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SUMMARY 
This paper addresses the formulation and discrete approximation of dynamic contact/impact initial-value 
problems. The continuous problem is presented in the context of non-linear kinematics. Standard semi- 
discrete time integrators are introduced and are shown to be unsuccessful in modelling the kinematic 
constraints imposed on the interacting bodies during persistent contact. A procedure that bypasses the 
aforementioned difficulty is proposed by means of a novel variational formulation. Numerical simulations 
are conducted and the results are reported and discussed. 

1. INTRODUCTION 

Mechanical contact is encountered whenever two or more bodies physically interact along their 
boundaries. Contact is of particular interest in numerous engineering applications ranging from 
metal forming and machine design to soil-structure and structure-structure interaction under 
dynamic excitation. 

The non-linear character of contact boundary conditions allows for very few interesting 
problems to be solved analytically. Since the inception of the finite element method in the late 
1 9 5 0 ~ ~  numerical solutions to contact problems have been intensively investigated by various 
researchers. Conry and Seireg' appear to be the first to treat contact as a quadratic programming 
problem, while Chan and Tuba' first introduced a general slideline methodology. Moreover, the 
works of Francavilla and Zienkiewicz3 on a flexibility approach and Hughes et aL4 on Lagrange 
multiplier methods significantly contributed to the development of robust finite element approx- 
imations, applicable to the simulation of large-scale problems. 

This work is concerned with the time dimension of contact problems. By way of background, 
non-linear elastodynamics is briefly reviewed in Section 2. Section 3 addresses the two-body 
contact problem in the continuous setting, while Section 4 presents Lagrange multiplier and 
penalty formulations in space and semi-discrete integrators in time suitable for finite element 
approximations. Section 5 investigates standard second-order implicit time integrators of the 
Newmark family and their performance in modelling jump conditions in the kinematic fields ( e g  
velocities and accelerations) of the interacting bodies. These integrators are shown to produce 
undesirable oscillatory solutions along the contact surface. In present practice, control of these 
oscillations is attempted by introducing artificial bulk viscocity for the compressive waves in each 
body. In the present work, the original Lagrange multiplier formulation of the two-body problem 
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is appropriately extended so as to eliminate this inconsistency. One- and two-dimensional 
numerical simulations are offered in Section 6 and demonstrate the significance of the proposed 
formulation. 

2. NON-LINEAR ELASTODYNAMICS 

In this section the initial-value problem of non-linear elastodynamics is briefly reviewed. To this 
end, a deformable body B is identified with an open set R in the R3 linear space equipped with the 
standard basis (El, Ez, E3). It follows that a typical material point of B is algebraically repres- 
ented by vector co-ordinates X = (X, , X z ,  X , )  in the undeformed (reference) configuration. The 
boundary of the body, an, possesses a unique outer normal N at each of its points, provided it is 
sufficiently smooth (at least point-wise differentiable). Furthermore, assume that there exists an 
invertible mapping 2T defined as 

2 T : R x R ;  - R 3  I x = % ( X , t )  

where x denotes the position of particle X in the deformed (current) configuration at a generic 
time t. The displacement field, u, associated with the motion, is introduced according to 

u(X, t )  = % - x 
and the deformation gradient, F, as 

The strong form of the initial-value problem of non-linear elastodynamics is described by the 
following set of equations: 

V . P + p o b = p o u  onRxR: (1) 

U = U  on I-, x R,+ (2) 

N * P  = T on T,x R: (3) 

u(X, 0) = uo(X) on R (4) 

u(X, 0) = uo(X) on R (5 )  

In the above, uo and uo denote the initial displacement and velocity fields of the body, respect- 
ively, while P is the first Piola-Kirchhoff stress tensor. Also, po = p o ( X )  is the mass density in the 
reference state and r,, Tt are the Dirichlet and Neumann portions of the boundary, on which 
boundary displacements, ii, and surface tractions, T, are specified, respectively. r, and Tt are 
mutually disjoint and 

meas(r,,) 3 0 
A hyper-elastic constitutive assumption is made in the present context; thus, 

where W is a strain energy functional, per unit mass, expressed in 
measure of deformation. Equations (1 -6) constitute Problem (P). 

An integral counterpart of Problem (P) with reference to both the 

(6) 

terms of some invariant 

temporal and the spatial 
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dimension can be stated by means of Hamilton's law of varying action,5s6 as follows: 

Probiem (V) 
For any given time interval (ti, tf] c R', find ue% such that 

[ ~ p o U . U  - ~oW(u)]dVdt + 1 ~Qpob.iddVdt 
Di 1 In 

+ ~ ! ~ ~ T . i d r d ~ - ! ~ p ~ U . ~ d * ] ' ~ = O  11 11 V i e %  

In the above equation, DGi denotes the Gateaux derivative in the direction of 6. Also, % is the space 
of kinematically admissible displacements for the given problem given by 

42 = {ueH1(S1xR:)Iu = U on TUxR:, u(X,O) = uo, u(X,O) = uo on a} 
while 4 is the associated space of'admissible variations defined as 

6 = {ieH1(RxR:)li = 0 on TUxR:, i(X,O) = 0, h(X,O) = 0 on n} 
After integration by parts on the kinetic energy, Hamilton's law of varying action gives rise to 

a statement of virtual work for the initial-value problem according to l{ !n [ p o i i . h  + poDiW(u) - pob.i]dY- T - i d T  dt = 0 Vie&, (ti, tf] c R +  (7) 
!rt I 

Equation (7) constitutes the basis for the space-time discretization of the problem and will be 
subsequently utilized in the development of finite elements for dynamic contact. 

3. DYNAMIC CONTACT PROBLEM 

In this section a local formulation of the dynamic contact problem is furnished. Considerations 
are restricted to the two-body problem, with generalization to multi-body contact omitted for 
simplicity. Observing the notation of the previous section, the boundary of bodies B' and B2 can 
be uniquely decomposed into three distinct regions according to 

ana=ar: :uar :uc,  a = i , 2  

where C is the common contact surface. Contact is said to occur if meas(C) > 0. Gap and pressure 
functions can be defined along C, by means of projection of boundary points from one body onto 
the other,7 as 

g : ( a n ' - r : ) x ( a n ' - - r , ' ) x R , +  HR; I g = g l + Z ( t )  

p:(aR1-rf)x(aQ2-r'r , ' )xR,+ HR; I p = p ~ + z ( t )  

The dynamic contact problem distinguishes itself from the static in that the inequality 
constraint conditions hold not only for the displacements along the contacting surfaces but also 
for their rates. The impenetrability constraint may be expressed as 

{ [Xp2 + u(Xp2, t ) ]  - [Xp1 + u(Xpl, t)]} .npl(X, t) = 0 (8) 
where npl = n is the outer unit normal from body B' in the current configuration. Time 
differentiation of (8) results in 

[u(Xp2, t) - u(Xpl, t ) ]  .npl(x, t) + { [Xp2 + u(Xp2, t)] - [Xpl + u(Xpl, t ) ] }  -np~(X, t )  = 0 
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which, taking into account that the unit normal, npl, is, by definition, parallel to the distance 
between the contacting points, can be readily shown to reduce to 

[u(Xpz, t) - u(Xpl, t)]*npl(X, t) = 0 (9) 
see Figure 1. Likewise, a second time differentiation on (8) yields 

[u(XPz, t) - u(Xpl, t)].npl(X, t) + [u(XPz, t) - u(XpI, t)]-npl(X, t) = 0 

In the above equation, the second term on the left-hand side quantifies the effect of relative 
motion of the contacting points in the direction tangent to npl . This term is negligible when such 
relative motions are small or contact occurs between relatively flat surfaces; it is ignored in the 
remainder of this work. Then 

[u(XPz, t) - u(Xpr, t)].np1(X, t) = 0 (10) 
As it has been just illustrated in the continuous setting, equations (9) and (10) are obtained directly 
from the impenetrability condition and, therefore, do not represent additional constraints. They 
have been derived here because of their significance in discrete solutions. 

Problem (PJ:  
Given state at time ti for Qa, CI = 1,2, solve (1)-(6) at interval (ti, tf] subject to 

In the case of persistent contact, the two-body problem is summarized as follows: 

p g = O ,  p < O , g > O o n C  

Integral formulations of the problem can be obtained by exploiting the statement of Hamilton's 
law (or, equivalently, the statement of virtual work) presented earlier in this section. A formula- 
tion based on Lagrange multipliers reads as follows: 

Problem ( VL) 
Find (ul, u2, p )  E 9' x 9' x B such that 

jt:il {jaa[p$ua*ia + p$D;.Wa(ua)- p$ba*Ba]dV 

The spaces of admissible and virtual displacements are as in the previous section, while the 

Figure 1. Contact conditions; the unit normal n and its time derivative 
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respective pressure fields is defined as 

P =  ( p € H - ' q C X R g + )  1 p < O ]  

@ =  (~EH-1 '2 (CXRg+)  I PGO]  

and 

Formulations based on various penalty regularizations (in the classical penalty, perturbed 
Lagrangian or augmented Lagrangian sense) can also be obtained in a straightforward manner. 
Particularly, for the classical penalty method a weak formulation of the dynamic contact problem 
is stated as follows: 

Problem ( Vp): 
Find(u', d)~@ x QZ such that 

V ( i i 1 , i i 2 ) ~ & '  x G2, (ti, tf] c R +  

Integral statements such as Problem ( VL) generally form the basis of finite element approxima- 
tions to problems in elastodynamics. In this work, attention is focused on semi-discrete time 
integrators. 

4. SPATIAL AND TEMPORAL DISCRETIZATION 

In light of the above introduction, the domain discretization of the contacting bodies is achieved 
as in the static problem; for a given time, the displacement field, u, and its rates are approximated 
according to 

where A,, is a matrix of basis functions for the entire domain, normally composed by standard 
interpolation functions within each element (no summation is implied on I). Further, vectors 
ufi1, vtIl and a(I) consist of all nodal displacements, velocities and accelerations, respectively. In 
addition, the pressure field is spatially approximated according to 

P x P h =  API)P( 1 1 .  

Moreover, subscript h characterizes spatially discretized fields. It follows that Problem (V,) may 
be recast in the form: 

Find (u: , u$, Ph)E x %!: x ph such that 

J t n  a = l  J 
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M" = 1 P"~ATI)A,,), 
Q'h R'h 

W" = C ptA:,,b" + 1 AT,)"" 

W E  = (- 1)" 1 phATr)n 

Q" = C VAT,)P(U:I)) 

0; r;h 

c h  

and 

wp = 1 g(Uh)ArG, a = 
c h  

In the above definitions, summation symbols over the domain or parts of its boundary refer to the 
usual assembly operation. Likewise, for the classical penalty formulation of Problem (V,) the 
discrete problem takes the convenient form: 

Find (u:, U:)E%~ x such that 

J t n  a = l  

V($, i i , " )~&;  x & i ,  (t , ,tn+l] t R+, 

where again 

wf = (- 1)" 1 &g(Uh)A:,)n 
ch 

A Newmark scheme is employed for the time integration of the spatially discretized equations 
of motion resulting from the Lagrange multiplier or penalty formulation of the contact problem. 
The family of Newmark integrators, as originally suggested in Reference 8, imposes dynamic 
equilibrium at the two end points of the finite time interval At, = tn+l - t,. The general form of 
the integrator is 

u . + ~  = u, + v,At, + $[(1 - 28)a,, + 2Ba,+1]Atn2 

v.+1 = V" + C(1 - Y h +  y a , + J A t ,  

(1 1) 

(12) 
where (e), = (0)(tn). Parameters 8 and y (called the Newmark parameters) may vary according to 

O < B < 0 - 5 ,  O < y < l  

The overall characteristics of any particular Newmark scheme are governed by the choice of the 
above two parameters. In particular, unconditional stability is guaranteed for 2p 2 y 2 0.5, as 
shown in Reference 9. Furthermore, integration is globally first-order accurate (error O(At2)) 
provided that y = 0.5. 

For the remainder of this section, all subscripts associated with the spatial discretization of the 
various fields will be dropped in favour of those pertaining to the temporal description. The 
Lagrange multiplier formulation of the previous section leads to equations of motion written, at 
time t n + l ,  as 

2 
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Use of equations (11) and (12) in (13) results in the elimination of the unknown velocity and 
acceleration fields, thus yielding a set of equations with the displacement vector at time t ,+ as the 
only unknown, according to 

Similarly, the penalty formulation obtained in the previous section is easily discretized in time to 
produce a set of equations in terms of the displacements at t,+ that read 

Equations (14)-(16) are generally non-linear and have to be solved by an iterative algorithm such 
as Newton's method or any of its variants. 

5. DYNAMIC CONTACT/RELEASE CONDITIONS 

In the preceding section, Newmark integrators were employed in the solution of the two-body 
contact problem, where contact/release constraints were imposed on the displacement fields, in 
accordance with (8). Unfortunately, in contrast with the continuous case, the velocity and 
acceleration fields recovered from such an integration scheme do not satisfy the respective rate 
impenetrability constraints realized by (9) and (10). This can be easily seen with the help of 
a simple example: consider a contact between two nodal points, each belonging to one of the 
contacting bodies. The points come into initial contact at time t ,  and the following conditions 
hold: 

x1 + u.' = x2 + u," = 0 

v; = vo, v,' = 8 

a: = a: = 0 

Enforcement of the impenetrability condition on the discrete displacement fields, as defined in 
(ll), along the normal, n, to the contact surface at time t n + l ,  yields 

(XI + u,').n + At,,v: - n  + +At."[(l - 2B)a.' + 2Ba.'+1]-n 

= ( X z  +u,") .n+A.t ,v ."-n+~At .2[ (1  -2/3)a,Z+2fia:+l]-n 

or, taking into account the conditions at t , ,  

provided that p > 0. Likewise, substracting the discrete velocities of the two nodes at t ,+ from 
one another and using again the initial conditions at t,, gives 

(v,'+, - v . '+ l ) -n  = yAtn(a;+' - a,'+l)-n - vo.n 
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which, with the aid of (17), results in 

( v , + ~  2 - v f + , ) - n  = (I; - - 1 ) v o . n  (18) 

Equations (1 7) and (18) illustrate the problematic behaviour of Newmark integrators, when 
directly used in simulating dynamic contact/release conditions. It can be readily concluded that 
the discontinuity in the post-contact velocities is independent of the time step, while the 
discontinuity in the accelerations is inversely proportional to the time step; thus, consistency is 
not attained at At -+ 0. Finally, notice that equations (17) and (18) were obtained without any 
reference to dynamic equilibrium (which, in this case, would only determine the exact position of 
the nodes at time t,+l). 

The above analysis indicates that a special treatment is necessary for an accurate simulation of 
contact/release conditions. Indeed, the discrepancy in the computed rate quantities, although 
immaterial within linear elasticity, can be potentially devastating in non-linear problems employ- 
ing rate-dependent constitutive assumptions. In an earlier attempt, Hughes and co-workers have 
used the Newmark solution as a predictor to be subsequently followed by a corrector step, in 
which velocities were matched on the contact surface by means of a local wave propagation 
analysis. Moreover, accelerations were weighted by the (lumped) masses of the interacting nodes, 
so that dynamic equilibrium be observed after the treatment.4 Here a slightly different methodo- 
logy is proposed based on a priori satisfaction of the impenetrability constraint and its two rate 
forms, corresponding to equations (8), (9) and (lo), respectively. To this end, the Lagrange 
multiplier formulation in Section 3 is augmented by the variational terms 

1 { w:[u:+l - u: - At,v: - At,‘(+ - P)a: 1. a: 1 

- At:pa:+l]-n(f:+l.n) + A”(- l )bf:+l-n + xv(- l)”vi+,.o}dr = 0 (19) 
and 

C { w:Cv:+l - V: - Atn(1 - y)a: 1. a 1 1  I 

- A t , y a i + l ] . n ( i ~ + , - n )  + Aa(- l )” i :+ l .n  + La(- l)”a:+,-n)dr = 0 (20) 
where w: , wz > 0 are weighting functions. Equations (19) and (20) reveal that the Newmark 
integrator is modified along the contact boundary. Particularly, the admissible contact velocity 
and acceleration fields are, in principle, assumed independent of the displacements, while the 
Lagrange multipliers 1, and la enforce the conditions 

[vn+ll]c = O ,  [ [an+l lc  = 0 

where 

[(*)Ic = C(4’ - (0Y1.n 
The multipliers Av and Aa are viewed as generalized momenta, energy conjugate to the contact 
velocities and accelerations, respectively. Equations (1 9) require that 

w,”u,’+, - u.’ - At,vf - At,”(+ - #?)a; - At,’flat+l].n - 11, = 0 

and 

W,”[U,”+~ -u: - A t n ~ ~ - A t ~ ( ~ - / 3 ) a ~ - A t , ” ~ a , ” + 1 ] ~ n + ~ , = 0  
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along Ch. Premultiplying each of the above with the weighting function of the other, recalling that 

I[X + u,+lnc = 0 

and, finally, differencing, gives 

A" = 
EX + u,], + &,[V.], + At.'($ - P)I[a.], 

1/w: + l/W? 
Similarly, equations (20) dictate that 

w,"vf+, - v.' - At,(l - y)af - A t , y a ~ + , ] . n  - I ,  = 0 

and 

wf [v.'+ - v," - At,(l - y)a," - At,ya,"+ - n + A, = 0 

Repeating the same process as before yields 

[Vnllc + - Y ) l M c  
1/w: + 1/w: I ,  = 

In case one of the contacting bodies is rigid, then it is, by assumption, associated with infinite 
weighting functions, so that (21) and (22) are modified accordingly. Velocity and acceleration 
fields normal to the contact surface are recovered with the aid of the above constraint equations 
as 

4 v;+, -n  = [v; + At,(l - y)a; + Atnya:+,].n - (-- 1)"p 
w a  

and 

In the absence of contact, as well as during persistent contact, the proposed treatment reduces 
naturally to the associated Newmark method. Indeed, in the former case, as meas(C,) = 0, all 
Lagrange multipliers disappear at the outset while, in the latter, equations (21) and (22) require 
the multipliers to be again identically equal to zero. 

The weighting functions, w," and WE, are chosen so that the integrands in (19) and (20) be 
(virtual) work quantities. Here, they are set to be 

where mu denotes a generalized characteristic mass quantity for body a. 

analogy with initiation of contact, 
Whenever release is detected (as defined in Reference 4), equations (19) and (20) yield, in direct 

and 
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In this work, both Lagrange multipliers in (23) and (24) are set to be zero at release, as their 
appearance was originally identified with the (currently inactive) constraint of equal velocities 
and accelerations in the direction normal to the contact surface. 

6. NUMERICAL SIMULATIONS 

Numerical solutions of some dynamic contact/impact problems are presented in this section. 
Attention is focused on both kinematic and dual variables computed by the finite element 
method. Relatively simple one- and two-dimensional simulations are performed, as the modifica- 
tion to the Newmark integrators suggested in Section 5 is currently available only for node- 
to-node slidelines. The algorithm is incorporated within the environment of the fully non-linear 
general purpose Finite Element Analysis Program (FEAP), briefly documented in Chapter 15 of 
Reference 10 and Chapter 16 of Reference 11. 

Although implicit time integration schemes are used throughout, an attempt is made to keep 
the time step as close to optimal, with regard to the explicit stability limit, as possible. Recall that 
the stability limit (or Courant limit) is generally defined as 

(25) 
C 

s = - A t  
1 

where c is the wave speed (depending on the type of waves developing in the actual problem), At  is 
the discrete time step used in the integration and 1 is a characteristic spatial dimension of the 
discretization (e.g. mean element length in one-dimensional problems or mean element diameter 
in multi-dimensional problems). 

All numerical simulations employ a standard Lagrange multiplier formulation in enforcing 
impenetrability. An exterior penalty formulation is also applicable as outlined in Section 3 
without any algorithmic complications. Diagonal (lumped) mass matrices are used for all types of 
elements, as their behaviour is considered superior to that of the corresponding consistent 
matrices whenever, as in given class of problems, the associated kinematic fields exhibit discon- 
tinuities (or near-discontinuities) in time. Lumped masses are also used as weighting functions of 
the modified Newmark impact treatment. 

6.1. Impact of bar on rigid wall 

An elastic bar of Young's modulus E, cross-sectional area A and mass density p is travelling 
with constant velocity v = l.OE1, when it impacts on a rigid wall at time t = 0, see Figure 2. The 
bar is modelled by two-node, one-dimensional linear elastic elements. The properties of the bar 
are chosen to be 

E = 1.0, p = 1.0, A = 1.0 

v = 1.0 

Figure 2. Bar on rigid wall 
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Gravity effects are not considered. A uniform mesh of 100 elements is considered and the time 
step is set to At = 0-1. 

Both classical and modified Newmark integrators are tested, with parameters B = 0.25 and 
y = 0.5. Velocities and accelerations at the impacting tip of the bar are plotted in Figures 3 and 4, 
respectively, for the actual duration of contact. It is observed that classical Newmark integration 
results in highly oscillatory fields, while the proposed modification completely bypasses the 
problem. 

Displacements, velocities and accelerations are also computed for time t = 5, at which the wave 
has reached the middle of the bar, see Figures 5 and 6. These computations are conducted with 
two distinctly different choices of the Newmark parameters, namely p = 0.25, y = 0.5 (as before) 
and also p = 0.001, y = 0.5. The latter choice corresponds to an almost explicit method, which, as 
expected, gives results superior to the former and, thus, will be employed for the remainder of the 
bar simulations. 

6.2. Impact of identical bars 

Two identical bars, one initially stationary and the other moving with constant velocity 
v = 1*OE,, contact each other at time t = 0, see Figure 7. All material and geometric properties of 
the bars, the domain discretization for each of them, as well as the Newmark parameters and time 
step are as in the previous problem. Figure 8 displays the history of displacements, velocities and 
forces for the contacting bar tips. The results are compared with the exact solution and are found 
to be very accurate. Local oscillations in the velocity at the time of wave reflections are noticed. 
Hughes et al.* proposes to eliminate them by introducing numerical dissipation (i.e. by increasing 
the value of 7). 

6.3. Impact of dissimilar bars 

reference to the same figure, the properties of the two bars are: 
Two bars of lengths and initial velocities as in Figure 7 come into contact at time t = 0. With 

Bar 1: E = 049, p = 1.0, A = 1.0 

Bar 2: E = 1-0, p = 1-0, A = 1.0 

Bar 1 is discretized uniformly by 100 elements and Bar 2 by 70 elements, so that, for time step 
At = 0.142857, both are integrated in time optimally (i.e. s = 1). Plots of the displacements, 
velocities and contact force at the contacting tip are shown in Figure 9. Excellent agreement with 
the exact solutions is exhibited for all three fields. 

6.4. Impact of identical spheres 

Two identical elastic spheres of radius R = 8 and initial distance between their centers of 
d = 20 travel collinearly with equal and opposite velocities of magnitude IJvJI  = 1, and, thus, 
collide at time t = 2. No gravity effects are included in the analysis. The spheres are modelled by 
axisymmetric nine-node bi-quadratic elements and the undeformed mesh is shown in Figure 10. 
The elastic constants for the spheres are 

E, = 5. x lo2, V, = 0-3 
and two values of the mass density are considered, namely p = 1.0 and 0401. The Newmark 
parameters are set to p = 0.25 and y = 0.5. The history of total force developed due to contact is 
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plotted in Figure 11 (p = 1.0, At = 0-05) and Figure 12 (p = 0401, At = 0.0025), and is compared 
with the approximate Hertzian solution. As noted in Reference 12 (pp. 198-200), the Hertzian 
solution is ‘static’, in the sense that it neglects the effects of wave propagation. The ratio r of 
fundamental period for the dilatational wave to total impact time can be found to be 

0.2 

r z 1-22 ( y )  
where c is the speed of the dilatational wave. The validity of Love’s argument that the Hertzian 
solution becomes more accurate as r decreases towards zero is confirmed by the numerical 

3000 

time 

Figure 11. Impact of identical spheres; history of total contact force (p = 1.0) 

50.0 

t Hertz . . . . . . . .. . . . 

. 3  

time 

Figure 12. Impact of identical spheres; history of total contact force (p = 0001) 
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Figure 13. Impact of identical spheres; deformed meshes at t F 3.5 (p = 1.0) 

solutions, since r(&, v,, p = 1.0) x 0.60 and r(Esr vs, p = 0901) x 0.30. Finally, a representative 
deformed mesh is shown in Figure 13. 

7. CONCLUSIONS 

In the context of semi-discrete time integrators it has been shown, in sharp contrast with the 
continuous case, that satisfaction of the impenetrability constraints is not sufficient, when 
simulating problems featuring persistent mechanical contact. A simple, efficient and widely 
applicable methodology, based on appropriate constraining of all boundary kinematic fields 
upon detection of contact, has been developed, that bypasses the above shortcoming and 
maintains overall consistency of time integration. Numerical simulations have demonstrated the 
merits of the proposed treatment. 
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