selection of the penalty 
parameter in practical situation are also contained in [5]. To some extent, the intrinsic 
difficulties associated with the penalty iteration procedure can be circumvented by the 
augmented Lagrangian iteration. These and related topics are discussed in [7]. 

Table 3 
Penalty iteration 

Update displacements: 

u(k+l) = U(k)- [K+ Ec(*)(c(k))l]-l[G(k)+ c(k)A(k)] . 

Check for penetration: 

-(k+l) = g [ 
c(k+l)]t,Jk+‘). 

Update Lagrange multipliers: 
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REMARK 4.1. In the actual implementation of the penalty iteration method summarized in 
Table 3 the check for penetration should be performed in the initialization phase on the 
undeformed configuration to exclude rigid-body motions. 

REMARK 4.2. In many contact problems the number of degrees of freedom in the slideline 
is small compared to the total number of degrees of freedom in the discretization. In the 
context of linear analysis, static condensation [24] may be used to obtain a reduced system of 
equations that contains only the nodes of the slideline as unknowns, see e.g., [l, 121. Splitting 
the unknowns of the problem into two sets, one denoted by subscript c and associated with the 
nodes in the slidelines, and the other denoted by subscript a and containing the remaining 
unknowns, one obtains at an intermediate step of the Gaussian elimination process 

where 

[Kc, + Ec(k)(c(kJ)t](U(k+lJ _ #J) = _ [G, + c’kJA(kJ] , 

K,, = K, - K:,K;,‘K,, , c, = G, - K:,K,-,'G, . 

(4.4) 

(4.5) 

This small system of equations is now used in the contact iteration process. Obviously, the 
matrix EC, has to be stored to avoid recomputations which would otherwise eliminate the 
advantage of the static condensation procedure. 

REMARK 4.3. An alternative form of the penalty iteration for the contact problem arises by 
exploiting the special structure of the tangent matrix. The essential point to note is that the 
tangent matrix. The essential point to note is that the tangent matrix Kp’= K + EC’~)(C’~‘) 
may be assembled by a sequence of rank one updates of the form 

c(k)(c(k))t = 2 (Cs)(O(cs)(k)t . 

s=l 

With the aid of the Sherman-Morrison formula for the inverse of a rank-one updated matrix, 
the inverse of the tangent matrix may be readily obtained as the result of the following 
updating procedure 

(KS)-1 = (KS-l)-1 _ ’ 
1 + E(TS)(k)QS)(k) 

(?)(k)(F)(k)t ) s = 1, . . . , sota, , (4.6) 

where 
@.s)(.V = K-‘@“)(k). (4.7) 

The advantage of this solution strategy is that the factorization of the matrix K for the 
unconstrained problem needs to be performed only once. Note that this procedure entails the 
solution of the system (4.7) for each contact segment. Thus, it becomes economical only when 
the number of degrees of freedom in contact is small compared to the number of overall 
unknowns. In addition, from a practical standpoint, its application to large problems only 
makes sense in conjunction with the static condensation procedure discussed in Remark 4.2. It 
should be noted that in this procedure K” must be regular. 
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5. Numerical examples 

In this section we compare the performance of the procedure developed in this paper with 
traditional penalty methods in which the contact constraint is enforced on a nodal basis. For 
this purpose we consider first the indentation of a rigid punch into an elastic foundation for the 
case when nodes of the two bodies lying in the contact interface are not aligned. Two 
alternative implementations of the classical nodal penalty methods are considered which differ 
in the particular treatment given to the slideline. The traditional approach in which a master 
and a slave contact surface are defined a priori, and a symmetric treatment of the slideline 
employed in [5, 111 in which the role of master and slave surface is sequentially interchanged. 
To illustrate the overall performance of the proposed procedure in a practical situation, we 
conclude this section with an example which involves contact of two flexible bodies and 
includes rate independent elastoplastic behaviour. 

EXAMPLE 5.1. Rigid punch on an elastic foundation. If attention is restricted to the 
particular case of linear kinematics, it is possible to enforce the contact conditions on a 
node-to-node basis. However, in the more genera1 context of large deformations, a node-to- 
node treatment is no longer possible. Thus, with an eye directed towards nonlinear ap- 
plications (to be considered in a forthcoming paper), we address in this example performance 
in the general case not restricted to node-to-node contact. 

For this purpose we consider the indentation of a rigid punch with the foundation first 
modeled by two elements, as shown in Fig. 3(a). The elastic properties of the foundation 
were taken as E = 1. d + 5, and v = 0.5, and the penalty parameter was chosen as E = 
1 - d + 7. The results obtained with the procedure advocated here and with the nodal penalty 
approach with single and double pass on the slideline are shown in Figs. 3(b)-3(d). In the 

(A) (C) 

(B) CD) 

Fig. 3. Rigid punch problem. 3-element mesh. (a) Finite element mesh. (b) Proposed procedure based on perturbed 
Lagrangian formulation. (c) Penalty formulation with symmetric (Zpass) treatment of the slideline. (d) Penalty 
formulation with traditional (l-pass) treatment of the slideline. 
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present approach use of the aueruge gap S defined by (3.15) results in the penetration profile 
depicted in Fig. 3(b). The profile corresponds to an intermediate situation between the total 
penetration obtained with the nodal penalty approach and single pass, as shown in Fig. 3(d), 
and the absence of penetration obtained with the double-pass technique shown in Fig. 3(c). 
For subsequent refinement of the mesh one obtains the profiles shown in Figs. 4 and 5. In the 
one-pass calculation the surface of the foundation is taken as the master surface. 

(A) (Cl 

I I I d--_ 0 

b 

Ia 1 
b 

t I 
(8) (D) 

Fig. 4. Rigid punch problem. ll-element mesh. (a) Finite element mesh. (b) Proposed procedure based on 
perturbed Lagrangian formulation. (c) Penalty formulation with symmetric (2-pass) treatment of the slideline. (d) 
Penalty formulation with traditional (l-pass) treatment of the slideline. 

(A) 

(B) (D) 

Fig. 5. Rigid punch on elastic foundation. 49-element mesh. (a) Finite element mesh. (b) Proposed procedure 
based on perturbed Lagrangian formulation. (c) Penalty formulation with symmetric (2-pass) treatment of the 
slideline. (d) Penalty formuIation with traditional (l-pass) treatment of the slideline. 
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The vertical displacement of the punch for increasingly refined meshes has been tabulated in 
Table 4 for the three approaches considered. The solution obtained in the case of node-to- 
node contact, for which all three approaches coincide, is also included in Table 4 for 
comparison purposes. The proposed procedure shows the closest agreement with the node-to- 
node approach. We note that the exact solution for the indentation of a rigid punch on an elastic 
half space may be found in [17, p. 731. 

EXAMPLE 5.2. Flexible punch on an efastoplastic f~un~at~o~. As our final example we 
consider the indentation of a legible punch into an elastupZu~tic foundation. Our purpose is to 
illustrate the performance of the proposed procedure in a more realistic situation that involves 
(a) general (as opposed to node-to-node) contact, (b) inelastic (nonlinear) material response 
and (c) two deformable bodies in contact. 

The finite element mesh, shown in Fig. 6, consists of 120 bilinear isoparametric elements. 
The elastoplastic response of the foundation is characterized by a pressure-independent 
von-Mises yield condition with kinematic/isotropic saturation hardening. The material proper- 
ties of the model are also shown in Fig. 6. The mixed finite element formulation for this type 
of elastoplastic model is discussed in [26]. 

For comparison purposes the problem is first solved ignoring inelastic effects. The deformed 
finite element mesh and stress contours for the vertical stress corresponding to the elastic case 

Fig. 6. Indentation of 
parametric elements. 

Elastopl~t~c fou~ation : Material properties. 

~~ 

75. 

I- 29. ./ 

a flexible punch on an elastoptastic foundation. Finite element mesh. 120 bilinear iso- 



Scale 5011 

Fig. 7. Indentation of a flexible punch. (a) Deformed finite element mesh for the case of an elastic foundation, (b) 
Stress contours of the verticle stress o;, for the case of efasfic response of the foundation. 

Stole 50: I 

Fig. 8. Indentation of a flexible punch. (a) Deformed finite element mesh for the case of ~I~t~pi~s~c response of 
the foundation. (b) Stress contours of the vertical stress a,, 
(c) E~as~~p~ast~c response of the foundation: yield surface. 

for the case of ~~astopl~s~~c response of the foundation. 
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are shown in Figs. 7(a) and 7(b). The analogous results for the elastoplastic case are shown in 
Figs. 8(a) and 8(b), and the plastic region is depicted in Fig. 8(c). Although no closed-form 
solution for this problem exists, a comparison between Fig. 7(b) and Fig. 8(b) reveals that the 
vertical stresses in the plastic case are considerably mitigated below the punch, as one would 
expect. One should note that the mesh is not fine enough to obtain an accurate resolution of 
the stress. This is apparent in the contact interface. 

The above results demonstrate that the proposed procedure for the analysis of contact 
problems is capable of handling a wide range of engineering applications. These include 
situations in which both bodies are flexible, with nonlinear inelastic behavior, and a genera1 
treatment of the slideline not restricted to node-to-node contact. 

6. Concluding remarks 

(1) The mixed approximation to the perturbed Lagrangian proposed in this paper has been 
discussed for the particular case of a linear approximation to the displacement field and 
constant-contact pressure over the contact segment. Related work in the context of the 
incompressible problem suggest higher-order interpolation schemes. Typically, one may wish 
to consider a quadratic approximation for the displacement field in conjunction with linear 
contact pressure distributions over the contact segment. 

(2) For the sake of simplicity in the presentation, attention has been restricted to the case of 
linear kinematics. The proposed procedure, however, is particularly useful in the finite case 
where node-to-node contact can no longer be assumed. 

(3) The final solution algorithm has been formulated on the basis of a penalty procedure 
obtained from the mixed formulation by eliminating the contact pressure at the element level. 
Alternative iterative algorithms based on the use of augmented Lagrangian procedures are 
explored in [ 161. 

Table 4 
Nodal penalty versus proposed method 

Number of 
elements 

Perturbed 
Lagrangian 

One-pass 
penalty 

Two-pass 
penalty 

Node-to- 
node 

2 00 1.015 x 10-z 1.623 x lo-’ 6.623 x 1O-3 - 
L)b 1.254 x 1O-2 1.621 x lo-* 8.882 x 1O-3 - 

8 Uil 9.580 x lo-’ 8.442 x 1O-3 8.109 x 1O-3 - 
Vb 9.273 x 1O-3 6.914 x 1O-3 8.105 x 1O-3 - 

32 0, 1.089 x lo-* 9.687 x 1O-3 9.614 x lo-” - 
tib 1.089 x lo-’ 1.046 x lo-* 9.614 x 1O-3 - 

88 0, 1.162 x 10-t 1.256 x lo-= 1.101 x 10-z 1.167 x lo-’ 
vb 1.162 x lo-’ 1.256 x lo-’ 1.101 x 10-2 1.167 x lo-’ 
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