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SUMMARY

A model based on the penalty method for 3-D contact problems with friction is proposed. The friction forces
are assumed to follow the Coulomb law, with a slip criterion treated in the context of a standard return
mapping algorithm. Consistent linearization of the field equations is performed which leads to a fully
implicit scheme with non-symmetric tangent stiffness which preserves asymptotic quadratic convergence of
the Newton-Raphson method. Numerical results are obtained for some representative examples and
compared with existing solutions.

1. INTRODUCTION

In the past decade considerable effort has been invested in understanding contact problems with
friction, which is evident from the numerous contributions which have appeared (see Reference 34
for an extensive bibliography list), and although a high level of understanding has been achieved,
presented, for example, by Kikuchi and Oden,'? certain problems still await to be solved. This
mostly applies to three-dimensional contact problems with friction in the presence of large
deformations. Even for non-frictional contact problems, a consistent linearization of the field
equations in the Newton-Raphson numerical algorithm leads to intricate expressions (see
Reference 32 for two-dimensional and Reference 22 for three-dimensional applications). Recently,
non-linear kinematics was included for two-dimensional contact problems with friction by Ju and
Taylor!! and Wriggers et al.>® Problems associated with consistent operators are avoided in
explicit algorithms where complicated two- and three-dimensional contact-impact problems
have already being solved (see ¢.g. References 9 and 1).

The aim of this paper is to provide a framework for contact problems with friction, which can
be successfully applied for a class of problems where a deformable three-dimensional structure is
in frictional contact with rigid bodies of a general three-dimensional shape. By choosing the
penalty method we expect successful application for problems not involving high normal forces
(e.g. thin sheet metal forming is one possible area of interest) Our main concern is the
development of a reliable and efficient numerical algorithm that can deal with a continuous
change of the direction and sign of the frictional force. Kinematical non-linearity associated with
surface curvatures is avoided through discretization of the rigid body surface by a sufficient
number of triangular facet elements.

The layout of the paper is as follows: In Section 3, a framework for the plasticity theory of
friction is proposed, based on additive decomposition of the relative tangential velocities into
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elastic and inelastic parts, i.e. g¢; = g5 + g5. In such a situation, the constitutive equations for
contact with friction take the simple format of classical theory of elastoplasticity.

Numerical integration of the constitutive equations relying on operator-split methodology is
presented in Section 4. The elastic predictor—plastic corrector procedure is generalized for contact
with friction.

Formulation of the complete boundary value problem generalized to large-deformation
problems (details may be found in References 23 and 24) and the displacement-based finite
element approximation are briefly reviewed in Section 5.

Numerical examples are provided in Section 6. It is shown that the present algorithm can be
successfully applied to contact problems in which a continuous change of the direction and sign of
the friction forces occurs in large-deformation applications. For the realistic examples of the
forming of thin sheet, capabilities are foreseen for the modelling of highly complex processes
involving contact with friction.

2. PRELIMINARIES

2.1. Remarks on the computational contact mechanics

We consider the contact problem with friction between two bodies where one is practically
non-deformable compared to the other and can be regarded as rigid®, which can be classified as a
unilateral contact problem. By disregarding rigid body movements we shall treat the rigid body
as fixed in space, which simplifies the notation for interface kinematics.

We define the distance between the bodies as a function

gn= (=2 N on Jx(Qc) = dx(F) N oy (Q™) (1)

where gy, is the gap between the bodies, x(Q°) and x(Q™) is the configuration mapping of the slave
and master bodies, respectively, and N is the normal vector on the master surface.

Introducing the notation py = p* N for the contact force acting on the slave body, the contact
condition can be stated in the standard Kuhn-Tucker form

In=20, pn<0, pyrgn=0 )]

which may be viewed as two complementary unilateral constraints: the kinematic condition of no
penetration, and the static condition of compressive normal force. Incorporation of form (2) of the
contact condition within an appropriate functional, leads to a category of mathematical pro-
gramming problems of finding the constrained minimum of the appropriate functional, where (1)
is the constraint condition and normal forces py can be recognized as Lagrange multipliers. A
discrete version of the Lagrange multiplier method for three-dimensional contact problems with
friction was employed by Chaudhary and Bathe.? Apart from an extended number of unknowns,
this approach can cause difficulties in the solution phase due to the appearance of zeros on the
diagonal of the associated algebraic system. We note that kinematical constraint (1) in this
method is exactly satisfied.

By choosing the penalty method the constraint condition (1) is relaxed and the constraint space

A ={ne? gy =0 ony(3Q.)} 3

tFollowing standard terminology (see Reference 9) we shall call the rigid body the master body and the deformable body
the slave body. The same master—slave terminology applies to the surfaces of interest and to the nodes of discretized
models.
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for which the approximation functions are sometimes difficult to generate, is extended onto the
whole space ¥,
V= {np(Q)->Rn=0 on x(0Q,)} (4)

which allows a classical displacement-based finite element formulation.

Furthermore, the elastoplastic form of the constitutive model for friction described in Section 3,
can be viewed as a regularization procedure in which an essentially non-differentiable functional
representing the virtual work of the frictional forces is approximated with the regularized one
depending upon a real parameter kr > 0 (see Reference 13). This makes numerical techniques,
specifically the Newton—Raphson method, effective for this class of problems, as will be shown in
Section 6.

The elastoplastic character of the constitutive law for dry friction has a physical justification by
relation to the deformation of asperities on contact interfaces, which consists roughly of a
reversible part due to elastic deformations of asperities and an irreversible part due to plastic
deformation, damage and fracture of asperities. This fact is confirmed by experimental evidence
and recognized in recent formulations of frictional laws (see References 6, 8, 12, 13, 18, 26 and 33).

3. PLASTICITY THEORY OF FRICTION

Following standard formalism of the theory of elastoplasticity, additive decomposition of the
tangential velocity at the contact interface is adopted, i.e.
. e L ap
where gr = (I — N®N)-u Br=Er T & ®
Furthermore, a perfect friction law is assumed (in the sense as introduced by Curnier®) stating
that the friction force is proportional to the normal force and is independent of the other state
variables, which leads to the slip criterion

¢ = lIprl + velpnll — 7 (6)

where r characterizes the adhesion.
With these assumptions introduced, the constitutive equations for frictional contact take the
simple format of classical elastoplasticity

gr =87 + 8% (7a)
Pn = Dyu’ (7b)
pr = Dyu’, (7¢)
. . oY(pT)
P _ 7d
gr=7 9, (7d)
r=7yh(g}, 1) (Te)

Here, Dy = — k(I — N®N) and Dy = — kyN®N are the tangential and normal parts of the
elastic modulus tensor, ¥ (p, r) is the slip potential and the function h(g¥, r) defines the hardening
(softening) law. Finally, loading/unloading conditions may be formulated in the standard
Kuhn-Tucker form

$<0, 720, y¢=0 8

For convenience, the basic equations governing the constitutive model for the plasticity theory
of friction have been summarized in Table I.
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Table 1. Constitutive model for the plasticity theory of friction

(i) Additive decomposition of the displacement rate
gr =gt + 8}
(i) Linear constitutive equation
by = Dyug, Dy= — kyN®N
pr=Dqif, Dy= —ki(I-N®N)
(iii) Slip criterion and hardening law
o r) =lprll + vellpwll —r
P =7h(g}, )
(iv) Flow surface and flow rule
yp.r)=Ilpll —r
Pr

Y
(v) Kuhn-Tucker loading/unloading conditions

$<0, 720, y¢=0

gt =T,

Following standard arguments of rate-independent plasticity and under conditions of frictional
slip without hardening, the following rate form is obtained

p=D®u ®)
where
D? = — k(I — TQT — N®N) — veky TON — kyN@N (10)

Evidently, the non-associative slip rule (7d) results in non-symmetry of the slip modulus tensor
which is defined by (10) under the conditions of frictional slip.

4. NUMERICAL INTEGRATION ALGORITHM

By making the contact problem with friction equivalent to the classical theory of elastoplasticity
in Section 3, numerical integration of the constitutive equations for frictional contact problems
may follow the standard techniques employed in elastoplasticity. We refer to References 28, 30
and 19, for a discussion on the recent advances and details of implementation. For completeness,
the equations governing a one-step Euler backward scheme are summarized:

Agr = Agt + Agk

Pn+1=Duj

Y (Pu+15Tns1) (11)
opr, .,

Fav1 ="y + Ayh(gR,, s Tns1)

In addition, the constraint condition

gl.. =gk +Ay

OPus+1,Ta+1) =0
must be satisfied.
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4.1. Stress update algorithm

Particularly suitable for implementation are procedures connected with general operator-spiit
methodology, where the original problem of evolution is solved through composition, applying
first the elastic and then the plastic algorithm. We summarize the basic equations for the radial
return method proposed by Wilkins,> restricting attention to non-hardening frictional slip which
is particularly interesting as it defines the generalized Coulomb law of friction.

e Elastic predictor
Calculating increments of displacement in the contact region %(Q.), we obtain trial elastic
forces
p::r-i:ll =pn+D'un+l (12)

e Plastic corrector
In the plastic corrector phase, a trial elastic stress piie] is radially projected onto the slip

surface
Pr... = Vel PNt [ Tas sy (13)
where the normal
P?m
Tor1 = ar 14
T g (14

defines the slip direction.

4.2. Consistent tangent operator

The numerical updating procedure described in Section 2.1 leads to the incremental response
function

i’(pn’ ll,,, u— “n) = ” pT..-n ”Tn+1 + ” PN,,,,, ” Nn+1 (15)
Making use of the relationship
oT, 1
.= I-T,.1®T,+1) (16)

ope,  IpEe |
and applying the chain rule of differentiation in

aﬁ (pm u,, & — ll,,)
du

D*e = (17)

=W,
we obtain the consistent tangent modulus for frictional slip

D*P = —k¥(¥ — T,y | ®T,sy — Not 1 ®Npy 1) — vekaTo s (®Ny oy — kxN,y i ®N, 4y (18)
where

IPr,.,
e, I
Observe that the consistent modulus (18) differs from the continuum tangent modulus (10) by

the factor k¥ which reduces the stiffness in the tangential plane perpendicular to the slip direction.
For large displacement increments k¥ can become considerably less than kr, i.e. k¥ < kp, so that

k¥ = ky (19)
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use of k; instead of k} may cause loss of the quadratic rate of convergence typical for the
Newton—-Raphson method.
The algorithm is summarized in Box 1.

Box 1. Numerical integration procedure for the plasticity theory of
friction

e Update configuration
Anrt = A%1 + 0,

Elastic stress

Pl =p.+ D-u,y,y
o Check for slipping
IF ¢y = I I+ vellpRi, 1 <0
Set (#),4; = (o) Fial then EXIT

ELSE
e Plastic corrector phase
P?ial
T’l —_ v.|+ 1
T R

Pr... = VPl PR I Thss
Compute consistent frictional slip tangent moduli
D*P = — k(I = Tps 1 ®Tyy; — Npu 1 ®N, 4 y)
— VeknTo s 1®ON 1 — kyN, 4 QN 4y

P,
TN

Remark 1. The consistent tangent modulus (18) is equivalent to the consistent modulus obtained
by Curnier and Alart’ through kinematic considerations.

5. FORMULATION OF THE BOUNDARY VALUE PROBLEM AND
FINITE ELEMENT DISCRETIZATION

In this section we present a variational formulation for large-deformation problems in the
presence of large strains and unilateral contact with friction, as a basis for finite element
discretization. As has been usually done in metal plasticity, we chose a logarithmic strain as the
strain measure (see Reference 24 for details concerning the utilization of the logarithmic strain in
finite strain elastoplasticity). Restriction to unilateral contact allows use of linear contact
kinematics, which greatly simpiifies the treatment of three-dimensional problems and leads to
rank-one updates of the tangent stiffness according to equations (9) and (10).



3.D CONTACT PROBLEMS 1295

5.1. Weak form of the boundary value problem

The strong form of the boundary value problem, written in spatial description

dive + pb =0 in %(Q) (20)
with boundary conditions
e'n=t ondy(Q,)
L= ondx()
e'n=0 ifgy>0 ondg{Q) 21

and
o'n=p ifgy<0, ondy()
takes the classical weak form (see Reference 16)

Gy, w = j

Q)

(6:Vnp — pb-)dv — f

f'nda——J‘ p-nda (22)
1(0Q,) 1(0Q,)

where ne¥” and ¥ is the space of all admissible variations.
The linearized form of the functional G(yx, n) at the known configuration y = j in the spatial
description may be written (see Reference 24 for details) as

J Vu:a‘o’:Vndv«l-J u:D:nda = — G(%,n) (23)
2(€) 1(0)

where a'® is the fourth-order tensor given by
afh = hiQ? — myu + duoy (24)
with h'9¢? s the standard elastoplastic constitutive moduli and
My = %(O-ikéjl + O'ufsjk + Ujk‘si: + O'jléik) (25)

The term G(§, n) has a standard interpretation as an unbalanced force at the configuration %, while
the terms on the left-hand side of the equation (23), linear in u, provide the tangent stiffness.

From [,q, Vu:a®:Vn dv we recover the material and geometrical parts of the tangent stiffness,
respectively:

MK =f Veu:(h©® — m):Veqdo 26)
p{(8)]

6K = f Vu:(6®1):Vndo (27)
@)
where V* denotes the symmetric part of V. The term
K = J u-D?-nda (28)
1(09Q,)

provides the tangent stiffness due to frictional contact.
Analogously, we obtain the residual forces as

G = f 6:Vindo — BTG (29)
()
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where EXTG is the virtual work of the external loading and contact forces

E“sz pB-ndv+J f-nda+J p-nda (30)
() 1(0Q,) x(0%2)

5.2. Finite element discretization

Following a standard methodology (see References 2, 10 or 35), we introduce the space
¥'* < ¥ as a finite-dimensional approximation to ¥~ described in equation (4). Furthermore, let
subspace ¥ be generated through spatial finite element discretization in the current configura-
tion x(Q) = U NEL x(Q,), with x(Q,) N x(Q,) = Bif a # b, so that over a typical element x(Q,) we
have the interpolation

NEN

vy, = ; Na(x)u, €Y

where N, are the standard shape functions.

Contact conditions are discretized by controlling the penetration of the slave nodes into the
master surface. Further simplification is introduced by monitoring only the nodal forces devel-
oped due to frictional contact, which are assumed to follow the constitutive model described in
Sections 3 and 4.

Tangent stiffness matrix. Representing the discrete gradient operators V*u" and Vu" in the form

NEN NEN
Vsuhlx((l.) = Zl Bauaa Vuhlx(ﬂ.) = Zl Gaua (32)
we may write the tangent operator of equations (26) and (27) in the matrix format
ke = Mk + Sk° (33)
where
Mie = [Mkg,) = f BI[h©* — m]B,dv (34)
2(Qe)
%= [k31= [ GG, 69
x(Qe)

are the standard material and geometrical element stiffness matrices, respectively. A discrete
version of equation (28) follows directly from equation (18):

CK® = D*°r (36)
The global stiffness matrix is obtained by applying the finite element assembly operator!®
NEL SNOD
K= A (k)+ A (°K9) 37)
e=1 s=1

Residual vector. The discrete version of equations (29) and (30) supplies the element residual
force vector

fe _ INTfe _ EXTfe (38)
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where
INTEe = (INTEe} f BI {6} dv, (39)
2(820)
EXTge — {EXTfﬁ} = f Na{pﬁ} do + J N, {f} da (40)
x(S2) x(0Qe)

are the element internal and external force vectors, respectively. The global residual vector is
obtained by adding the contribution of the contact forces at the slave nodes
NEL SNOD

F=Fpum+ A (f)+ A (F) (41)
e=1 s=1

6. NUMERICAL EXAMPLES

In this section several numerical examples are presented to assess the accuracy and robustness of
the constitutive model and the numerical scheme adopted. All problems presented include large
deformations and offer a severe test for any computational model dealing with frictional contact.

In all examples a full Newton-Raphson method is employed, with unsymmetric tangent
stiffness arising from the non-associated frictional contact law described in Section 3. Conver-
gence of the finite element solution is established on the basis of the standard Euclidean norm of
the out-of-balance forces. The use of consistent tangent moduli [equations (18) and (19)] is shown
to be of utmost importance for preserving the quadratic rate of convergence typical for the
Newton-Raphson method.

Example 1. Lateral compression of a cantilever beam subject to end moment

A straight beam clamped at one end and subject to an end moment at the other is lateraily
compressed by frictional flat rigid punches which are moved in the first loading increment by
|U,| = 0004 on both lateral sides of the beam and then kept fixed. The geometry, material
characterization and finite element model are given in Figure 1. The beam is modelled with 20

X3

clamped

<2

Geometry:
L=6.0
B=0.8
H=10.3

Material properties:
€ = 2.22222 x 10°
v=00

Loading conditions: M/2
End moment M, = 4xEI/L

punch X

Figure 1. Lateral compression of a cantilever beam subject to end moment: geometry, material characteristics and finite
element discretization
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triangular constant membrane strain—constant curvature shell elements with symmetry employed
along the central axis. The coefficient of friction vg at the interface between the beam and punches
is varied betweeu 0-0 and 0-3. An applied moment M, = 4n EI/L will force the beam to deform
into a full closed circle for v = 0-0. The final deformed configurations for various coefficients of

3.0

n
o

4
o

Xs, (m)

1.0

0.5

0.0

YT FETRS FRUTE FUUTY FUTRE FUETY FUWEY |

05 ++——rr T T T T T T T T Ty
-1 ] 1 2 3 4 5 6
xl'(m)

Figure 2. Lateral compression of a cantilever beam subject to end moment: Deformed configurations for M/M, = 1-00

1 T LAT[—l

TT\T(\

Figure 3. Lateral compression of a cantilever beam subject to end moment: Deformed configurations and friction forces
at nodes for ve = 0:05. (a) M/M, = 020; (b) M/M, = 0-40; (c) M/M, = 0-60; (d) M/M, = 0-80; (¢) M/M, = 1-00
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friction are depicted in Figure 2. Depending on the lateral compression and coefficient of friction,
the frictional forces strongly influence the shape of the final equilibrium configurations. Figures 3
and 4 show the equilibrium configurations and frictional forces at nodes throughout the process
of loading, for coefficient of friction vz = 0-05 and vp = 0-02, respectively. It is important to
observe that the frictional forces are continuously changing in magnitude and direction which
creates severe complexities for the numerical algorithm.

All results in this example are obtained by applying equal increments of the end moment M and
automatically reducing the step if convergence is not obtained within 10 iterations. A standard
check for residual norm with convergence tolerance RTOL = 1-0x 1073 is performed. The
number of load increments required to attain the final equilibrium configuration corresponding
to M/M, = 1-0, as a function of the coefficient of friction vg, is given in Table II. It should be
noted that the number of loading increments reaches highest value for the medium value of the
friction coeflicient vy = 0-030 which is connected with the appearance of large incremental

PLLL

Figure 4. Lateral compression of a cantilever beam subject to end moment: Deformed configurations and friction forces
at nodes for vg = 0-02. (a) M/M, = 0-20; (b) M/M, = 0-40; (c) M/M, = 0-60; (d) M/M, = 0-80; (¢) M/M, =1-00

Table 1I. Number of loading increments for various vp in Example 1

Ve 0300 0100 0050 0030 0020 0010 0001
Mine 20 34 29 55 36 34 21
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displacements complemented with the frequent interchanges between stick -and slip conditions.
The speed of convergence of the Newton—Raphson method measured in residual norms is
illustrated for two typical load steps in Table ITl. Due, probably, to the fact that within our
approach (see Reference 25 for details) the rotational field for the finite element employed is not
consistently linearized (as has been done in Reference 5) the apparent rate of convergence appears
to be superlinear.

Example 2. Plane strain stretching of a thin sheet by a cylindrical punch

The geometry and material characterization for this example are shown in Figure 5. The
analysis is performed employing a 3-D formulation, restricting the deformations to be symmetric
along the line X, = 0 and imposing plane-strain boundary conditions in direction X,. This
problem, typical for thin sheet metal forming applications, is solved by discretizing the blank with
240 thin-shell finite elements and using 122 and 64 triangular flat elements to discretize the

Table III. Residual norms for two typical load steps in
Example 1

M ve=03(M/M=03) vp=005(M/M,=03)

1 0-124E — 01 0-622E — 02
2 0-128E — 01 0-129E — 01
3 0-171E — 03 0-239E — 03
4 0-226E — 04 0-154E — 04
5 0-804E — 06 0-617E — 06

Geometry:
L. =59.18mm
B, = 4 0mm

to = 1.2mm
Rp = 50.8mm
Rg = 6.35mm
Material properties:
E = 2.1 x 10° N/mm?
v=03
7 =520 (3.28-10~% + #)% N /mm?
Boundary conditions:
Fixed displacement U;

Figure 5. Plane strain stretching of a thin sheet by a cylindrical punch: geometry and material characteristics
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surfaces of the punch and die, respectively. Spatial discretization of the problem is depicted in
Figure 6. Results are obtained for the no-friction case and for a coefficient of friction vg = 0-3.
Figure 7 gives deformed meshes for different values of punch displacement. Although friction does
not influence the overall deformation energy visible in Figure 8 through values of the punch force,
it highly influences the deformation patterns, as can be seen in Figure 9. To attain the
final deformed configuration for punch displacement D, = O-5L with convergence tolerance

Figure 6. Plane strain stretching of a thin sheet by a cylindrical punch: Spatial finite element discretization of blank and
punch and die surfaces

Figure 7. Plane strain stretching of a thin sheet by a cylindrical punch: Deformed finite element meshes at various stages
of punch displacement. Each quadrilateral consists of two triangles

] LEGEND:
] Bending solution
4 —— ... Friction coef. - 0.30
4 e ... No friction
. Me;N:brgm solution

Punch force, F(kN/cm)

W

AL A L

o L2 BB B 4 L AL 2R . ) LA N A LN BN I LN S a4
0.1 0.2 03 0.4 05
Punch travel, Us/L,

Figure 8. Plane strain stretching of a thin sheet by a cylindrical punch: Punch force versus punch displacement curves for
frictionless membrane solution and for bending solution with vz = 0-30 and no friction case. Membrane solution is taken
from Lee et al.'*
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a b LEGEND: b b LEGEND:
20 3 |==Dpa01 20 .| Dpr=01
- p Dp/L=0.3 . S DpL=0.3
9 ] |~——Dpr-05 I i = DplL=0.5
< 3 < -
£ 15 : £ 15 E
[}
17 N . /
? @ /
o
§ 10 1 g 10 j S
% 1 £ 4
5 3 s ] v
= 4 r3 P
= ] i = i
5 F 5 ﬁ
O TTTTr I v r Iy ryr I ey rTrre O Y [T ey rrorr
[X4] o2 04 08 08 1.0 P24 0.2 04 08 08 1.0
Original distance, X;/L, Original distance, X;/L,

Figure 9. Plane strain stretching of a thin sheet by a cylindrical punch: Distribution of thickness true strain plotted over

the initial configuration at various stages of punch displacement. (a) no friction; (b) vg =0-30

blank X ‘
Ry
die
|
2R, —;
Geometry:
Ro = 59.18mm
to = 1.0mm
Rp; = 50.80mm
Rp, = 33.90mm
Rq = 6.35mm

Material properties:
E = 69004 N/mm?
v=03
& =589 (1.0-107¢ 4+ &°)0218N /;nm?

Figure 10. Stretching of a circular thin sheet by an elliptical punch: geometry and material characteristics

RTOL = 10 x 1073 for the case v¢ = 0-3, a total number of 68 increments of punch displacement

were needed with 4-7 iterations per increment.

Example 3. Stretching of a circular thin sheet by an elliptical punch

The geometry and material characteristics for this example are shown in Figure 10. The
elliptical punch surface is defined in the initial configuration by (X, /59:18)% + (X ,/39-45)?
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+ [(X3 — 59-18)/59-18]*> = 1 with minor axis/major axis =2 /3. The analysis is performed
employing a 3-D formulation, restricting the deformations to be symmetric along the lines X,
= 0 and X, = 0. This problem can be considered as an intermediate stage in the forming of thin
sheet metal products where the geometry of the punch initiates a behaviour which deviates from
axisymmetric conditions. From a numerical point of view this necessitates full three-dimensional
analysis with appropriate algorithmic treatment of the contact problem with friction. To solve
this problem we discretize the blank with 736 constant-strain triangular finite elements and use
2145 and 612 triangular flat elements to discretize the surfaces of the punch and die, respectively.
Spatial discretization of the problem is depicted in Figure 11. Results are obtained for coefficients

Figure 11. Stretching of a circular thin sheet by an elliptical punch: (a) Spatial finite element discretization of blank and
punch and die surfaces; (b) Finite element mesh and boundary conditions for the model of the blank employed in
computation

e, v

WA

e,' aen

Figure 12. Stretching of a circular thin sheet by an elliptical punch: Deformed finite element meshes at various stages of
punch displacement for vg = 0-30. (a) D, = 20 mm; (b) D, = 30 mm; (c) D, = 40 mm
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Figure 13. Stretching of a circular thin sheet by an elliptical punch: Punch force versus punch displacement curves for
hemispherical and elliptical punch with vg = 0-30 and 0-05
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Figure 14. Stretching of a circular thin sheet by an elliptical punch: Distribution of true strain in directions X, and X,
for vp =030 plotted over the initial configuration at various stages of punch displacement. (a) X,-radial strain,
(b) X,-circumferential strain; (c) X,-radial strain, (d) X,-circumferential strain
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of friction vg = 0-30 and 0-05. Figure 12 gives the deformed meshes for different values of punch
displacement for the vy = 0-30 case.

The punch force versus punch displacement diagram presented in Figure 13 gives a comparison
between the results obtained by stretching a circular sheet with an elliptical punch and those
obtained by hemispherical punch stretching with a spherical radius identical to the major radius
of the elliptical punch. Both punch geometries were tested for vg = 0-30 and 0-05. Only a minor
influence of the friction coefficient on the deformation energy can be observed with a pronounced
effect on the maximum value of the punch force. Significant difference between the corresponding
punch force values in hemispherical and elliptical punch stretching signals a uniform strain
distribution and economical usage of material based on predominant biaxial stress states in
hemispherical punch stretching.

The true strain distribution along the major and minor axes is shown in Figures 14 and 15,
respectively, for various punch displacements. Overall, the strain distribution follows trends
typical for an equivalent axisymmetric hemispherical punch stretching problem, with a slight
increase of the strain level along the minor axis. For vy = 0-30 and for punch displacement
D, > 30 mm, we observe from Figure 14(c), a typical localization behaviour along the minor axis
where strain accumulates in a narrow zone, reaching high levels and leading to failure. Spread of
the localization zone is depicted in Figure 16(b), which shows the contour plots of thickness over
the initial configuration. The appearance of localization and the associated failure of the circular
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Figure 15. Stretching of a circular thin sheet by an elliptical punch: Distribution of true strain in directions X, and X,
for vy = 005 plotted over the initial configuration at various stages of punch displacement. (a) X,-radial strain,
(b) X;-circumferential strain; (¢) X,-radial strain, (d) X,-circumferential strain
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Figure 16. Stretching of a circular thin sheet by an elliptical punch: Contour plots of thickness for vy = 0-30 plotted over
the initial configuration at various stages of punch displacement. (a) D, = 30 mm; (b) D, = 40 mm
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Figure 17. Stretching of a circular thin sheet by an elliptical punch: Contour plots of thickness for vz = 0-05 plotted over
the initial configuration at various stages of punch displacement. (a) D, = 30 mm; (b) D, = 40 mm

thin sheet stretched by the elliptical punch prior to a similar failure of the thin sheet stretched by
the hemispherical punch may be explained by a relaxation of conditions of axisymmetry which
are known to suppress localization. We note that the early appearance of strain localization close
to the minor axis of the elliptical punch gradually spreads in the circumferential direction, while
in the hemispherical punch stretching strain localization appears abruptly in the whole ring of
finite elements which is in an identical stress state. For v = 0-05, although high strain levels are
achieved as depicted in Figure 15, no localization is detected up to D, = 40-0 mm. This resultsin a
uniform thickness distribution (see Figure 17) which is the objective of industrial thin sheet
forming operations.
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A standard check of the residual forces based on the Euclidean norm was performed in this
example with convergence tolerance RTOL = 1-0 x 1075 and 1-0x 10”7 for the case vg = 0-30
and 0-05, respectively. To satisfy these convergence tolerances 4-8 iterations were typically
needed. The final configuration corresponding to a punch displacement D, = 40-0 mm is attained
with a total number of 159 and 112 increments for the case v = 0-30 and 0-05, respectively. From
Table IV, which shows the required number of loading increments corresponding to the total
value of the punch displacement D,, it can be seen that the number of increments grows as the
punch displacements D, increase beyond 30-0 mm. This is more pronounced for the vi = 0-30
case, which is connected with an emerging localization pattern of deformation. The rate of
convergence of the Newton-Raphson method measured in residual norms is illustrated for four
typical load steps in Tables V and VI. Whenever the solution is within the radius of convergence,
a quadratic rate of asymptotic convergence is exhibited. We note that line searches were not
performed in these examples. Finally, it should be emphasized that the present algorithm allows
for new nodes entering contact at any iteration within the increment which is reflected in a sudden

Table IV. Number of loading increments for various punch displacements D,
in Example 3

D, (mm) 50 100 150 200 250 300 350 400
Moe Wp=005) 13 23 33 43 53 63 80 112
Moo Vp=030) 14 24 36 47 57T 77 119 159

Table V. Residual norms for four typical load steps for v = 0-30 in Example 3

ny D,=100mm D,=200mm D,=350mm D,=400mm
1 0-688E — 01 0-428E — 01 0-675E — 01 0-795E ~ 01
2 0-628E — 01 0-440E — 01 0-485E — 01 0-757E — 01
3 0-185E — 01 0-229E — 01 0-658E — 01 0-128E + 00
4 0910E — 03 0-667E — 03 0-494E — 02 0-113E - 01
5 0-790E — 05 0-751E — 04 0-547E — 03 0939E — 02
6 0-516E — 06 0-299E — 04 0-567E — 03
7 0-740E — 07 0-181E — 03
8 0-467E — 06

Table VI. Residual norms for four typical load steps for vy = 0:05 in
Example 3

Ny D,=100mm D,=200mm D,=300mm D, =400mm

0-714E — 01 0-810E — 01 0-134E + 00 0-134E + 00
0-548E — 01 0-834E — 01 0-107E + 00 0-931E — 01
0-230E — 01 0-451E — 01 0-133E + 00 0-266E + 00
0-585E — 01 0-244E — 02 0-148E — 01 0-221E — 01
0-162E — 04 0-118E — 03 0-191E — 02 0-110E — 02
0-284E — 06 0-108E — 06 0-510E — 04 0-502E — 02
0-867E — 08 0-515E — 10 0-648E — 07 0-125E — 04

0-258E — 07

00~ AN WL B W=
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increase in the residual norm (as may be observed for iteration 3 of D, = 40-0 mm from Table V)
and obviously destabilizes the convergence process.

7. SUMMARY AND CONCLUSIONS

A model for three-dimensional contact problems with friction based on the penalty method has
been proposed and applied to the unilateral contact of flexible three-dimensional structures. Such
a situation typically arises in thin sheet metal forming operations. Due to the intrinsic similarity
between friction and classical elastoplasticity the constitutive model for friction can be construc-
ted following the same formalism. This fact has been realized early and used extensively in various
approaches to the solution of frictional contact problems (see e.g. References 4, 6, 8, 13, 14, 18, 27
and 33). A numerical algorithm for the plasticity theory of friction based on Wilkins’*! radial
return is described and a non-symmetric consistent tangent stiffness is derived, which has proved
to be crucial for preserving the quadratic rate of convergence typical for the Newton—Raphson
method.

The most important feature of the proposed algorithm is the possibility of successfully tackling
the problems where sharp changes in the magnitude and direction of the frictional forces appear,
as has been shown in Example 1. Although the curvature of the rigid surface is expected to
influence the stability of the algorithm, in the realistic Examples 2 and 3, where frictional forces
suffer continuous changes out of the tangential plane on the rigid surface, accurate and stable
solutions have been achieved in a reasonable number of loading increments when the curved rigid
surface has been discretized with a sufficient number of flat triangular elements.

In terms of future research we mention the possibility of including a more general constitutive
model for friction and generalization to three-dimensional frictional contact problems which
include non-linear contact kinematics.
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