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SUMMARY

This paper addresses the formulation and discrete approximation of dynamic contact/impact initial-value
problems. The continuous problem is presented in the context of non-linear kinematics. Standard semi-
discrete time integrators are introduced and are shown to be unsuccessful in modelling the kinematic
constraints imposed on the interacting bodies during persistent contact. A procedure that bypasses the
aforementioned difficulty is proposed by means of a novel variational formulation. Numerical simulations
are conducted and the results are reported and discussed.

1. INTRODUCTION

Mechanical contact is encountered whenever two or more bodies physically interact along their
boundaries. Contact is of particular interest in numerous engineering applications ranging from
metal forming and machine design to soil-structure and structure-structure interaction under
dynamic excitation.

The non-linear character of contact boundary conditions allows for very few interesting
problems to be solved analytically. Since the inception of the finite element method in the late
1950s, numerical solutions to contact problems have been intensively investigated by various
researchers. Conry and Seireg! appear to be the first to treat contact as a quadratic programming
problem, while Chan and Tuba? first introduced a general slideline methodology. Moreover, the
works of Francavilla and Zienkiewicz® on a flexibility approach and Hughes et al.* on Lagrange
multiplier methods significantly contributed to the development of robust finite element approx-
imations, applicable to the simulation of large-scale problems.

This work is congerned with the time dimension of contact problems. By way of background,
non-linear elastodynamics is briefly reviewed in Section 2. Section 3 addresses the two-body
contact problem in the continuous setting, while Section 4 presents Lagrange multiplier and
penalty formulations in space and semi-discrete integrators in time suitable for finite element
approximations. Section 5 investigates standard second-order implicit time integrators of the
Newmark family and their performance in modelling jump conditions in the kinematic fields (e.g.
velocities and accelerations) of the interacting bodies. These integrators are shown to produce
undesirable oscillatory solutions along the contact surface. In present practice, control of these
oscillations is attempted by introducing artificial bulk viscocity for the compressive waves in each
body. In the present work, the original Lagrange multiplier formulation of the two-body problem
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is appropriately extended so as to eliminate this inconsistency. One- and two-dimensional
numerical simulations are offered in Section 6 and demonstrate the significance of the proposed
formulation.

~2. NON-LINEAR ELASTODYNAMICS

In this section the initial-value problem of non-linear elastodynamics is briefly reviewed. To this
end, a deformable body B is identified with an open set Q in the R? linear space equipped with the
standard basis (E,, E,, E3). It follows that a typical material point of B is algebraically repres-
ented by vector co-ordinates X = (X,, X5, X;) in the undeformed (reference) configuration. The
boundary of the body, ¢Q, possesses a unique outer normal N at each of its points, provided it is
sufficiently smooth (at least point-wise differentiable). Furthermore, assume that there exists an
invertible mapping % defined as

T QAR — R | x=TX, 1)

where x denotes the position of particle X in the deformed (current) configuration at a generic
time ¢. The displacement field, u, associated with the motion, is introduced according to

X, )= —-X
and the deformation gradient, F, as
0x
F=a

The strong form of the initial-value problem of non-linear elastodynamics is described by the
following set of equations:

V-P + pob = poii on Qx Ry 88}
u=1i on T, xR} )
N-P=T onT,xR¢ 3
uX,0)=uy(X) onQ 4
a(X, 0) = io(X) on Q )

In the above, ug and i, denote the initial displacement and velocity fields of the body, respect-
ively, while P is the first Piola—Kirchhoff stress tensor. Also, po = po(X) is the mass density in the
reference state and I',, I, are the Dirichlet and Neumann portions of the boundary, on which
boundary displacements, u, and surface tractions, T, are specified, respectively. I', and T, are
mutually disjoint and

meas(I',) = 0
A hyper-elastic constitutive assumption is made in the present context; thus,
ow
P(X, 1) = po—
X, 1) = po aF (6)

where W is a strain energy functional, per unit mass, expressed in terms of some invariant
measure of deformation. Equations (1-6) constitute Problem (P).
An integral counterpart of Problem (P) with reference to both the temporal and the spatial
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dimension can be stated by means of Hamilton’s law of varying action,> ¢ as follows:

Problem (V')
For any given time interval (t;, t;] = R*, find ue % such that

tr te
D;,J f [époﬁ-ﬁ—poW(u)]dth+f Jpob-ﬁdth
4 JQ i JOQ

tr tr
+J f T-ﬁdI’dt—J poﬁ-ﬁdQ:I =0 VYVue%
i JIt o 141
In the above equation, D; denotes the Gateaux derivative in the direction of 4. Also, % is the space
of kinematically admissible displacements for the given problem given by

U ={uecH'(QxR)|lu=u onTI,xRg,ulX,0) =uy, uX,0) =, on Q}
while % is the associated space of admissible variations defined as
4 = {icH'@xR$)|a=0o0nT,xRy,aX,0) =0, X, 0)=0onQ}

After integration by parts on the kinetic energy, Hamilton’s law of varying action gives rise to
a statement of virtual work for the initial-value problem according to

r U Looli-it + po Dy W(u) — pob-uldV — f

r:

T-ﬁdr}dt =0 Vied,(t,t]<R* (1)

Equation (7) constitutes the basis for the space—time discretization of the problem and will be
subsequently utilized in the development of finite elements for dynamic contact.

3. DYNAMIC CONTACT PROBLEM

In this section a local formulation of the dynamic contact problem is furnished. Considerations
are restricted to the two-body problem, with generalization to multi-body contact omitted for
simplicity. Observing the notation of the previous section, the boundary of bodies B! and B? can
be uniquely decomposed into three distinct regions according to

QP =0r2udlriuC, a=12

where C is the common contact surface. Contact is said to occur if meas(C) > 0. Gap and pressure
functions can be defined along C, by means of projection of boundary points from one body onto
the other,” as

g:(0Q! — T;)x (3% —T2)xRJ — R3 | g =g1-2(0)
p:(0Q! — T3)x(9Q* —TZ)xRg > Ry | p = py-alt)

The dynamic contact problem distinguishes itself from the static in that the inequality
constraint conditions hold not only for the displacements along the contacting surfaces but also
for their rates. The impenetrability constraint may be expressed as

{[Xpz + uXp2, )] — [Xp1 + u(Xps, )1} -0pu(X, ) = 0 @

where np: = n is the outer unit normal from body B! in the current configuration. Time
differentiation of (8) results in

[a(Xpz, £) — 0Xp1, )] 0pi(X, £) + {[Xp2 + u(Xp2, )] — [Xp: + uXp1, )]} - 01p:(X, ) = 0
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which, taking into account that the unit normal, np, is, by definition, parallel to the distance
between the contacting points, can be readily shown to reduce to

[0(Xpz, £} — 3(Xps, )] -mpi(X, ) = 0 )
see Figure 1. Likewise, a second time differentiation on (8) yields
[i(Xpz, 1) — 6(Xps, )] 0p1(X, 1) + [0(Xp2, 1) ~ 0(Xps, )] -11p: (X, 1) = 0

In the above equation, the second term on the left-hand side quantifies the effect of relative
motion of the contacting points in the direction tangent to np:. This term is negligible when such
relative motions are small or contact occurs between relatively flat surfaces; it is ignored in the
remainder of this work. Then

[i(Xp2, ) — W(Xp1, )] -mp: (X, 1) = 0 (10)

As it has been just illustrated in the continuous setting, equations (9) and (10) are obtained directly
from the impenetrability condition and, therefore, do not represent additional constraints. They
have been derived here because of their significance in discrete solutions.

In the case of persistent contact, the two-body problem is summarized as follows:

Problem (P,):.
Given state at time ¢, for Q?, a« = 1, 2, solve (1)-(6) at interval (¢, t;] subject to

rg=0, p<0,g=20onC

Integral formulations of the problem can be obtained by exploiting the statement of Hamilton’s
law (or, equivalently, the statement of virtual work) presented earlier in this section. A formula-
tion based on Lagrange multipliers reads as follows:

Problem (V1)
Find (u', w2, p)e %' x %* x 2 such that

w 2
J Y { f [p5i-8 + p§ D W) — psbe- i1V
Jas

toa=1

tr
—J~ T“-ﬁ“d]‘}dt-kf J(ﬁg+pég)dl’dt=0
r: ti JC

V@', i p)e# x U x P, (t;, t;] = R*

The spaces of admissible and virtual displacements are as in the previous section, while the

Figure 1. Contact conditions; the unit normal n and its time derivative
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respective pressure fields is defined as

P ={peH "*(CxRJ) | p<0}
and

P ={peH "*(CxR§) | <0}

Formulations based on various penalty regularizations (in the classical penalty, perturbed
Lagrangian or augmented Lagrangian sense) can also be obtained in a straightforward manner.
Particularly, for the classical penalty method a weak formulation of the dynamic contact problem
is stated as follows:

Problem (V,):
Find(u', u?)e % ' x % ? such that

tr 2
f ¥ { f [p5iie- " + pbDge Wo(u®) — pBb?- 41V
o

ti a=1
Ir
——J. T“-ﬁ“dr}dt+f J~ egdgdldt =0
rs t (o)

Y@L %) e x ¥ (t;, ] = R*

Integral statements such as Problem (V) generally form the basis of finite element approxima-
tions to problems in elastodynamics. In this work, attention is focused on semi-discrete time
integrators.

4. SPATIAL AND TEMPORAL DISCRETIZATION

In light of the above introduction, the domain discretization of the contacting bodies is achieved
as in the static problem; for a given time, the displacement field, u, and its rates are approximated
according to

u u, Uy

l'l l‘lh = A(”(X) V(I)

Q

ii ﬁh a( I)
where A, j, is a matrix of basis functions for the entire domain, normally composed by standard
interpolation functions within each element (no summation is implied on I). Further, vectors
U, ¥y and agy) consist of all nodal displacements, velocities and accelerations, respectively. In
addition, the pressure field is spatially approximated according to

PprRpp= A{I)p(l)-

Moreover, subscript 4 characterizes spatially discretized fields. It follows that Problem (VL) may
be recast in the form:

Find (u}, u7, p,,)e”]l; x U} x P, such that

th+1 th+1

2
z {[M“a‘h) + Q“(uf‘”) — W* + Wi(ub))] . ﬁ?[)} dr + Wpf)([) dt=0
a=1

tn In

V(ﬁ;, ﬁl%: ﬁh)eai; )(Q;’z' Xﬁhs (tm tu+1] = R+



2128 R. L. TAYLOR AND P. PAPADOPOULOS

where
M* =) P‘?)A(TI)AU» Q=3 VA(T,)P(u‘(,,)
@ @,
we=Y p3ALLD + Y A Te
a T
L =(—1FY psAipn
Cn
and

W, =Y g(U,)Af, a=1,2
Ch

In the above definitions, summation symbols over the domain or parts of its boundary refer to the
usual assembly operation. Likewise, for the classical penalty formulation of Problem (V,) the
discrete problem takes the convenient form:

Find (u;, v} )e¥; x 4} such that
thi1 2
Y {[M*af, + Q*(uly,) — W= + Wi, }dt =0

tn a=1
V@, §3)e%n x U, (tns tar1] = R,
where again

W= (= 0" T eg(UpAiyn
A Newmark scheme is employed for the time integration of the spatially discretized equations
of motion resulting from the Lagrange multiplier or penalty formulation of the contact problem.
The family of Newmark integrators, as originally suggested in Reference 8, imposes dynamic
equilibrium at the two end points of the finite time interval At, = t,,, — t,. The general form of
the integrator is

Upsy =, + V, AL, + 3[(1 — 2B)a, + 2pa, . ]AL] (11)

Va1 = Vo + [(1 = 7)2, + ya,4+1 1AL, (12)

where (e), = (®)(t,). Parameters § and y (called the Newmark parameters) may vary according to
0<p<05 0<y<1

The overall characteristics of any particular Newmark scheme are governed by the choice of the
above two parameters. In particular, unconditional stability is guaranteed for 28 >y = 0'5, as
shown in Reference 9. Furthermore, integration is globally first-order accurate (error O(At?))
provided that y = 0-5.

For the remainder of this section, all subscripts associated with the spatial discretization of the
various fields will be dropped in favour of those pertaining to the temporal description. The

Lagrange multiplier formulation of the previous section leads to equations of motion written, at
time t,.,, as

2
Z [MPag, ; + Q*u,y ) — Wiy + Wiui,,)]1=0 (13)

a=1

gunii,u2,,)=0 (14)
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Use of equations (11) and (12) in (13) resuits in the elimination of the unknown velocity and
acceleration fields, thus yielding a set of equations with the displacement vector at time ¢+, as the
only unknown, according to

2
1
2 {ﬁAﬁ MouZ, 4+ Q*(ulsq) + Wi ,) — Wiy
a=1 n

171 1 1-2
_MaE[At?,"HAt,,VH( 5 ﬁ)aﬁ]}=0 15)

Similarly, the penalty formulation obtained in the previous section is easily discretized in time to
produce a set of equations in terms of the displacements at t,, ; that read

2
1
Z {ﬁAtz M*u, . + Q%(ug, ) + Wiur, ) — Wiy
a=1 "
1[ 1 1 1-28
—M s+ m = 16
il e e 05,0 w

Equations (14)—(16) are generally non-linear and have to be solved by an iterative algorithm such
as Newton’s method or any of its variants.

5. DYNAMIC CONTACT/RELEASE CONDITIONS

In the preceding section, Newmark integrators were employed in the solution of the two-body
contact problem, where contact/release constraints were imposed on the displacement fields, in
accordance with (8). Unfortunately, in contrast with the continuous case, the velocity and
acceleration fields recovered from such an integration scheme do not satisfy the respective rate
impenetrability constraints realized by (9) and (10). This can be easily seen with the help of
a simple example: consider a contact between two nodal points, each belonging to one of the
contacting bodies. The points come into initial contact at time t, and the following conditions
hold:

X'+ul=X?4+u2=0

Vo = Yo, V,%=0

Enforcement of the impenetrability condition on the discrete displacement fields, as defined in
(11), along the normal, n, to the contact surface at time ¢, ;, yields

(X' +uwl)en+ At vl -n+ $A2[(1 — 2p)al + 2Bal.,]-n
=(X?* +ul)-n+ At,vi-n + 3AZ[(1 — 2B)al + 2Ba2,,]-n

or, taking into account the conditions at t,,,

(a3+1 —a,4,) 0=

B—A't“\’o'l'l (17)

provided that § > 0. Likewise, substracting the discrete velocities of the two nodes at ¢, , from
one another and using again the initial conditions at t, gives

(V241 — Var1) n=yAt, (a2, —ay,4)'n—Vo-n
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which, with the aid of (17), results in

(V3+1—V;+1)'n=(%—1)vo‘“ (18)

Equations (17) and (18) illustrate the problematic behaviour of Newmark integrators, when
directly used in simulating dynamic contact/release conditions. It can be readily concluded that
the discontinuity in the post-contact velocities is independent of the time step, while the
discontinuity in the accelerations is inversely proportional to the time step; thus, consistency is
not attained at At - 0. Finally, notice that equations (17) and (18) were obtained without any
reference to dynamic equilibrium (which, in this case, would only determine the exact position of
the nodes at time ¢, ).

The above analysis indicates that a special treatment is necessary for an accurate simulation of
contact/release conditions. Indeed, the discrepancy in the computed rate quantities, although
immaterial within linear elasticity, can be potentially devastating in non-linear problems employ-
ing rate-dependent constitutive assumptions. In an earlier attempt, Hughes and co-workers have
used the Newmark solution as a predictor to be subsequently followed by a corrector step, in
which velocities were matched on the contact surface by means of a local wave propagation
analysis. Moreover, accelerations were weighted by the (lumped) masses of the interacting nodes,
so that dynamic equilibrium be observed after the treatment.* Here a slightly different methodo-
logy is proposed based on a priori satisfaction of the impenetrability constraint and its two rate
forms, corresponding to equations (8), (9) and (10), respectively. To this end, the Lagrange
multiplier formulation in Section 3 is augmented by the variational terms

2
{wilugsy —ui — At,v; — A} (3 — P)a;
Cha=1

— At2fag . 1-n( . -m) 4+ A(— 1)¥5,, 0+ Iv(_ 1Fvieq-npdl =0 (19)
and
2
Z {W:[V;H — vp — At,(1 — y)ag
Cra=1
— Atyyagy ]-n@5-m) + A(— 1)a5, on + Za(_ 1yaj, -n}dl' =0 (20)
where wi, w; > 0 are weighting functions. Equations (19) and (20) reveal that the Newmark
integrator is modified along the contact boundary. Particularly, the admissible contact velocity

and acceleration fields are, in principle, assumed independent of the displacements, while the
Lagrange multipliers 1, and 4, enforce the conditions

[[vn+1]]c=os [[an+1]]c=0
where
[@®].=[(8)*—(®)']-n

The multipliers 4, and 4, are viewed as generalized momenta, energy conjugate to the contact
velocities and accelerations, respectively. Equations (19) require that

wylupey —uy — At,va — At2(3 — Blal — At2pal, ]-n—2,=0
and

wiuzey —up — At,v: — A2 (3 — B)a? — A2 a2, ]on+ 4, =0
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along C,. Premultiplying each of the above with the weighting function of the other, recalling that
[X+u,4:].=0

and, finally, differencing, gives

X+ u] + A + AZG - B)[aa].

Ao 1wl + 1/w? @1)
Similarly, equations (20) dictate that
walvaer — Va — At,(1 —y)a; — Atyya,.,]on— 4, =0
and
wilvie1 —va — At,(1 — )al — Atyyal, ]-n+ 4, =0
Repeating the same process as before yields
= Dol + At = e -

1/wl + 1/w?

In case one of the contacting bodies is rigid, then it is, by assumption, associated with infinite
weighting functions, so that (21) and (22) are modified accordingly. Velocity and acceleration
fields normal to the contact surface are recovered with the aid of the above constraint equations
as

A
Virron=[Vi+ At (1 —y)ai + Ayag, ] on — (= 1) —

-4
a

and

1

i n=——
" BAL2

{[uzﬂ — i — ALY — GG — pai]-n+ (1Y i-}
In the absence of contact, as well as during persistent contact, the proposed treatment reduces
naturally to the associated Newmark method. Indeed, in the former case, as meas(C,) = 0, all
Lagrange multipliers disappear at the outset while, in the latter, equations (21) and (22) require
the multipliers to be again identically equal to zero.

The weighting functions, w$ and w2, are chosen so that the integrands in (19) and (20) be
(virtual) work quantities. Here, they are set to be

md
At,’

wi(t) = wa(t) = m*At,, t1e(ty, tyr1]
where m* denotes a generalized characteristic mass quantity for body a.

Whenever release is detected (as defined in Reference 4), equations (19) and (20) yield, in direct
analogy with initiation of contact,

u:“n+1]]c_At3ﬁ[[an+1]]c+10(;v1—1+;vli)=0 (23)

v

and

1 1
[[vn+1]]c_Atny[[an+1]]c+23(F+V_VE>=0 (24)
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In this work, both Lagrange multipliers in (23) and (24) are set to be zero at release, as their
appearance was originally identified with the (currently inactive) constraint of equal velocities
and accelerations in the direction normal to the contact surface.

6. NUMERICAL SIMULATIONS

Numerical solutions of some dynamic contact/impact problems are presented in this section.
Attention is focused on both kinematic and dual variables computed by the finite element
method. Relatively simple one- and two-dimensional simulations are performed, as the modifica-
tion to the Newmark integrators suggested in Section 5 is currently available only for node-
to-node slidelines. The algorithm is incorporated within the environment of the fully non-linear
general purpose Finite Element Analysis Program (FEAP), briefly documented in Chapter 15 of
Reference 10 and Chapter 16 of Reference 11.

Although implicit time integration schemes are used throughout, an attempt is made to keep
the time step as close to optimal, with regard to the explicit stability limit, as possible. Recall that
the stability limit (or Courant limit) is generally defined as

5= % At (25)

where ¢ is the wave speed (depending on the type of waves developing in the actual problem), At is
the discrete time step used in the integration and [ is a characteristic spatial dimension of the
discretization (e.g. mean element length in one-dimensional problems or mean element diameter
in multi-dimensional problems).

All numerical simulations employ a standard Lagrange multiplier formulation in enforcing
impenetrability. An exterior penalty formulation is aiso applicable as outlined in Section 3
without any algorithmic complications. Diagonal (lumped) mass matrices are used for all types of
elements, as their behaviour is considered superior to that of the corresponding consistent
matrices whenever, as in given class of problems, the associated kinematic fields exhibit discon-
tinuities (or near-discontinuities) in time. Lumped masses are also used as weighting functions of
the modified Newmark impact treatment.

6.1. Impact of bar on rigid wall

An elastic bar of Young’s modulus E, cross-sectional area 4 and mass density p is travelling
with constant velocity v = 1-0E;, when it impacts on a rigid wall at time ¢ = 0, see Figure 2. The
bar is modelled by two-node, one-dimensional linear elastic elements. The properties of the bar
are chosen to be

E=10, p=10, A=10

v=10
—
| ]
e — 10 —_—s .

Figure 2. Bar on rigid wall
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Gravity effects are not considered. A uniform mesh of 100 elements is considered and the time
step is set to At = 0-1.

Both classical and modified Newmark integrators are tested, with parameters g = 0-25 and
y = 0'5. Velocities and accelerations at the impacting tip of the bar are plotted in Figures 3 and 4,
respectively, for the actual duration of contact. It is observed that classical Newmark integration
results in highly oscillatory fields, while the proposed modification completely bypasses the
probiem,

Displacements, velocities and accelerations are also computed for time t = 5, at which the wave
has reached the middle of the bar, see Figures 5 and 6. These computations are conducted with
two distinctly different choices of the Newmark parameters, namely = 025, y = 0-5 (as before)
and also f = 0-001, y = 0-5. The latter choice corresponds to an almost explicit method, which, as
expected, gives results superior to the former and, thus, will be employed for the remainder of the
bar simulations.

6.2. Impact of identical bars

Two identical bars, one initially stationary and the other moving with constant velocity
v = 1-0E,, contact each other at time ¢t = 0, see Figure 7. All material and geometric properties of
the bars, the domain discretization for each of them, as well as the Newmark parameters and time
step are as in the previous problem. Figure 8 displays the history of displacements, velocities and
forces for the contacting bar tips. The results are compared with the exact solution and are found
to be very accurate. Local oscillations in the velocity at the time of wave reflections are noticed.
Hughes et al.* proposes to eliminate them by introducing numerical dissipation (i.e. by increasing
the value of 7).

6.3. Impact of dissimilar bars

Two bars of lengths and initial velocities as in Figure 7 come into contact at time ¢t = 0. With
reference to the same figure, the properties of the two bars are:

Bar1: E=049, p=10, A=10
Bar2: E=10, p=10, A=10

Bar 1 is discretized uniformly by 100 elements and Bar 2 by 70 elements, so that, for time step
At = (-142857, both are integrated in time optimally (ie. s = 1). Plots of the displacements,
velocities and contact force at the contacting tip are shown in Figure 9. Excellent agreement with
the exact solutions is exhibited for all three fields.

6.4. Impact of identical spheres

Two identical elastic spheres of radius R = 8 and initial distance between their centers of
d = 20 travel collinearly with equal and opposite velocities of magnitude ||v| = 1, and, thus,
collide at time ¢t = 2. No gravity effects are included in the analysis. The spheres are modelled by
axisymmetric nine-node bi-quadratic elements and the undeformed mesh is shown in Figure 10.
The elastic constants for the spheres are

E,=5x10% v,=03

and two values of the mass density are considered, namely p = 1-0 and 0-001. The Newmark
parameters are set to f = 0-25 and y = 0-5. The history of total force developed due to contact is
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plotted in Figure 11 (p = 1-0, At = 0-05) and Figure 12 (p = 0:001, At = 0-0025), and is compared
with the approximate Hertzian solution. As noted in Reference 12 (pp. 198-200), the Hertzian
solution is ‘static’, in the sense that it neglects the effects of wave propagation. The ratio r of
fundamental period for the dilatational wave to total impact time can be found to be

0-2
rx~ 122 (u)
c

where c is the speed of the dilatational wave. The validity of Love’s argument that the Hertzian
solution becomes more accurate as r decreases towards zero is confirmed by the numerical
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Figure 11, Impact of identical spheres; history of total contact force (p = 1-0)
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Figure 12. Impact of identical spheres; history of total contact force (p = 0-001)
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Figure 13. Impact of identical spheres; deformed meshes at ¢ = 3-5 (p = 1:0)

solutions, since r(E,, v,, p = 1-0) & 0-60 and r(E,, v,, p = 0-001) = 0-30. Finally, a representative
deformed mesh is shown in Figure 13,

7. CONCLUSIONS

In the context of semi-discrete time integrators it has been shown, in sharp contrast with the
continuous case, that satisfaction of the impenetrability constraints is not sufficient, when
simulating problems featuring persistent mechanical contact. A simple, efficient and widely
applicable methodology, based on appropriate constraining of all boundary kinematic fields
upon detection of contact, has been developed, that bypasses the above shortcoming and
maintains overall consistency of time integration. Numerical simulations have demonstrated the
merits of the proposed treatment.
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