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We present a finite element method for a class of contact-impact problems. Theoretical background and numeri-
cal implementation features are discussed. In particular, we consider the basic ideas of contact-impact, the assump-
tions which define the class of problems we deal with, spatial and temporal discretizations of the bodies involved,
special problems concerning the contact of bodies of different dimensions, discrete impact and release conditions,
and solution of the nonlinear algebraic problem. Several sample problems are presented which demonstrate the
accuracy and versatility of the algorithm.

1. Introduction

In recent years large-scale computational capabilities have been developed in many areas of
structural analysis. The primary technique used in these developments is the finite element
method. At the same time, very few capabilities are available for complicated structural problems
involving contact-impact effects, an area of considerable importance in science and technology.
In fact, it appears that only small-deformation quasi-static problems have been considered thus
far (see [1—-3]). This is not surprising as contact-impact phenomena are inherently nonlinear and
the resulting problems are difficult.

In this paper we summarize some aspects of our work in developing numerical algorithms for
general contact-inpact problems in continuum mechanics. In section 2 we discuss the basic con-
cepts associated with contact-impact problems and develop the interface conditions for the simple
cases of frictionless and perfect-friction contact. In section 3 we describe a class of contact-impact
problems, termed “Hertzian™ problems, in which simplifications of a geometric and kinematic
nature are made which lead to a simple numerical formulation. Spatial discretization aspects of
this formulation, involving finite element techniques, are discussed in section 4. In section 5 we
consider how these notions extend to problems involving the contact of bodies of different di-
mensions (e.g. a three-dimensional solid and a two-dimensional plate).

The spatially discretized equations of motion — a system of ordinary differential equations —
is temporally discretized using the Newmark algorithm. Basic features of this technique are sum-
marized in section 6. A point that we wish to stress here is the great care required to obtain accu-
rate numerical results for impact problems of a wave-propagation nature. In section 7 we outline
some discrete schemes, based upon exact results of wave-propagation theory, which enable us to
very accurately simulate the solution of impact problems involving discontinuous stress waves.
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In section 8 we indicate how we solve the resulting nonlinear algebraic system of equations and
summarize the main steps of the algorithm.

Finally, in section 9, we present the results of some numerical computations based upon the
previous theory. The importance of the discrete impact and release conditions discussed in section
7 is clearly shown.

2. Basic ideas of contact-impact

It is usual for the term contact to have a static connotation whereas impact has a dynamic one.
Here we use contact in the general sense to include static as well as dynamic phenomena.

We identify a body B with its initial configuration, and we assume B is an open region of R
with a piecewise smooth boundary 8B. A contact problem is a boundary-value problem, or an
initial-boundary-value problem in which two bodies B' and B? interact according to the principles
of the mechanics of continuous media. Thus the primary kinematic axiom of a contact problem is
that configurations 5! and 2 of B! and B2, respectively, do not penetrate each other, i.e.

pinbd?=0. e}

We refer to (1) as the impenetrability condition.

On the other hand, the unique condition which characterizes contact problems is that material
points on the boundaries of B! and B? may coalesce during the motion of the bodies. Thus we
say B! and B? are in contact if 3b! N 8b2 # §, and we define the contact surface ¢ by

¢ =08b'Nab%. (2)

If B! and B? are never in contact, then ¢ = @ for all configurations 4! and b2, and in this case an
initial-boundary-value problem for B! and B? reduces to one in which B! and B? may be treated
separately. A non-trivial contact problem is one in which ¢ # @ for at least one instant during the
motion of B! and B?. These notions are illustrated in fig. 1. Eq. (1) indicates that c is a material
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Fig. 1. Contacting bodies.
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surface with respect to both bodies, i.e. one which is not crossed by material particles. From this
we may deduce the interface conditions on c.

We say x € ¢ is a persistent point of ¢ if joining or releasing of the bodies is not instantaneously
occurring at x. Let x € ¢ be persistent and denote by v = x its velocity. Note that only the normal
part of v is independent of the parameterization of ¢. Let »! and 9? be the velocities of the material
particles located at the points x! and x? contained in 85! and 8b2, respectively, such that x = x'=x
at the present instant. Then, since ¢ is material and x is persistent,

2

von=vl-n=0v*n, 3)

where n is a unit normal vector to ¢ at x.
On the other hand, for momentum to be balanced at x, it is required that

t+r=o0, 4)

where ¢ is the Cauchy traction vector with respect to ab°.
In addition we assume that no tensile tractions can occur on c:

t*n*<0, (3

where n® is the outward unit normal vector to 9b°. This condition precludes the possibility of two
bodies becoming “‘glued” together. Conditions (1)—(5) characterize our notion of a contact
problem.

More specific conditions on the tangential parts of v* and #* are determined by the frictional
nature of the contact.

In the sequel we shall consider the two simplest cases.

Case 1: If we assume that points, once in contact, move with ¢ until released, we have

vl=92, (6)
For this model we say that a no-slip, or perfect friction, condition is achieved on c. Egs. (4) and
(6) and condition (5) characterize the interface conditions for this case.

Case 11: We may create the interface conditions for a frictionless, sliding contact by asserting
that the tangential part of each ¢ is identically zero:

= {* n*n*=o. @)

Eq. (7) along with (3)—(5) are the interface conditions for this case.

3. The class of Hertzian problems

We call problems ‘“Hertzian” if the contact surface is approximately planar and the bodies have
undergone small straining in the neighborhood of the contact surface. Specifically, we make the
following assumptions:
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Fig. 2. Contact surface for Hertzian problems. Fig. 3. Configuration of bodies and alignment of points which
eventually contact in Hertzian problems.
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(i) The unit normal vector with respect to the contact surface c is n = n;e; ~ e;, where the
n; indicate components with respect to the standard basis {e;}; for R?, (see fig. 2).

(ii) The ratio of area elements on the contact surface between the deformed and undeformed
bodies differs negligibly from unity. Thus the Cauchy and Piola-Kirchhoff traction vectors for
body number « (£* and T, respectively) are approximately equal, i.e., t* = T<,

Assumptions (i) and (ii) together imply that

$=t*n=T*n=T5,
(1,65, 0l = t* ~(*myn=T* —(T* m)n~ {T}, T5,0}.

(iii) Material points which eventually contact have, to the first order, the same initial coordi-
nates z, z,. This is depicted in fig. 3.
We emphasize that the realm of applicability of our formulation involving the above assump-
tions is considerably greater than that to which Hertz’s classical theory applies.

4. Spatial discretization of the bodies and contact surface

The methods we use to discretize problems into finite element models are standard (see e.g.[4])
except for our simulation of the contact surface which we shall now describe.

Let us assume for the moment that two bodies are in contact along the surface c. If we add a
term of the form

fr-(x‘~x2)dc, (8)

(4

to a standard variational formulation for two independent bodies (see [5] for further details), then
the enforcement of compatibility along the surface ¢ will be achieved by way of taking indepen-
dent variations of 1 (x® are the deformed coordinates of material points in body a, and ¢ is inter-
preted as the Cauchy traction vector across the contact surface). We note that, by assumption (i)
above, ¢ may be replaced in (8) by its projection upon the z -z, plane.
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Fig. 4. Schematic of initial configuration of bodies and alignment of candidate contact nodes for the Hertzian case.

Our finite element discretization of (8) is achieved by availing ourselves of the particularly
simple nature of (8), i.e. there are no derivatives of t or x®. Thus we may assume that t consists of
Dirac delta functions located at nodal points, as long as the finite element displacement functions
are continuous at the nodes, which is assured. Thus (8) becomes in this case

3 N
Z; E Ti['(xl!j - X?]) 1) (9)

i=1j=1
where i =1, 2, 3 refers to the spatial direction of components and N is the total number of pairs of
nodes designated as candidates for contact (see fig. 4). The 7;; are interpreted as nodal contact
forces.

Eqgs. (8) and (9) apply when there are tangential as well as normal contact forces. To achieve a
frictionless condition on the contact surface, we simply delete the i = 1, 2 terms in (8) and (9);
namely

[Tt xde, (10a)

7 (x} - x7), (10b)

where for simplicity we have omitted the subscripts 3 on 7 and x®. Here 7, is interpreted as the
nodal contact force in the normal direction. To simplify our presentation we will henceforth only
discuss the frictionless case (10).

In assembling our global matrix equations, we include the 7; in our vector of unknowns along
with the nodal displacement components. Thus we like to think of (10b) as giving rise to a contact
element stiffness matrix, which for the jth contact point is

0 1 0 x!
1 0 -1 T, (11)
0 -1 0 _x?
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When the nodes corresponding to the jth contact point are in contact we add (11) to the global
stiffness matrix. Otherwise we replace (11) by

o o ol M
10 Lo (12)
00 oJ x|

which uncouples the two nodes corresponding to the jth contact point and results in T, = 0.

The preceding description gives a rough idea of how the basic structure of the matrix equations
is changed to account for Hertzian contact. More details concerning the actual steps of the incre-
mental-iterative process are contained in section 7.

5. Contact problems involving bodies of different dimensions

The preceding formulation needs only trivial modification to be made applicable to contact
problems involving bodies of different dimensions. There are many cases of considerable interest
which fall into this category {e.g. solids contacting plates or shells). The modifications necessary
are essentially interpretive. An example illustrates this assertion.

Consider the frictionless Hertzian contact of a three-dimensional solid and a two-dimensional
plate. Let B! represent the solid and B? the plate. The contact term is exactly as before, i.e. (10).
However, note that in this case ¢ is also identifiable with part of the two-dimensional “volume”
of the plate rather than its boundary. Thus 7 contributes to the transverse momentum equation
(or equilibrium equation in the case of statics) of the plate rather than to its boundary conditions.
The interpretation of 7 is thus two-fold, i.e. it is the normal component of the traction vector
with respect to B, as before, and it is also the normal component of the “body force” with
respect to B2 (fig. 5).

This interpretation is general — namely, for one and two-dimensional bodies the contact force
is an equivalent “body force” which contributes to the momentum equations rather than to the
boundary conditions.

It should be noted that the contact element described in section 4 applies to the case of bodies
of different dimension since the load on each body results from a term like (9) or (10).

-BI
O/Bz
s \g_/ R

T

Fig. 5. Schematic of the contact of a solid and plate.
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6. Temporal discretization

We use the Newmark method to temporally discretize the matrix equations of motion. This
method amounts to a one-step integration formula involving two parameters which can be ad-
justed to control stability and numerical dissipation. Applications of the Newmark method to
linear elastodynamic problems have been studied by many authors (e.g. see Goudreau—Taylor
[6]). Briefly, the algorithm is given by

Uy =u,+ Atdr, + (12 — B) Ar%ii, + BA%iL,,, (132)
U, =, + (1Y) Atii, + yAtii,,, (13b)

where u, = u(t,) is the displacement vector at time ¢,, At = 7,,, - t,,,  and 7y are the two parame-
ters, and a superposed dot indicates time differentiation. For linear elastic problems y = 1/2 pro-
duces no dissipation, and 8 > 1/4 produces unconditional stability.

If the mass matrix M is diagonal (lumped mass), § = 0, and the stiffness matrix K and load
vector R are independent of #, then the method is explicit, i.e. the solution can be advanced
without solving a large set of simultaneous equations at each time step. Otherwise the method is
implicit and equations must be solved.

7. Discrete impact and release conditions

The static aspects of the Hertzian algorithm (cf. section 4) are relatively simple. However, the
dynamic aspects, especially the impact and release conditions, are quite delicate. To motivate this
aspect of our work, consider the following hypothetical situation.

Assume that we are in the process of numerically solving some impact problem and suppose
that it is discovered as we monitor the motion of the bodies that they impact somewhere in the
time interval (¢, ¢,). At time 7, we know the states of both bodies and we know that somewhere
between ¢, and ¢, they have coalesced over a portion of their boundaries. Assume for the moment
we know the geometry of the contact surface ¢. The question which arises then is what is the state
of ¢ at time 7,, i.e. what are the tractions, velocities and accelerations on ¢? It is necessary to know
this information to carry forth the step-forward time integration. The appropriate values can be
deduced from a local, wave-propagation analysis involving the theory of propagating singularity
surfaces (see [5] section 7 for further details). A similar situation occurs when the bodies dynami-
cally release.

In the remainder of this section we shall present the discretized impact and release conditions
for the case of linearly elastic bodies. Throughout, we employ a lumped, rather than consistent,
mass matrix. This renders the presentation more concise and leads to significant computational
simplifications. For the low-order elements (e.g. bilinear) that we use in our analyses this represents
no loss in accuracy.

For simplicity, we shall consider the frictionless case and isolate one pair of candidate contact
nodes. The equations of motion for these nodes will be denoted

MU+ K*u®*) — (-1)*r=0, (14)
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Fig. 6. Contact logic.

where the superscripts indicate the body number, M % is the lunped mass coefficient, K *(u®) is the
elastic force and 7 is the nodal contact force. If the bodies are not in contact 7 = 0; otherwise
>0,

Let us suppose that at the end of the previous time step these candidate nodes were not in con-
tact. Furthermore, assume that in the process of computing the present state, contact has been
made. This occurs whenever

(i) d=x'-x2<-TOL or (i) d<TOL and 7>0, (15)

where TOL is a small positive number which acts as a safeguard against round-off. (In our finite
element analysis program FEAP, we are currently using 7TOL = 1071% L, where L is a problem de-
pendent characteristic length.) This logic is displayed graphically in fig. 6. As a result of coming
into contact, the algorithm makes the displacements compatible, i.e. u? — u'=d, = X' — X?,
where X!, X? are the coordinates of the particles in the initial configuration. However, the veloci-
ties !, 2% and accelerations ii', ii? are left as computed by the algorithm. It is at this point that
we impose the impact conditions. We denote by V,, 7, and i, the corrected values of velocity,
contact force and acceleration assigned to the pair of nodes in contact. They are given as follows:

_epUtity — po Uity

L , (162)
(P3U* — pa UM
1 2
ro=r - Mgy, (16b)
(M'+M?)

0, =—— T (16¢)
oMM
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where p§ is the density of body « in the initial configuration, U® is an appropriate wave velocity
for body a (e.g. U? is dilatational velocity for three-dimensional linear elastic bodies, whereas it is
“bar-wave” velocity in simple bar theory), the subscript (—1) refers to values taken at the end of
the previous time step, and the subscript () indicates values taken at the end of the last iteration
of the present time step. Note that the right-hand side of (16a) depends on data computed prior
to impact (i.e. ', #%,). This is consistent with wave-propagation theory and is important in
numerical computations. For example, using data from the last iteration of the present time step
(i.e. !, &%) leads to markedly inferior numerical results (e.g. spike overshoots and oscillations
about the correct values). On the other hand, 7, and i, are computed from data obtained in the
last iteration (i.e. 7_, #', ii?). The argument for this goes as follows. In the post-impact state there
should be a unique value of 7, and i/, assigned to the contact point. Since the values of u! and u?
are already compatible, we employ (14) to solve for 7, and i,. That is we set

M%i, + K*u®) — (-1)*r, =0 an
and substract (17) from (14) evaluated at the previous iteration:
ME® + K*u*) — (-D*r_=0, (18)

This is how we arrive at (16b, ¢). Satisfaction of the equations of motion is automatically achieved
for the post-impact state as a result of (17).

Now we shall describe the release conditions. These stem from the same concepts as the impact
conditions. In fact, one way to look at the release conditions is to view them as impact conditions
with time running backwards. Thus from a local wave-propagation analysis we obtain the post-
release velocities V! and V7 from the pre-release data 7_, and V_, as follows:

VE=V_ +(=D%1_/pdU*A*, (19)

where 4!, A? are tributary area weighting factors for the respective candidate nodes. Simultaneous-
ly we need 7, to be equal to zero. We set 7, = 0 and adjust the accelerations in (14) so that this
change maintains satisfaction of the equations of motion. The computation is analogous to the

one in which we calculated (16b, ¢):

U=t —(=Der_|M*, (20)

where here ii} and ii? are the corrected post-release accelerations, and #i! , #i2 and 7_ are the values
computed from the last iteration of the present time step.

We determine whether or not release has occurred in the following way. If 7 < O (tension across
the contact surface in any iteration) we release; if 7 > 0, but less than 2% of the previous time step
value 7_,, we also release. Otherwise we retain contact. The last release case above was arrived at
from numerical experimentation. For example, problems were run for releasing bars in which the
theoretical drop-off of T was 100% in one time-step (shock waves). Our numerical computations
predicted this drop-off quite accurately producing a positive 7 of less than 10~3 times the previous
value. Interpreting this as contact, the algorithm did not release the bars until the next time step,
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at which time the update indicated in (19) and (20) had negligible effect due to the very small
value of 7_. We deduced the criterion above from cases like this.

The only pitfall in using this criterion can be seen as follows. Suppose the actual drop-off during
a time step in a problem is greater than 98% of the previous value, but the exact solution from this
point on is constant at some small positive 7. The algorithm would release and not join the nodes
until the next time step. From here on everything would run as it should.

Under appropriate circumstances, the formulas

(M232, + MYt )

Ve= ) (21a)
M +M?»
and
Ve=V_,+(-D*At7_,2M*, (21b)

may be used in place of (16a) and (19), respectively; one needs that the mesh is regular in the
sense that (AX;)* = ArU®, where (AX,)® is the height of the element in body « (see fig. 7). Eq.
(21b) has the desirable property of eliminating the need of computing the area weighting factors
in (19). These ideas, as well as more refined methods of computing discrete impact and release
conditions, will be dealt with in future work of the authors.

Fig. 7. Schematic of finite element meshing in neighborhood of contact region.

8. Solution of the nonlinear algebraic problem

In this section we shall assume that all contact force degrees of freedom are included in the.
nodal “displacement” vector u. For simplicity we shall also only deal with the nonlinear elastic

case.
Let the equations of motion for both bodies and the contact forces be written

Mii + K =R @2
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where M is the mass matrix, K(u) is the vector of elastic and contact forces and R is the external
load vector. Assuming 8 and At # 0, use of the Newmark formula (13a) in (22) yields the non-
linear algebraic equation

1
BA?
where

171 1 . 1-28 ]
=—l—u +—q, + .
A an Uy T Uy ( 3 )un

Mu,, +Ku, =R, +MA,, (23)

We solve (23) via the following Newton-—Raphson iterative procedure.
Let a superscript in parentheses indicate the iteration number. The 0 and /+1 iterative solutions
at time ¢,,,, are then given by

ugg)l = un
and 24)
5D =, + Bl

respectively, where Au?), satisfies the linear equation

K Aud, =R" @5)
where

1
BAL?

in which DK indicates the tangent stiffness. Iteration continues until

K=

M+DK@{)) and R =R, —Kwui))+M (A" B ﬁAl 2 ugxi)l) ’
t

AU < elluld (26)
where ||+]| is the Euclidean norm (i.e. | x|l = (2 xf)” %), and e, the error tolerance, is a preassigned
“small” positive number of order A¢. A summary of the resulting algorithm is contained in table 1.

Static analysis may be carried out with this algorithm by formally setting M = O.

9. Sample problems

In sample problems 9.1 and 9.4-9.9, bilinear displacement elements are employed. In 9.2 and
9.3, standard linear displacement elements are employed.
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Table 1. Summary of the contact-impact algorithm

1. Initialize K* to zero, input At for the sequence.
2. ¥or each time sequence in the analysis compute contribution to K* for each continuum finite element.

3. Determine the first equation (say number N} in K* which will be modified by the remaining contact
elements.

. Factor K* 10 equation N— 1 using Gauss elimination and place the factored K* into backing storage.
. For each step or iteration in the sequence read the partially factored K™ into core.

. Initialize R to the current load level R.

. For the continuum elements compute the contribution to R*.

G~ N L e

. For the contact elements determine the state of penetration and add the appropriate contributions to
K* and R™. This conpletes formation of K*. ,
9. Reduce R*, complete factoring of K™, and back substitute to determine Augzl.
10. Update solution ugﬂ and check for convergence. If convergence test is satisfied, continue; otherwise
repeat steps 5 to 10.
11. Output solution displacements and stresses, compute new time, and complete update of displacements,
velocities and accelerations.

12. For each time step in the sequence repeat steps 5 to 11.
13. For cach sequence repeat steps 1 to 12.

9.1. Hertz contact problem

The Hertz static contact problem (see [7]) was solved, and we were able to accurately compute
both the contact region and the pressures over a wide range of loading. The mesh is depicted in
fig. 8, and contact pressure versus contact radius results are plotted in fig. 9. The data are:

—— HERTZ SOLUTION
e FROM CONTACT FORCES
A o ELEMENT STRESS
(ADJACENT TO SURFACE)

810 (TOTAL LOAD)

UNIFORM  LOAD

N

CONTACT PRESSURE

CONTACT RADIUS

Fig. 9. Comparison of results of finite element solution and
Fig. 8. Finite element mesh for Hertz static contact problem. Hertz solution of static contact problem,
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E = 1000 (Young’s modulus),
v =3 (Poisson’s ratio),
R=8 (radius of quarter sphere).

The total applied force is distributed uniformly across the top surface.

The nodal contact forces were converted to contact pressures by a tributary area method. The
results clearly indicate that the contact pressures are given more accurately by the nodal contact
forces than by the element stresses, as one might surmise they would be.

9.2, Impact of two identical elastic bars

This problem, although extremely simple to solve analytically, is a source of considerable in-
sight as regards impact and release phenomena. Since the definition of the contact surface (a point)
is trivial, we are able to focus in completely on the importance of achieving a theoretically correct
impact and release. The data are given in fig. 10. The results (figs. 1 1—14) are tracings of computer
plots which employ linear interpolation between time steps. The stress data (fig. 14) are to be
viewed as occurring at the center of the element. Since the numerical results are so close to the
exact ones we did not include the latter so as not to crowd the plots.

Newmark data for these runs consisted of § =.001001, v = .502 up to time .2, and then
B8=.001001, y=.525625 between .2 and .5. The reason for increasing v (which increases the
numerical dissipation) in the second time sequence was to mitigate the effects of an apparent in-
stability. The original time sequence data are right at the stability limit. As the analysis proceeds,
some noise becomes amplified at the boundaries. Some of this noise is visible in fig. 14.

A
5.0 ey
INITIAL VELOCITY=0. BAR 2 INITIALLY AT REST
FOR BAR |
40 4~
|2 20 21 22 41 ~
o o o | v s o o
\s i s o e =
8 so
CONTACT ELEMENT g
2
5
DATA:
E 2.0
L=I0 (LENGTH/BAR) g
E =100 {YOUNG'S MODULUS)
p=0 (DENSITY) o
Asl {AREA)}
At= 005 (TIME STEP) 0 1 ! I -
o 1 2 3 4 5
AX=5 (ELEMENT LENGTH) TIME

- 11. Impact of two identical bars. Contact force vs. time.

&

Fig. 10. Data for the impact of two identical bars. F
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Fig. 14. Impact of two identical bars. Stress in element 32 vs. time.

The discontinuous stress and velocity waves which result after impact are difficult to capture
numerically, especially with a coarse gird, as employed here. Our results, figs. 1114, indicate the
veracity and importance of the impact and release conditions. Note how effectively the impact
conditions bring the contact force from zero to the exact value in one time step without any
overshoot (fig. 11). The release (at £=.2) is also very crisp. The slight perturbation from the exact
solution (fig. 13), which is due to the Newmark algorithm, could be made to go away completely
with mesh refinement.

Lack of space prevents us from including some “negative” results obtained by not using the
impact and release conditions discussed in section 7. These results possess spike overshoots around
wave fronts, oscillations about the exact solution, and spurious release waves. As can be seen from
figs. 11—14, they are entirely eliminated by imposing the impact and release conditions.

9. 3. Impact of two dissimilar elastic bars

This problem is slightly more complicated than the previous problem. Here again the length of
each bar is 10, and the initial conditions, density and area are the same as in fig. 10. However, we
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points vs. time.
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against a rigid wall.

Fig. 18. Finite element mesh for impact of an elastic sphere

have taken the elastic moduli of the bars to be different, namely £, =49 and E, = 100. Bar 1 is
subdivided into 20 equal-length elements and bar 2 into 14. The time step A7 = .00714 and
B =.001001, v =.502. The results, depicted in figs. 15—17, are remarkably accurate.
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9.4. Impact of an elastic sphere against a rigid surface

The mesh for this problem is depicted in fig. 18. The data are:

p =.01 (density),

E =1000 (Young’s modulus),
v =.3 (Poisson’s ratio),

R =5 (radius of sphere),
Ar= .01 (time step),

g =.25, =15 (Newmark parameters).

The sphere was subjected to an initial, uniform velocity of .3 (downward). The normal pressure
distribution over the contact area at the time instant when the contact radius has spread to its
maximum value compares favorably with the quasistatic approximate solution of Hertz [7] (see
fig. 19).

In axisymmetric problems such as this one the contact element along the axis of symmetry
should not be included. This is because of the basic assumption that the contact force consists of
delta functions — this leads to no generalized force when the radius is zero. For demonstration
purposes we have included it in this problem; it produces the spike in the nodal contact force
data in fig. 19.

The effects of the initial impact were small in this problem, and large time steps did not mar-
kedly affect the results.
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Fig. 19. Impact of an elastic sphere against a rigid wall. Contact pressure vs. contact radius at instant of maximum contact area
development.
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9.5. Impact of two dissimilar elastic spheres

The mesh for this problem is depicted in fig. 20. The data are:

py = 01, P, = .02 (density),

E, =1000, E,=2000 (Young’s modulus),
v, =.4, v, =.2 (Poisson’s ratio),
R, =5, R,=5 (radius of sphere),
Ar=.01 (time step),

g =25, v =.5 (Newmark parameters).

The uniform initial velocities of the spheres are V| = 4.0 (upward) and V, = 2.0 (downward).
The shape of the computed contact surface at the instant of maximum contact area developnent
is compared with the approximate quasistatic Hertz solution in fig. 21.
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Fig. 20. Finite element mesh for impact of two dissimilar Fig. 21. Impact of two dissimilar elastic spheres: Shape of
elastic spheres, contact surface at instant of maximum contact area develop-
ment.

9.6. Head injury model

Several contact-impact analyses of an axisymmetric spherical head model were performed (see
[81). The model consists of a three-layered skull and encapsulated brain (fig. 22). The radius of the
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Fig. 22. Axisymmetric spherical head injury model.

brain cavity R = 2.95 in, the thickness of each hard bone layer is 0.05 in, and the thickness of the
diploé is 0.10 in. Material properties are taken to be linear elastic and are given in table 2. In the
skull, three layers of elements were used through the thickness and four-point Gaussian quadrature
was employed. The brain elements make use of one-point quadrature.

{a) Hollow skull contacting a rigid surface

The skull was discretized into 51 elements and 7 candidate contact elements were employed
(see fig. 23a). The skull is fixed at the uppermost node, and a rigid frictionless surface is pressed
into it from the bottom. The rigid surface, initially just touching the skull, is given an upward
motion of .1 in per step until a total motion of .5 in was achieved. Inertial effects were neglected.

Tracings of computer plotted deformed configurations and contact pressures (obtained from
nodal contact forces by a tributary area method) are depicted in figs. 23b- 23f. Note how the
peak contact pressure occurs towards the outer radius of the contact zone. This is a common

Table 2. Material properties tor head injury model

Property Hard bone Diplo¢ Brain
K — butk modulus 1.333 1333 308
(108 psi)

G - shear modulus 8 .08 0308
(108 psi)

p — density 2 2 037

(1074 1b-sec¥in®)
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Fig. 23. Initial (a) and deformed (b—f) mesh configurations of a hollow skull model contacting a rigid surface.

feature of shell-like contact phenomena, but quite opposite that for a homogeneous elastic sphere
(cf. fig. 9).

(b) Hollow skull impacting a rigid surface
The mesh of the previous problem is also used here. The data are:

At=.05x%x10"%sec (time step)
g=.25 y=.5 (Newmark parameters).

The uniform initial velocity of the sphere was 352 in/sec (=20 mph) downward. In this example
we were interested in seeing the early-time wave-propagation effects, and thus we employed a
time step which is close to the transit time for a dilatational wave to travel through the thickness
of each skull layer (the transit time for the hard bone layer equals .0456 X 10~5 sec). The contact
force for the first 100 time steps is presented in fig. 24. The period of oscillation superposed
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Fig. 24. Contact force vs. time for a hollow skull impacting Fig. 25. Finite element mesh for impact of skull-brain model
a rigid surface. against a rigid surface.

upon the results is approximately .35 X 1077 sec, which is very close to the time required for a
dilatational wave to pass through the entire thickness of the skull and back (i.e. approximately
365 X 10~ 5 sec).

(c) Impact of skull-brain model against a rigid surface

The mesh for this problem is depicted in fig. 25. The modeling of the skull portion is identical
to the previous two cases. Here we used a time step of .365 X 1075 sec; all other data are the same
as for the previous case. Pressure profiles over the contact surface, obtained from the nodal contact
forces by a tributary area method, are depicted in fig. 26. It is interesting to compare these results

t=0.351 MSEC

CONTACT PRESSURE, KS|

' l ! l )
0 o 0.2 03 0.4 05 0.6 07 08

CONTACT RADIUS, N,

Fig. 26. Contact pressure profiles for skull-brain impact problem.
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with the profiles obtained from the dynamic Hertz problem and the quasistatic shell problem,

case (a). In the former case the peak contact pressure is located on the axis of symmetry (cf.

fig. 19), and in the latter case it is towards the periphery of the contact zone, falling off to zero
along the asymmetry axis (cf. fig. 23). Here in fig. 26 results somewhere in-between these extremes
is achieved.

9.7. Rectangular block impacting a rigid surface

An analysis was performed of a plane strain linear elastic rectangular block impacting a rigid
surface. The finite element mesh is shown in fig. 27. The data are:

p =0.1 (density),

E =1000 (Young’s modulus),
v =.3 (Poisson’s ratio),

L =9 (length),
Atr=.002725 (time step),

g =.001001, +~=.502 (Newmark parameters).

'

Z3 SYMM. ABT ¢

7 77 T

Fig. 27. Finite element mesh for a plane strain rectangular
block impacting a rigid surface.

The time step is the transit time for a dilatational wave to propagate the length of one element.
Initially the block is traveling at a uniform velocity of 1 (downward). The block impacts the rigid
surface at ¢ = 0. Outside the shaded zone (see fig. 28) defined by R = ct, where ¢ = 366.9 is the
dilatational wave velocity, the exact solution consists of two constant zones, I and II, separated
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Fig. 28. Wave front diagram for rectangular block impact problem.

by the dilatational wave front which emanates from the initial impact. The circular wave front is
a result of reflections off the right-hand side (free) boundary.

We were interested in determining the early time results for this problem which can be com-
pared with the known solution in zone II and provide a test of the discrete impact conditions.

TIME xi0? TIME x 10°
1.0 2.0 1.0 2.0 o
0 T T > 0 T T -
-1.0 -1.0
(2] 73]
7] %]
g -20L € -20H
5 5
i m
N N
-30b B ~3.0h
D
A C
-40} -4.0
/ Y

Fig. 29. Stress results for rectangular block impact problem.
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Fig. 30. Deformed configuration superposed upon initial configuration for rectangular block impact problem at time .0163. The
displacements are magnified 50 times.

Eight time steps were run, allowing the front separating zones I and Il to propagate to within one
element length of the top surface. Stress results for several elements are depicted in fig. 29. In each
case the rise of stress from zero to the exact value is achieved in one time step, and this value is
maintained until the wave from the right-hand boundary reaches the element. The results corro-
borate the effectiveness of the discrete impact conditions.

A deformed mesh at ¢ = .0163 with displacements magnified by a factor of 50 is superposed
upon the undeformed mesh in fig. 30. At this time the plane front has traveled upward through
6 elements. Note that bulging along the right-hand side occurs up to this point. The effect of a
frictionless contact surface is evidenced by the displacement to the right of the lower right-hand
corner node.

9.8. Dynamic rigid punch problems
(a) Triangular punch

A rigid triangular punch is driven into a linear elastic half-plane at constant velocity ¥ = 100.
(see fig. 31). The data are:

/“‘ 2y

Fig. 31. Rigid triangular punch driven into a half-plane at constant velocity V.
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p =.01 (density),

E =1000 (Young’s modulus),
p =.3 (Poisson’s ratio),

o =tan"!'2 (punch angle),
Ar=.0025 (time step),

g

25, y=.5 (Newmark parameters).

Five contact elements were employed. The initial mesh configuration and several deformed con-
figurations are illustrated in fig. 32.

INITIAL CONFIGURATION t=0125
!
Z3
t=.0250 1=.0375
2L LLLLL LLLLLLLLLLL e 7,
A
Fig. 32. Initial and deformed configurations for rigid Fig. 33. Rigid parabolic punch driven into a half-plane at
triangular punch problem. constant acceleration 4.
(b) Parabolic punch

A rigid parabolic punch was driven into the half-plane at a constant acceleration A4 = 4000
(see fig. 33). The surface of the punch is defined by the equation z, = (z,)?/8. The remaining data
are the same as in the previous case. The initial mesh configuration and deformed configurations
are depicted in fig. 34.
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Fig. 34. Initial and deformed configurations for rigid Fig. 35. Total contact force vs. time for rigid punch problems.

parabolic punch problem.

Total contact force for case (a) or (b) is known {9] to vary linearly or quadratically, respec-
tively, with time. The results of the finite element analyses are seen to exhibit this behavior (see
fig. 35).

The results for case (b) employed a modification to the velocity impact conditions. Specifically,
the velocities of the last time step prior to impact, u®, in eq. (16a), were replaced by the veloc-
ities of the last iteration prior to impact, #* . This was done because the impactor was accelerating,
causing the velocities to vary linearly over the time step. Results using (16a), although showing the
general trend of fig. 35, oscillated quite a bit before settling down. In general this artifice is not to
be recommended; the sharp impact results of previous problems (namely the bar problems 9.2 and
9.3 and the block problem 9.7) would not have been obtained if this was made the rule rather than
the exception. What this problem does emphasize is that more sensitive (i.e. higher-order) impact
and release conditions are necessary if one is to avoid taking excessively small time steps during
the impact and release phases of a contact problem.
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9.9, Static analyses of germanium crystals

We have recently aided a research team of Berkeley physicists studying electron-hole drops in
germanium (see for example [10]) by performing contact analyses of germanium crystals. Their
work has been featured in lengthy articles in the San Francisco Chronicle, May 19, 1975, New York
Times, May 19, 1975, and other major periodicals. Briefly, their theory indicates that long-lived
electron-hole drops will occur around the point of maximum €, — €55, where €;; are the infinitesi-
mal strains in stressed germanium crystals. Their experimental technique enables them to photo-
graph the electron-hole drop (see fig. 36). This was the first direct photographic evidence of the
existence of this phenomenon.

Fig. 36. First photograph of an electron-hole drop in germanium.

The Hertzian contact algorithm was employed to calculate the strain contours of sample crystals.
For example, the following data were employed to analyze the plane strain configuration illustrated
in fig. 37.
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Fig. 37. Finite element mesh and strain contours for contact analysis of a germanium crystal.

Nylon set screw: E =1000 dyn/cm? ,
v =.3,

Germanium crystal:  E = 13850 dyn/cm?,
v=.3.

The radius of the germanium crystal is 2 mm. The nylon set screw was driven into the crystal
.08 mm, as illustrated in fig. 37, and five of the candidate contact nodes engaged. In fig. 37 we
also show contours of €;; — €;5. The computed point of maximum €, — €55 is in close agreement
with the photographed location of the electron-hole drop (cf. fig. 36).
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