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SUMMARY

The purpose of this work is twofold. First, we demonstrate analytically that the classical Newmark family
as well as related integration algorithms are variational in the sense of the Veselov formulation of discrete
mechanics. Such variational algorithms are well known to be symplectic and momentum preserving and to
often have excellent global energy behaviour. This analytical result is verified through numerical examples
and is believed to be one of the primary reasons that this class of algorithms performs so well.

Second, we develop algorithms for mechanical systems with forcing, and in particular, for dissipative
systems. In this case, we develop integrators that are based on a discretization of the Lagrange d’Alembert
principle as well as on a variational formulation of dissipation. It is demonstrated that these types of structured
integrators have good numerical behaviour in terms of obtaining the correct amounts by which the energy
changes over the integration run. Copyright © 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION AND BACKGROUND
1.1. Overview
We begin with the following intriguing quote from Simo et al. [1]:

What may seem surprising is that all of the implicit members of the Newmark family, per-
haps the most widely used time-stepping algorithms in nonlinear structural dynamics, are
not designed to conserve energy and also fail to conserve momentum. Among the explicit
members, only the central difference method preserves momentum.
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1296 C. KANE ET AL.

Rather little has been done on the analysis and structure of the Newmark family since this work
of Simo, Tarnow and Wong (some earlier literature is reviewed in Section 3). The present paper
aims to fill this gap. The key to our approach is the recent progress in variational integrators based
on the Veselov theory of discrete mechanics and the inclusion of dissipation and forcing into these
schemes using optimization techniques.

We shall show (in a sense that is not entirely obvious) that the classical Newmark scheme is
indeed variational and so is symplectic and momentum preserving. This appears, at first sight, to
contradict the above quote. This apparent paradox is resolved by realizing that the construction of
the conserved symplectic form and the momentum is not done in a completely obvious way, and
thus it is a non-canonical symplectic form and non-standard momenta that are conserved.

It is known that symplectic integrators often have remarkable near energy preserving properties
and we believe that the symplectic nature of the Newmark scheme goes a long way towards
explaining its excellent performance, often better than that of high-order schemes for moderately
long-time integrations of conservative and forced systems (see, for example, References [2, 3] and
references therein). We shall present specific examples of this phenomenon in this paper.

Main results of this paper: The main accomplishments of the present paper are:

1. We show the precise sense in which the Newmark algorithm is variational.

2. As a consequence of its variational nature, the Newmark scheme exactly preserves a certain

symplectic structure and a certain algorithmically computed momentum (linear or angular

momentum, as appropriate).

Dissipation and forcing are incorporated into the Newmark and variational schemes.

4. Numerical tests of these schemes are given for some relatively simple systems to demonstrate
their effective performance.

b

1.2. Background on geometric integrators

1.2.1. Mechanical integrators There is a large literature that has developed on the use of energy—
momentum and symplectic-momentum integrators. For time stepping algorithms with fixed time
steps, the theorem of Ge and Marsden [4] led to a general division of algorithms into those that
are energy—momentum preserving and those that are symplectic-momentum preserving.

If one takes a spacetime view of variational integrators, as is advocated in Reference [5], then
one can have integrators that preserve the energy, momentum and the symplectic structure, as
has been shown in Reference [6]. Papers typified by Simo and Tarnow [7], Simo et al. [1] and
Gonzalez [8] have focussed on energy preserving algorithms, but they presumably fail (except,
perhaps, in special cases, such as integrable systems) to be symplectic. For a survey of other
literature, see Reference [9].

1.2.2. Accuracy of solutions It is well known that structure preservation alone does not guarantee
accuracy of individual trajectories (see, e.g., References [10, 11]). Complicating this issue is the
fact that for systems with complicated, unstable, or chaotic trajectories, accuracy of individual
trajectories is presumably not the correct question to ask. Rather one should probably concentrate
on accurate prediction of statistical or stably reproducible properties of solution families. However,
as has been frequently demonstrated and we shall do so here as well, in many circumstances
structure preserving algorithms often perform remarkably well—far better than an error analysis
would suggest.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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One also must be cautious here. When the time steps are too large, symplectic schemes may
have bad energy behaviour and fail to be accurate. See, for example, Reference [12]. Consistent
with this, it is also known that the Newmark method can perform badly on some nonlinear systems
with moderately large time steps, and it is certainly not unconditionally stable. The results in this
paper do not contradict this, as our results hold only for sufficiently small timesteps, and do not
address the short term stability bounds of the integrators. We discuss this issue further in Section 3.

1.2.3. Discrete Lagrangian mechanics and integrators Veselov [13] developed a discrete version
of Lagrangian mechanics with an emphasis on variational methods (see also Reference [14]). In
particular, he showed, as in the theory of generating functions, that the corresponding discrete
Euler-Lagrange equations define symplectic maps. Using these ideas, it can be shown that several
well-known algorithms, such as the Verlet and shake methods, are variational integrators (see
References [15, 16]). There have been considerable additional efforts in this area, such as Marsden
et al. [5], Kane et al. [6], Marsden et al. [17, 18] Bobenko et al. [19], and Bobenko and Suris
[20]. We shall comment on some of the related developments below and in the body of the paper.

In structural mechanics, the f=0, y=1/2 (central differences) member of the widely used
Newmark family has been known to be symplectic and momentum preserving for some time (see,
for example, Reference [1]). This was shown by more or less ad hoc techniques as a ‘curious
observation’. One of our main results is to extend this to all members of the Newmark family
(for unforced mechanical systems with y = 1/2). We shall do this by showing that the Newmark
algorithm is indeed variational in the sense of Veselov.

1.2.4. Dissipation A second main point of this paper is to demonstrate the effectiveness of varia-
tional techniques for dissipative or more generally, forced mechanical systems. One possibility is
that dissipative effects can be dealt with by means of product formulas, as in References [21-23].
Another is to incorporate the dissipative effects into the variational principle, as in Reference [24]
(see also Reference [25]). We shall abstract some of these techniques in this paper.

1.2.5. Constraints Constraints are of obvious importance for integrators. We do not discuss these
in any detail in this paper. However, we do mention that variational integrators usually handle
constraints in a simple and efficient way using Lagrange multipliers, as shown in, for example,
Reference [16]. In addition, when handled variationally, constraints do not disturb the symplectic
or conservative nature of the algorithms. It is well known that other techniques can run into trouble
in this regard. See, for example, the discussion of this point in Reference [26].

1.2.6. Multisymplectic integrators Variational methods also generalize to pde’s using multisym-
plectic geometry with the result being a class of multisymplectic momentum integrators. See Ref-
erence [5] for details and numerical examples; see also Reference [27]. This type of approach
should ultimately be of use in elastodynamics as well as ocean dynamics, for example.

1.2.7. Symmetry and reduction We should also mention that for mechanical systems with sym-
metry, the investigation of discrete versions of reduction theory, such as Euler—Poincaré reduction
are of current interest (see, for example, References [17, 18]). We will not be making use of this
reduction theory in this paper, but this work is related since our integrators are intended to preserve
symmetry.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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2. VARIATIONAL INTEGRATORS

2.1. A review of variational integrators

2.1.1. Variational algorithms Variational schemes following the Veselov discretization technique
are now well known and we briefly review them here. See, for example, References [5, 6, 15-18].
These schemes are known to be automatically symplectic (and are often second-order accurate)
integrators that preserve conserved quantities (such as linear and angular momentum) associated
with symmetries provided the discrete Lagrangian has these symmetries.
We briefly recall these schemes here. Given a configuration space Q, a discrete Lagrangian is
a map

Li:0Ox0—R

In practice, Ly is obtained by approximating the action function associated with a given Lagrangian
as we shall discuss later, but regard L4 as given for the moment. The time step information will
be contained in Ly and we regard Lq as a function of two nearby points (g, gr+1)-

Example. Consider a continuous Lagrangian of the standard form

L(g:4)=34"Mq — V() (1)

where M is a symmetric positive-definite mass matrix, g€ R" =0 and V is a given potential.
Define an associated discrete Lagrangian, L} : O x O — R by

Li(qo,q1)=hL <(1 — @)qo + aq1, %) o)

where 7€ R, is the time step and 0<<a <1 is an interpolation parameter. Using the given form
of L, this becomes

1 —q\ -
Lﬂ%qn—h2<mh*)A471h%>hWUamo+mu 3)

We shall return to a systematic study of discrete Lagrangians of this form shortly in Section 2.2.

For a positive integer N, the action sum is the map Sy : OV! — R defined by
N—1
Sa= " La(qr>qi+1) (4)
k=0

where ¢x € O and k is a non-negative integer. The action sum is the discrete analog of the action
integral

b
s= [ Law.do)ar (s)
a
The discrete variational principle states that the evolution equations extremize the action
sum given fixed end points, gy and gy. Extremizing Sy over ¢i,...,qy—1 leads to the discrete
Euler—Lagrange (DEL) equations:
DiLa(Gr+15qk+2) + DaLa(gk, gi+1) =0 (6)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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for all k=1,...,N — 1, where DL denotes the derivative of L with respect to its first slot. We
can write this equation in terms of a discrete algorithm:

®:0x0—-0x0
defined implicitly by
DiLgo®+DyLg=0
ie.
D(qr> Gi1) = (Gks15 Gie+2)

If, for each fixed g € O, the map D;L4(q,q) : T,0 — Tq*Q is invertible, then DLy : O X Q —
T*Q is locally invertible in a neighbourhood of the diagonal and so the algorithm ® is well
defined for small time steps.

Example. For the discrete Lagrangian (2), the DEL equations are readily computed to be

M
ﬁ(QIﬁLZ —2qk1 +qi) = —(1 —a)VV((1 — )qir1 + agqi2) — oaVV (1 — o)qr + agir1)  (7)

This specific example will play an important role in subsequent sections of the paper.

2.1.2. Variational algorithms are symplectic To explain the sense in which the algorithm is sym-
plectic, first define the fibre derivative (or the discrete Legendre transform) by

FLi: OxQ—T*0; (q0.91) — (q1.D2La(q0.q1)) (8)
and define the 2-form ;, on Q x Q by pulling back the canonical 2-form Q=dq' A dp; from
T*Q to O x Q:

Qp, = (FLa)* ()

The alternative discrete fibre derivative FL4(go,¢1):= (g0, —D1Lda(qo,¢1)) may be used and the
results obtained will be essentially unchanged. Either definition may be regarded as an analog of
the standard Legendre transform

FL:TQ—T*0; (4.4) = (9.D:L(¢,4)) ©)

An expression for €2, in terms of the co-ordinates gh, ¢ of the points go, g is

Ly ; ;
Q1 = ——(q0,91) dgp N dgy
049,047
A fundamental fact is that the algorithm ® exactly preserves the symplectic form 1,. That is,
D*Qy, =Qy,.

One proof of this is to simply verify it with a straightforward calculation—see Reference [16]
for the details. Another approach is to derive the same conclusion directly from the variational
structure, as is done in Reference [5]. This value of this latter approach is particularly apparent
when one wishes to consider extensions to variable time-step schemes, as in Reference [6] and to
problems involving collisions as in References [28, 29].

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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2.1.3. The algorithm preserves momentum Recall that Noether’s theorem states that a continuous
symmetry of the Lagrangian leads to conserved quantities, such as linear and angular momentum.
One can directly derive these conservation laws using the invariance of the variational principle
(this is the way Noether originally did it).

Assume that the discrete Lagrangian is invariant under the action of a Lie group G on Q, and let
¢ e g, the Lie algebra of G. By analogy with the continuous case, define the discrete momentum

map, Jg: O x 0 —g* by
(Ja(qr> gi11), &) = (D2La(qk> Gi+1)s S0 (qrs1)) (10)

A second fundamental fact is that the algorithm ® exactly preserves the momentum map.

Example. Consider a Lagrangian of the usual kinetic minus potential energy form as above:

L(g.4)=34"Mq — V()

and the discrete Lagrangian (2). Assume that ¥ is independent of ¢' so that p; =[M¢]; (the first
component of M¢) is a constant of the motion for the continuous system (g' is a cyclic variable).

The corresponding conserved discrete momentum map given by (10) is the algorithmic analog
of the momentum in the first co-ordinate direction (notice that the time step /4 cancels in the
calculation):

Ja(qr 1) =M (qrv1 — qi)]s

Being a constant of the motion means that J4(gy,gr+1) is independent of k. One of course can
verify this directly, but it is guaranteed by the theory. Related examples such as linear and angular
momentum for systems of particles or rigid bodies proceed in a similar way.

2.1.4. Associated energy The energy function associated to a given discrete Lagrangian is defined,
according to Kane et al. [6], by

0
Ea(qo-q1.h) ===, [La(qo. 1. )] (11)
where the time step has been inserted explicitly into the discrete Lagrangian in its third variable
slot. One can motivate this definition of the energy using the variational principle and this definition

may be viewed as a discrete form of the Hamilton—Jacobi equation.

Example. For the discrete Lagrangian (2), the associated discrete energy is easily verified to be

1 —q0\ -
Eiqo.q1:m) =5 (‘“ ; q“) M(‘“ ; q”) + V(1 = %)+ oq1) (12)
In this example, we can write this as
Eﬁ(qo,ql,h)zE((l — )0 + o1, <m ;%)) (13)

where E(q,q) is the energy function associated with the original Lagrangian L(g,q).

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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2.2. Construction of mechanical integrators

Assume we have a mechanical system defined by a Lagrangian L : 7Q — R. If Q is an arbitrary
manifold, then one typically proceeds by embedding it within a vector space and treating Q as a
constraint manifold. We will assume for simplicity that O is a linear space.

We regard the discrete action sum (4) as an approximation to the action integral (5). Therefore,
it is natural to choose the discrete Lagrangian Ly : O X O — R to be an approximation

h
La(do,q1) ~ /0 L(g(0). (1)) dr

where ¢(¢) is a true trajectory of the system that moves from gy at time =0 to ¢; at time
t=h. The right-hand side, of course, is Jacobi’s form of the exact solution S(qo,q;,%) of the
Hamilton—Jacobi equation.

We have already introduced one important class of discrete Lagrangians, namely L] in
Equation (2). Another class of examples will be introduced below.

We introduce the useful evaluated acceleration notation:

v =M=V (1 = )qr + 9qi+1)] (14)

With this notation, the algorithm (7) reads

1
ﬁ(%ﬂ = 2q511 + qx) = (1 — o)t 140 + 01y (15)

This is a second-order accurate implicit algorithm on Q x Q. For a Lagrangian not of the special
form above this need only be a first-order accurate algorithm for general o, but is second-order
accurate for o =1/2.

A second choice of discrete Lagrangian is a symmetric version of the expression (2) for L3,
defined by

- h _ A _
1 (anan =52 (( =0 +on P52 ) + 2 (s + - L) o)

where, once again, 7 € R™ is the time step and « €[0,1] is a real parameter.

For this discrete Lagrangian the corresponding discrete Euler—Lagrange equations also have a
symmetric form. For L given by (1) and using the evaluated acceleration notation (14), the DEL
equations are

%(qu% = 2qk+1 + qK) = %(1 — 0140 T %tmkuﬂ + %“akﬂx + %(1 — )41 (17)

These equations define a second-order accurate, implicit algorithm for any parameter o, and are
still second-order accurate if we use an arbitrary Lagrangian L.

Both algorithms (15) and (17), derived from L% and L7™”, respectively, preserve the associated
discrete symplectic form €2, and the discrete momentum map. By choosing o correctly these two
algorithms recover many schemes known elsewhere under different names. Some examples of this
are mentioned below.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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2.3. Representations of variational integrators

One may think that the discrete symplectic form and momentum map that are conserved by the
variational algorithm are somehow ‘concocted’ to be conserved. This is not the case. Indeed,
one can, via the discrete Legendre transform, transfer the algorithm to position-momentum space.
Transferred to these variables, the algorithm will preserve the standard symplectic form dg' A dp;
and the standard momentum map. If desired, one can then use the continuous Legendre transform
to move the algorithm to 7Q, where it will once again preserve the standard Lagrangian symplectic
two-form {2; and the standard momenta.
To state these ideas more clearly, we summarize the three phase spaces we are using.

Phase space ‘ Local co-ords. ‘ Symp. form ‘ Function
T*Q (¢.p) Q Hamiltonian H
Uy (¢:9) Q Lagrangian L
oxQ (90, 41) Qr, | Discrete Lagrangian Lg

The standard mappings between the phase spaces given above are
OxQ
FLg
Q0 —— T*Q
FL

In this section we will be using the symmetric discrete Lagrangian L} and assuming that the
Lagrangian L is given by (1). With these definitions the continuous and discrete fibre derivatives
given by (9) and (8) have the form

FL(g.9) = (¢.M¢q)

Sym. o 1 h
FLY™*(q0.q1) = <41,M[z(f]1 —qo) + E(MOH +(1 - 0‘)%-0})

2.3.1. The variational algorithm on T*Q Pushing the variational algorithm (17) forward with
FLY™" we obtain an implicit algorithm, which we denote

(qk> )= (qis15 Pir1)

given by
1 h*
Qi1 =qr +hM ™" p; + ?[(1 — )ty + 01— ]

1 1
Dir1 = pr + hM (2ak+oc + zakﬂ—a)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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This algorithm is second-order accurate for any « and preserves the canonical symplectic form
Q and the standard momentum map.
Considering the particular case of o« =1/2 we see that the above algorithm can be written

M- (Pk+1 + Pk)

l( k+1 — Gk ) _ 2
h\ Pk+1 — D
+ vy <qk+1 +qk>
2
which, for z=(q, p), has the more compact representation
Zk+1h— Zk — Xy <Zk+12+ Zk) (18)

where X} is the Hamiltonian vector field corresponding to the Hamiltonian
H=3p'M~'p+V(q)

This is the classical midpoint rule.
We summarize the results in the following:

Theorem 2.1. The classical midpoint rule (18) is, via the discrete Legendre transformation, a

variational algorithm with the choice Lq=L}™" and o= 1/2.

2.3.2. The variational algorithm on TQ Next, we pull the variational algorithm back with FL
from 70 to TQ to obtain an algorithm (gx. g, )— (qi+1,G,,,) given by

) W
Gi+1 =Gk + hg + 7[(1 — )t + 01— ]

Gip1 =Gk + MG kio + 30i1-2) (19)

This algorithm is second-order accurate for any o and preserves the standard Lagrangian
symplectic form {2, and the standard momentum map.

Aside from the midpoint rule mentioned above, a number of other classical integrators are
also special cases of variational schemes. We get the shake algorithm with L% for a=1 (the
Verlet algorithm is the unconstrained version of the shake algorithm). The Moser—Veselov discrete
Lagrangian for the rigid body is constructed using L% with either « =0 or 1 (see Reference [17, 18]
for details).

3. THE NEWMARK ALGORITHM IS VARIATIONAL

The goal of this section is to prove that the Newmark scheme for conservative mechanical systems
is variational, and to discuss some of the implications of this fact. The variational nature of the
Newmark scheme and its performance is of particular interest because of its widespread use in
finite element codes.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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3.1. Newmark schemes

We begin with a mechanical system on Euclidean n-space with a Lagrangian of the form

L(g.9)=34"Mq —V(q) (20)

where ¢g,4 € R", M is a constant symmetric and positive-definite mass matrix, and ¥ is a given
potential energy.
The corresponding Euler—Lagrange equations are, using vector notation

MG=—-VV(q) (21)

The Newmark family [30] is one of the most widely used algorithms in structural dynamics.
General references are Hughes [31] and Geradin and Rixen [32]. This family is usually written
in the following way. Let y and f be real numbers, 0<y<1, 0<f<1/2. Given (g, q,), find
(9k+154G41) such that

Qi1 = qk + hq + h;[(l = 2B)ax + 2Bax+1] (22)
Qi1 = 4 + AL = P)ar + yarii] (23)

where we are using the convenient evaluated acceleration notation as earlier, defined by
ar =M~ (=VV(qr)) (24)

We recall that the Newmark algorithm is second-order accurate if and only if y = 1/2, otherwise
it is only consistent. Thus, one usually chooses y=1/2. If §=0 then Equation (22) is an explicit
equation for gy in terms of (g, q, ), making the =0 case known as explicit Newmark.

Detailed analyses of the Newmark algorithm, its stability and energy preserving properties (for
linear systems, 5 = 114) were given in Belytschko and Schoeberle [33], Hughes [34] and related
papers.

3.1.1. Simple comparison The relationship between the Newmark algorithm and the variational
schemes discussed earlier can be clearly seen by comparing the «=1/2, f=1/4 Newmark:

) W (a; +a
Gk+1 = qk + hg;, + ?<%>

. . ai + g4
Gr+1 =9k +h<%>

to the L})™" with o= 1/2 variational scheme:

2
Gr+1 = G + hg, + o r12

4k+1 = (jk + hak+1/2

Looking at these two equations, we see that Newmark averages forces, whereas the variational
method evaluates forces at averaged positions. We now show that this is not, in fact, an essential
difference, and the algorithms are in fact equivalent.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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3.1.2. Newmark as an update of configuration points As we have already seen, it is possible to
regard variational algorithms either as updates of positions (g, gx+1)+ (grr1,qk+2) or as updates
of positions and velocities (gx, gy ) (qi+1,4;)- This is also true of the Newmark algorithm, and
to compare these two schemes it will be beneficial to work with both of them in position-update
form.

Firstly, note that the velocities in Newmark can be recovered from the positions using (22).
This gives

. 1 h
gy = Z(Qkﬂ —qir) — 5[(1 = 2B)ak + 2fak1]
. 1 h
Qey1 = Z(é]km — k1) — 5[(1 —2P)ak1 + 2Pag2]

Substituting these two expressions into the velocity update Equation (23) and rearranging we obtain
an explicit expression reminiscent of that for the variational algorithm:

1
ﬁ(q“z = 2qs1 +qi) — Par2 + 2B =y = 1/2)ap 1 + (=B +7—1/2)ar =0 (25)

3.1.3. Equivalence of Newmark and variational schemes We will explore three ways in which
the Newmark and variational schemes can be regarded as equivalent:

1. For certain parameter values, or for linear systems, the Newmark algorithm is the same as
the transformation of the variational algorithm corresponding to L3™" from O x O to TQ
using the Legendre transformations for L7™" and L.

2. Under much more general assumptions, we will show that any Newmark trajectory with
y=1/2 and f<1/4 is shadowed, in a sense we will make precise, by a trajectory of a
variational algorithm.

3. Finally, we will establish that any Newmark algorithm with y=1/2 is directly variational.
That is, we will construct a discrete Lagrangian Lg for which the discrete Euler—Lagrange
equations are the Newmark method for y=1/2 and the given f.

We will cover each type of equivalence in turn. The first way is more elementary, direct, and to
some extent known. Of primary interest are the second and third methods, but we include the first
for completeness and for motivation.

3.2. Central differences and linear systems

We shall start the process of proving that Newmark is variational with the well known cases when
p=0 and y=1/2, or any Newmark scheme with y=1/2 and f<1/4 for a linear system.

Theorem 3.1. The Newmark algorithm with =0 and y=1/2 is the same as the variational
sym, o

algorithm derived from L; with =0 or 1 pushed forward to 7Q with the discrete Legendre
transform.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325
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Proof. Substituting the specified parameters into the Newmark equations (22) and (23), and
into the variational equations on 7Q (19) we see that in both cases we obtain

h2
Gi+1 = qk + hg + -

Gri1 = Gx +h(Gax + Yagi1)
and thus have equivalence. O

3.2.1. Linear systems One can say a little more in the case of linear systems, that is, in the case
of quadratic potentials. This is interesting because of the long history of Newmark in the linear
finite element literature.

Theorem 3.2. For potentials V' so that VV is affine, Newmark with y=1/2 and any f<1/4 is
the same as the L7™" variational algorithm when « is chosen so that f=o(1 — o).
A special case of this is the variational nature of the (comstant) average acceleration method

(B=1/4, y=1/2) which is equivalent to the L7™* («=1/2) variational algorithm.
d

Proof. Once again this is a simple verification. For affine VV we have that aj., = (1 — a)ax +
aary1 and substituting this into the variational Equation (19) and rearranging we obtain

) n?
Gk+1 = qk + hg, + E((l —2[o(1 — o) Dax + 2[o(1 — o)]ars1)
Qi1 =G + h(3ar + Yags)

which is Newmark for f=o(1 — «) and y = 1/2. For any given f<1/4 there is clearly an o so
that f=o(1 — a). O

3.3. Shadowing of Newmark trajectories

We will now turn to a much more general class of Newmark algorithms and consider their action
upon general non-linear systems. In both this section and the next we are concerned with Newmark
algorithms with the parameter y equal to 1/2.

This assumption is not as restrictive as it may initially appear. It is well known (see, for
example, Reference [31]) that with y <1/2 Newmark numerically dissipates energy and with y>1/2
it numerically increases energy. For this reason one would not expect that Newmark with y £ 1/2
would be symplectic, and hence not variational.

The first way in which we establish the variational nature of Newmark is to show that any
y=1/2, f<1/4 Newmark trajectory will be shadowed by a variational trajectory, and vice versa.
By this, we mean that there is some parameter o so that each point x; of the Newmark trajectory is
equal to the interpolation (1 —a)q;+agrr1 of two points gx, gr.1 of the variational trajectory. This
can be clearly seen in Figure 1, which shows a Newmark and a variational trajectory shadowing
each other.

In this section we will always use x; to denote points on a Newmark trajectory and g; to denote
points on a variational trajectory. In this equivalence we are only interested in the trajectories in
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Figure 1. A Newmark trajectory (solid line) and its ‘shadow’ variational trajectory (dashed line).

configuration space O and do not consider the velocities. The reason this is possible is that
Newmark can be regarded as a position-update only algorithm, as discussed in Section 3.1.

We now give a lemma containing the fundamental fact behind the shadowing variational nature
of Newmark.

Lemma 3.3. For any qo,q1,q> and g3 lying on a trajectory of the LY variational algorithm for
some o, the points x¢, x; and x, formed by

xp = (1 — a)gr + ogir
satisfy the position-update Newmark algorithm with f=o(1 — a) and y=1/2.

Proof. Begin by noting that, by assumption, the two triples (qo,q1,92) and (q1,¢2,g3) both
satisfy the discrete Euler—Lagrange equations (15).

Now substitute the expressions for x; and f=o(l — a) into the left-hand side of the position-
update Newmark algorithm (25) to obtain

%(—0% + Bo—1)g2 + (2 = 3a)g1 + (¢ — 1)go) — a(1 — o)DV((1 — a)g2 + aq3)

— (20> — 20+ DDV((1 — a)q; + agz) — (1 — )DV((1 — a)go + q1)

This expression can be rearranged to give

—4 [%(—qs 245 — 1) — (1 — )DV((1 - 2)gs + ags) — aDV(1 — )g + 0‘%)}
+(1—a) [%(—(h +2q1 —qo) — (1 =)DV ((1 — a)gqy + aq2) — aDV((1 — at)qo + Olm)}
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Each of the bracketed expressions is just the discrete Euler—Lagrange equations satisfied by the
sets ¢1,492,q3 and qo,q1,q2, and thus the entire expression is zero, as claimed. O

Theorem 3.4. Taking y = 1/2, given any parameter § with 0<<ff<1/4 and any initial conditions
(xp,%9) for Newmark, there exists, for small time steps 4, initial conditions (go,q;) and parameter
o for the L} variational algorithm so that the Newmark and variational trajectories are related by
Xy =(1 — a)qr + agy41 for all k. That is, the trajectories shadow each other for all time.

Conversely, given a parameter « and initial conditions (go,q:) for the L} variational algorithm,
there exists initial conditions (xg,%¢) and parameter f§ so that the same conclusion holds.

Proof. The proof of this result is essentially a repeated application of the preceding lemma as
time increases. The parameters o and f§ must always be taken so that f = «(1 — a). Note that this
implies two possible values of o for any given <1/4, except for the ‘midpoint’ case f=1/4 and
a=1/2.

Given initial conditions (xg,x¢) for Newmark, compute (x;,x;) with one step of Newmark. Now
we must find ¢g,q; and ¢, so that

DiLi(q1,92) + D2Li(q0.q1) =0
(1 —a)go + ag1 =xo
(1 —o)g + agr =x;

This is done by the implicit function theorem. First, note that if we multiply the first equation by
h so that it is regular at #=0, then for #=0, we have the trivial solution xy =x; =qo=¢1 =¢>.
Now we linearize around this solution; the relevant Jacobian determinant is computed at this
solution to be (1 + a?)det M, which is not zero, so we have solvability for small 4.

For the converse, given (qo,q;), step once with the variational algorithm to find ¢,. Form x
and x; by interpolation and then use the position Equation (22) of Newmark to find xy. That is,

1 h
Xo =7 (x1 —x0) = S[(1 - 2p)ao + 2fa1]
This completes the proof of the shadowing variational nature of the Newmark scheme. O

It may appear at first that the properties of the variational algorithm will not be inherited by
the Newmark method, as we have only established equivalence of the position-update forms of
the algorithms in a shadowing sense. In fact, we can regard the ‘shadowing’ of trajectories as an
implicitly defined non-linear co-ordinate change, and the transformation (q,qx+1)— (qk. g, ) for
both Newmark and the variational method is also simply a co-ordinate change. Thus, we have
that the Newmark and variational algorithms are simply the co-ordinate transformed versions of
each other. The advantage in the shadowing result is that it provides clear physical insight into
the relationship between the simple L] variational algorithm and Newmark.

3.4. Newmark itself is variational

Now, we are ready to show the sense in which Newmark itself is directly variational, and thus
symplectic and momentum conserving, for y=1/2.
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This technique was suggested by Y.B. Suris, who made a key remark to us after viewing an
early version of this work. We are most grateful to him for the elegant method of constructing a
discrete Lagrangian which generates the Newmark algorithm.

To construct a discrete Lagrangian for y=1/2 Newmark, we begin by noting that for y=1/2
the position-update form of Newmark (25) can be written

L@k — BEMTV (ge2)) — 2ais1 — BV TV (i)
(g — PRMTIV ()] + MV (gr) =0 (26)

Making the co-ordinate change g; — x; = #”(q)) defined by
xe =1’ (qi)=qx — PPM ™'YV (1)
and introducing a modified potential V(x;), we can write Newmark as

1 .
(62 = st +30) + hM VP () =0 27)

where we require that V(x;) is related to V(gi) by

VPV (xi)=VV(qr)

for x; =nP(qi). Equation (27), however, is simply the discrete Euler—Lagrange equations for the
discrete Lagrangian

1/x —x T X1 — X ~
Ld(xo,x1)=h§< ‘h °) M( ‘h °> — WV (x0)

We now summarize this as a theorem, and prove that the modified potential ¥ actually exists.

Theorem 3.5. The Newmark method with y=1/2 and any f, 0<f<1/2 and / sufficiently
small is the discrete Euler—Lagrange equations for the discrete Lagrangian Lg defined by

B _ b T B 8

where #f(qr)=qi — B*BM 'V V(q;) and V is defined so that VV(##(qx))=VV(qs) for all ¢;.

) — hV (1" (q0)) (28)

Proof. 1f such a discrete Lagrangian is well defined then the above calculations show that the
discrete Euler—Lagrange equations will give the Newmark algorithm with y=1/2 and the given f.
We need only check that the modified potential function V exists, given that it must satisfy the
relation

VV (P (qe) =V (qr) (29)

We introduce the following notation:
n"(q) =q— PR*M~'VV (q)
) ="
X(x) =V ()
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and observe that we are trying to establish that X(x) is the gradient of some function. A necessary
and sufficient condition for this is for the following to hold:
X,  0X;

ox/  oxt

=0 for all i,j (30)

Using V2V to denote the matrix of second partial derivatives of ¥ and DEF to denote the matrix
of derivatives of ¢f we see that the left-hand side of (30) is

(V2VDERT — (V2VDER) (31)

Computing Dnf =1 — pR2M~'V?V it is clear that the symmetry of M and V2V implies that Dy’
satisfies the relation (Dnf)TV2V = V2V DyP. Using the fact that Dyf and DEP are inverses allows
this to be rearranged to yield V2V D& =(DEPYTV?V, and using again the symmetry of V2V
shows that (31) is zero and thus condition (30) is satisfied.

Since we are working in R”, we conclude that a function ¥ with the desired property (29)
exists, and so Lg is well defined and generates the Newmark method for y=1/2 and any . O

3.5. Consequences of Newmark’s variational nature

There are three ways of interpreting the variational and symplectic nature of the Newmark inte-
grator. Firstly, one can consider the Newmark and variational schemes to be essentially the same,
except the variational method has the right form to exactly conserve the momenta. As the two
methods have almost identical implementations, one could simply change to using the variational
integrator.

A second way to interpret this result is to realize that it implies that Newmark will exactly
preserve momenta and a symplectic form, except they will not be quite the obvious ones we
are used to writing down. It is possible to derive expressions for these momenta and the non-
canonical symplectic form conserved by Newmark, but the expressions can be rather unwieldy.
We give an example of this below. The observation of Simo er «l [1] that central differences
Newmark preserves momenta evaluated at midpoints seems to be consistent with this.

Example. Let us work out the nature of the Newmark conserved quantity associated to the first
co-ordinate being cyclic. We considered this example in the introduction for the variational algo-
rithm. As usual, we consider a Lagrangian of the usual form of kinetic minus potential energy:

L(g.4)=34"Mq — V(q)

Assume that ¥ is independent of the first component ¢' of ¢, so that p; =[Md]; is a constant of
the true continuous motion.

If we use the Newmark method to simulate this system, obtaining a trajectory {q;}, then we
know that the corresponding discrete momentum map derived from Lg will be conserved. Com-

puting this gives
Blary — nPlan.
Jy = [M<71 (gx) h’? (g« 1))Dnﬁ(qk)]

1

which will be a constant, that is, independent of £.
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Note that ## is the identity plus a term of order #%. The naive approximation of pi, using a
simple finite difference approximation of ¢, is thus related to the true discrete momentum by

Jo= [M(%)] o)
1

showing that the usual discretization of momentum will be preserved up to order /4.

More useful than actually finding the exactly conserved structures is to use them in a third
interpretation of the variational nature of Newmark. The existence of nearby conserved quantities
allows us to conclude the following.

Theorem 3.6. For sufficiently small time-step 4, a regular value of the momentum, and assuming
that the solutions computed by the Newmark algorithm (22), (23) with y=1/2 are bounded for
all time, then these solutions will have bounded momentum error, uniformly for all time, and this
error will tend to zero as % tends to zero.

Proof. This follows from the fact that the corresponding exactly conserved quantity for the
variational integrator will be evaluated at the interpolated shadowing points for the Newmark
algorithm and that the algorithmic momentum level sets are uniformly close (in bounded regions)
to the momentum level sets for 4 small. O

Using the correspondence between the Newmark and variational schemes, which are symplec-
tic, we can also use results applicable to symplectic integrators to understand the behaviour of
Newmark. An example of this is the work on the energy behaviour of symplectic integrators (see,
for example, References [2, 36] and references therein).

Note that our results in no way guarantee stability of the Newmark method for large time
steps. We have concentrated on a geometric analysis for nonlinear systems, and our results for
structure preservation apply only for some (system dependent) bound on the timestep. As discussed
in Hughes [34, 35], Newmark can perform badly on nonlinear systems with moderate timesteps.
This is a reflection of the short time numerical stability behaviour of Newmark, rather than the
geometric structure. In practice, of course, one must consider both the numerical accuracy and
stability of an integration scheme, as well as its structure preserving qualities.

3.6. Minimization structure of the Newmark algorithm

In this section we consider a different way of writing the Newmark algorithm using optimization
methods. This will be particularly useful when we come to algorithms for dissipative and forced
systems, so we include forces in the formulation already here.

We consider a set of equations of motion of the form

Mg+ f™(q.4)= £ () (32)

with g(¢) € R", and where we regard f*(¢) as a given external force. As for the internal force,
we postulate the existence of a conservative potential V' (q) and a dissipative potential ¢(g,q) such
that

_Wa) | 0e(4.9)

M) =5 (33)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325



1312 C. KANE ET AL.

Dissipative potentials of this sort can be regarded as Rayleigh dissipation functions; we will discuss
these in greater detail in the second half of this paper.
We discretize the equations of motion using the Newmark scheme as follows:

. W
Gk+1 =gk + hq; + 3[(1 = 2B)ax + 2Pag+1] (34)
Mag.1 + fithy = (35)
Grr1 =9qx + A1 —Pax + yax+1] (36)

We define

. K
i1 =ak + hgg + 11 = 2B)ar]
so that (34) reads
Qi1 = qhy) + PR ags

To close this set of equations, we need to supply a relation between k“fl and gi4+1. To this
end, following Radovitzky and Ortiz [25], and Ortiz and Stainier [24], we introduce the effective
incremental potential

Vilgiee) = V(gia) +ho (qm, ""“h‘%) (37)
where
Gk+o = (1 — 0)qk + 0Gi+1 (38)
and ¢ €[0, 1], and write
- Vi(qr+1)
fiti=—g (39)
qi+1

which is consistent with (33) as #— 0 for any choice of o.
The above algorithm can be recast in optimization form as follows. Combine (34) and (35) to
get

pre
qik+1 — ¢ in X
M=+ A =B (40)

Clearly, this is the Euler—Lagrange equation of the function:
1 pre \T pre ext
S(Gr+1) = ﬁ(Qk-&-l — Qv 1) MG — gy ) + BVi(qe) — B - @i (41)

Therefore, under appropriate convexity conditions on ¥ and ¢, the updated configuration follows
as the solution of the minimum principle:

min /(qi+1) (42)

Once gy is determined, the internal forces are computed from Equation (39) and subsequently
the velocities are updated using (36).
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Some remarks about these results are in order:

1. The minimum principle for non-convex potentials can be replaced by a principle of stationar-
ity. However, cases in which one has a minimum are useful to stress for they can be useful for
error estimates and also for the use of optimization techniques, as in References [24, 28, 29].

2. The minimization principle operates on the non-explicit part of the Newmark algorithm. Thus,
in this view, it can be regarded as a two-step procedure; first one computes the predictor point
by an explicit formula and then, secondly, one corrects this with the minimization principle.
This use of the term ‘predictor’ is special to this formulation. We shall use the term slightly
differently in later sections.

3. Notice that in the case of conservative systems (so there are no external forces or dissipative
potentials) this scheme is literally the Newmark scheme for conservative systems, which, as
we have shown, is equivalent to a variational scheme. Thus, the same scheme has both a
variational (and hence symplectic) interpretation as well as obeying an interesting minimiza-
tion principle. These facts together should be useful in extending the analytical results on
Newmark beyond what we have done.

4. NUMERICAL TESTS FOR CONSERVATIVE SYSTEMS

4.1. Example system

To illustrate the performance of some of the algorithms discussed in the preceding sections we
consider a simple conservative system. The example chosen here is a two degree of freedom
non-linear oscillator, consisting of a particle with unit mass moving in the plane with trajectory
q(t) € R? under the influence of the potential

Vg)=llgl*(lgl* — 1)

The Lagrangian describing this problem is thus
L(g.4)=34"¢—V(q)

and the equations of motion are the corresponding Euler—Lagrange equations.

Trajectories of this example system have two conserved quantities. First, the mechanical nature
of the system implies that energy is conserved. Second, the fact that the potential ', and hence
the Lagrangian L, is radially symmetric implies conservation of angular momentum.

We are interested here in the extent to which the different integration schemes actually preserve
these two quantities. This is an issue related to, but different from, the absolute accuracy of trajec-
tories. Although symplectic integration schemes frequently exhibit improved trajectory accuracy,
this is not guaranteed. Nonetheless, we focus here on the preservation of invariants of the system
since these properties will be reflected in an interesting way for the Newmark scheme.

4.2. Tested algorithms
The algorithms for which we present results here are:

o Implicit Newmark: Newmark with f=1/4, y=1/2.
o FExplicit Newmark: Newmark with f=0, y=1/2.
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e Variational: LY™" variational integrator with o= 1/2.

e Runge—Kutta: Fourth-order, fixed time-step.
e Benchmark: MATLAB 5.3 0DE113 (predictor—corrector).

The fourth-order Runge—Kutta method is a classical integrator which makes no use of the
mechanical nature of the system. It is included to demonstrate the behaviour which occurs if one
treats the system as an arbitrary set of equations, rather than taking advantage of their mechanical
structure.

All the integrators except for the benchmark code are run with the same step size of #=0.2 to
provide a reasonable comparison between them. The benchmark code is a high-order, multi-step,
predictor—corrector method which we run with a very small step size. On an example this simple,
the benchmark method can be regarded as essentially identical to the true solution.

The energy at each time-step is evaluated as the energy on 7Q. That is, for the variational
method we use the pull-back of the true energy under the discrete fibre derivative.

4.3. Results

The energy behaviour of the various integrators is shown for a short time in Figure 2. The
same pattern is observed if the simulation is carried out for essentially arbitrarily long times. It is
immediately apparent from this figure that the Newmark and variational methods have qualitatively
different behaviour to the Runge—Kutta technique. This fluctuating energy behaviour of variational
schemes is typical of symplectic methods, and provides a clear indication that Newmark is in fact
symplectic.

The evolution of the angular momentum with the various integrators is plotted in Figure 3. The
results for the variational algorithm and the explicit Newmark method are not shown, because they
exactly conserve the angular momentum of the system, as explained previously. In this figure we
see clearly the Newmark behaviour implied by Theorem 3.6 and that result shows that this oscilla-
tory behaviour will persist indefinitely. While a standard integrator will have divergent momentum
behaviour, the fact that Newmark in variational under a near-identity change of co-ordinates forces
the angular momentum to be almost conserved, with at most the finite fluctuations seen here.

We must caution against attempts to interpret the variations in energy as percentage or relative
errors. This is because the energy of the system is only meaningful up to an additive constant and
so the initial energy, or energy at any given time, is entirely arbitrary. It is also not significant
that the energies of the various trajectories all lie either above or below the exact value. This is
due to the simple nature of the example system, and is not apparent for more complex problems.

Note that the accuracy of the benchmark algorithm is demonstrated by the fact that it preserves
the energy and momentum to within almost machine precision. This will be of use when we
perform numerical tests on dissipative systems for which the true behaviour cannot be analytically
calculated.

5. NUMERICAL ALGORITHMS FOR SYSTEMS WITH FRICTION

Now we consider non-conservative systems; those with forcing and in particular, those with dissi-
pation. The dissipation considered here is of simple Rayleigh dissipation type. In other publications
[29] we use these methods in collision problems with Coulomb friction.
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Figure 2. Energy behaviour of integrators for a conservative system. Note the long-time stable behaviour
typical of the variational method, as contrasted to classical methods such as Runge—Kutta. The stable behaviour
of Newmark is explained by its variational nature.

We consider a given Lagrangian L(q,q) and associated dissipative systems with Rayleigh-type
dissipation of the following form:

d oL OL op
where ¢(g,q) is a given dissipative potential. We are specifically interested in the case when
L has the form

L(g,9)=34"Mq —V(q)

where ¢ € R", M is a constant mass matrix (a positive-definite symmetric #» X n matrix) and
V' is a given potential energy function, so that the equations take the form

. do .
MG=-VV(q) — =-(q.9)
0oq
Let the energy be denoted
E(¢.4)=734"Mq+V(q)

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325



1316 C. KANE ET AL.

0.063
00625 ,f S S

hl, "y “"““ H'”‘I \|||~\; I||l‘l Yy e '|ll R l 1
O'OGZHH‘,IH él''l'l“'I"|'n'I|"ﬂ||,"| I'"“‘“ I”H:"' \ ‘ ““ IH‘“ if '|. |\W|1[n‘”| n”'
b | Ill ||||”| "|l " il It i I ”"' | |Il” Il l]\ I”‘ '||I INPL ,I’ ||, i I ||I My pit |||l Il 'I h H|(| II |I iy Iy ;|I| |l
|||:||, |"“"“1 1 "'m:"' :,“ |:| 'lnl,n“' IIH ‘u " |”,|v| R iy I|I|u :“n I '|" ! i i n"
0.0615 +! ‘l'il'*”::‘l' "'1l"'u'l|"';'”l‘l|l“ ‘”IIH:H"N':“ In"I"”,II“'||I‘|I"”" '| |" L ”“H"Hl Inll‘,'I'"r'ﬂl\l,t, |1”ll:“|”

I'“"m |'I l""l””'ll"ll"'l'll'“|'M'l|”||"||"| ) g III[]\IHII'I\I”'"'I '||l"l"”' tyy 'I'”'“|”'I'|l"‘|"||,"l il "“"1”'”
I"“utl.,ﬂu'|!'||”I‘|,"n dntd ||‘,"u'||m,"' P Lk |'|I'|n|l|,|'||‘I|‘||'|"I'||| iy, i |
N l”“ll“ullj i 1"]' ; lll‘Jlll l”ql'l'v"l,'"'u"'i|""'it'”l"'l":h |’"|1|a ,n”:“hn.”',i“lﬂ ”H“ul'gllﬂ Ilu,llf,,lu, ‘"‘nn" / r"I
fun gy b i | b Iy |
ml'lm.'("llw'l' :h""u{" i H'M H“"'Wl '"L ot i vl

uw' \
0.0605 -1 i:‘i i
'|‘i :Il
| b [
I}

o
o
o
jutd
R

X
|
!
|

Angular Momentum

o
o
Q

T

0.0595F -+ - -: - L B S R

T

0.059

0.0585 1 — — Implicit Newmark |-~ Do =
-~ RungeKutta : : : :
—©— Benchmark

0.058 T T ( I ) L J 1 !
0 20 40 60 80 100 120 140 160 180 200

Time

Figure 3. Momentum behaviour of integrators for a conservative system. Variational results are not plotted
as they exactly conserve momenta. Note the predicted long-time stable behaviour of Newmark, as contrasted
against the divergent behaviour of methods such as Runge—Kutta.

d 0o .
—E=—{q¢,—
ar <q, 3 (q,q)>

The standard example is of course the case

and recall the usual energy equation

¢(¢.4)= 34" Rq

where R is a positive-definite symmetric matrix, so that the energy equation becomes

Our aim is to develop algorithms that have good energy decay properties in the sense that the
algorithms predict the correct energy drop after a long integration run. We shall consider three
types of algorithms (not necessarily in order of performance or preference):

1. Algorithms based on a discretization of the Lagrange—d’Alembert principle as a generalization
of variational integrators.

2. Two step integration methods that separate the algorithms into conservative and dissipative
parts.
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3. Minimization algorithms that are directly related to the Newmark algorithm with forces. Here
the steps are based on explicit—implicit splits.

We will consider these in turn.

5.1. Discrete Lagrange—d Alembert principle

Recall that the (continuous) integral Lagrange—d’ Alembert principle is

o [ Lawrdenar+ [ Fand)-sgdi—o (43)
We define the discrete Lagrange—d’ Alembert principle to be

0> La(qi, qrs1) + 2 [ (qis Gi+1) - 0qk + Fy (qi, Qi) - 0Gr1]1=0 (44)

where Lq is the discrete Lagrangian and F;  and F;" are the left and right discrete forces.
Equation (44) defines an integrator (qi,qr+1) — (qk+1,qk+2) given implicitly by the forced
discrete Euler—Lagrange equations:

Di\La(qr+15Gi+2) + DoLa(qrs qis1) + Fy (G- qis2) + Fy (Grs qrs1) =0 (45)

Example. The discrete force analogues of the symmetric discrete Lagrangian Lzym’“ given in
Equation (16) are

sym, o.— 1 - -
B (qo,q1) - g0 = h [(1 —oc)F<qo+x, 1 . qo) +ocF<q1x, 1 h qo)] - 340

o 1 - 7
F(,]sym, +(q07q1) . 5q1 :hi |:OCF(q0+19 %) + (1 - OC)F((Ilw - h q0>:| . 5q1

where the interpolated positions are gxi, = (1 — a)qi + 0qi+1-

With these discrete forces and the discrete Lagrangian given by L7™”, the forced discrete Euler—
Lagrange equations (45) define a second-order accurate integrator for arbitrary Lagrangian L and
arbitrary force F. In the particular case of L= (1/2)¢"M¢— V(q) and F = F(q) the integrator has
the special form

1 h h h h
“(=Grs2 + 2qk11 — qi) + 5 (1 — )@ y146 + 5012 + 50k 1o + 5(1 — )14

h 2 2 2
fhp( B2 =@ ) g (G Zae) (46)
2 h 2 h

Some numerics and tests of this variational Lagrange—d’Alembert method are given below. [J

5.2. The Newmark algorithm with forcing is variational

It is interesting to note that for forces linear in ¢, such as linear viscous friction, the techniques
used to show that Newmark trajectories are shadowed by variational trajectories still apply, at least
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for the case f=1/4 and y=1/2. That is, trajectories of the average acceleration Newmark with a
linear viscous term added by setting ay =M ~'[—=VV(qi) — y4] are shadowed, in the precise sense,
by trajectories of the variational Lagrange—d’Alembert inegrator (46) with F(g)= —7q.

Considerably greater insight may be achieved, however, by the realization that the technique of
Suris used in Section 3.4 can be extended to the forced case by the appropriate choice of discrete
force functions, showing that Newmark with forcing is indeed a variational algorithm in the sense
of the discrete Lagrange—d’Alembert principle.

The Newmark algorithm for a mechanical system with external forces F(q,q) is given by

) W
Qi+1 =qk + hqg, + 7[(1 = 2B)ay + 2fa 1] (47)

Qi1 = Gy + hl(1 = 7)ak + yari] (48)
where we now include forces in the acceleration terms to give

ar=M""[=VV () + F(qr: 4] (49)

The implicit function theorem can be used to check that (for /4 sufficiently small) the Newmark
equations (47)—(49) implicitly define a mapping (g, gs+1) — (§i> 41 ). This allows us to replace

the force evaluations in (49) with the expressions Flgﬁ and Fl\% defined by
Fia(@ra1) = F(gi,) (50)
Foa (@i 40 = F (G141 (51)
where ¢, and ¢, , are given by the implicit mapping defined by the Newmark equations.

Having made this force substitution now allows us to write Newmark with forcing as an update
of configuration points, in the same way as Section 3.1. This yields

1
Z(Qk+2 — 2qk+1 + qk)

+BhM ™IV (gir2) — (2B — DM ™'V (qrsr) + BhM ™'V V (qi)

_ 1 -
— BhM ™ Ei(qi1. gii2) + 5 (2 — DAM ™ Ry (qi1-Gis2)
1 _ 1 pp—
+ 5 @B — DAM ™ Fi(qe gin) — PhM ™ By (e gie ) =0 (52)

We will now establish that this algorithm can be derived as the forced discrete Lagrange—
d’Alembert equations for the appropriate choice of discrete Lagrangian and discrete forces.

Theorem 5.1. The Newmark method with y=1/2 and any f acting on a forced system is, for
sufficiently small 4, the forced discrete Euler-Lagrange equations for the discrete Lagrangian Lg

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 49:1295-1325



CONSERVATIVE AND DISSIPATIVE MECHANICAL SYSTEMS 1319

and discrete forces Fdﬁ ~ and Fdﬂ ™ defined by

] _ B T B _ B
Lg(qo,qﬂ:h% <'I (g1)—n (qo)> M(”I (q1) —1"(q0)

) — WV (1 (g0)) (53)

h h
_ 1 _
™ (q0.0) = h3 11 = 2Bk (q0. 1) + 2B (90.41)10n " (q0) (54)
1 -
Y (q0.91) = h5 28R (q0. 1) + (1 = 2D)Ei(q0. 40101 (41) (55)

where 1P(qi)=qi—h*BM 'V (qi), V is defined so that VV(#’(qr))=VV(qx) for all g, and
the functions /7, and Fly are as defined in (50) and (51).

Proof. We begin by noting that the discrete Lagrangian Lg , the mapping n” and the modified
potential ¥ are all identical to those used in Theorem 3.5 for the unforced conservative case. We
therefore know that ¥ and thus Lg are well defined, and we have already established above that
Fl\%\; and FI\/I’)I\J,’[ exist, and hence so do Ff ~ and F;iﬂ *. It only remains to check that the forced
discrete Euler—Lagrange equations for (53)—(55) give the position-update form (51) of forced
Newmark.

This is a simple matter of evaluating (45), multiplying on the right by the inverse of Dyf(g,)
and substituting the expression for ##. Rearranging then immediately gives (51), as claimed. [J

The fact that Newmark with y=1/2 is a second-order accurate discrete Lagrange—d’Alembert
integrator implies that its performance should be similar to that of the algorithm (46). As we will
see in the numerical tests in Section 6, this is indeed the case.

5.3. A two-step variational principle for friction

Next, we explore a two step algorithm for problems with friction where the two steps are designed
to split the algorithm into conservative and dissipative parts. We will stick with the case of a
Lagrangian of the form kinetic minus potential energies for simplicity. The second step is based
on an interesting minimization principle.

We believe this algorithm and its companion algorithm which uses an explicit—implicit split,
which are based on optimization methods, may be useful in certain large problems where the
computational savings using optimization techniques can be employed. However, in the present
paper we consider only simple, low-dimensional numerical examples. These two step algorithms
are employed in the work on collisions (see References [28, 29]).

Given (qo,q1), we first compute the point qgred according to the discrete Euler—Lagrange equa-
tions for a given Lq. For example, with the discrete Lagrangian L} with «a=1/2, qgred satisfies

pred pred

9  —2q91+qo / G0 + g1 a+q

2 4 & y( 2L V| E=—2—1]|=0 56
( h2 ) ( 2 + 2 (56)

Of course, as we showed in the first part of the paper, suitably interpreted, this step also
includes the Newmark algorithm. Then we follow this with a second (dissipative) step, which
consists of minimizing the discrete kinetic energy plus the dissipative potential with respect to the
last endpoint.

L1
2

M
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That is, we extremize the following expression with respect to the final endpoint g¢:

U=\ (-t @ —q
2( h2 )M( h2 >+h<p( ; ) (57)

In other words, the equation satisfied by ¢, is given by

pred
%2 — 4 (—ar _
M( = >+qo< p ) 0 (58)

Adding (56) and (58), we see that the term involving ¢5™* cancels and we get

) 1 pred _
M[(lh hq21+qo)]+§ V,<qo;q1)+V,<ql+2q2 _HD/(% q1>:0 (59)

h
which is consistent with the original equations.
We summarize the result in the following

Theorem 5.2. For a Lagrangian of the form kinetic minus potential energy, the following
two-step algorithm is consistent with the equations of motion with dissipative forces derived from
a dissipative potential ¢:

Step 1: Map (gu—1,9n) to (q,,,qgrf?) by means of the discrete Euler—Lagrange equations for a
choice of discrete Lagrangian Lg.

Step 2: Map (¢nq"™%) 10 (s Gas1) by extremizing

d qn+1 — qn
Ka(gni1,q051) + h(p<”+h>

where K, is the discrete kinetic energy, with respect to the final endpoint g, ;.

While this algorithm is not literally a product formula (in the sense of, e.g., Reference [34]), it
has some of the same spirit. It would be of interest of course to see to what extent one can prove
things about the behaviour of the symplectic form and the energy.

5.4. Minimization structure of Newmark with friction

As we explained in Section 3.6, one can write the Newmark algorithm with external forces
using an explicit-implicit split, where all of the implicit part of the algorithm is bundled with
a minimization step. We just note that compared to other possible formulations of Newmark, the
minimization scheme has an additional parameter ¢ used for interpolation in the force evaluations,
so it may depart slightly from other Newmark schemes with external forcing. In the Newmark
simulations below, we mean the ones generated by the scheme given in Section 3.6 with the
computed acceleration initialized to the true acceleration.

One of the advantages of the optimization approach in the scheme here as well as the one in
the preceding section is that it extends in a natural way to problems with Coulomb friction, where
one has to also do an optimization over the friction cone; however, the basic structure of the
scheme remains intact. As we have remarked, this extension of the present method combined with
our work on collisions is discussed in Reference [29].
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6. NUMERICAL TESTS FOR DISSIPATIVE SYSTEMS

6.1. Example system

To demonstrate the behaviour of the algorithms developed in the previous section we consider the
same non-linear oscillator used in Section 4 with a small amount of linear viscous dissipation. In
the notation used in the previous section, we use the dissipative potential given by

-3

.T.
2

o(q)= qq

which corresponds to a force of
F(§)=-10"%

We have chosen a weakly dissipative system to highlight the advantages of the Newmark, varia-
tional and two-step methods. If the dissipation is too high, then all trajectories quickly decay to
zero energy and it is difficult to distinguish any differences between the integrators.

As for the conservative example presented previously, we concentrate here on the accuracy of
the integrators at estimating the energy and momentum evolution. The dissipative nature of the
system implies that both quantities should decrease, so the test becomes the correct estimation of
the overall decay of energy and momentum.

6.2. Tested algorithms

We present results for the same methods used on the conservative system, except that here we
use the two extensions to the variational algorithm for dissipative systems, namely the discrete
Lagrange—d’Alembert method and the two-step minimum work method:

o Implicit Newmark: Newmark with f=1/4, y=1/2.

Explicit Newmark: Newmark with =0, y=1/2.

Variational: LY™", F*™" discrete Lagrange—d’Alembert method with o= 1/2.
Two-step: Two-step minimum work method.

Runge—Kutta: Fourth-order, fixed time-step.

Benchmark: MATLAB 5.3 ODE113 (predictor—corrector).

The integration parameters, such as step size and method of energy evaluation, are all identical
to those used in Section 4 for the numerical tests in the conservative case.

6.3. Results

Two tests are presented here, both on the same system. In Figure 4 the simulation is run for the
same time length as was the conservative system in Section 4. As a more dramatic demonstration
we also run the system for a very much longer time, as given in Figure 5. In both cases we plot
only the energy decay. We do not give the corresponding momentum plots, as they are qualitatively
similar to the energy.

For the example system, the discrete Lagrange—d’Alembert variational method and the two-step
variational method give results which are almost indistinguishable. For this reason only a single
“Variational’ trajectory is plotted in Figures 4 and 5. This should be taken as representative of
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Figure 4. Energy behaviour of integrators for a dissipative system. The variational integrators accurately
simulate energy decay, unlike standard methods such as Runge—Kutta.

both the discrete Lagrange—d’Alembert variational method and the two-step variational method.
The crucial aspect of both of these algorithms is their variational nature.

From these results it is clear that the Newmark method, the discrete Lagrange—d’Alembert
method and the two-step minimum work method all correctly capture the energy decay, unlike
traditional methods such as Runge—Kutta. When the simulation is continued for longer times, this
good behaviour continues, although there are slight deviations at very large times.

The particularly impressive aspect of the energy decay predictions of the variational integrators
is that they are only low-order methods, unlike the fourth-order accurate Runge—Kutta. This is
a clear demonstration of the fact that traditional measures of integrator accuracy, such as local
truncation error, are not necessarily appropriate when discussing variational or symplectic schemes,
as they often perform far better than expected.

As shown previously, the Newmark algorithm is variational, and so we expect the good energy
behaviour seen here. For this reason we have omitted the Newmark method from the longer time
simulation, in order to make the results clearer. In that case Newmark performs similarly to the
other variational methods.

The variational integrators for dissipative systems are expected to be particularly useful for
systems which are nearly conservative, such as mechanical systems with weak dissipation or weak
forcing. This is due to the fact that they perform very well on the main conservative part of the
system, the area where traditional integration schemes introduce most of the error.
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Figure 5. Energy behaviour of integrators for a dissipative system. The variational integrators accurately
simulate energy decay, unlike standard methods such as Runge—Kutta.

Although the example chosen here is very simple, it captures the important aspects of the
numerical behaviour of the variational algorithms. The performance of the algorithms on high
degree of freedom systems, such as finite element discretizations, is of considerable interest.

7. CONCLUSIONS AND FUTURE WORK

We conclude with some general comments and possible directions for future work.

Higher-order integrators: In future work we plan to develop higher-order integrators based on,
for example, more accurate approximations to the action integral. This is closely related to the
technique of forming good approximations to the Hamilton—Jacobi equation, as in Reference [38],
but we believe that one can sometimes be better off using Jacobi’s solution to the Hamilton—Jacobi
equation (the integral of the Lagrangian along a solution to the Euler—Lagrange equations) and
approximating this integral.

Non-linear analysis of Newmark: It is quite possible that the techniques of this paper can
be used to give a non-linear analysis showing the good long-time performance of the Newmark
algorithm. At the moment, most of the analysis is that of error analysis type and for linear systems.

Time adaptive algorithms: As shown in Reference [6], one can achieve conservation of energy in
addition to conserving the symplectic structure (in an appropriate spacetime sense) and momentum
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by using time adaptive techniques. It would be of interest to explore the numerical implications
of this further in the context of the present paper.

Collisions: In Reference [29] algorithms for collision problems are developed. In fact, those
algorithms are consistent with those presented in this paper. The paper [17] explores the addition
of friction to these algorithms.

Multisymplectic integrators: Another area of interest is the development of multisymplectic in-
tegrators for PDE’s following Marsden et al. [5]. It would be of interest to explore these integrators
using Newmark methods coupled with finite element techniques as well as with the addition of
friction or forcing.
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