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Abstract

The main features of the Non-Smooth Contact Dynamics method are presented in this paper, the use of the dynamical equation, the
non-smooth modelling of unilateral contact and Coulomb’s law, fully implicit algorithms to solve the dynamical frictional contact problem
for systems with numerous contacting points, in particular large collections of rigid or deformable bodies. Emphasis is put on contact
between deformable bodies. IHustrating numerical simulation examples are given for granular materials, deep drawing and buildings made of
stone blocks. © 1999 Elsevier Science BV. All rights reserved.

1. Introduction

1.1. Dynamics

The Non-Smooth Contact Dynamics method for short Contact Dynamics, has been initiated and developed by
the author and J.J. Moreau (see a paper by this last author in this volume [33]) during the last decade
[20,21,11,19]. It is used for quite a number of applications but has proven to be particularly successful when
collections of rigid or deformable bodies are packed together and subject to loading deformations. Advances
have been made in the understanding of different discrete formulations of frictional contact. Also, much
attention has been paid to the way the method converges and how to appreciate the quality of a numerical
simulation, which is a difficult issue when dealing with large collections of bodies. The author has developed
this method within a Fortran software LMGC, the architecture of which follows closely the mechanical setting
developed hereafter, so that it may be applied as well to rigid or deformable body collections with minor
options.

Models of granular materials such as Schneebeli materials (assembly of piled up rolls) have been studied
during these last years with the Contact Dynamics method, yielding new results. In these divided materials, the
commonly accepted ideas about distributions of stresses or strains in continuous media are not true any more.
Chains of forces act between grains and strong forces support shear stress while weak forces contribute to
internal pressure [27]. Localisation, shear bands, dilatancy phenomena may also be exhibited. As an application
of the method, models of monuments made of rigid blocks have also been studied by J.J. Moreau. Rigid bodies
are governed by the dynamical equation and the frictional contact equations. Even in supposedly quasi-static
situations such as stress—strain experiments, episodes of shocks or quick rearrangements might happen (and are
actually experimentally observed) that dynamics is able to describe where quasi-static algorithms fail.

When oscillations or vibrations are to be studied, for instance monuments under seismic actions or wind
actions, the rigid body models are not relevant any more and elasticity of the bodies must be taken into account.
Here, the physical situation is dynamical and quasi-static algorithms are irrelevant. Recent investigations on
monuments made of deformable stone blocks are made with the Contact Dynamics method.

There are also quasi-static situations where dynamics may help. A typical situation is deep drawing numerical
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simulation where several hard difficulties are met: large displacements and deformations, frictional unilateral
contact, elasto-plasticity, plastic localisations, wrinkles, and so on. In most algorithms, at some place, within
some loop, iterations of the Newton—Raphson method are performed, using a tangent matrix, some stiffness
matrix. It may happen to be ill-conditioned, specially when plastic localization or wrinkles appear. In these
circumstances solving the linear system is very tedious or even impossible. When dynamics are taken into
consideration, the dynamical tangent matrix is well conditioned and iterations are quick. As a drawback, smail
time steps must be used.

1.2. Unilateral contact and dry friction

One of the main features of unilateral contact is impenetrability, which means that particles candidates for
contact must not cross the boundaries of antagonist bodies. This is expressed by writing that the distance
between contacting bodies or the gap g is non-negative. Also, it is assumed that contacting bodies are not
attracting each other, i.e. the reaction force R is non-negative, and this reaction force vanishes when the contact
is not active. The graph of this relation, see Fig. 2, commonly known as the Signorini condition is not a mapping
graph, in the sense that neither g is a function of R, nor R is a function of g. This graph is ‘infinitely steep’. As
will be seen later on, such graphs may be used when implicit methods are adopted. Another way of modelling
contact is to assume that the reaction force is a function of the gap violation, where violation means penetration
of some reference surfaces, in the neighbourhood of the contacting bodies’ boundaries. For instance, it may be
assumed that the reaction force is proportional to the gap violation, referring to some elastic properties of
asperities lying on contacting bodies rough surfaces. Hertz’ law may also be assumed or even some law between
g and weighted values of the density of reaction force on some neighbouring support of the contacting point
[ 16]. In these circumstances, the graph of the relation between g and R appears as a steep mapping graph. Any
algorithm devoted to strong non linear differentiable problems may thus be used. From a mathematical point of
view, replacing the infinitely steep Signorini graph by some steep mapping graph may be considered
mathematically as a regularizing (Moreau—-Yoshida) method or from a numerical analysis point of view as a
penalty method. The slope of the elastic response of such rough surfaces is difficult to measure with accuracy
and reproducibility. Furthermore, as far as small scale phenomena are considered, tribological responses of
rough surfaces are generally much more complicated than mere elasticity. To decide if, for numerical structural
analysis purposes, some steep mapping graph law is a better model than the Signorini condition is thus a matter
of personal acceptance and convenience according to the numerical or mathematical technique mastered by the
user.

The friction under consideration in appplications such as deep drawing or contact between grains or stone
blocks, is of the dry friction kind. A friction law relates the sliding velocity U, and the reaction force R. Dry
friction means that some friction force R, the tangential component of R, may be exerted without any sliding,
and that some threshold has to be overcome to allow sliding. In Coulomb s law, the threshold is proportional to
the normal component R, and the friction force remains opposite to the sliding velocity with the value of the
threshold when sliding is occurring. Here again, the graph relating U, and R, is not a mapping graph, see Fig. 3.
The infinitely steep graph may be replaced by some steep mapping graph which means that in the circumstances
where no sliding is to occur, some very small sliding velocity is actually produced. In the case where small
tangential displacements are expected, the sliding velocity being proportional to the tangential displacement, the
dry friction law is viewed by some authors as a relation between the tangential displacement and R,. The
alternative steep part of the graph may then be viewed as modelling elasticity effects of some asperities. Here
again, tribological phenomena are much more complicated and choosing a friction model is a matter of personal
acceptance and convenience. As far as regularized or non classical frictional contact laws are concerned basic
ideas in the line of variational methods for strongly nonlinear systems may be found in [16,23,18).

In the Contact Dynamics method, the Signorini condition and Coulomb law are adopted. An equivalent form
of the Signorini condition, involving the gap velocity is also introduced [19]. If local elasticity between
contacting bodies is a relevant phenomenon, for instance elasticity of mortar joints between stone blocks, it may
easily be taken into account in the algorithm, with a minor change of variable. Similarly, the dynamical friction
coefficient or some model of adhesion may be introduced. The basic relations are still the Signorini condition
and Coulomb law.
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1.3. Fully implicit algorithins

Explicit algorithms are usually favored in dynamics because they are easy to implement, the number of
floating point operations is low and high accuracy may be obtained. For instance, crash problems are
successfully treated with explicit algorithms. It is known that equilibrium under Coulomb friction is difficult to
reach with an explicit algorithm computing the frictional force from the sliding velocity at the previous time
step. Oscillatory artefacts are generated which are to be killed by appropriate numerical devices. In the
applications viewed in this paper, large collections of contacting bodies, the status of contacting points, no
contact or sticking or sliding, are subjected to many changes. In these circumstances, though being more
complex to implement, fully implicit algorithms behave nicely.

2. The Signorini condition, the Coulomb law

A candidate to contact is a unique pair of a candidate object O, and antagonist object O, with a candidate
particle P € O and an antagonist particle P’ € O'. The particles P and P’ are proximal such that P'P defines a
unit normal vector N directed from the antagonist object toward the allowed region for the candidate particle.
The vector N is equipped with two other vectors to form an orthonormal frame, so called local frame, see Fig. 1.
Normal components of vectors in the local frame are denoted with the subscript N and tangential components
orthogonal to N with the subscript 7. The following mechanical items are used in order to write a frictional
contact law: the components of the relative velocity of P with respect to o':U=U,,U,), the components of
the reaction force exerted by O’ on O : R=(R,, R,,), the gap: g =P'P.

When a contact is occurring the velocity or more exactly the relative velocity of the impacting particle shows
a discontinuity. The classical mathematical tool to describe such velocities is the set of functions defined on
some interval of time /, r > U(t) . with bounded variation. A bounded variation function possesses at every time
t a left limit U ~, the velocity just before the impact, if any, and a right limit, U ", the velocity just after the
impact. The proper mathematical tool to describe impulses is the set of differential measures on /. When writing
R(r) it is meant that R(t) is some density of an impulsive reaction force with respect to some positive measure on
1. For instance, if 1 is the time of some impact, R(r) is the density of impulse with respect to a Dirac measure at
time t. When smooth contact is occurring, the function R is generally a density with respect to the Lebesgue
measure, and U is continuous. It is not within the scope of this paper to go into mathematical details but it is
necessary to introduce the concept of right and left velocity.

2.1. Unilateral conditions
The following relations have been commented on in the Introduction:

impenetrability: g =0,
no attraction is acting between objects: R, =0,
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Fig. |. Local frame.
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the reaction force vanishes when the objects are not contacting: g >0=R, = 0.
This set of relations may be summarized in the following equivalent complementary equation, the so-called
Signorini condition:

g=0 Ry=0 gR, =10, (h
or equivalently,
Ry =projg-(Ry — pg) 2)

where p is some strictly positive number, Eq. (2) being actually verified for any strictly positive p as soon as it
is true for some strictly positive number. The graph of this relation is displayed in Fig. 2. This a monotone
multi-mapping graph. The above relations are familiar in the context of Convex Analysis. The following
relation,

at some initial time ¢,,, g(t,) =0;

forallt€1 g)=0 = U, @)=0. (3)
implies the impenetrability condition,

forallrel gr)=0.

Conversely, if the motion is smooth enough, i.e. U exists, impenetrability implies 3 for all r € I. The relation 3
together with

R,O=0; R(>0 = Uyn=0, (4)
yields the following so-called velocity Signorini condition [19],

at some initial time #,,, g(t,) =0

forallr €1, if g(t)=<0 then (5)

Up®)=0 Ry®)=0 U, R,()=0.

In the following, the relation (5) is to be understood together with the relation g(r)>0=R,,(t)=0, which shall
not be written down. Provided that some regularity conditions be satisfied, for instance U exists and RN is a
continuous function of time, (5) and (1) are equivalent [19]. The relation 4 means that as soon as some strictly
contacting pressure is exerted, the right velocity is lying in the tangent plane to the contact point. It is a
reasonable contacting behaviour introduced here to facilitate the unilateral formulation using the velocity as a
primary variable.

When deformable bodies are contacting, unilateral contact may be expressed using the Signorini condition (1)
or the almost equivalent velocity Signorini condition (5). When rigid bodies are contacting, the Signorini
condition does not give enough information. A shock law has to be adopted. During an impact, complex local
deformability phenomena are occurring at a time and space scale which are ignored either because they are
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Fig. 2. The Signorini graph.
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beyond the scientist’s knowledge, or because he or she deliberately chooses to ignore them, neglecting the
contact duration. Experiments or mathematical analysis on simple spring mass models show that in some
circumstances, the velocity after the impact, the velocity before the impact and the impulse are related by some
simple relation, namely a shock law, whatever are the local phenomena occurring during the duration of the
impact. For instance, the Newton restitution law, U 5 (r) = — eU ,, () happens to be true between billiard balls. It
is easy to verify that the velocity Signorini condition (5) implies the Newton restitution law with e =0, i.e. the
inelastic shock law. Since this paper is mainly devoted to deformable bodies or inelastic rigid bodies, shock laws
will not be discussed any further (see [19,6]).

Some authors [8,13,5], assuming right and left limits for the second derivative ¢, propose relations to be
satisfied by these limits, derived from unilateral conditions. They are indeed numerically useful when
second-order numerical schemes for the dynamical equation are used and when the solution behaves as assumed.
When a large number of simultaneous impacts are occurring, specially between rigid bodies, the solution is not
expected to have such a regularity. In the contact Dynamics method, any use of § is avoided.

2.2. Coulomb’s law

The basic features of the Coulomb dry friction are: the friction force lies in Coulomb’s cone: |R, || < uR,, u
friction coefficient, if the sliding velocity is different from zero, the friction force is opposed to the sliding
velocity with magnitude uR,: U, #0=>R, = uR, U, /|U|. These two conditions may be summarized under
the form of a maximum dissipation principle:

R; € D(uRy) VYSED(uR,) (S—-R)HU; =0, (6)

where D(R,) is the section of Coulomb’s cone, the disk with center 0 and radius uR,. The above relation is
equivalent to,

RszrojD(,uRN)(RT_pU;)’ (7

where p is some strictly positive number. Notice that the right limit U, of the sliding velocity has been used in
the formulation, which is a choice motivated by numerical experiments. The above formulation accounts only
for friction. A simple way to introduce tangential shocks proposed by Moreau, is to replace U, by some linear
combination of U and U ;. Distinction between static and dynamic friction coefficient may be introduced and
also cohesive friction laws, which results actually in mere changes of variables. The graph of Coulomb’s law is
displayed in Fig. 3. This is a monotone multi-mapping graph.

2.3. Kinematic relations

Since the paper is devoted to numerical methods, the systems under consideration are either collections of
rigid bodies or discrete models of deformable bodies. Thus, the configuration of the medium is given by some
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Fig. 3. Coulomb’s graph.
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variable g, for instance, the assembled vector of coordinates of the centers of gravity and rotational components
of rigid bodies, or the assembled vector of the node displacements in a finite element description of deformable
bodies. The time derivative is denoted ¢ a function of time with bounded variations. Superscripts af3 are used to
denote some candidates to contact, a, B € 1, ..., x. It comes from classical kinematic analysis that the relative
velocity at some contact « is given by a relation,

U“=H*(q)q, (8)

and from duality considerations (conservation of the power expressed with local variables or generalized
variables), the representative r” of the local reaction force R” for the generalized variables system satisfy the
relation,

r*=H"q)R" . (9)

The mappings H(q), H*“(g), are linear and H*“(q) is the transposed mapping of H“(g). For instance, in the
case of a node candidate to contact with a line between two other nodes, the mapping H involves changes of
variables from the local frame to the general frame and interpolation between velocities of the three nodes. The
following relation expressing that the normal component of the relative velocity is the time derivative of the gap
function is a key relation as far as discrete forms of unilateral conditions are to be defined,

§=Uy. (10)

2.4. Discretizing continuous media

Discrete systems are considered in this paper. When a continuous medium is considered, described by some
displacement function u(z,x),x € {2 the domain occupied by the medium, similar kinematic formulas may be
written at any contact point & They involve: u(z, x) instead of ¢; U(z, £) the relative velocity at the point &; the
density of impulse and density of reaction force (¢, £) instead of R; the representative of o(t, £) instead of r°.
Similarly, unilateral conditions and frictional laws are written using the above variables. According to the kind
of finite element used to discretize the continuous medium, the discrete forms of the Signorini condition or
Coulomb law are more or less complicated involving weight functions. When ¢ is the assembled vector of nodal
displacements, an usual approximation is to ‘concentrate frictional contact forces on nodes’, these nodes being
considered as material particles. It may be proven that when linear interpolation is used between nodes, the
consistent approximation, in the sense of virtual power formulation, results in concentrating frictional contact
forces on nodes [10]. A very complete study has been done in this line using the virtual power method by
Laursen and Simo [28]. It is not within the scope of this paper to give more details.

3. The dynamical equation

For smooth motions the dynamical equation is
MG=F(q, ¢, 1) +r,

where F(q, g, t) represents internal and external forces. Since shocks are expected, the derivatives in the above
equation are to be understood in the sense of distributions. It is more convenient to write this equation as a
measure differential equation,

Mdg=F(g,q, t)dt+rdv, (1D

where dr is the Lebesgue measure, dg is a differential measure representing the acceleration measure, dv is a
non-negative real measure relative to which dg happens to possess a density function, and r is the representative
of local density of impulses exerted when contact occurs. It may be written in the following equivalent form: for
all ¢, 7, in 10, T,
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M(q'(r)—q’(v))=f F(, q,q‘)ds+f] ,rdv,
, ' (12)
q(t)=q('r)+f g ds,

where ds represents the Lebesgue measure.

4. Time discretization

When time discretization is performed, an elementary subinterval ]z, ¢, ] of length 4 is considered. The main
idea developed in the process of time discretization is that discrete variables are not necessarily to be defined at
some special time belonging to this interval, since anyway the impact times are usually unknown or costly to
approximate or even difficult to separate when simultaneous contacts are occurring. Discrete frictional contact
relations are thus defined ‘over’ the interval of time ]z, 7, ,].

4.1. Discrete form of the dynamical equation

Integrating both sides of the dynamical equation yields

)

M(q(ti+l) - Q(t:)) = J:

i+

|
F(t,q,q')ds+f rdv,

(LA

(13)
fis
q(ti+l)=q(ti)+J: gds.
The mean value impulse denoted r(i + 1),
1
iivv=1[  rav, (14)
[

i+l

emerges as a primary unknown. A numerical scheme is defined by a choice of approximate expressions for the
two other integrals in (13). Since discontinuous velocities are expected, the use of higher order approximations
is unnecessary and even troublesome. First-order schemes are well enough when many shocks and contacts are
expected. These numerical schemes involve ¢(i), g(i), 4(i +1), q(i + 1), the approximations of 4(t,), g(t,),
4@, ), g, ,), respectively. In order to avoid technical details in this section, numerical schemes for the
dynamical equation will be presented in a section further on. To introduce the Contact Dynamics method, it is
Jjust suitable to write the numerical scheme as a linear relation between the approximate values ¢(i + 1) and
r(i + 1) together with a linear relation allowing the construction of g(i + 1) from gq(i), g(i), ¢(i + 1), here a
simple interpolation formula,

{q'(i + D) =vg,, Twhri + 1),

15
q(i + 1)=g(i) + 6hq(i + 1)+ (1 — 6)hq(i) , ()

where 6 is some real parameter, w is the inverse of some mass matrix, v, is a term representing the value of
q(i + 1) when frictional contact is not taken into account, i.e. when Ar(i + 1) is set to vanish. It is constructed
with values of internal forces, external forces, known from ¢(i), ¢(i). To summarize, the primary unknowns
suggested by the discrete form of the dynamical equation are the approximation of the velocity (i + 1), and the
impulse hr(i + 1).

4.2. Discrete kinematic formulas

According to the above relation (8), the following approximate relative velocities U“(i + 1), U*(i), are
defined as
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Ui+ D=H*(G) qi+1D, U'()=H*(§) 40, (16)
where ¢ is some auxiliary intermediate value of g. Similarly, the following impulses are introduced
1 .
R"(i+l)=;f R"dv, rG+1)y=H(q)RG+1). (17)
]1[-.1

el

The construction formula for g(i + 1) together with the kinematic relation (10) suggests a predictive formula for
the approximate gap,

g+ 1)=g“() + 6hUy(i + 1)+ (1 = O)hU (i) . (18)

Actually, the convenient approximate gaps are

g+ =g+ D+ (1 -hUyi+ 1), (19)

g =g ")+ (1= HhU ), (20)
with the predictive relation which will be commented on in Section 6.

g+ =g +hUNi+ 1), 210

4.3. Discrete frictional contact relations

The proposed discrete forms of the Signorini condition (1) and of the velocity Signorini condition (5) are
commented on in Section 6,

gi+1=0  RW+D=0  gi+DR,(i+1)=0, (22)
if some contact is forecast within the interval [i, i+ 1] then
Uyi+1)=0 Ry(i+1)=0 Uyi+ DR (i+1)=0. (23)

The relation ‘if some contact is forecast within the interval [i, i + 1] means that some test is being performed
when beginning or while computing the unknowns U, R, for the current time step. Using the predictive formula
(21) the Signorini condition may be written as well,

g ()
h
REG+1)=0, (24)

(——g h(’)+U;(i+1)>R;(i+1)=0.

+ULI+1)=0,

As far as inelastic shocks are concerned, the following discretization formula, proposed by the author, so called

guasi-inelastic shock owes both to (22) and (24),
g—LY(I-)p()\

h
R(i+1)=0, (25)

— o e\POS
(——g (1'1) +U,‘;(i+1)) Ry +1)=0.

+USG+1)=0,

—

where ¢ “(/)"”" =max(0, g“(i)), is the positive part of g“(i). With such a discrete formulation, if a shock is to
occur, it will be numerically accomplished within two time steps; at the first step, taking into account the gap,
some normal velocity is found so as to establish the contact, i.e. a null gap; at the second step, the gap being
null, the inelastic shock law is activated. When the gap is negative, the inelastic shock law is activated only.
Coulomb’s law, being positively homogeneous, is compatible with the quasi-inelastic shock law, in the sense
that computing a shock within two time steps gives the same cumulated impulse as if it were computed in a
single step. It may be easily proven, when the local mass matrix, relating impulsive reactions and relative
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velocities at the contacting point, is spherical, i.e. is a diagonal matrix when expressed in the local frame. Then,
tangential and normal responses are uncoupled. It is the case when contactors are spherical grains or material
points. In the general case, it may be wrong. It is also known that the concept of shock law when the local mass
matrix is not spherical might not be relevant and yield energy violations. Thus, the quasi-inelastic shock law
might be considered as much relevant or irrelevant as any other shock law. The quasi-inelastic shock
discretization formula is easy to handle since forecasting possible contacts is avoided. It has proven to behave
nicely for highly dense granular material simulations.

The proposed discrete form for Coulomb’s law is:

R+ 1)ED(uRAG + 1)), VSEDUREG+ 1) (S—Ri+ 1)U+ 1)=0, (26)

A different way of discretizing Coulomb’s cone has been proposed by Klarbring [15], used also by Stewart and
Trinkle [32] for rigid body contacts. Coulomb’s cone is approximated by an intersection of hyperplanes, so that
selecting the active hyperplane allows to write Coulomb’s friction law as a complementary condition.

Any of these unilateral conditions, (22), (24), (25), together with Coulomb’s law (26) may be shortly referred
to as

SignCoul(i, U™(i + 1), R°(i + 1)) . (27

— ¥

The index i stands for a data: this is ¢ “(¢), evaluation of the gap at the step before the current time step when the
Signorini condition is chosen; this is the forecast status when the velocity Signorini condition is chosen. Notice
that the mapping (U, R) — SignCoul(j, U, R) is a continuous piecewise affine mapping in the 2 dimensional case,
and a continuous raywise mapping in the 3 dimensional case, see relations (2), (7).

It has already been mentioned that when one of the contactors is deformable the Signorini condition (22), is
to be used, while when both contactors are rigid the velocity Signorini condition (24) or the quasi-inelastic
shock law (25) are to be used. The Signorini condition (22) has the advantage to make the unilateral contact
selfcorrective, in the sense, that if some penetration is occurring, the condition prescribes the gap to vanish at the
next time step. So a penetration results in some correcting impulse causing some slight positive relative velocity,
while inelastic shock demands null relative velocity. The Signorini condition is used by Stewart and Trinkle,
[32] for contact between rigid bodies. It happens in large collections of rigid bodies (typically 1000 grains), that
if, at some time step, at some contacting point, some non negligible penetration is occurring, then the correcting
impulse due to the Signorini condition might not be negligible and acts as an artefact source of energy well up
to destroy the realistic dynamical behaviour. The Signorini condition is thus not recommended with large
collections of rigid bodies. More comments about computational errors will be found in Section 8.

5. Solving the basic frictional contact problem

Using the kinematic relations, a linear equation relating relative velocities and mean values of the impulses
may be derived from the discrete form of the linearized equation (15),

Ui+ 1) =Ug,, + 2 WPhRP(i + 1), (28)
B

W = H*(gWH?(§) , (29)

U:'Ircc = H*H(q)vfrcc . (30)

This equation has to be written together with frictional contact relations.

5.1. The basic frictional problem for the candidate o

The index (i + 1) is omitted here for simplicity’s sake. The basic frictional problem for the candidate « is

Un = Ul(:»cfrcc + mehR »
3D

SignCoul(i, U“, R®) .
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with

+> WhR® . (32)

BF*a

U @

locfree

=Ulee
The set of equations (31) is thus composed of a linearized form of the dynamical equation giving the relative
velocity of the candidate « as an affine function of its impulse, together with the frictional contact relations. The
data are

e the approximations g, ¢(i),
o the gap £°(/) at the step before the current time step obtained by geometric computations from the
configuration ¢ while updating the local frames,
e provisional values of the impulses on other candidates R”, 8 # a, giving the term U B efrec
The unknowns are
o the relative velocity U and the impulse R”.

It is thus a problem with four unknowns in the 2 dimensional case, and six unknowns in the 3 dimensional
case. These unknowns are the components of U, R”.

5.2. Solving the 2D basic frictional contact problem for the candidate «

As already mentioned, the frictional contact relation (27) may be written as a set of two equations involving
the proj mapping, see (2), (7), i.e. involving piecewise continuous affine functions in the 2-dimensional case.
The solution of problem (31) is obtained by seeking for the intersection of piecewise hyperplanes, or as well, of
a hyperplane with the Signorini Coulomb graphs. The solution may be straightforwardly computed. It is known
and has been mentioned in the literature by Alart and Klarbring [14]. The subscript « is omitted for simplicity’s
sake. One sets

Wir Wiy
W= ,
Wyr Wy

U =U,

loctree M

Assuming — 1 <ua,,<lI, (33)
the 2D basic solution is,
if U,>0 then: no contact
hR,=0, hR,=0,
if Upy=0and J,+ut,,>0 then: forward frictional contact

hR,= .
r="MhR, hRN—m,

34
if Uy=<0and J;—uJ,<0 then: backward frictional contact G4
J,
hR;= whR,,  hRy=7—"r—
T MARy NT = pay,

if Uyy<0and J,+uJy=0and J,;, — ut,, =0 then: sticking
hR,=~f, , hR,=—f, .
Condition (33) is mentioned under different forms in the literature. When it is not satisfied, the solution is not

unique. When contact between deformable bodies is under consideration, the masses being concentrated on
nodes, if the time step is small enough, the extra diagonal terms of W are overtaken by the diagonal ones so that
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the condition (33) is always satisfied. When contact between rigid bodies is under consideration, the extra
diagonal terms might be large enough so that (33) is not satisfied. In these circumstances reference is made to
Painlevé paradox. The fact is that mere rigid bodies models are not fine enough to ensure uniqueness.

5.3. Solving the 3D basic frictional contact problem for the candidate «

In the 3 dimensional case, when the matrix W has spherical symmetry properties, which is the case for
instance when contact is occurring between balls, formulas as above may be exhibited. In the genera! case it is
not possible to write down explicit formulas. Adopting the forms (2), (7), the basic 3 dimensional system may
be written

u“-u,

locfree

~-WhR=0,
Ry — proj+(Ry —pU) =0,
R - PrOijR;\;)(R(; -pUp) =0,
i.e. some system of the kind,
U, R =0,

where @ is some continuous raywise mapping. This system of six unknowns is solved using a generalized
Newton method. The solution is obtained with a few iterations, usually 1 or 2 or 3.

Using a hyperplane approximation of Coulomb’s cone, the 2D or 3D basic « problem is a complementary
system which may be solved by Lemke’s techniques [32].

5.4. Solving the frictional problem for the collection of candidates

The algorithm is the following: for a candidate w, assume provisional values of, U”, R, known from the
current iteration for 8 <« and known from the previous iteration for 8 > «; applying (34) or the 3D basic @
solution compute U“, R®; proceed to the next candidate; run over the list of candidates until satisfactory
convergence.

do iter=1, itermax
do a=1, y
compute U\ ... from stored R®, B#a
compute U, R, using (34) or 3D basic solution
store U“, R",
end do
if satisfactory, exit

end do

This loop will be referred to as the Signorini Coulomb loop. 1t is quite similar to a nonlinear block Gauss Seidel
algorithm, finding U“, R” as the result of an elementary nonlinear four or six unknowns system, [9]. Further on
it will be seen how this loop may be nested or not within other loops. Referring to substructuration techniques, it
may be said that the above problem has been concentrated on candidates for contact.

The generalized Newton method is used by Alart and Curnier [22,1] to solve the whole system with unknown
the vector ¢, U, R. In doing so, a large hollow nonsymmetrix matrix has to be stored and a huge linear system
has to be solved. In the case of large collections of bodies, storage problems would occur using this method.
Complementarity techniques, mathematical programming, Lemke’s techniques are used by Klarbring [15] and
Chabrand et al [26]. More comments will be found in Section 9.2.

The question of the convergence of the Contact Dynamics method is not adressed in this paper. The method
has proven in applications to behave nicely as soon as the time step is small enough and the friction coefficient
is lying in the range allowed by (34). It is mathematically proven in [9] that the convergence is ensured for the
dynamical frictional problem of a discrete system of particles with some elastoplastic internal forces (such as a



246 M. Jean | Comput. Methods Appl. Mech. Engrg. 177 (1999) 235-257

finite element model of elastoplastic shell) provided the time step is small enough. The proof is based on a
theorem by Alart in [3], giving sufficient conditions for a piecewise linear mapping to be a homeomorphism.
Regarding existence theorems of frictional contact problems equations, there are many contributions in the
literature for regularized problems. There are fewer results about the non-smooth Signorini Coulomb problem.
In [24], Jean and Pratt give sufficient conditions to ensure the existence of a solution without loss of contact for
a rigid body unilateral Coulomb frictional problem. Pioneering results for the unilateral problem of a single
particle with inelastic shock have been given by Monteiro Marques. Generalisations of this problem by the same
author are to be found in [17]. Foundations for mathematical developments in the line of differential inclusions
may be found in Moreau [19]. In a recent paper by Stewart [30], the question of existence of solutions to rigid
dynamics and Painlevé paradox is revisited with new results.

6. More about time discretization
6.1. Discrete kinematic formulas

The approximate relative velocities, U“(i + 1), U“(i), have been defined as
UG+ 1)y=H*'(g)gi +1),
U“(i) = H*"(§)q(i) ,

where § is some auxiliary intermediate value of g. Possible choices are (i), g(i) + h/24(i), or some element
g(k + 1) of an approximating sequence of the unknown ¢(i + 1), etc. In fact when changes of ¢ within a time
step are small with respect to curvatures of contacting surfaces, the normal vector changes are also small and
choices of g are not very important. This gives the opportunity to save time when computing local frames and
gaps, which is usually a costly operation. The following impulses have been introduced

1
R('(i+l)=zf Rdv,
[

titigql
PG+ 1) =H“GR G+ 1),

so that r“(i + 1) appears as the image of the mean value impulse R* by H“(g). This is not the mean value of
t— r'(ty= H(q(t)) R*(t), except if t — H"(g(r)) is a constant mapping. It is so when one of the contactors is a
rigid plane.

6.2. Discretizing the frictional contact relations

The contact index « is omitted in this section for simplicity’s sake. As already mentioned the mean value of
the impulse appears as a primary unknown:

Ri+1)= % Rdv.
Wty oy}
The approximation U(i + 1) is used as a primary discrete unknown to play the part of U " in relations (), (5),
(26), the approximation U(i) playing the part of U . The approximation of the gap g to be taken into account
within the time interval is a crucial choice. The idea of consistency of the gap approximation with unilateral
condition may be a guide for this choice. Consistency means that the following relation is satisfied.

gi)y=0 and gi+1)=0 = Ui+1)=0. (35)

where £(/) is some evaluation of the gap related to Jr,_,, 7] and g(/ + 1) is some evaluation of the gap related to
Jt,. ¢, ]. This means that when some contact situation is supposed to occur within two consecutive intervals, the
right normal relative velocity should vanish. A possible classical choice is ¢ =g. In this case, taking into
account the kinematic formula (18), the consistency relation is satisfied only if 6 = 1. Another choice is
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gi+)=gi+DH+1—-6)hU,G+1), giy=g(H+(1—=6) hU,@) .
The kinematic formula 4.6 yields the predictive formula,
gi+t=g@)+hU G+ 1),

so that with this definition of the approximate gap, the consistency condition is satisfied. It may be shown on
numerical examples that, when consistency is not satisfied, some oscillatory artefacts with step period are
generated, due to the fact that there is some inadequacy between the direction of the velocity and the value of
the gap which should be zero in contact, see [12,25]. It may be seen that g(/) is approximately the gap
corresponding to the configuration §(i) = q(i) + (1 — 6)hg(i), and g( + 1) is approximately the gap corre-
sponding to the configuration g(i) =gq(i + 1) + (1 — 6)hqg(i + 1). It is known in dynamical numerical schemes
that there might be some advantage to compute ¢ and g at different times of the time step. As far as unilateral
contact is concerned, the intermediate values, g(i), (i + 1), are a possible choice. In particular g(i) is a good
choice for g in the kinematic formulas. The above choices, sensible for mechanical reasons, have been validated
by many numerical elementary experiments. To summarize, (1), (5), (26), may be written,

gi+1H=0 Ry(i+1)=0 gi+HR(G+1)=0,
if some contact is forecast within the interval [/, i + 1] then
Ui+t 1)=0 R,(G+1=0 Ui+ D R(i+1)=0.

The relation ‘if some contact is forecast within the interval [i,i + 1]° means that some test is being performed
when beginning or while performing computations of the unknowns, U, R, for the current time step. It may be
some test of the kind,

a contact is forecast if

g(i)=0, or,

gi)y+hU (=0, or,

any prediction of the gap g is negative.

The choice of the contact prediction test is not a crucial one. What actually is crucial is the consistency between
gap approximation and unilateral condition. The quasi-inelastic shock law may be used between rigid bodies
avoiding forcasting.

7. Some numerical schemes for the dynamical equation

Two typical classes of problems are presented here which will allow to discuss special features when dealing
with frictional contact: the case of small perturbations where the system is governed by a constant coefficient
linear dynamical equation; the case of static or dynamic large deformations.

7.1. Small perturbations

The theta method scheme is presented here; see also other methods in this line [25,12],

J ' F(q(s)v q(s), S) dS = heF(q(ti+])’ q(ti+l)’ ti+l) + h(l - B)F(q(['), q(tj)9 t,) >

qli + 1) = q(i) + kGG + 1) + h(1 — 6)¢(i) .

The value 6 = 1, yields the implicit Euler method. The theta method is unconditionally stable for § = as far as
constant linear systems are concerned, i.e. when

F(q,4.1)=—Vq— Kq+ PQt),
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where V is the damping matrix and K is the stiffness matrix. Setting q(i), g(i), q(i +1), gq(i + 1),
approximations of ¢(t,), q(t,), q(t;,,). g(t,,,), respectively, the theta method scheme is

M(q(i + 1) — g@@) = hB(=Vq(i + 1) — Kq(i + 1) + Pt;,,)
+h(1 — 8)(=Vq(i) — Kq(i) + P()) + hr(i + 1) .

For consistency reasons it may be useful to introduce the auxiliary displacements,
gi+1D=q(+ 1) +h(l-0)ql+1),  g@)=q()+h(1-0)q0).
When 6 = 1, the variable g is identically g. The theta-method is written as
(G + 1) — g(i) = w(—hVq(i) — hK(q(i) + (26 — DhG()) + hP(E + D) + hri + 1)),
g +1)—q(i)=hqli + 1),
< where (36)
w=(M+hoV +h6°K)",
PG+ 1) = 0P, ) + (1 = 0)P() .

It is assumed that the matrix M + h6V + h°0°K is invertible, an assumption which will be discussed later on.

7.2. Finite deformations

For simplicity’s sake F is assumed to have the form:
F(q,q)+ P@) .
The implicit Euler method is
M(g@i +1) — g(0)) =hF(q(i + 1), 4(i + D)+ P, )+ hr(i + 1),
{q(i + 1) —q@)=hqg(i +1).

The unknowns g(i + 1), g(i + 1), hr(i + 1), are sought as limits of sequences g(i + 1,k + 1), gii + 1,k + 1),
hr(i + 1,k + 1), (for simplicity’s sake the index / + 1 shall be omitted when referring to these approximating
sequences of g(i + 1), 4(i + 1)):
{M(Ci(k + D —g)=hF(gk+ 1), gk + D) + P, )+ hrik + 1),
gtk +1)—q(i)=hgk + 1) .

Using a first-order expansion of F with respect to ¢, ¢, as done in the Newton—Raphson method:

F(gqtk + 1), gk + 1)) = F(q(k), (k) — K(k)(gk + 1) = qk)) = V() (gk + 1) = G(k))

where

OF ,
K{k)y = — g (q(k), g(k)) ,

oF .
Vik) = — G (q(k), g(k)) -

The numerical scheme is
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gtk + 1) — gk) = wlk)(—M(q(k) — q())) + hF(q(k), g(k)) + hP(t,, ) + hrk + 1)),

gtk + 1) — qk) = hqk + 1),
(37

where
w(k) = (M + hV(k) + h*K(k)) ™'

The term — M(q(k) — ¢(i)) is an approximation of the acceleration impulse.
7.3. The linearized dynamical equation

The numerical schemes (36) and (37) have some similarities:

(1) In the linear case, initializing with values ¢(i), (i) + hq(i), when performing a single iteration, the same
approximate values ¢(i + 1), g(i + 1), yielded by the theta method (36) with @ =1 are found.

() If0=1, M=0,V=0, and if X is positive definite, the theta method degenerates into a standard linear
resolution for the quasi-static case.

3) If M=0, V(k) =0, and if K(k) is a positive definite matrix, the Euler—Newton—-Raphson scheme (37)
degenerates into the standard classical Newton—Raphson method for the quasi-static case.

(4) When given boundary conditions do not prevent rigid motions (translations or rotations), several cases
have to be considered. In any case the mass matrix M is positive definite. V=0, K = 0, is the case of rigid
bodies collections. If V, K, are not positive definite (they are nevertheless usually positive), the matrix
M + hOV + h°6°K is positive definite for sufficiently small & and thus has an inverse.

(5) The ‘correcting matrix’ w in the Newton—Raphson scheme (37) may be replaced by any matrix w
positive definite, for instance

wky=M"", 38
wk)=M"'—M 'K(oM ™", (39)

or other choices (see [2,12]).
(6) When the correcting matrix w(k) = M~ ' is used, initializing with values 4(i), q(i) + hg(i), performing a
single iteration, the method degenerates into the classical Euler explicit scheme.
The use of these different possible schemes in the context of frictional problems will be discussed later on.
To summarize, the Euler—Newton—Raphson (37) may be viewed at some sub-iteration k + 1 within a time
step as a linear relation between the approximate time derivative g(k + 1) and the mean value of the impulse
hr(k +1):

Gk + 1) = vy (k) + WORrk + 1),
where
Ugreo () = g(k) + WH(—M(q(k) — (i) + hF(q(k), (k) + AP, ) .

In the same way, the theta scheme (36) may be viewed at some time step  + 1 as a linear relation between the
approximate time derivative g(i + 1) and the mean value of the impulse Ar(i + 1) yielding a relation similar to
the one above.

8. Controlling the error

In this section, the question of accuracy is addressed in the context of large dense collections of contacting
bodies. The question of computational error or accuracy is difficult to handle whatever the considered problem.
Indeed, the exact solution is usually unknown and the only information which might be exhibited is some
distance to it. Upper and lower bounds of such a distance may be obtained using the mathematical convergence
properties of the algorithm, which means that: (a) a unique solution has been proved to exist; (b) the
convergence of the algorithm is established. Except in some quite peculiar cases, these circumstances are not
realized. The choice of the distance is important. For instance, max distance imposes each variable to lie in the
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prescribed accuracy interval, while the quadratic distance allows the well behaved variables to compensate other
badly behaved variables. Asking high accuracy might be very time consuming in favor of a slight improvement
of the results, while asking not asking enough accuracy might drastically deteriorate the results. What should be
the accuracy range to be prescribed to obtain good enough results? Still at last what is meant by good enough
results? The main results under consideration when studying a large collection of contactors are, resulting
pressures, average stress tensors, localization of stresses and strains, distribution of reaction forces. These are
macroscopic or statistical results. The experience and the common sense have taught the scientist not to expect
much reproducibility of local data such as velocity, reaction force at some contact, at some given time 7. Even
the trajectory of some grain might wander under slight changes in the computational circumstances such as time
step changes. Reproducibility would imply strong asymptotic stability properties. Nevertheless, it is expected
that macroscopic and statistic properties are not sensitive to the computational circumstances. Here again,
sensitivity is a personal matter of acceptance. The fact is that even if mathematical considerations are of some
help, the numerical simulation has to be considered as a physical experiment and the criterion to qualify results
are of the same kind that those used by physicists.

Another feature of frictional contact problems is that, except in the case where a unique solution exists, the
obtained approximate solution yielded by some iterative scheme might be different according to the way
iterations are monitored. In a dynamical system, the position and velocity at the end of a time step may be
computed knowing positions and velocities at the beginning of the time step. When frictional contact is
considered, the solution depends on the history of loading, more precisely on the frictional forces just before the
time step. For instance, looking for some equilibrium state under a given load, the solution might be different
acording to the fact that this state has to be reached while loading or unloading. In a similar way, when
iterations are performed, some wandering provisional values of reaction forces may be obtained acting as some
initial data, to be numerically decreased while mechanical loading is currently processed or to be numerically
increased while mechanical unloading is processed. The results, though fulfilling the error criterion might not be
satisfactory. Incidentally, as quoted above, the solution depending on the history of loading, more precisely on
the frictional forces just before the time step, starting iterations with those values is not only a matter of saving
time but is actually seeking for an approximate solution among those favored by the history.

It happens in large collections of contactors that, when the accuracy is sufficient, if at some step some contact
is badly computed, it is most often re-made in the next few steps. It means that the behaviour is correct as far as
mean time values are under consideration. The software LMGC uses a certain number of non classical numerical
devices to control the accuracy, which are also used to accelerate the computation. It is not within the scope of
this paper to give such technical details.

9. Applications
9.1. Granular materials

A Couette granular flow is presented here, as an example of collection of rigid bodies numerically simulated
by the Contact Dynamics method. A sample of 2400 polydisperse rigid disks or rolls, so-called Schneebeli
material, is kept within two drums. The outer drum is a membrane subject to a constant pressure 75 kPa, while
the inner drum is rotating with a constant speed, 0.1 turn/s. The friction coefficient between grains is 0.5 and
0.75 between grains and drums. The numerical simulation shows chains of forces, Fig. 4, and some features
observable, in Fig. 5, from the displacements of grains after a quarter of turn. The sample behaves quasi rigidly,
except near the boundary of the inner drum, where a shear layer has developed inducing dilatancy. More details
will be found in a forthcoming paper by Vardoulakis and Zervos. Other examples for bi-dimensional strain-stress
experiments have been computed with 4000, 16 000 grains samples.

In the case of an assembly of rigid grains, the variable ¢ is the vector the components of which are the
coordinates of centers of gravity and of rotation vectors. In this case the internal forces, in the sense of
continuous medium, are not to be written. The implicit Euler scheme (9 = 1) and the quasi-inelastic shock law
are used. The dynamical equation (36) is written,

{q’(i+ )= Ggi)=whPGi+ 1) +hri+1), w=M ".
qli + 1)~ q(i)=hq(i + 1),
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Fig. 4. Chain forces.

where w is a diagonal matrix. Due to coupling between grains, the matrix W is a matrix with size, 2y X 2y, or
3x X 3y where y is the number of candidates for contact. The band width depends on the connectivity between
candidates. Except for a very small collection of grains, computing and storing such a matrix is avoided.
Nevertheless, performing elementary operations such that, v = whr®, U = H*"v", r* = H*R", require a small
number of floating point operations. Thus, solving the basic frictional contact problem for a candidate « is a
quick elementary process. Once the impulses have been obtained after a sufficient number of iterations of the
Signorini Coulomb loop, the values g(i + 1), g(i + 1), are straightforwardly obtained through the dynamical
equation. The number of iterations at each time step depends on the prescribed accuracy and on the mechanical
situation. Kinematic constraints between rigid grains might prevent them moving while fully satisfying the
frictional contact laws. From a mathematical point of view the existence of a solution is not guaranteed in all
circumstances. Nevertheless, it may be satisfactory to ensure frictional contact relations up to a certain accuracy,
allowing thus some ease between grains. From numerical experiments in the 2 dimensional case, it is found that
a severe accuracy of 0.15% needs an average number of iterations, lying between \/y and y. It is to be
understood that the whole list of candidates for contact is being processed once during an iteration. The
compaction of the sample took 10 h CPU time and 21 h CPU time for 1/4 turn shearing on IBM SP2. This time
may be reduced by asking less accuracy and by omitting floating point instructions for any shape grains which
are useless when grains are disks or spherical.

9.2. Deep drawing simulation
A typical example of large deformations and large displacements frictional problem is presented here as an

application. When deep drawing, a metal sheet is being held with dry friction in between blank holders and
punched within the matrix. The modelling of frictional forces is very important since these forces are monitoring
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Fig. 5. Velocity field.

the deep drawing process. In this application, with 1800 elements, most of the nodes are candidates for contact.
Some nodes are sliding while others are sticking. The Contact Dynamics method has been implemented in
Simem3, a software developed by Renault Automotive Industry and his partners. Details are to be found in
[31,2]. The elasto-plastic shell finite element model has been developed by Gélin et al. [7]. Coulomb’s dry
friction law is commonly accepted with friction coefficient in the range 0.15, 0.25. In the quasi-static approach,
a scheme such that (37) is used, with M =0, V=0, neglecting acceleration terms. In this case, the scheme is
exactly the classical Newton—Raphson scheme. It happens at some stage that due to plastic localisations and
wrinkles the tangent matrix K(k) is ill conditioned and that the Newton—Raphson algorithm fails to converge.
When dynamics are taken into consideration, with mass concentrated on nodes, with sufficiently small time step
h, the correcting matrix M + h>K(k) is invertible and the conditionning is improved so that the computation may

Fig. 6. Twingo cup.
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be processed successfully. Using a fully implicit algorithm as suggested in (37) means that reaction forces are
computed in the so-called Signorini Coulomb loop, nested within a so called Newton—Raphson k-indexed loop
where internal and external forces and the tangent matrix K(k) are actualized:

time step loop
for each time step i do

Newton-Raphson loop
for each k compute M + h°K(k), internal and external forces, v,..(k),

Signorini Coulomb loop
for each candidate @ compute U, R,
Signorini Coulomb loop end

compute g(k), g(k),
Newton—Raphson loop end

time step loop end

Roughly put as above, the algorithm, though converging nicely is much time consuming. Indeed, computing
V.. (k) needs solving a linear system with matrix M + h°K(k), and computing ¢(k), g(k), needs solving again the
linear system with modified second member. Furthermore, the inner Signorini Coulomb iteration is also time
consuming since the matrix W(k) has to be computed first and stored; it is the price to pay for concentrating the
problem on nodes candidates for contact. It may be worthwhile in some applications. Improvements are:

(1) In small perturbation problems, K(k) is approximated by some K, w and W are computed and stored once

for all.

(2) If the time step 4 is sufficiently small, the mass matrix M dominates h°K(k) and it is not necessary to
update the tangent matrix at any subiteration k using the evaluation M + h°K(1) at the first iteration
k = 1. Furthermore, the matrix w(1) = (M + h°K(1))"' being sufficiently close to a diagonal matrix, so is
W and the number of iterations in the Signorini Coulomb loop may be drastically reduced.

(3) The time step h might be sufficiently small so as w=M "' to be a good enough approximation of
M+ th(k). In these circumstances the values U®, R“, are obtained performing a single iteration (nodes
are disconnected), and only a few Newton—Raphson iterations are necessary. This is one among several
schemes used for the above deep drawing application.

(4) 1t might happen that a single Newton—Raphson iteration is sufficient. Then, the algorithm may be
identified to an explicit scheme, though, the way reaction impulses are computed is purely implicit.

(5) The implicit approach makes springback effects easy to compute.

9.3. Buildings made of blocks

Buildings made of blocks are the object of growing interest in ancient architecture as well as in civil
engineering. Much attention has been paid to motions, global deformations and possible appearance of cracks,
i.e. openings of joints. The distribution of stresses within and between blocks is more questionable. It is
expected, and actually numerically observed, that the results depend very much on the modelling of blocks, on
the way loading is applied and on the kind of algorithm used for the numerical simulation. This particular
feature is mainly due to Coulomb’s frictional contact which allows an infinity of equilibrium solutions. Physical
situations are alike. The selected state depends on the history of loading. The choice of an algorithm and the
way it is monitored is also, in some way, part of the history of loading.

Software, as Udec or Tridec, initiated by Cundall [4,29], in the same line as Trubal for granular materials,
may compute the motion of such buildings, under severe loadings. In these softwares, blocks are rigid, and
contact forces are exerted through springs, dampers and ‘dry-dampers’ in between blocks at their vertices.
Moreau, using Contact Dynamics, has computed buildings made of polygonal rigid blocks, with Coulomb’s law



254 M. Jean | Comput. Methods Appl. Mech. Engrg. 177 (1999) 235-257

© candidate for contact

Fig. 7. Elementary block 8 T3 and candidates for contact.

and the inelastic shock law expressed at the vertices [21]. When dynamical effects such that oscillations of
slender structures under gust of winds or ground waves are to be taken into account, blocks must be considered
to be deformable as well as mortar joints if any. Is the distribution of stresses much influenced by the elastic
deformability in quasi-static situations? For instance, consider a wall made of rigid rectangular blocks, put
together without filling in with mortar, built on a perfectly rigid horizontal plane, under gravity load. The
stresses between head joints may vanish, while, as it will be shown in the example below, Poisson effect makes
elastic blocks enlarge, and press each other at head joints.

The algorithm used to compute the reaction forces in this application has two particular features. Firstly, the
problem may be set assuming small perturbations, so that item 1 in Section 9.2 applies. Secondly, since the
number of nodes of each block is very small, and since blocks are independent, the matrix K is a block diagonal
matrix, with small band width. The inverse matrix w = (M + WK )71 is also a block diagonal matrix with small
band width. It results that the elementary operations

v =w hr®, U*=H*p", r*=HR",

involve a small number of floating point operations. The fully implicit algorithm 9.2 is thus reasonably time
consuming and actually behaves like the main Signorini Coulomb loop, as in granular materials.

In the examples below 144 (10cm X 5cm) elastic blocks, p = 500 Kg/m3, E=10°Pa, v=0.3, are lying
on some perfectly rigid foundation. They are coarsely meshed as shown in the pictures, using eight T3 elements
for each block, see Fig. 7. Some four T3 elements meshes have also been used. In the 3 dimensional case blocks
have been meshed with eight H8 elements, or more coarsely with one single H8 element. Masses are
concentrated on nodes. Frictional contact forces are concentrated on special mid points on lines joining nodes,
see Fig. 7. The friction coefficient is 0.5 between blocks and blocks and foundation. The gravity load is applied
to the unconstrained wall at some initial time, so that a gravity wave propagates. Results are stored at time T
when the resulting force on the foundation equals the weight of the wall. At this time acceleration terms are
small so that the obtained reaction forces are possible candidates for the static equilibrium. Indeed, using these
forces together with the obtained deformed state as initial conditions and setting null velocities, one observes
vanishing small oscillations. Fig. 8 shows the distribution of reaction forces at time 7, the direction being shown
by thick lines, thickness and length being proportional to the magnitude. Fig. 9 shows principal stresses of the
moment stress tensor on each block. The moment stress tensor of a block is defined at equilibrium as,

Fig. 8. Distribution of reactions between blocks.
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Fig. 10. Distribution of principal stresses in the single piece solid wall (deformed configuration magnified 500 times).

M, =3 xr], where the summation is performed for all reactions r“ forces exerted on the block and the vector
x“ is OM®, M“ being the contact point where r“ is exerted. This moment tensor is practically equal to the sum
of the Cauchy stress tensors on the block. The deformed configuration is also represented magnified 500 times.
It may be compared with the tensor field obtained for a single piece solid wall, with the same distribution of T3
elements, except that elements are connected through sharing nodes, Fig. 10. In this body, tensile stresses are
appearing, emphasized in Fig. 11, not seen in the blocks wall model 9. Taking for initial state the T state with
null velocities, as explained above, small oscillations are observed with two different modes in the vertical and
horizontal direction. After a dozen oscillations the distribution of reactions has changed and contact status with
the foundation has moved from sticking to sliding, allowing relaxation of the reaction forces between headjoints,
see Figs. 12 and 13. The deformed configuration is not magnified in Fig. 13. Two top blocks are beginning to
fall. The fact that under oscillations, head joints begin to open, mainly at lower block layers, has been observed
on a small collection of 10 finely meshed blocks, and also on a wall made of rigid blocks on a shaking ground,
simulated by Moreau [21].

Fig. 11. Tensile stresses for the solid single piece solid wall.
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Fig. 13. Distribution of principal stresses a dozen oscillations later.
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