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On the treatment of nonlinear unilateral contact problems

P. Wriggers and M. Imhof, Darmstadt

Summary: This paper is concerned with finite deformations of elastic bodies in the presence of unilateral constraints. The
penalty formulation is applied to introduce the contact constraints. We develop special isoparametric contact elements.
Starting from their Gaussian points the distance between the body and the obstacle is determined, where the obstacle is given as
a C?* continuous function. Variation and subsequent consistent linearization yield the tangent matrix of the contact elements in
its general form, which can be incorporated into standard finite element schemes.

Zur Behandlung nichtlinearer unilateraler Kontaktprobleme

Ubersicht: Es wird das Kontaktverhalten eines deformierbaren Kérpers beschrieben, der endliche Deformationen erféhrt,
wenn er auf ein starres Hindernis gedriickt wird. Dabei findet die Penalty-Formulierung Anwendung. Zur Kontakterkennung
werden isoparametrische Kontaktelemente verwendet. Ausgehend von deren Gausspunkten wird der Abstand des Korpers
zum Hindernis bestimmt, das als CZ2-stetige Funktion beschrieben wird. Variation und anschlieBende konsistente
Linearisierung liefern die Tangentenmatrix fiir die Kontaktelemente in allgemeiner Form, die dann in ein standardmiBiges
Finit-Element-Programm eingebaut werden kann.

1 Introduction

Many technical problems involve contact between rigid tools and deformable bodies, see e.g. forming
simulation. Since in most of these problem classes the bodies undergo large deformations one has to
develop a contact formulation which can handle these situations. This will be done here for the case of
frictionless contact.

Due to its technical importance many different contact formulations have been developed and are
discussed in the literature. In the last years more effort has been devoted to nonlinear problems.
Within finite element methods normally the approach is followed which assumes surfaces that are
parametrized by linear or bi-linear shape functions. One body arbitrarily is denoted as master body
which defines the surface normals during the contact computations. Then the contact detection is
performed via a check at the element nodes, see e.g. Hallquist [1]. Based on these geometrical
representations consistent tangent moduli for contact elements have been developed, see Wriggers
et al. [2] or Parisch [3]. A rigid tool is in this approach also approximated in the same way as a rigid
body. However it seems more natural to approximate the tool by its geometrical representation — e.g.
CAD-model — which also defines the contact normal in a consistent manner. This approach has been
used in e.g. Hansson et al. [4] for three dimensional problems. In this paper we will use a spline
interpolation of the tool.

On the other hand most formulations establish the contact conditions on nodal basis, see
Hallquist [1], Wriggers et al. [2] or Hansson et al. [4]. In our work we will check for the contact in the
Gaussian points which is consistent with the element formulation of the continuum body. This
approach has also been proposed by Laursen et al. [5] for frictional contact.

The algorithmic treatment in this paper is based on the penalty method which is well established in
finite element methods for contact problems, see Oden [6], Hallquist [1] or Papadopoulos et al. [7].
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2 The problem

Let K = R? be arigid obstacle which comes into contact with an elastic body Q (Fig. 1). The contact is
supposed to be frictionless throughout this paper. Furthermore we will not consider time dependent
processes. The body is not loaded in its initial state and therefore the initial stresses are zero.

We will denote points in the reference configuration by capital letters. Small letters are associated
with points in the current configuration. The mapping deforming Q is called &. Thus we have:

x = ®(X) = X +u. ()

Now we are looking for the deformations of @ which the body undergoes when it is loaded by
surface loads t or body forces gb. The equilibrium follows from the minimization of the strain energy
stored in £:

Iw) = | W) dQ — | gb-udQ — | t-ud(dQ) - min. )
0 Q o

Here W(u) denotes a hyperelastic strain energy function e.g.

Wiu) = (Ic =3+ AlnJ + - (J —1)? (3)

for a compresmble Neo Hookeian material with the first invariant I = tr C of the right Cauchy
Green tensor C.

In addition a constraint condition has to be fulfilled: Q is not allowed to penetrate the obstacle.
For describing this condition we introduce a distance function for every point x(u)e &() as can be
found in the literature, (5] or [4]):

g(w) = sign (g)- g (), @
where 1, n-(x(m) —§) =0
g+(u) = min |x(u) - vl = Ix(w —§| and sign(g) = { ~1 Zth:r:vlse.

The geometric situation is shown in Fig. 2. n stands for the outward normal of the obstacle,
v, © 0P(L2) defines the domain of the body’s surface that contacts the obstacle. It is:

= {x(u) : g(u) = 0}. 5)

In Flg. 2 body and obstacle are drawn separately only for the reason of clearness.
Finally we obtain the following formulation of our problem:

II(u) — min. (6)

with the constraint condition
g(u) =0 Vu. (7)

Fig. 1 and 2. 1 The problem; 2 Distance function
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3 Penalty method for solution

There exist various methods to transform optimization problems with constraint conditions to those
without constraint conditions. All of them refer more or less to the method of Lagrange multipliers
which has the drawback that the multipliers appear as additional unknowns. On the other hand this
method enforces the contact constraints exactly. Another often applied technique is the penalty
method which does not lead to an exact fulfillment of the contact conditions. However this approach
does not introduce additional variables and thus is computationally advantageous.

Let us again state the optimization problem associated with contact of elastic bodies in the
presence of large deformations

I1(u) - min. ®)
with the inequality constraint condition
ueS = {u:g(u) = 0}, 9)

which means we do not search for the minimum of IT for all possible u. Hence the displacement field
must be in the set of the u that fulfill the constraint condition. This problem is replaced by the
optimization problem without any constraint condition

IT(u) + eP(u) - min. (10
Here ¢ and P(u) have to satisfy (see Luenberger [8]):

e ¢ > 0 arbitrary but fixed
e P(u): (i) continuous

(i) P@) =0 Vu (11)
(iii) P(u) = 0<ues.
It can be seen immediately that
def 1 2
P 2 | g2 dr (12)

Ve

x;=X7+us : element nodes
Xr :  Gaussian points of the element
¥; 1 obstacle points to compute

that define distance
g1 : discrete distance Fig. 3. Interpretation of penalty term
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fulfills these conditions. If u is exact the penalty term ¢P(u) vanishes and we obtain the solution of the
primary problem. In case u is not exact the penalty parameter has to be a large number. Then P(u) will
become small, i.e. the constraint condition has to be fulfilled as good as possible so that the minimum
is reached. However the condition number of the problem increases with increasing ¢ which may lead
to ill conditioning. A somewhat optimal choice of the penalty parameter is given by the estimation

&= k/]/g&, (13)

where k is the bulk stiffness of the finite elements that are used to discretize the body Q. nis the number
of the unknowns of the problem and « stands for the accuracy of the computer used for the solution of
(10) (Wriggers et al. [9]).

In case of contact, i.c. g(u) < 0, we can interpret ¢ as the stiffness of linear springs which support the
body in the contact area y, (Fig. 3). The penalty term then describes the total energy of all these
springs. If the solution is exact this energy vanishes because then no penetration is allowed.

4 Finite element discretization

In the previous section the continuous problem is formulated finally:

I p(u) = I(u) + -2‘°i jgﬁ(u) dr — min. (14)

Ye

We have to minimize the sum of strain and penalty energy. Il(u) is discretized in Q by standard
finite elements which leads to the residual vectors and tangent matrices for every element. In the same
way we introduce contact elements and attach them to the surface of Q so that they are able to decide
whether 2 contacts the obstacle and thus determine the contact region. This formulation leads also to
residuals and tangent matrices for every element.

In the following our objective is the discretization of the penalty term. For that purpose we
develop contact elements with two or three nodes which can be used for two dimensional situations
for the discretization of Q by means of four or nine node elements. The surface of the obstacle is
realized by a C? continuous function f(y), ye R which will be specified within the examples. This
function either is given as analytical function or is obtained by interpolation of several obstacle points
(v fi), i = 0, .., n. The interpolation is based on natural cubic splines:

(Yier — V) -y . .
SASf9) = a; A + Givq u +by—y)+e i yely,yidd, i=0,..,n-1,
6h; 41 6h; 4 4
(15)
where the g; follow from the linear system of equations
h; h + by h; fisr —fi fi—fi-
~6—ai_1+ 3 +lai+ gl i1 = -;lt_'-lf - h{ 1, —1, .,l’l—l
In addition we define
ap=0 and 4,=0
which gives reasons for the term “natural”. Furthermore it is
w1 —fi Mk h?
bi:f+1 f - +l(ai+1‘—ai) a.nd Ci—_—fi‘—ai_i, l=0,,n—1
hisy 6 6

Thus we have polynomials of third order on every interval (Trnig et al. [10]). Beyond that the
notations of Fig. 4 hold.
Discretization of (12) now yields:

8 numel
Slg2dr~< Yy | g.2dr, (16)
2 2 e=1

Ve Veo
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Uz2

X2

Fig. 4 and 5. 4 Notations; 5 Degrees of freedom of the contact element

where g is the distance between the element surface y., and the obstacle. Points of y,, are discretized
by isoparametric functions:

’J)ce:)_( = Z Nl(é) Xy, 56[—1, 1] (17)
I=1

With the introduction of the displacement vector u between the deformed and undeformed state, see
Fig. 4,

XI == XI + uI (18)

we can express (17) in terms of u;. For two dimensional problems we have to introduce 2N degrees of
freedom uy; for every contactelement, I = 1, ..., N, where N is the number of nodal points per element
and i = 1, 2 the spatial dimension of the problem, see Fig. 5.

Noting that dI', = |y.,.c|| d¢ we carry out a coordinate transformation to the isoparametric
reference element:

de. (19)

1 1 N
[22d0 = | 22 lreelde= ] 22 3 Nrdd)
-1 -1 I=1

Ve

Here and in what follows (.) ; denotes the derivate of () with respect to ¢.
Numerical integration (Gauss quadrature) gives

Wy (20)

Hp N
j gﬁdfz Z gkz Z NI,.):(fk) Xy
Yee k=1 =1

. g,, if contact
Bk = 0, otherwise,

where the &, stand for the coordinates of the Gaussian integration points and «, are the weights of the
integration formula. n, is the number of the Gaussian points per element. g, represents the distance
function at &, which is only in the case of contact different from zero. Let p describe the number of the
Gaussian points for which we have contact. Then (20) yields:

14 N .
j §+2d1”z Z gkz IZ NpA&) xp| o. (21)
k=1 =1

Yee

Now we have to discretize the distance function g;:

N
Bio= 1% — ¥l = 1% — Full = || 2 NuGi) xp — ¥ie| - (22)
I=1

Since the distance function is by definition positive we test a possible penetration using the
outward obstacle’s normal (Fig. 6). At a Gaussian point X, we have contact if the condition

nt- X —§)£0 (23)
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Fig. 6. Realization of contact

holds. Here we have introduced the outward normal of the obstacle

n k_ ; <_f/(j}k)> (24)
TS AN

which is defined in terms of the obstacle function f{ y). (In case of the deformable body lying below the
obstacle we have to multiply n/* by (—1).) Associated with this definition we also obtain the tangent
vector to the obstacle surface:

(25)

e o)
U = T\ s\ ]
1+ 250 V(7%
Combining (21) and (22) the penalty term has the form

2 N

N’f,gxr
I=1

a0
> g+ ~ 2 = k

e=1

N
Z NIkXI - Y&
=1

} (26)

where the arguments &, have been replaced by the index k for clearness. The discretized version of
problem (14) can now be stated:

Ye

2 N

numel e P
Hh(ll) + Z |:E Z (Dk N’;’éxI
e=1 k I=1

=1

N
Y N — ¥ } — min. (27)
I=1

This problem will be solved by using Newton’s method: Let
F(x) —» min. (28)

be the problem. Then the standard argument for a minimum gives
§F(x) = 0.

Subsequent linearization (which comes out of the Taylor series) yields
L[3F(x)], = 8F(x) + ASF(x)
= 0F(x) + DSF(x)-Ax =0
= DOF(x)- Ax = —8F(x). (29)

In the next two sections we develop the variation and the linearization of the discretized contact
penalty term (26) which is needed for the application of Newton’s method (29).
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4.1 Variation

The problem

numel 2 N

e p
SIT"u) + ) 8[5 Y
e=1 k=1

represents the weak form of the equilibrium which the displacement field u has to fulfill. The variation
of the first term is a standard procedure (here we use an available element to discretize the body,
Wriggers [12]). Thus we concentrate on the second term and compute the variation of the discretized

penalty term:
Using the product rule we have
} -0,
G

N

k - %
Z N % — ¥ NI,r:XI
I=1 1

I=

}éo (30)

2 N 2

0

numel N

&

p N N
3IT*(w) + Z 2 Z Wy, [5 2 N/ — §i + > N — %
e=1 “ k=1 =1 =1

N’f,gxz
1

%
NieXp
1

I= =

The particular variations are found to be (Fig. 6):

2 N N N
= 2(2 NIkXI - yk)( Z NIk SXI - 6yk> = 2§knfk'< Z NIk 6XI i 65’k> (32)
I=1 I I=1

=1

N
Z Nliéxl N N
= T—( S Nk, sx,> =t ( > Nk, 5x,>. (33)
I= I=1

> NEexg | MY
=1

I=

N
d Z NIkXI — Yk

I=1

N
81| ). Nk x;

I=1

Note that with x; = X; + u; we have 8x; = du,. Since y, also depends on the displacement field we
have to compute its variation, too. However to express 0¥, in terms of the variational displacements
some more reflections are neccessary. Before we develop this expresssion we state the algorithm for
the computation of y,. With "

. Vi

Ye=1 , - (34)
‘ (f( yk)>

formally this leads to
_ O )

=1 ,,-" - |- (39)
" <f(yk) 5

¥, is obtained from the definition of the minimum distance function

g’ = min dy(y), (36)

yeDf
where (Fig. 7)
d(y) = a — Y + Fez — F(0) (37)

We determine y; by means of Newton’s method by finding the root of the equation

der 1

h(y) = 3 di'(y) = — (X2 — ¥) = S(Y) (ikz "f(y)) =0:

Vie1 = Vi — bl y3)
i+1 i hk,(yi):

end of iteration for

(38)

i=01,2,..

Yn+1 — Vn

Var1

< tol,
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\
< ™ )

7 8
Fig. 7 and 8. 7 Computation of 7,; 8 Failure of Newton’s method

where y, ., is the result of the last iteration carried out. Several examples have shown that the
iteration’s starting point y, has to be chosen very careful by nesting of intervalls to avoid the situations
shown in Fig. §.

Finally it has to be tested whether the computed extremum point is a minimum.

Once y, is determined we define

def

Vi = Vur1  and thereby  f(¥i) = f(Yus1)- (39)

Since ¥, depends on the position of X,

)_’k - )_)k(ik) = j}k(ikln >_Ckz) (40)
we can write
0y oy N
85 = ok 8y + ok 3%y = Vi %, = Vi ( Y N 8x1>. (1)
axkl exkz I=1

To compute the gradient V3, in (41) we use total differentiation of hy( (X)) =0 (see Heuser [11]):

() = h ¥(%) = 0: (42)
o 4 _ Oy O By
o d-)_ckl o a-)_ckl ay a.;ckl
ohy, _ Oh, _ . _ .
e e At (%2 — F(0) + SHY) (43)
oy 1

e 1= 1) Ga — ) + /20
In the same way we obtain

0y ')

05 1= 10 Gea = JO) 77700 e

Introducing the abbreviation

- L+ /()

TG0 (e =G + 7750 )

we derive

L —— >= S S— (46)
T2 \re) T TG0
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which yields

Ck

N
8_)7]( = Vﬁk ° Sik == tfk * Z NIk SXI (47)

1+ /(7 =1
and finally

1 N
6S’k = 6J7k <f’()7k)> = ck <tfk . Igl NIk 6X1> t[k. (48)

One recognizes that the vector 8y, is tangential to the obstacle — as could be expected.
We now can write the variation in the following form:

numel p N N N
th(u) + Z —8‘ Z (Dk |:2g_k Z NliéxI ( Z NIk SXI e C_k <tfk ‘ Z NIk 8X1> tfk> ) nfk
e=1 2k=1 =1 =1 I=1
N
+ 30 Y N ox, tek] - 0. (49)
I=1
Because of t,* L n/* this expression can be simplified to its final form
numel p N N N ' e,
th(“) + Z z Z NIk SXI . l:gwkg_k Z N,;,éxI nfk:l + Z NI},& SXI . |:7 gk2tek]} = 0 (50)
e=1 k=1 UI=1 I=1 I=1 '

Writing du; instead of 0x; and introducing the abbreviations

T def

(du,)” = (duyq, OUqa, Oliyy, OlUzs, ... Oun1, Otlys) (51)
and
_Nl 0 ] _le 0 7]
0 N, 0 Ny
N, O N, 0
NAEl o Nyl and NEZ[ 0 N, | (52)
NN 0 NN{ 0
| 0 Ny | 0 Ny
respectively, as well as the constants
def N
A = eaygy Z N’f,éxl (53)
I=1
and
def €y _
k= 71:_ gkza (54)
yields
N
z N/ 8u; = (5u,)T - N,*. (59)
I=1
Therewith the variation takes the form
numel p
8I'm) + Y (Bu)"- Y {4NJF-nF + BNk -t*} =0. (56)

e=1 k=1
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4.2 Linearization

To compute the tangent matrix D §F(x) for the NEWTON scheme we have to linearize equation (50) of
section 4.1. For one element we have

)4 £y, N . _ 2 N . P £y N . _ 2 N .
A6 Z —2‘ Z NI Xf_yk ZNI,éxf = T AS Z NI XI_Yk NI,CXI
k=1 I=1 I=1 k=1 I=1 I=1
N 2 N
+3 || 2 N =% Al Y Niex
I=1 I=1

2

N N
+ ALY NS =¥ 3| Y Niex,
=1 =1

+

N
Z NIkXI — ¥
I=1

J‘ (57)

N
- ng Z le le'nfk (58)

I=1

2 N
AS i Y. N ex;
I=1

Since we already have computed

2

N
3 Z NIkXI — Ve
1

I=

in (49) or (50), respectively, we find in an analogous way

2

N N
A Z NIkXI — yk = 2§knfk . Z NIk AXI. (59)
I=1 =1

Similarly using (36) we obtain

N N
A Z N?gvxl = [ek . Z Nlié AXI . (60)
I=1 I=1

Thus the only terms to be determined in (57) are

2

N
AS || Y N/f*xp — 3, and A8
=1

N

k
> Niexp
I=1

Straight forward computation yields

2

Ad

|
N g

N Ik 0X; - A(2g;n fk)

1

N
Z N/ — ¥,
=1

I

Il
1=

N
N}k SXI ‘ 2A ( Z NIkXI - yk)

I=1

-
il

1

l
1=

N N

1 I=1 I=1

|
1=

N N
NIk 6X[2 [ Z NIk AXI - Ek(tfk®tfk) Z NIk AXI}
I=1

I=1 I=1

N

N
= Z le 6X[2[1 - Ek(tfk ®tfk)] Z NIk AXI. (61)
I1=1 I=1
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In the same way we find

Ao

N
Y Niexg

I=1

N
k
= NI,§6XI'
I=1

N N
Z N’f,gxl (“ek ® nek)' Z N’f,é Ax;. (62)
I=1 =1

For this algebra we have used the relations for dyadic tensor products (a ® b)-¢ = (¢ ® a) b and
(@ab)c-dy=a-(b®c)-d
The final result for the linearization of (50) is now obtained by inserting (58) to (62) into (57):

P 80y N _ 2 N .
A8 Z —2“ z leXI — V& NI,§XI
k=1 I=1 I=1
p N N N
= Z Z NIk SXI'S(,Ok Z Nl}‘CXI [1 - Z’k(tfk®tfk)] Z NIk AXI
k=1 Ni=1 I=1 =1
N N N N
+ Z NIk SXI‘S(J)kgk(nfk@tek)' Z NI;,); AXI -+ Z N’I(,é SXI'kagk(tek®ﬂfk)' Z NIk AXI
I=1 I=1 =1 I=1
N s 5 2 N
FYONE Xk B _mr@nk) Y NE,Axg|.
I=1 2 k I=1
Z NI,§XI
I=1

If we now replace 8x; and Ax; by du; and Au; and introduce the matrices N * and N¥, defined in
section 4.1 we can write

N N

Z N/ du; = (du,)'-NJ*  and Z Nf . du; = (dm,)" - NE (64)
I=1 I=1
as well as

N N

Z N/ Au; = (NS -Au,  and Z N’;,é Au; = (N’ge)T - du,. (65)
I=1 I=1

Together with the abbreviation
(Aup)" = (Auy g, Auyy, Ainy, Aty .., Auyy, Auyy) (66)

we can describe the linearized penalty term in its final form:

AS % J ¢.2dl ~ (Au)T-K, - Au,, (67)
Ve

where the tangent matrix K, for one element has the representation

[1 — &t ® £ (NS + NF e guln* @ ) - (NE)”

§2 N
k k
Ke = Z Ne * &y z NI,(:XI
k=1 =1

I

=2
£y 8k

2 N

Z N’;,éxz
I=1

+ N, eon gt @) - (NS + NE, - (o ®n.k)- (NE)T| . (68)
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The corresponding right side P, for one contact element is the result of the variation of the penalty
term, except a multiplication by (—1) (compare the remarks concerning Newton’s method):

p
P,= -5 {ANSnF+ BN -tf}. (69)

k=1

5 Numerical examples

We give two examples: one classical for the linear case and one for the nonlinear one where large
deformations are involved. The computations have been carried out within the environment of the
Finite Element Analysis Program (FEAP), see Zienkiewicz, Taylor [13].

5.1 Hertz contact. cylinder on a rigid foundation

The first example is a Hertz contact problem which has an analytical solution. We compute the Hertz
solution for a cylinder under a single load on a rigid foundation. We use the mesh shown in Fig. 9, the
material constants E.; = 500, v.,; = 0.3 and a penalty parameter of ¢ = 10°. The radius of the
cylinder is R,,; = 8.

Assuming plane strain conditions we obtain the results that are plotted in Fig. 10.

The solid lines show the analytic solution for Hertz contact of a cylinder with a plane rigid
foundation which can be found in Johnson [14] or Goldsmith [15]:

E 1 _1—2
-~ |4 _ X2
b 2(1—v2)RfF En RTX

Here E is the elastic modulus of the cylinder, v is its Poisson ratio and R its radius. F denotes the
load per unit length. The numerical solution is in good agreement with the analytical one.

50+
. 407
: a
] o 307
L
2] 4
w
2 207
o
] 7777 3
77 i ]
M7 103
i /f////’/ g -
%%%//// ] F=325
%///// OOITIII“OK.]ZI lllll la‘%_”'m_ro‘.]é“”Ila.léluuu‘l‘.loll‘”l"1‘?’;”1”[‘"4
+ +r x—coordinate
9 10

Fig. 9 and 10. 9 Mesh for Hertz contact; 10 Finite element solution in comparison to analytic solution
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+— l=6-7 + Fig. 11. Elastic bar on a rigid foundation

+ Fig. 12. Deformed configuration of the elastic bar

5.2 Large deformations: bar on a curved rigid foundation

We consider an elastic bar with a hyperelastic material law as mentioned in (3). The bar lies on a rigid
foundation which is described by the function

f(x) = —cosx — 1,

see Fig. 11.

At the bar’s left end all displacements are restricted. In the middle part of the bar we apply
a constant load p = 3000/r. The material parameters are 1 = 12000, u = 6000 and the penalty
parameter is chosen as ¢ = 10°. Fig. 12 shows the deformation: The bar exactly takes the form of the
foundation. The crosses represent the points of the foundation that are used to interpolate the
obstacle function f(x).

6 Conclusion

The present paper is concerned with unilateral contact problems assuming large elastic deformations.
For the deduction of the algorithm great importance is attributed to obtain a description of the
problem that is as realistic as possible:

— the check for contact at the Gaussian points of the contact elements is consistent to the
discretization of the deformable body.

— the interpolation of the obstacle by cubic splines gives a consistent contact normal.

— special attention is directed to a consistent linearization.

Two examples show the usability and performance of the algorithm.
In future work it is planed to extend the research to contact problems of two deformable bodies.
Furthermore heat conduction and the influence of friction shall be included.
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