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SUMMARY

The detailed discretization of contact zones with contact stiffness based on real physical characteristics of
contact surfaces can produce stiffness terms which induce ill-conditioning of the global stiffness matrix.
Moreover the consistent treatment of frictional behaviour generates non-symmetric tangent stiffness
matrices due to the non-associativity of the slip phase. Other non-symmetries are due to the coupling terms
and to the dependencies on various parameters that can be involved. To overcome these difficulties almost
consistent techniques based on two-step algorithms have been proposed in the past. Here an augmentation
technique is proposed which takes into account micro-mechanical effects, and permits the symmetrization of
the tangent stiffness during frictional slip phase.
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INTRODUCTION

Contact mechanics is a research field that has recently received a strong impulse for the solution
of large problems and for the detailed analysis of forces and heat transmission mechanisms. The
field can be subdivided into different research areas: the enhancement of the contact search
algorithms, the formulation of contact constraints, the linearization of the equation set. Recently
microscopical phenomena which take place in the contact zone have also attracted attention.

Several approaches are actually proposed for the numerical treatment of contact con-
straints."™* Here a formulation is presented dealing with coupling effects between thermal and
mechanical fields. The thermomechanical stiffness is based on microscopic mechanisms of force
transmission and heat exchange. Using a microscopic approach and combining it with a statist-
ical description of the parameters involved, constitutive laws have been formulated to deal with
the normal and tangential contact stiffness, and the thermal contact resistance. In more detail,
experimentally and theoretically well-founded micromechanical and microthermal laws have
been adapted here to FE discretization. Based on these laws the non-linear macroscopic related
stiffnesses are calculated with dependence on changes in significant parameters. For a detailed
discussion on the micromechanical approach see References 5-7.

Below, the physical laws are used in contact elements with linear geometry and consistent
linearizations of the geometrical and physical terms are carried out. The geometry of the contact
is an extended version of the basic one presented in Reference 8.
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CHARACTERISTICS OF CONTACT LAWS

When taking into account contact phenomena at the microscopic level a general compact form of
the normal, tangential and thermal laws in the contact interface I'; can be obtained by defining
three functions, f,, f; and f,, as follows:

fo=Fa(ga,4) (1)
fi=£(gn 90, A) ?)
ﬁx =fh(gn’gt9ghatg,A) (3)

where f,, f; and £, denote the normal contact force, the tangential force and the heat flux across
the apparent contact area A. Moreover ¢,,d, and g, denote the mean planes approach which
corresponds to the normal displacement, the tangential displacement and the temperature jump
across the contact. Finally t, represents the temperature of the gas inside the microcavities. More
details on how to formulate such laws can be found in References 5-7.

Applied to numerical computations, the physical approach leads frequently to stiffness terms
which are several orders of magnitude larger than the stiffness terms coming out of the
discretization of the solids; hence the global stiffness matrix becomes ill-conditioned and lack of
convergence may ensue. For instance, considering the normal contact stiffness for metallic
materials, stiffness terms coming out either from micromechanical laws with common surface
finishing, or from the necessity to limit unrealistic surface penetrations, assume usually very high
values. The problem has been managed using either quadruple precision,® or the augmented
Lagrangian technique.'® The latter method permits the analysis to deal with low stiffness
parameters which do not correspond to the physical ones. The satisfaction of the constraint
conditions is then imposed within an iteration inside the time step. In this iteration the forces due
to the contact stiffness are imposed as external ones. When convergence within the step is
achieved, the equilibrium is obtained for contact forces imposed as external forces, and the
penalty stiffness is not involved anymore, because the relative displacement field in the contact
zong is zero (see also References 10—12). The augmentation technique proposed for the microm-
echanical approach!® is a modification of the standard procedure. In this case the constraint
conditions take into account the real stiffness of the microasperities, and the approach of the
mean planes surfaces.

It should be remarked that if the real tangent stiffness matrix is known, the equilibrium
iteration has a quadratic rate of convergence near the solution,® whereas the augmented
Lagrangian iteration has a linear rate of convergence. The theoretical possibility to nest together
iteration and augmentation loops is not convenient because the augmented Lagrangian iteration
lacks a quadratic rate of convergence.

Considering the frictional behaviour again, numerical problems occur in the stick phase due to
the high tangential stiffness. The simple Coulomb’s law considers no displacement in this phase,
i.e. infinite stiffness. Using a micromechanical model an elastic deformation of the contacting
asperities can be considered, but even in this case the tangential stiffness generates ill-condition-
ing of the global stiffness matrix.

Moreover with Coulomb’s law during the slip phase we have no dependence of the tangential
forces on the tangential displacement. On the other hand a dependence comes from the normal
approach, which modifies the slip limit. The fact that sliding of the surfaces does not produce
dilatancy leads to an unsymmetric stiffness matrix. This non-symmetry appears even if more
sophisticated dependencies® !* are used. The symmetrization of the problem requires an algo-
rithm which assumes no dependence on the normal approach; this means that the iteration loop
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should be carried out using a constant normal force, even if the normal force varies. In such a case
the tangent stiffness matrix due to friction is zero. This two-step procedure has been used in the
past.> 14

Also, for the frictional behaviour an augmentation technique can be used to exactly satisfy the
theoretical conditions,!® and in this case too the algorithm can be adapted to impose real physical
deformation of the asperities. Moreover, the symmetrization using the two-step technique can
also be used within the augmentation loop.!® Here, a new technique for symmetrization is
proposed that seems to give a better rate of convergence.

Within the context of thermomechanical problems the contact thermal resistance usually does
not cause numerical problems. The thermal stiffness can be predefined as an input parameter, or
computed on a micromechanical base, as reported in References 5 and 6. However, augmentation
can be applied also to the thermal relationship.

PROBLEM DEFINITION

We consider two generic bodies B* (x = 1,2), the associated displacement field u* and the
temperature fields ¢*. The two bodies can have contact along predefined contact zones I'S.

A general form of the mathematical problem can be obtained by minimization of a funttional
for the frictionless case which takes into account the continuum and the contact zones. In the case
of coupled problems with friction we use the principle of virtual work which leads to 6Wy = 0.
The weak form of the heat equation will be denoted by Wy = 0. Moreover the contact
contribution can be evidenced distinguishing between the continuum part, 6 W*, and the contact
part, W T,

2
SWy,t) = Y Wy ) + Wisl,u?t, 1) =0
1

@
2
SWrlu,1) = Y Wi, t) + SWr(u',uit',?) =0

a=1

Of course the contact contribution involves only the part of the boundary where the contact is
closed, i.e. the following inequality should be checked:

ga< ¢ )

where £ is the initial mean planes distance. This relationship takes into account the microscopic
roughness of the surface, and means that the contact is closed when the computed mean planes
distance is less than or equal to the initial asperities height. A criterion more often employed, ¢.g.
for the standard penalty approach, is

9. <0 (6)

which means that contact is active when penetration starts.

AUGMENTED LAGRANGIAN FORMULATION

The augmented Lagrangian technique is a procedure that can be used to avoid ill-conditioning of
the global stiffness matrix when constraints are present. It permits the contact conditions to be
satisfied while avoiding the use of high penalty values that can occur when limiting undesirable
surface penetration or the requirement to impose the real physical stiffness of contact surfaces.
Application of this procedure to frictionless contact can be found in Reference 12. Extension to
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the frictional case has been more recently proposed.!*!® Moreover particularization to the
microscopical constitutive law for normal stiffness is proposed in Reference 10. Here we focus on
the frictional part, with consideration of the microscopical constitutive law and symmetrization
of the stiffness matrix.

The augmentation technique with a micromechanical model requires a new constraint condi-
tion. If the computation is carried out using a normal stiffness not corresponding to the real one,
we have to distinguish between the geometrical approach coming out from the stiffness used for
the augmentation loop, g,+, and the real microscopical approach due to the normal contact
forces, g,. The convergence of the augmented loop is hence obtained when the two approaches
are equal. It should be remarked that in the standard augmented approach the target value is
fixed, no penetration of the surfaces takes place, i.e.

gn+ =0 (M

Instead with the micromechanical approach the target value is a function of the pressure, which
involves a new non-linearity. Using equation (1) to solve for g, we can write

g,,+(u1,u2) - gn(fmA) =0 (8)

This procedure is described in more detail in Reference 10.

The same method can also be used for the tangential part. Using Coulomb’s law the stick phase
is governed by a dummy tangential stiffness, and the augmentation loop should move the elastic
stick displacement back to zero,

g+ (u',u%) =0 ©®

Considering a micromechanical law the elastic stick displacement should correspond to the
elastic displacement of the microscopic asperities. In such a case using equations (1) and (2) we
arrive at

gt+(u1,“2) - gt(ﬁ’fnaA) =0 (10)

When slip takes place equations (9) and (10) are still valid if the slip part of the tangential
displacement is removed, see also equation (13).

Finally the activation of the thermal field does not depend on an inequality involving thermal
unknowns. It depends on the fact that the gap is open or closed, i.e. on the same inequality that
rules the normal contact. The same criteria can be used for the thermal field, but in this case we
have to consider the fact that the temperature jump across the contact is different from zero. This
means we always have to satisfy a condition like

gh+(“1,“2) - gh(fh’fn’ ﬁ,tg, A) = 0 (l 1)

The simplest constitutive equation for the real temperature jump g, could depend on a predefined
constant stiffness. However the real physical behaviour requires that g, should at least depend on
the normal force.

The geometrical approach is defined evaluating the distance of two points lying in the normal
direction of surfaces I'! and I"2.

g ={(u2—u‘)on for (u> —u!)-n<0

0 for @2 —u')'n>=0 (12)

where n is the normal to the surface I'? computed in the projection point.
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The tangential displacement is defined by

dos = {(llz —ul)-t—g% for g, #0
. =

0 for g,+ =0 (13)

where t is the tangent unit vector computed in the projection point on I'? and g}'i? represents the
slip part of the displacement, that has to be removed for stiffness computation.
Finally in the case of a coupled analysis the temperature jump across the contact is defined as

gus = {(t2 —tY) for g, #0

0 for g,+ =0 (14)

The system of equations defining the problem is then given by the weak forms describing
mechanical and thermal behaviour of the bodies, plus constraint conditions for normal, tangen-
tial and thermal contact.

2
SWi(u, £y = ¥ SWyue,t%) + sWi', v, 11,12 = 0

=1

subject to 4+ = Int T n = 0
ty =g+ — =0

2
SWr(u,f) = Y sWiu,t*) + sWrul,ui ') =0
a=1
subject to by =gpy —gn=0

This set of equations can be used also as a starting point for a formulation of contact without
a microscopical contact law. In such a case we simply have to impose

gn=6:=0 (16)

which means
My = Ga+ an
ty = gus (18)

The temperature jump across the contact should be different from zero, as remarked previously,
otherwise it means that no thermal contact resistance is involved. Hence the simplest formulation
requires the definition of a constant contact thermal conductivity H and leads to

Jo=Hgy (19)
Then the thermal constraint condition becomes

hi_g (20)

h+=gh+—H

The contact contribution can be expressed using the virtual work of the contact forces. Equation
(4) leads then to the augmented Lagrangian formulation

2
oWy(un,t) = z oWy, ) + J (Pn0gn+ + POgi+)dIl + J. (en4+0gn+ + xt+0g:+)dI =0
¢=21 Tc I (21)
Wrlw )= 3, SWAL L) + f P34+ [ yhedgnedr =0
rc rl:

a=1
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& x and y represent normal, tangential and thermal penalty parameters, respectively, used within
the augmentation loop. The first integral represents the virtual work of the augmented forces,
Pn> D1 and py,, which are assumed to be known for the moment. The second one represents the
virtual work due to the penalty stiffness.

The equilibrium iteration within the step can be carried out by updating the augmented forces
at each iteration. In such a way we obtain only a linear rate of convergence. It is usually more
effective to split augmentation and iteration loops within the time step. Then, the equations
within a time step are solved using an external augmentation loop. Equilibrium iterations, with
a quadratic rate of convergence, are carried out after each augmentation.

The new set of augmented forces is computed as follows:

at+1 a a

PRt =gl 4 eny? 22)
a+1 a i

pitt=pitt + el (23)
at+l a til

pitt =pitt + ki (24)

where the current status is identified by time step ¢t + 1, augmentation a + 1 and iteration i + 1.

We have to remark that n.,t, and h, are non-linear functions; thus the update procedure is
different from the standard one.!!

The updating scheme for the constraint condition for the iteration i + 1 is the following:

it+1 i+1

at+1 at+1t a+1
t+1 __ . t+1 t+1
ny " =gny —Gn (25)
i+1 i+1
a+1 a+1 a+1
t+1 __ e+l t+1
Ly =g+ — Gt (26)
i+1 it1
at+1 a+1 at+1l
t+1 __ ,t+1 t+1
hith =gyt — g 27)

We remark that the update criterion considers the physical approach target value as a constant
within iterations. New target values are determined at each augmentation,

The fully coupled system of equation (21) leads to a non-symmetric tangent operator when
linearized. This is due to the coupling terms, and to dependencies on geometrical and thermal
quantities, see e.g. References 5,6 and 13.

It has been proved that for some classes of coupled problems it may be effective to employ
a staggered procedure.!” In such cases the coupling terms disappear, and it would be interesting
to check the possibility to symmetrize the problem entirely. Disregarding coupling terms we still
have a non-symmetric formulation. The first cause is the dependence of (1)—(3) on the apparent
area. This effect only occurs when large deformations are present,® but it has a limited influence,
see Reference 18, and thus can be disregarded. Another cause is associated with the gas
temperature which affects the heat exchange through the gas in the microcavities.!® Also this
influence is very small and can be neglected. The most significant cause is due to the influence of
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normal forces on the tangential force during the slip phase. Some techniques are available in the
literature to symmetrize these dependencies.'4 16

The basic technique of symmetrization of the frictional equation set during the slip phase
considers a different update scheme for the normal contact force and the normal force used to
compute the frictional slip limit. Using a consistent approach the normal force is computed
within the iteration to check if the slip limit has been reached,

i+1 i+1
at+1 a+1
fmx = F(f37) (28)

Here the generic function F has been particularized for Coulomb’s law using the constant friction
coefficient u,

i+1 i+1
atl1 a+1
{max = 131 (29)

In the case of the standard procedure without augmentation the previous relationship yields

i+1 i+1

(max = WS (30)

This relationship implies a dependence on the current normal approach, and then the unsymmet-
ric terms appear. To avoid it a so-called two-step algorithm was proposed in Reference 14 in the
case of no augmentation. The method solves the frictional behaviour using not the current
normal force but the normal force of one step behind,

i+1

imax = 1S5 €2y

Of course this strategy affects the rate of convergence. It can also be used in the case of the
augmentation technique, i.e.

i+1
at+1

{max = 1S (32

More recently a different technique has been proposed in Reference 16. Considering that the
augmentation loop is nested inside the time step loop, and that usually the augmented step is an
equilibrated one, it can be used as a ‘more recent’ solution point for the normal force.

i+1
a+1

fmax = 1S (33)

In this procedure the pressure used for determining the maximum admissible tangential force lags
one augmentation step behind the current status. Both these choices imply that the first solution
phase is frictionless. However it can be shown that if the first augmentation is frictionless then
some difficulties arise in the second one, due to the sudden change in the tangential force. This fact
can destabilize the solution and may lead in some cases to divergence.

The crucial point for symmetrization is that when the slip takes place we have to use a constant
normal force for computing the slip limit. It could be reasonable to use a “more recent” normal
force instead of the normal force of the previous augmentation.
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To use a more recent value for the normal force, probably nearer to the solution value, we
propose to take the last value available in the iteration loop. This means that when the slip occurs
we compute the maximum allowable tangential force, and then keep the value constant for the
remaining iterations.

i+1 i
at1l atl

tmax = 1S5 (34

where 7 is the iteration value at which slip started. Examples have shown good results, and
convergence was achieved also for cases where the other algorithms failed.

FINITE ELEMENT FORMULATION

The finite element model can be formulated within a general framework for large deformations;’
however we restrict ourselves to the case of small strains and displacements to focus on the basic
algorithm features. We therefore extend the simple element used in References 10 and 19. In the
case of contact surfaces being parallel to the x-axis we have

G+ = V2= y1 = (Y2 +v3) — (¥, + vy) (35)

where Y,v and y denote the initial vertical position, the current vertical displacement and the
current vertical position of the node, respectively. By defining vectors U, containing the current
node position and vectors N, T, H, containing constant coefficients

Xy +uy ] [0 ] [ —17] [0 ]
Yl + v, -1 0 0
_ T+, _ 0 _ 0 | - 1
Ue_ X2+u2 ’ N= 0 ’ T= 1 ’ H_ 0 (36)
Y2 + Uy 1 0 0
| T+t 0 | | 0 | | 1]
we can write equation (12) as
go+ = UIN 37
In a similar way we obtain from equations (13) and (14)
g+ = UIT — git? (38)
gn+ = UTH 39

Using equations (4),(21) and (37)—(39) we express the contact contributions of the active contact
elements as follows:

[ Ga-+ ona1ogu,ar = () (00T + sm) LN (40)
e c=1

L (ot 264)3g0s AT = () [BUX(pe + xt4) ALT @)
¢ c=1

(+ 7h2)00n 4T = () [BUT(pa + vh) ALH @)
c c=1

where n, is the number of contact elements, 4 is the element area and | ] represents an operator
that selects and suitably assembles only the active (closed) element contributions.
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The discretization of the continuum problem can be represented in a general form?3° as
2

Y s Wi, t*) = UTM(u, 1) 43)
a=1

2

Y dWi(u®,t*) = SUTT(u,1) (44)
a=1

Equations (40)—(44) permit one to obtain the discretized form of the global problem given by
equation (21). This leads, for arbitrary virtual quantities d U, to the vector equations

M) + () [(po+ en)ALN + () [6UT(p, + 1:)ALT = 0
c=1 c=1

. 45)
Tt + | [(pn+ 7hs)41H = 0
c=1
The algorithmic treatment of the problem requires the linearization of the equation set (4).
From the contact contribution in matrix form (equations (40)—(42)) and the chosen contact
geometry we obtain the contact tangent stiflness contributions. The normal contact gives

AU‘ (P + N4 )0Gns dI“] = U [ASUY(p, + en)A + SUIN(Ap, + Aen, + eAn)A
rC =

c=1
+ 60U (p, + en,)AA]N (46)

Due to the chosen contact element geometry and to the solution scheme p,,, ¢ and A are constants.
Disregarding second-order terms and using equations (25) and (37) to express n, we obtain

U [6UTeAn, 41N = | [6UTeAgas ALN = | ) [UTe(AUTN) 41N @7)

c=1 c=1 c=1

Rearrangement of equation (47) permits to obtain the tangent stiffness matrix

(J [0UF(eANNT)AU,]. =Ky, = |J (EANNT), (48)
c=1 c=1

The frictional contribution depends on the current status: in the stick phase the tangential slip, gi'®,
is zero, and the linearization carried out following the same guidelines of the previous one yields

AU (P + xt+)0g:+ dl“] =>KH* = |J (xATT"), (49)
Ic

c=1

In the slip phase a dependence on the normal force appears. Using Coulomb’s law this can simply
be evidenced in the following way:

_h_pfa_ pe
giv =—=—"=—

X X X
With equation (50) the linearized form of equation (41) is

G+ (50)

e | 2 =

e=1

Finally the linearized form of the thermal contribution is

AU (Pn + 7h+)80n+ dr] =K, = | (74HH), (52)
I e=1
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The algorithm is described in detail in Box 1.

Box 1. Scheme of the algorithm

Initialize algorithm

set initial values

LOOP over time step: t = 1, . . ., total load condition
LOOP over augmentations: a = 1, . . ., convergence

LOOP over iterations: i = 1, . . ., convergence
solve
i+l i+} i+1 i+1
a+1 a+1 a+1 a+1l at+1l a+1
M M(“|+1 tr+1)+ U (SUT[(le +sn'“)AN+(p t+i +x"t+1)AT]=0
cm]
i+l i+l i+1
atl a+l ne atl atl
T T(“l+l ’t+l)+ U éuT(pH-l +‘yh:,+l)AH=0
c=1

fulfilling constraint conditions (8),(10),(11)

check for convergence: |M + T| < TOL = convergence
END LOOP
LOOP over contact elements: k= 1,n

update augmented forces:

i i ]
at1 a a a+1 a at1 a

a
p:‘+l _P,t,+l +En:_+1 l+l _p‘+1 +xtl+l p:‘+1 =p;+1 +.yh‘l++l

update physical approaches:
IF standard way:
at1 a+l y a

g5 = g I A) gith = g (fitY, i1, 4)

i i i i
a+1

a a L]
l+l —gh(f'+l f:‘-b-l, f'|+l,t“+l,A)

ELSE IF symmetric way without thermal field:!¢

|‘ i
a+1 at+1

g:‘f-l _gn(fﬁ-l A) gl+1 _g:(f'.“, f:‘+‘,A)

ELSE IF proposed way

i i T
atl atl

g = gL A) gt = g(fir, £41, )

|'
a+1

'“—g(f,',“ f:+x ft+l t'+l A)

ENDIF
check constraint condition:

a+1l at1 a+1

ni*t 4t + it TOL = convergence

END LOOP
END LOOP
END LOOP
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EXAMPLES

The numerical computations have been carried out to demonstrate the influence of different
contact features. To do this we decided to focus on the contact mechanics; thus we have
eliminated non-linearities within the continuum formulation and have used simple tests with
geometrically linear behaviour.

The elastic block on a rigid foundation is a widely used test example for these purposes.2! The
test considers a block 4 units wide and 2 units high (Figure 1). Idealized mechanical parameters
often used for the block are: elastic modulus E = 1000 force/length> and Poisson’s coefficient
v = 0-3. These parameters characterize a very deformable continuum medium. We have carried
out a series of numerical tests using these data. Furthermore some other results have been
obtained using the more realistic compression modulus of steel.

The block is discretized by using four-node isoparametric elements in the plane stress
condition. Contact features have been studied using penalty as well as micromechanical
normal stiffness>~’ methods. Frictional effects have been included using a penalty stiffness
in the normal direction with Coulomb’s law or normal and tangential micromechanical stif-
fnesses. Furthermore, augmentation techniques have been applied to these four cases. All data
involved in the description of the contact interface are collected in Table I. Such data can be
obtained from measurements of the microscopical surface shape and hardness tests, see e.g.
Reference 22.

Compared to the basic example?! some modifications have been introduced concerning the
boundary conditions. Frictional effects are applied all along the contact area and either the
vertical load or the imposed displacement at the top are applied along the entire upper edge of the
block (see Figure 1).

In the first series of tests a uniform vertical displacement of 0-32 has been applied. The energy
tolerance to stop equilibrium iterations within the augmentation loop has been set to le — 25
which denotes the limit in double precision computations due to round-off errors. In such a way
the order of magnitude of the minimum value obtainable for the residual norm is le — 12.

Results of the first four tests (nos. 1,2, 3,4 in Table I) are collected in Table II. It is evident in
these examples that the frictional effects have a small influence on the rate of convergence. The
micromechanical contact law, reported in Figures 2 and 3, is strongly non-linear; hence more

Figure 1. Discretization of the elastic block on rigid foundation
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Table 1. Contact parameters of the examples

Features Value
Frictionless penalty

Normal penalty le + 10

1 + Coulomb’s friction

Normal penalty le + 10
Tangential penalty le + 10
Coulomb’s friction coefficient 01
Frictionless micromechanical

Mean RMS surface roughness 478 -7
Mean equivalent absolute slope 0072
Hardness parameter C1 6271e + 6
Hardness parameter C2 — 0229
3 + micromechanical friction

Tangential elastic stiffness le+7
Initial shear strength 0
Final shear strength 0
Initial coefficient of microfriction 01
Final coefficient of microfriction 01
Hardening exponential constant 0
Hardening linear constant 0

1 with augmentation

Target stiffness o)
Augmentation penalty le+4+1e+6
Penalty increment ratio 1+10

2 with augmentation

Target normal stiffness le+7
Target tangential stiffness le+7
Augmentation normal penalty le+ S
Augmentation tangential penalty le+2
Tangential penalty increment ratio 1+2

3 with augmentation

Non-linear target stiffness 0+ 4e+11
Augmentation penalty le+4=-1le+6
Penalty increment ratio 1+ 10

4 with augmentation

Non-linear target normal stiffness 0=+4e+ 11
Non-linear target tangential stiffness 0+ d4e + 11
Augmentation normal penalty le+9

Augmentation tangential penalty le+4+1e+6

iterations have to be performed to achieve convergence. However, the rate of convergence near
the solution point is quadratic due to consistent linearization (Figure 4).

Within the augmentation technique it is important to determine the proper value of the penalty
term. If it is chosen too low then the convergence rate is very poor. Comparisons for different
values of the penalty parameter in test no. 5, see Table I, can be deduced from the results collected
in Table I1L. The case of penalty without friction has been tested by varying the penalty parameter
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Table II. Residual norm for test nos. 1,2,3 and 4

1 2 3 4

0-156e + 4 0-156e + 4 0-156e + 4 0-156e + 4

0-167e — 11 0990e + 1 0-664¢ + 6 0-685¢ + 6

0-416e — 12 0471e + 1 0224e + 5 0224e + 5
— 040le — 12 0759 + 4 075% + 4
— — 0-260¢ + 4 0-260¢ + 4
— — 0-876e + 3 0-876e + 3
— — 0276e + 3 0276e + 3
— - 0:710e + 2 0711e + 2
— — 0101e + 2 0-131e + 2
— — 031le+ 0 0242¢ + 1
— —_ 0-322¢ - 3 0139 — 2
—_ — 0-344e — 9 0912¢ — 8
— — 0486 — 12 0-186e — 10

1,00+8

8,00+4

Normal force

4,08+4

2,00+4

0,0040
0,00+0 1,00-6 2,00-8

Physical approach

Figure 2. Normal contact force versus physical approach
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4,00+11

3,08+11

stiffness

2,08+11

Normal

1,00+11

0,00+0
0,00+0 1,0e-6 2,00-8

Physical approach

Figure 3. Normal contact stiffness versus physical approach

during the augmentations. Table ITI depicts the residuals of the constraints during the augmenta-
tion loop and the number of iterations required to achieve convergence at each augmentation
step. The final penetration obtained is 1e — 17 which is a very good approximation. Note that the
computational effort depends strongly on the value selected for the penalty parameter.

The possibility to increase the initial penalty value within an augmentation loop may lead to
a better rate of convergence. Unfortunately it is not a simple task to establish a good strategy for
increasing the penalty value and for stopping this process at a certain level. Some preliminary
results on the choice of the penalty parameter are reported in Wriggers and Nour-Omid.2* Thus
this is a field in which some efforts should be spent, because until now there are no well-set
criteria. However as argued from a comparison of the reported results the augmentation
technique is really advantageous. To increase the penalty means to disturb somehow the solution
process. Hence it can be done only during the first augmentations. The criterion adopted here
stops the increment when the maximum admissible value, as stated in Reference 23, is reached, or
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Figure 4. Convergence rate for test no. 3 of Table |

when the ratio between the previous and the current approach is less than 0-25. This criterion
allows only one increment at the first augmentation in each test. The effect of the penalty value
used for augmentations on the normal approach is shown in Figure 5.

The group of examples no. 6 of Table I are similar to the ones in group no. 2, but here the
augmentation technique has been applied to improve the results of normal and tangential contact
effects. Due to the chosen contact parameters and load conditions, slip is activated in the main
part of the contact zone. Hence the unsymmetric terms in contact tangent matrix strongly
influence the solution. Comparisons of different solution strategies are reported in Table IV. The
examples show a certain sensitivity to the contact parameters. Many difficulties come from the
jumps of tangential forces during augmentations. These jumps determine sometimes the gap
opening in certain zones; due to this the solution does not converge. This effect takes place when
using a symmetrization technique proposed in References 14 and 16, where the first augmentation
is frictionless, then in the second augmentation a big jump in the contact forces occurs. To avoid
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Table ITI. Residual of constraints and number of iterations for test no. 5

Penalty le + 4  Penalty le + 5 Penalty le + 6 Penalty e + 4 Penaity le +5 Penalty le + 6

no increment no increment  no increment  increment 10 increment 10  increment 10
3 3 3 3 3 3
0:698¢ — 1 0730e — 2 0-733¢ — 3 0-698¢ — 1 0-730e — 2 0-733e -3
2 2 2 2 2 2
0:336e — 2 0-363e — 4 0-366e — 6 0:347¢ — 3 0-365¢ — 5 0-366e — 7
2 2 2 2 2 2
0158 — 3 0-181e — 6 0-183e — 9 0173e — 5 0-182¢ — 8 0183 — 11
2 2 2 2 2 2
0754 — 5 0898e — 9 0915¢ — 13 0-860¢ — 8 0911e — 12 0916e — 16
2 2 2 2 2 —
0-369¢ — 6 0-447e — 11 0457e — 16 0-428¢ — 10 0-455¢ — 15 —

2 2 — 2 —_ —
0171e — 7 0222¢ — 13 — 0213e — 12 — —
2 2 — 2 — —
0-814e — 9 O11le — 15 — 0-106e — 14 — —
2 — — 2 — —
0-388¢ — 10 — — 0-533e — 17 —_ —
2 _ — — _ —
0-185¢ — 11 — — » — — —_
2 — —_ _ — _
0-879¢ — 13 — — — - —
2 — — _ _ _
0418e — 14 — —_ — —_ —
2 — — _ — —_—
0-197e — 15 — — — — —

Tot. iterations

25 15 11 17 11 9

gap opening a suitable combination of normal and tangential penalty parameters should be
chosen. An alternative way can be the use of an active set strategy, which permits traction forces
in contact zones during the iterations. Then the solution can be obtained even if the contact forces
oscillate with changing sign. The main problem using this strategy is that it is not easy to
determine if the contact opening is the correct solution or if it is due to oscillations of contact
forces.

The results reported in Table IV show that the convergence rate is quite slow without increase
of the tangential contact stiffness. In this case the unsymmetric formulation, the symmetric one
proposed in Reference 16 or the one proposed by us give about the same efficiency. With a higher
tangential stiffness the problem does not converge due to the opening of some contact elements
within the iterations. The effectiveness of the proposed symmetrization is evidenced when an
increase of the penalty parameter is adopted. In this case the low starting value avoids gap
opening during the first augmentation. Then the increase of the penalty parameter improves the
convergence rate. In fact, using the same number of iterations in the case without a tangential
penalty increase we are able to fulfil the constraint up to 0-315¢ — 10 instead of 0-127e — 5.
Moreover in this case the proposed symmetrization technique presents almost the same conver-
gence rate as the unsymmetric one. Considering the number of iterations within the augmenta-
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Figure 5. Normal approach with augmentations for test group no. 5

tions the proposed symmetrization also seems to be less sensitive than the other one with respect
to the disturbance induced by the update of the penalty parameter.

The effectiveness of the augmentation technique with a micromechanical contact law has been
demonstrated in Reference 10. Test no. 7, for which the results are reported in Table V, considers
a frictionless contact with micromechanical contact law. The decrease of the residual of the
constraints also shows in this case the necessity to increase the penalty stiffness. Due to the
micromechanical law the target value for the approach is not zero, but is a variable which evolves
during the simulation (see also Reference 10). The final target value for the physical penetration is
4e — 7. Also in this set of tests the algorithm has permitted only one increase of the penalty during
the first augmentation.

Test no. 8§ collects examples of contact with friction based on a micromechanical contact law.
The augmentation technique is used for both normal and frictional contact behaviour. The
efficiency of the proposed technique to symmetrize the contact stiffness matrix during the slip



2946

G. ZAVARISE, P. WRIGGERS AND B. A. SCHREFLER

Table IV. Residual of constraints and number of iterations for test no. 6

Target stiffness: normal 1e + 7, tangential le + 7

Normal penalty ie + 5
Tangential penalty le + 2

Normal penalty le + 5
Tangential penalty le + 2
Tangential penalty increment 2

Unsymmetric  Symmetric'®  Symmetric Unsymmetric Symmetric'®  Symmetric
3 3 3 3 3 3
0737¢ -2 0:730e — 2 0:737e — 2 0737¢ — 2 0:730e — 2 0737e -2
2 2 2 2 2 2
0209¢ — 3 0249 — 3 0:209¢ — 2 0-34le -3 0249¢ - 3 034ie -3
2 2 2 3 5 3
0-155¢ — 3 0195¢ — 3 0:159¢ — 3 0-106e — 3 0476e — 2 0120e — 3
2 3 2 3 4 3
0-487¢ — 4 0-144e — 3 0:515¢ - 4 0-345¢ — 4 0215 —2 0-320e — 4
2 2 2 2 2 2
0236e — 4 0-530e — 4 0212¢ — 4 0-179¢ — 4 0-130e — 3 0177¢ — 4
2 2 2 4 2 4
0137e - 4 0253¢ — 4 0:129¢ — 4 0923 - 5 0-544¢ — 4 0918¢ — 5
2 2 2 4 3 4
0-108¢ — 4 0-145¢ — 4 0-105¢ — 4 0-466¢ — 5 0403¢ — 4 0469 — 5
2 2 2 4 2 4
0717e — 5 0-108e — 4 0723 -5 0-146e — 5 0-325¢ — 4 0148¢ — 5
2 2 2 2 4 2
0-66le — 5 0:736e — 5 0:649¢ — S 0274 — 6 0914e - 5 0271e - 6
2 2 2 2 4 2
0-590e — 5 0-664¢ — 5 0-:593e — 5 0:699¢ — 7 0-445¢ — 5 0773¢ — 7
2 2 2 2 4 2
0329 -5 0-582e — 5 0:336e - 5 0-153¢ — 7 0-140e — § 0185 — 7
2 2 2 2 2 2
0-308¢ — 5 0337e - 5 0302¢ — 5 0-326e — 8 0276e — 6 0324 - 8
2 2 2 2 2 2
0-28% — 5 0:309¢ — § 0-288¢ - 5 0:694e — 9 0-700¢ — 6 0-648¢ — 9
2 2 2 2 2 2
0272 -5 0289 — 5 0272 -5 0-148¢ — 9 0-149¢ — 7 0-108¢ — 9
2 2 2 2 2 2
0255¢ — 5 0272 -5 0:255¢ — 5 0-315¢ — 10 0313¢ —8 0-281e — 10
2 2 2 — 2 —

0-23% — 5 0255¢ — 5 0239 — 5 — 0-658¢ — 9 —

2 2 2 — 2 —
0224e — 5 0:239¢ — 5 0225¢ — 5 — 0-138¢ — 9 —
2 2 2 — 2 —
0211e -5 0225¢ - 5 021le—5 — 0291e — 10 —
2 2 2 — — —
0127e - 5 0-211le -5 0-130e — 5 — — —
- 2 — _ _ _
— 0124e — 5 — — — —
Tot. iteration
39 42 39 39 49 39
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Table V. Residual of constraints and number of iterations for test no. 7

Penalty 1e + 4  Penalty le + 5 Penalty le + 6 Penaity le + 4 Penaity le + 5 Penalty le + 6

no increment no increment  no increment  increment 10  increment 10  increment 10
2 2 2 2 2 2
0296e + 5 0309 + 4 0310e + 3 0296e + 5 0309 + 4 0310e + 3
2 2 2 2 2 2
0-141e + 4 0-154e + 2 0-155¢ + 0 0-147¢ + 3 0154 + 1 0-155¢ -1
2 2 2 2 2 2
0671e + 2 0:765¢ — 1 0772 — 4 0732 +0 0771e — 3 0-768¢ — 6
2 2 2 2 2 2
0-319e + 1 0-380e — 3 0-386e — 7 0364e — 2 0-385¢ — 6 0-381e — 10
2 2 2 2 2 1
0-152¢ +0 0189 — 5 0-192¢ — 10 0-18le — 4 0192 — 9 0379 — 10
2 2 1 2 1 1
0:724e — 2 0941c —~ 8 0-192e — 10 090le -7 0-192¢ — 9 0270e — 12
2 1 1 2 1 —

0345¢ — 3 0941e — 8 0-451le — 13 0-448¢ — 9 0-103e — 12 —

2 1 — 1 — -
0-164e — 4 0-461e — 10 — 0448¢ — 9 — —

2 — — 1 — —
0-782¢ — 6 —_ — 0-186e — 11 — —

) — _ _ —_ _
0372 — 7 — — — — —

1 — —— — —_ J—
0372¢ — 7 — — — — —

1 J— — —_ _ R
0177e — 8 — — — — —
Tot. iterations

22 14 12 16 12 10

phase can be deduced by comparing results collected in Table V1. The symmetrization technique
proposed in Reference 16 has also been tried, but no convergence has been achieved. This occurs
because the problem is very sensitive to the contact force variations. The jump of the tangential
force at the first augmentation causes numerical oscillations and divergence of the solution when
the solution shifts from the frictionless to the frictional state.

Other tests carried out using realistic material and contact parameters of steel have shown the
same trend. Examples with thermal coupling have shown a smali influence on the convergence

rate. This is due to the fact that ill-conditioning problems are mainly due to the mechanical
field.

CONCLUSIONS

A technique to symmetrize a thermomechanical contact problem is presented. Symmetrization
and augmentation are combined in a suitable way to permit good rates of convergence and to
avoid ill-conditioning of the global stiffness matrices. The effectiveness of penalty updates has also
been shown. The methods have been applied to different problems with linear geometry.
However, from the theoretical point of view no further difficulties are involved when using the
proposed method in a fully non-linear formulation.
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Table V1. Residual of constraints and number of iterations for test

no. 8§
Normal penalty le + 9 Normal penalty 1e + 9

Tangential penalty le + 4 Tangential penalty le + 6
Unsymmetric Symmetric Unsymmetric Symmetric

5 5 4 4
0-296e + 4 0-296¢ + 4 0-301e + 2 0-302¢ + 2

5 5 5 5
0-145¢ + 3 0:145¢ + 3 0-228e + 1 0225¢ — 1

3 3 2 2
0-291e + 2 0419 + 2 0-675¢ — 1 0-216e + 0

3 3 2 2
0-682¢ + 1 0913¢ + 1 0-675¢ — 4 0-158¢ — 1

2 2 2 2
0-188¢ + 1 0218¢ + 1 0-263¢ — 6 0-466e — 2

2 2 2 2
0-567e + 0 0633+ 0 0117¢e — 8 0-604e — 3

2 2 1 2
0-177e + 0 0200e + 0 0-117¢ — 8 0-605¢ — 4

2 2 1 2
0-56le — t 0635¢ — 1 0-845¢ — 11 0-153¢ — 4

2 2 — 2
0-178¢ — 1 0-201le — 1 — 0314e - 6

2 2 — 2
0-567¢ — 2 0-640¢ — 2 — 0-322¢e — 6

2 2 — 2
0180¢ — 2 0204e — 2 — 0-138¢ — 7

2 2 — 2
0574 — 3 0-648¢ — 3 — 0-573e — 8

2 2 — 2
0-182¢ — 3 0-206e — 3 — 0-612¢ — 9

2 2 — 2
0-582e — 4 0:656¢ — 4 — 0-80te — 10

2 2 — —
0-185¢ — 4 0209 — 4 — —

2 2 — —
0-58%¢ — 5 0-664¢ — 5 — —

2 2 — —
0-188e — 5 0211le -5 — —

2 2 — —
0-597¢ — 6 0673¢ — 6 — —

2 2 — —
0-190¢ — 6 0214¢ - 6 — —

2 2 — —
0-605¢ — 7 068le — 7 — —
Tot. iterations

48 48 19 33
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