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On the treatment of nonlinear unilateral contact problems 

P. Wriggers and M. Imhof, Darmstadt 

Summary: This paper is concerned with finite deformations of elastic bodies in the presence of unilateral constraints. The 
penalty formulation is applied to introduce the contact constraints. We develop special isoparametric contact elements. 
Starting from their Gaussian points the distance between the body and the obstacle is determined, where the obstacle is given as 
a C 2 continuous function. Variation and subsequent consistent linearization yield the tangent matrix of the contact elements in 
its general form, which can be incorporated into standard finite element schemes. 

Zur Behandlung nichtlinearer unilateraler Kontaktprobleme 

Ubersicht: Es wird das Kontaktverhalten eines deformierbaren K6rpers beschrieben, der endliche Deformationen erf/ihrt, 
wenn er auf ein starres Hindernis gedrfickt wird. Dabei findet die Penalty-Formulierung Anwendung. Zur Kontakterkennung 
werden isoparametrische Kontaktelemente verwendet. Ausgehend yon deren Gausspunkten wird der Abstand des K6rpers 
zum Hindernis bestimmt, das als C2-stetige Funktion beschrieben wird. Variation und anschlieBende konsistente 
Linearisierung liefern die Tangentenmatrix fiir die Kontaktelemente in allgemeiner Form, die dann in ein standardmfiBiges 
Finit-Element-Programm eingebant werden kann. 

1 Introduction 

Many technical problems involve contact between rigid tools and deformable bodies, see e.g. forming 
simulation. Since in most of these problem classes the bodies undergo large deformations one has to 
develop a contact formulation which can handle these situations. This will be done here for the case of 
frictionless contact. 

Due to its technical importance many different contact formulations have been developed and are 
discussed in the literature. In the last years more effort has been devoted to nonlinear problems. 
Within finite element methods normally the approach is followed which assumes surfaces that are 
parametrized by linear or bi-linear shape functions. One body arbitrarily is denoted as master body 
which defines the surface normals during the contact computations. Then the contact detection is 
performed via a check at the element nodes, see e.g. Hallquist [1]. Based on these geometrical 
representations consistent tangent moduli for contact elements have been developed, see Wriggers 
et al. [2] or Parisch [3]. A rigid tool is in this approach also approximated in the same way as a rigid 
body. However it seems more natural to approximate the tool by its geometrical representation - e.g. 
CAD-model - which also defines the contact normal in a consistent manner. This approach has been 
used in e.g. Hansson et al. [4] for three dimensional problems. In this paper we will use a spline 
interpolation of the tool. 

On the other hand most formulations establish the contact conditions on nodal basis, see 
Hallquist [1], Wriggers et al. [2] or Hansson et al. [4]. In our work we will check for the contact in the 
Gaussian points which is consistent with the element formulation of the continuum body. This 
approach has also been proposed by Laursen et al. [5] for frictional contact. 

The algorithmic treatment in this paper is based on the penalty method which is well established in 
finite element methods for contact problems, see Oden [6], Hallquist [1] or Papadopoulos et al. [7]. 
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2 The problem 

Let K c R 2 be a rigid obstacle which comes into contact with an elastic body f2 (Fig. 1). The contact is 
supposed to be frictionless throughout  this paper. Fur thermore we will not consider time dependent  
processes. The body is not loaded in its initial state and therefore the initial stresses are zero. 

We will denote points in the reference configuration by capital letters. Small letters are associated 
with points in the current configuration. The mapping deforming f2 is called ~b. Thus we have: 

x = q)(X) = X + u. (1) 

Now we are looking for the deformations of f2 which the body undergoes when it is loaded by 
surface loads t or body forces ob. The equilibrium follows from the minimization of the strain energy 
stored in f2: 

II(u)  = 5 W(u)  d Q  - 5 0b-u dr2 - ~ i . u  d(0f2) ~ min.  (2) 
f2 f2 OQ 

Here W(u) denotes a hyperelastic strain energy function e.g. 

# ( Ic  - 3) + / t  In J + 5 (J - I)2 (3) N " )  = g 

for a compressible Neo Hookeian material with the first invariant I c  = tr C of the right Cauchy 
Green tensor C. 

In addition a constraint condition has to be fulfilled: f2 is not allowed to penetrate the obstacle. 
For  describing this condition we introduce a distance function for every point x(u) ~ ~(f2) as can be 
found in the literature, ([5] or [4]): 

g(u) = sign (g)- g+(u), (4) 

where 

g+(u) = miny~ IIx(u)- yil ae2 [tx(u)- ~11 and s i g n ( g ) = {  -1,1' n . ( x ( u ) -  ~) > 0 o t h e r w i s e .  

The geometric situation is shown in Fig. 2. n stands for the outward normal  of the obstacle, 
?c c #~(f2) defines the domain of the body's surface that contacts the obstacle. It is: 

,/c = {x(u) :g( . )  = 0} .  (5) 

In Fig. 2 body and obstacle are drawn separately only for the reason of clearness. 
Finally we obtain the following formulation of our problem: 

H(u) - ,  min.  (6) 

with the constraint condition 

g(u) > 0 Vu. (7) 

_ Z . . -  x,q  - , + K  
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Fig. 1 and 2. 1 The problem; 2 Distance function 
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3 Penalty method for solution 

There exist various methods to transform optimization problems with constraint conditions to those 
without constraint conditions. All of them refer more or less to the method of Lagrange multipliers 
which has the drawback that the multipliers appear as additional unknowns. On the other hand this 
method enforces the contact constraints exactly. Another often applied technique is the penalty 
method which does not lead to an exact fulfillment of the contact conditions. However this approach 
does not introduce additional variables and thus is computationally advantageous. 

Let us again state the optimization problem associated with contact of elastic bodies in the 
presence of large deformations 

H(u) -~ min. (8) 

with the inequality constraint condition 

u e S = {u: g(u) > 0},  (9) 

which means we do not search for the minimum of H for all possible u. Hence the displacement field 
must be in the set of the u that fulfill the constraint condition. This problem is replaced by the 
optimization problem without any constraint condition 

H(u) + ~P(u) ---, min. (10) 

Here e and P(u) have to satisfy (see Luenberger [8]): 

�9 ~ > 0 arbitrary but fixed 
�9 P(u): (i) continuous 

(ii) P(u) = 0 Vu (11) 

(iii) P(u) = 0 <=> u ~ S. 

It can be seen immediately that 

P(u) def 1 ; = ~- g+2(u) dF 

~e 

(12) 
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fulfills these conditions. If u is exact the penalty term eP(u) vanishes and we obtain the solution of the 
primary problem. In case u is not exact the penalty parameter has to be a large number. Then P(u) will 
become small, i.e. the constraint condition has to be fulfilled as good as possible so that the minimum 
is reached. However the condition number of the problem increases with increasing e which may lead 
to ill conditioning. A somewhat optimal choice of the penalty parameter is given by the estimation 

e : k / ~ ,  (13) 

where k is the bulk stiffness of the finite elements that are used to discretize the body D. n is the number 
of the unknowns of the problem and ~ stands for the accuracy of the computer used for the solution of 
(10) (Wriggers et al. [9]). 

In case of contact, i.e. g(u) < 0, we can interpret e as the stiffness of linear springs which support the 
body in the contact area Ye (Fig. 3). The penalty term then describes the total energy of all these 
springs. If the solution is exact this energy vanishes because then no penetration is allowed. 

4 F i n i t e  e l e m e n t  d i s e r e t i z a t i o n  

In the previous section the continuous problem is formulated finally: 

rip(u) = ri(u) + )- g+2(u) d r  ~ min. (14) 

We have to minimize the sum of strain and penalty energy. H(u) is discretized in ~2 by standard 
finite elements which leads to the residual vectors and tangent matrices for every element. In the same 
way we introduce contact elements and attach them to the surface of O so that they are able to decide 
whether D contacts the obstacle and thus determine the contact region. This formulation leads also to 
residuals and tangent matrices for every element. 

In the following our objective is the discretization of the penalty term. For that purpose we 
develop contact elements with two or three nodes which can be used for two dimensional situations 
for the discretization of D by means of four or nine node elements. The surface of the obstacle is 
realized by a C 2 continuous function f(y),  y c R  which will be specified within the examples. This 
function either is given as analytical function or is obtained by interpolation of several obstacle points 
(Yi, fi), i = 0 . . . .  , n. The interpolation is based on natural cubic splines: 

(y -- yi) 3 
S A f ; y ) = a ~  ( y~+~-  y)3 + a~+l + b ~ ( y -  y i )+c~ if Y~[Yi, Y~+a], 

6hi + 1 6hi + I 

where the ai follow from the linear system of equations 

hi h~ + hi+~ hi+~ fi+~ - f i  f~ - f i - ~  
ai-  1 + 3 ai + T ai+ 1 - -  hi+ 1 h i , '  

In addition we define 

a0 = 0 and an = 0 

which gives reasons for the term "natural". Furthermore it is 

_ h21 
bi  f i + l  - f i  hi+t ( a i +  1 _ ai  ) and ci = f i  - -  a i - - ,  

hi+ l 6 6 

i - - 1 , . . . , n - - 1 .  

i = 0 , . . . , n - -  1. 

i = O , . . . , n - 1 ,  

(15) 

notations of Fig. 4 hold. 
Discretization of (12) now yields: 

e n ~+2 dF,  
2- g+2 dF ~ ~ e=l 

"/c "go e 

(16) 

Thus we have polynomials of third order on every interval (T6rnig et al. [10]). Beyond that the 
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Fig. 4 and 5. 4 Notations; 5 Degrees of freedom of the contact element 

where g+ is the distance between the element surface 7co and the obstacle. Points of 7c, are discretized 
by isoparametric functions: 

N 

Tee : Y~ = Y', Nt(~) xi, ~ E [ -  1, 1]. (17) 
I = 1  

With the introduction of the displacement vector u between the deformed and undeformed state, see 
Fig. 4, 

xx = X1 + ul  (18) 

we can express (17) in terms of u~. For two dimensional problems we have to introduce 2N degrees of 
freedom uu for every contact element, I = 1, ..., N, where N is the number of nodal points per element 
and i = 1, 2 the spatial dimension of the problem, see Fig. 5. 

Noting that dFe = 117co,~11 d~ we carry out a coordinate transformation to the isoparametric 
reference element: 

5 ~ + 2  dE= i g+ 2 I]•ce,{ll d ~ =  i g+ 2 i__~ 1 NI,~({)XI: d{. (19) 
7~e - 1 - 1 

Here and in what follows (.),~ denotes the derivate of (.) with respect to {. 
Numerical integration (Gauss quadrature) gives 

nv i~=1 XI ~,+~ d r  ~ y~ ~,k 2 Nr,~(~k) (Ok (20) 
Yee k = I 

{gk, if contact 

gk = 0, otherwise, 

where the ~k stand for the coordinates of the Gaussian integration points and (Ok are the weights of the 
integration formula, np is the number of the Gaussian points per element, gk represents the distance 
function at ~k which is only in the case of contact different from zero. Let p describe the number of the 
Gaussian points for which we have contact. Then (20) yields: 

~ ~+2 dF ~ ~ gk 2 i~,lNi,g(~k)= Xr (Ok. (21) 
Yce k = 1 

Now we have to discretize the distance function gk: 

= I1~ - ~11 = II~(~)  - ~11 = ,=~  N , ( ~ O  x ,  - ~ . ( 2 2 )  

Since the distance function is by definition positive we test a possible penetration using the 
outward obstacle's normal (Fig. 6). At a Gaussian point ~k we have contact if the condition 

nf k "(Xk -- 5~k) ----< 0 (23) 
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n} N ~  ~ x 2  

~ f(Y) 
X l  I t.- 

e l  

Fig. 6. Realization of contact 

holds. Here we have introduced the outward normal of the obstacle 

nfk l/1 +f,2(yk) 
(24) 

which is defined in terms of the obstacle function f(y).  (In case of the deformable body lying below the 
obstacle we have to multiply ny k by ( -  1).) Associated with this definition we also obtain the tangent 
vector to the obstacle surface: 

1 ( 1 )  
tfk ]~1 +f2(~k)  '(Yk) " (25) 

Combining (21) and (22) the penalty term has the form 

n~el[G k=i -- Yk i~__l xk,{xI ] 2 f g+2dF,,~ e=l[ ~ ~ oo k j~= Nikx ' 2 , 

7c 
(26) 

where the arguments G have been replaced by the index k for clearness. The discretized version of 
problem (14) can now be stated: 

numel 
nh(u) + 

e=l 
[2 k~=1 COk i~=l NIkXI - Yk 2 I~=IN~,~XI l--'min. (27) 

This problem will be solved by using Newton's method: Let 

F(x) ~ min. (28) 

be the problem. Then the standard argument for a minimum gives 

aF(x) ~ O. 

Subsequent linearization (which comes out of the Taylor series) yields 

L[6F(x)]x = 6F(x) + A6F(x) 

= 6F(x) + DSF(x)" Ax = 0 

D~F(x)" Ax = - aF(x). (29) 

In the next two sections we develop the variation and the linearization of the discretized contact 
penalty term (26) which is needed for the application of Newton's method (29). 
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4.1 Variation 

The problem 

. . . .  1 I I =~1 yk2I~=l 1 arlh(u) + E a 5 ~ Ok Xikxi- Nf~xI -~ 0 (30) 
e=l 2 k=l 

represents the weak form of the equilibrium which the displacement field u has to fulfill. The variation 
of the first term is a standard procedure (here we use an available element to discretize the body, 
Wriggers [12]). Thus we concentrate on the second term and compute the variation of the discretized 
penalty term: 

Using the product rule we have 

. . . .  18 P I ~ --Yk i~=lNkI,~Xl i~=lglkXI--Yk 2 I~_IN~,~X I 1= 
(31) 

The particular variations are found to be (Fig. 6): 

N 

I~=lxk,{xI = ,~=lXk{xi "( I=~lxk'~ = �9 

Note that with x~ = Xr + u~ we have 8x~ = c~uj. Since ~g also depends on the displacement field we 
have to compute its variation, too. However to express @k in terms of the variational displacements 
some more reflections are neccessary. Before we develop this expresssion we state the algorithm for 
the computation of Yk. With 

formally this leads to 

5~k= ( @k ) .  (35) 
\f'(Yk) @k/ 

Yk is obtained from the definition of the minimum distance function 

~k 2 = rain dk(y), (36) 
yeDf 

where (Fig. 7) 

dk(y) = (2kl -- y)2 + (2k2 --f(y))2.  (37) 

We determine Yk by means of Newton's method by finding the root of the equation 

hk(y) dcf 1 = ~ dk'(Y)= --(xkl - - Y ) -  f'(Y)(Xk2 --f(Y)) = 0: 

hk(yi) Yi+ 1 = Yi , , 
hk (Yi) 

end of iteration for 

Y" +- ~- -~ Y" < to1, 
Yn+ I 

i = 0, 1,2,. . .  

(38) 
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~k 

- ~ . ~  4(y) 

f(9) 

, ~ / # h d y )  

7 8 

Fig. 7 and 8. 7 Computation of Yk; 8 Failure of Newton's method 

-t•; / / h ~ ( y )  

. 

where Yn+l is the result of the last iteration carried out. Several examples have shown that the 
iteration's starting point Y0 has to be chosen very careful by nesting ofintervalls to avoid the situations 
shown in Fig. 8. 

Finally it has to be tested whether the computed extremum point is a minimum. 
Once Yk is determined we define 

def 
Yk = Y,+ 1 and thereby f(Yk) = f(Y~+ 1). (39) 

Since Yk depends on the position of Xk 

Yk = Yk(~:k) = yk(Xkl, Xk2) (40) 

we can write 

~Yk = ~Yk ~2kl _1_ ~2k2 ---- V y k ' ~ : k  = Vyk" X i  k 5xf  . (41) 
~2~kl ~2k2 I =  1 

To compute the gradient V~k in (41) we use total differentiation of hk(y(f%)) ~ 0 (see Heuser [11]): 

hk(y)  = hk(y(Xk))  " O: (42) 

-- m dhk ~hk Ohk ~y 

d 2 k l -  ~2k~ § ~y ~YCkl 

~hk 1 ~hk 
~2k~ -- ~y = 1 -- f " (y)  (2k2 -- f (y ) )  + f,2(y) (43) 

~y 1 

~2ki t - i f ( y )  (2k2 - f (y ) )  + f,2(y)" 

In the same way we obtain 

~Y i f (y)  
�9 1 - i f (y)  (2k2 -- f (Y))  + f,2(y)" (44) 

Introducing the abbreviation 

ak = 1 - -  f " ( ; 1 , )  (Xk2 -- f ( ; k ) )  + f'2(35k) 

we derive 

(45) 

V2fk- 1 + f-2(29k) (Yk) ~/1 +?'2()5k) tCk (46) 
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which yields 

5.f~ = V.fk" 5:~k -- 

and finally 

N 

tf k" 2 NIk ~XI 
]/1 + f'2(yk) I = 1  

(:3yk = 8)7k ,(3~k) = ek 8XI i f  k. 

One recognizes that the vector ~'k is tangential to the obstacle - as could be expected. 
We now can write the variation in the following form: 

numel ~ ~, I l=~lgk'~xI( ~ ( N ) )  
_ . . nf k 6FIh(u) + ~ 7 Ok 2g, k N,k6x, 5~ tf k ~ Nik6xz tff 

e = l  k = l  I = 1  I = 1  

+ ~,k 2 ~ N~ d 8xs" te g = O. 
I = 1  

Because of tf k I nf k this expression can be simplified to its final form 

~I ' Ih ( l l ) - t -  e=l k=l"~ 1=1 ~'~ NIk ~xI" g(J)kgk ~ nfk -[- 1=1 ~'~ N/k'~ 0311 "'L T gk2tek = O. 

(47) 

(48) 

(49) 

(50) 

Writing 6ul instead of 8xi and introducing the abbreviations 

(SUe)T def (8U11, ~U12, 8U21,  8U22, .-", 8/AN1, SUN2) 

and 

def 
Ne k = 

- N  1 0 -  
0 N~ 

N2 0 

0 N2 

NN 0 

_ 0 NN_ 

def 
and N~. = 

0 

N2r 
0 

NN~ 
0 

0 

N~e 

0 

N2~ 

0 

NN~_ 

(51) 

(52) 

respectively, 

def 
Ak = e(Ok~k 

and 

as well as the constants 

i__~ 1 N~,r (53) 

Bk def gO) k 

_ 2 

yields 
N 

E glk 5111 ---- (~Ue)T" Nek" 
I=1 

Therewith the variation takes the form 
numel p 

6IIh(u) + Z (Sue) T" Z {AkNe k" nf k + BkN~." te k} = O. 
e = l  k = l  

(54) 

(55) 

(56) 



R Wriggers et al: On the treatment of nonlinear unilateral contact problems 125 

4.2 Linearizat ion 

To compute the tangent matrix D 8F(x) for the NEWTON scheme we have to linearize equation (50) of 
section 4.1. For one element we have 

ASk~_l ~ i=~ NlkXI - ~]k 2 I=~INk,{xI : k~=l ~ I m8 i=~NIkxI -- 'k 2 l_~lJ~k,~_X/ 

+ Nrkxl--  A8 ~, NI,~x~ �9 (57) 
=1 

Since we already have computed 

i__~ 1 2 N 8 Nr~xI -- .9I, = 2gk ~ N~ k 8xi"nf  k (58) 
I = 1  

in (49) or (50), respectively, we find in an analogous way 

m i=~1 Nr~xx - Yk 2 
N 

- k = 2gknf �9 ~ Nr  k AxI. (59) 
I = 1  

Similarly using (36) we obtain 

~=~ NI,r N A 1, = te k' ~ N~,~ Axi. 
I = 1  

Thus the only terms to be determined in (57) are 

A8 I~=INIkxx - Yk 2 and 18 i~_ 1 N~i,~xi . 

Straight forward computa t ion  yields 

A8 x=~ Nxkxi - .Vk 2 = 
N 

N1 k 8xI" A(2~kny k) 
I = 1  

2 NI k 8XI" 2A NIkx t  - Yk 
I = 1  I=1  

E NI k 8xI 2 NI k A x i  - Ck tf k" E Nr k Axt ty k 
I = 1  L I = I  I=1  

E NI k 8xI" 2 N1 k AXI -- Ck(tf k | tyk)" N1 k Axl 
I=1  I = 1  I=1  

(60) 

N N 

E NIk 8XI" 211 - -  ?k(ty k |  �9 ~2 Nlk AxI. 
I = 1  I = 1  

(61) 
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In the same way we find 

A5 = ~ N~,r 5x,. (n~ k | n~k) �9 ~ N~,r Axx. (62) 
r = t x~=~ N~,r z = 1 

For this algebra we have used the relations for dyadic tensor products (a | b).c = (c | a)' b and 
(a'b) (c.d) = a . ( b |  

The final result for the linearization of (50) is now obtained by inserting (58) to (62) into (57): 

A~ k~=l 2 I=~1NlkXl--Yk 2 i~=lNk'r 

= ~ Nlk~XI'~gOk ~= [ 1 - - C k ( t y k |  " ~ Nlkmxi 
k = l  I = 1  I 1=1 

N N N N 

Ji- ~ NI k 6X I " ~gOkgk(Uf k | t~k) ' E N~,r Ax, + E X~,r 6x,-e~Ok~k(te k | nfk) " E Xz  k Ax, 
I = 1  I = 1  [ = 1  I = 1  

N ~O)k gk2 (ne k | n,k) " ~ N~,r Axr �9 + 6x . 
~ 1 N  I=1 I = 1 2 ~,r 

I 

If we now replace 5xz and Axz by 5u~ and Aui and introduce the matrices Ne k and N~ defined in 
section 4.1 we can write 

N N 
E N ,  k 5u, = (Su~) r- N f  and • N~,r 3u, = (5u~) r- N}e (64) 

I = 1  I = 1  

as well as 

N N 

2 Xlk AuI = (N~k) r" Au~ and ~ N~,r Au~ = (N~e) T- Sue. (55) 
I = 1  I = 1  

Together with the abbreviation 

(AUe) T = ( A u l  1, A U l 2 ,  Au21 ,  A u 2 2 ,  . . - ,  AUN1, AUN2) 

we can describe the linearized penalty term in its final form: 

(66) 

A8 ~ g+2 dF ~ (Aue) r 'K~'Au~, 

where the tangent matrix Ke for one element has the representation 

(67) 

K e  = k = l  ~ { Nek'~(gk I~=l N~'{XI [1 - -  Ck(tf k @ t s k ) ] ' ( N e k )  r + N~k'eCOk{~k(nl k | t ~ k ) ' ( N ~ )  r 

~cok ~k 2 (nek | nek). (N~.)T}" -I- N~ " eCOkg, k(te k | nfk) " (Nek) r -I- N~ " 2 x~= l Nki,~x I (68) 
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The corresponding right side Pe for one contact element is the result of the variation of the penalty 
term, except a multiplication by ( - 1 )  (compare the remarks concerning Newton's method): 

P 

Pe : - ~', {AkNek'nf k + BkN}'tek}. (69) 
k = l  

5 Numerical examples 

We give two examples: one classical for the linear case and one for the nonlinear one where large 
deformations are involved. The computations have been carried out within the environment of the 
Finite Element Analysis Program (FEAP), see Zienkiewicz, Taylor [13]. 

5.1 Hertz contact." cylinder on a rigid foundation 

The first example is a Hertz contact problem which has an analytical solution. We compute the Hertz 
solution for a cylinder under a single load on a rigid foundation. We use the mesh shown in Fig. 9, the 
material c o n s t a n t s  Ecy 1 = 5 0 0 ,  Vcy 1 = 0.3 and a penalty parameter of ~ = 106. The radius of the 
cylinder is R c y  1 = 8 .  

Assuming plane strain conditions we obtain the results that are plotted in Fig. 10. 
The solid lines show the analytic solution for Hertz contact of a cylinder with a plane rigid 

foundation which can be found in Johnson [14] or Goldsmith [15]: 

E 1 ~ 4 F  1 - -v2  
P - 2 ( 1 ~  2) R E ~  R - x 2 . 

Here E is the elastic modulus of the cylinder, v is its Poisson ratio and R its radius. F denotes the 
load per unit length. The numerical solution is in good agreement with the analytical one. 

I I fH / / I / / / / / /ZZ /7 / / / ' / r  / 
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. . . . . . . . .  , . . . . . . . . .  , ,  . . . . .  % , i , 7 !  . . . . . . . . .  ! . . . . . . . . . . . . . . . . . . .  1 
0 .2  0.4- 0 . 6  0 .8  1.0 1.2 1.4 

x - c o o r d i n o t e  

9 10 

Fig. 9 and 10. 9 Mesh for Hertz contact; 10 Finite element solution in comparison to analytic solution 
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4[,lllr,lllrll[,,llrlrll,lrl[,lllrrlll,, ,,, ,Fi,l,,,,,!lE , i ,l, iI j 

I ~ i H ~ H ~ J ~ [ ~ N E ~ N ~ y ~ ! ~ { ~ N ' . ~ N ~  
+ 1 ~- + 4- + + 

+ 5 + +- + § 

~, / =  6-~r , ! Fig. 11. Elastic bar on a rigid foundation 

+ + ~ ' ~  + § 
Fig. 12. Deformed configuration of the elastic bar 

5.2 Large deformations: bar on a curved rigid foundation 

We consider an elastic bar with a hyperelastic material law as mentioned in (3). The bar lies on a rigid 
foundation which is described by the function 

f(x) = - c o s  x - 1 ,  

see Fig. 11. 
At the bar's left end all displacements are restricted. In the middle part of the bar we apply 

a constant load p = 3000/rc. The material parameters are 2 = 12000, # = 6000 and the penalty 
parameter is chosen as e = l0 s. Fig. 12 shows the deformation: The bar exactly takes the form of the 
foundation. The crosses represent the points of the foundation that are used to interpolate the 
obstacle function f(x). 

6 C o n c l u s i o n  

The present paper is concerned with unilateral contact problems assuming large elastic deformations. 
For  the deduction of the algorithm great importance is attributed to obtain a description of the 

problem that is as realistic as possible: 

- the check for contact at the Gaussian points of the contact elements is consistent to the 
discretization of the deformable body. 

- the interpolation of the obstacle by cubic splines gives a consistent contact normal. 
- special attention is directed to a consistent linearization. 

Two examples show the usability and performance of the algorithm. 
In future work it is planed to extend the research to contact problems of two deformable bodies. 

Furthermore heat conduction and the influence of friction shall be included. 
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