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ABSTRACT

GPU-Acceleration of In-Memory Data Analytics

Evangelia Sitaridi

Hardware advances strongly influence the database system design. The flattening speed

of CPU cores makes many-core accelerators, such as GPUs, a vital alternative to explore

for processing the ever-increasing amounts of data. GPUs have a significantly higher degree

of parallelism than multi-core CPUs but their cores are simpler. As a result, they do not

face the power constraints limiting the parallelism of CPUs. Their trade-off, however, is

the increased implementation complexity. This thesis adapts and redesigns data analytics

operators to better exploit the GPU special memory and threading model. Due to the

increasing memory capacity and also the user’s need for fast interaction with the data, we

focus on in-memory analytics.

Our techniques span different steps of the data processing pipeline: (1) Data preprocess-

ing, (2) Query compilation, and (3) Algorithmic optimization of the operators. Our data

preprocessing techniques adapt the data layout for numeric and string columns to maximize

the achieved GPU memory bandwidth. Our query compilation techniques compute the op-

timal execution plan for conjunctive filters. We formulate memory divergence for string

matching algorithms and suggest how to eliminate it. Finally, we parallelize decompression

algorithms in our compression framework Gompresso to fit more data into the limited GPU

memory. Gompresso achieves high speed-ups on GPUs over multi-core CPU state-of-the-art

libraries and is suitable for any massively parallel processor.
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Chapter 1

Introduction

In the last two decades database systems faced new bottlenecks. The increase in memory

sizes allowed small and moderately sized databases to fit in the RAM [Manegold et al.,

2000]. As a result, the main performance bottleneck shifted from disk access to memory

access.

The increase of memory capacity creates new opportunities for businesses to take ad-

vantage of in-memory data analytics. In-memory data analytics speed up the performance

of a wide range of applications, from data warehousing to real-time analytics.

In data warehousing, data is reviewed, aggregated and then processed. Real-time an-

alytics involves up-to-the-minute fresh data [Cohen-Crompton, 2012]. Social media is a

significant source for real-time analytics. Interactive data visualization is a powerful tool

for a lot of industries [Tableau, 2016]. Twitter data can be used by journalists to generate

visualizations related to important events, such as the elections. Visualizations of the most

tweeted candidate capture election trends and enrich the content of an article. In-memory

analytics for businesses provide more detailed reports by boosting database performance.

Faster processing means that managers can understand customer behavior and eventually

make high-value, fast and informed decisions. Regardless of the time sensitivity of the

data, in-memory processing requires optimized implementations of key functions. In this

thesis, we explore two key functions: Filtering and string matching predicates to explore

interesting areas of the data.

Another shift in hardware performance was the flattening speed of single-core processors
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that paved the way for the multi-core era. Parallelism is our main hope to meet the need

for increasing performance on database workloads [Sutter, 2005]. To reach the maximum

memory bandwidth of processors for in-memory workloads, fully parallel programs must be

designed. There are different types of available parallelism that database systems exploit.

Thread-parallelism involves the development of multi-threaded software partitioning a task

into subtasks and concurrent threads executing the different subtasks in parallel. The

main challenges in thread parallelism are load balancing to make sure all threads execute

approximately the same amount of work and contention handling to avoid performance

degradation because of resource sharing between threads. Database performance can be

boosted by independent instructions in the code-path. Independent instructions can be

evaluated in parallel because of the instruction pipelining in the CPUs. This potential

overlap is called instruction level parallelism (ILP). For example, consider this pseudo-code

snippet, applying a conjunctive filter on tuples of table R:

if(R.a < min_age)

if(R.b < min_salary)

add the tuple to results

The second if-statement instruction depends on the outcome of the first condition, limiting

the ILP. Checking both conditions for every tuple, regardless of the outcome of the first

condition, increases the ILP but also increases the memory traffic. The optimal execution

depends on factors such as the memory latency and the condition selectivity. Simultaneous

multithreading (SMT) on superscalar CPUs combines both thread-level and instruction-

level parallelism by allowing instructions from multiple threads to be issued at a given

cycle. Data parallelism, on the other hand, involves applying the same operation on different

data elements. Challenges for data parallelism include transforming the control flow of the

operators by removing branches so that the same code can be applied to different data

elements. This optimization also results in increased ILP. Mainstream processors with

SIMD instructions are the most common platforms for vectorized programs.

We are in the midst of a transition from the multi-core to the many-core era. While

the number of transistors increases at the rate of Moore’s law, the energy efficiency per

transistor has been decreasing. Power constraints will eventually prevent all cores being
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concurrently active [Esmaeilzadeh et al., 2013]. Also, adding cores to a processor results

in linear scaling only up to a certain number of cores. Many-cores have an especially high

number of cores, which are typically simpler than the cores of traditional CPUs. Simpler

cores do not have the same power constraints as more complex CPU cores. Many-cores

trade-off ease of development for increased parallelism. GPUs and the Intel Xeon Phi are

typical examples of many-core processors.

In this thesis, we focus on data processing powered by GPUs. GPUs are many-core pro-

cessors with very fast memory suitable for memory bound database queries. In Section 1.1

we discuss our research motivation for GPU database processing to accommodate the in-

creasing needs for lightning-fast processing. Section 1.2 describes the challenges posed by

the special GPU processor architecture. In Section 1.3 we formulate the database setting

and the problems we are tackling in the present thesis and Section 1.4 is our contribution

statement.

1.1 Motivation

Hardware advances make hardware-aware software critical to avoid leaving database per-

formance on the table [Breß et al., 2014]. The exponential growth of data further pushes

hardware acceleration for more efficient systems. GPUs have massive parallelism available

and high memory bandwidth, matching the speeds of memory bound database workloads

[Manegold et al., 2000].

Integrating multiple CPUs can match the raw performance of a GPU processor but

not the Performance per Watt. Energy efficiency of large scale data processing systems is

becoming critical important with the increased availability of GPUs on the cloud. GPU

instances on the cloud support the computing requirements of an increasing number of busi-

nesses without the upfront costs of dedicated server solutions[Amazon Web Services, 2016;

Microsoft, 2016; MapD, 2016]. For the problems studied in this thesis, GPUs are always

the most energy efficient option. Straightforward GPU implementations would not achieve

performance speed-ups or energy savings against multi-core solutions but we leverage the

GPU performance by adapting the input data layout in the GPU memory and the operator
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algorithms.

As their memory capacity increases, GPUs are fit for in-memory processing of larger

datasets. The NVIDIA K80 GPU has 24GB of available memory [NVIDIA, 2015e]. Our

focus on GPUs is also supported by their increased commercial availability. Also, GPU

programming interfaces are becoming more programmer-friendly so the learning curve for

GPU parallel programming is now less steep [NVIDIA, 2016a].

1.2 GPU Architecture

This section gives a historical overview of the GPU architectural evolution. We then describe

the main challenges that have to be tackled to leverage the performance of modern GPU

processors.

1.2.1 GPU Historical Overview

GPUs were originally in the 1990s designed to offload 2D and 3D graphics rendering from

the main CPU processor [Singer, 2013a]. The first GPUs did not have many cores, which

were added later to be able to process multiple pixels in parallel. The term GPU was first

officially used by NVIDIA during the launch of GeForce 256 [NVIDIA, 2016b]. GeForce 256

had a 32MB frame buffer, 5.312 GB/s memory bandwidth, and 220nm fabrication process

[TechPowerUp, 2015]. The limitation of GPUs at the time was the limited programmability.

While the OpenGL and DirectX APIs were being extended, the hardware had fixed functions

and could not take advantage of the new API features.

To address that limitation, the next generation GPUs became programmable [Singer,

2013b]. At first, they only offered limited programmability with the use of shaders. Shaders

were simple programs describing the traits of vertex or pixel data and replaced the com-

ponent of the GPU hardware responsible for lighting and texture-mapping. The trend

towards more extensive programmability of GPUs continued along with the available par-

allelism, which increased faster than Moore’s law. The CUDA compute platform allowed

GPU programming in a C-like language [NVIDIA, 2016a].

The Fermi architecture, released in 2009, was seminal for General Purpose GPU (GPGPU)
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computing. Fermi was the first complete GPU architecture satisfying the requirements of

demanding High-Performance Computing (HPC) applications. In addition to improved

performance, Fermi had a true cache hierarchy, error-correcting code memory (ECC), and

concurrent kernel execution [Glaskowsky, 2009]. Kernels were analogous to shaders in the

previous GPU generations. Fermi also provided support for languages such as C++ and

FORTRAN.

One of the bottlenecks in GPGPU computing has been the slow interconnection be-

tween the CPU and the GPU, which typically communicate through PCI Express (PCIe)

links. Newer GPU generations will have faster links [NVIDIA, 2014] but the CPU-GPU

interconnection speed will be still an order of magnitude slower than the device memory of

the GPUs. For example, NVIDIA Tesla K80 has a memory bandwidth of 480 GB/s but the

transfer bandwidth from and to the GPU is 16 GB/s in each direction [NVIDIA, 2015e].

NVLINK will be available on the most recent NVIDIA GPU architecture, Pascal. NVLINK

is a faster and more energy-efficient alternative of PCIe reaching 80GB/s interconnection

speed between the CPU and the GPU [NVIDIA, 2015d]. However, it will still present a

potential bottleneck since Pascal GPU’s memory bandwidth is projected to be 720 GB/s

[NVIDIA, 2015d]. To eliminate this bottleneck, integrated GPUs were designed by AMD,

integrating CPU and GPU cores on a single die [AMD, 2016]. However, their memory band-

width is not nearly as fast as the bandwidth of a dedicated GPU. The high-end upcoming

AMD Zen APU is projected to have 128GB/s memory bandwidth [Moammer, 2016]. Con-

sequently, our general approach chose to focus on how to better exploit dedicated GPUs for

database operators by storing the datasets in the GPU memory and minimizing the data

transfers between the CPU and the GPU.

Based on the projected trends, the GPU available parallelism, and memory capacity

will continue to improve [Moammer, 2015]. Newer memory technologies address the needs

of memory-bound applications. 3D stacked RAM improves both capacity and speed by

integrating multiple layers of DRAM components on the package along with the GPU

[NVIDIA, 2015d].

Figure 1.1 shows the increase in memory speed and number of cores over recent years.

GPUs are viewed as parallel vector processors with a special memory hierarchy designed
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Figure 1.1: GPU Trends in memory bandwidth and number of cores.

for throughput rather than latency, unlike traditional CPUs.

Figure 1.2: NVIDIA GPU Architecture overview.

1.2.2 GPU Architectural challenges

GPUs pose challenges to programmers trying to leverage their high performance. Figure 1.2

shows an abstraction of the GPU architecture and threading model. Our research is done on

NVIDIA GPUs so we use the NVIDIA CUDA terminology but the abstractions of OpenCL

APIs are similar so our techniques are applicable for both types of GPU paradigms[NVIDIA,

2016a; AMD, 2013].

A GPU has multiple streaming multi-processors (SM). The SM is the GPU component

executing the GPU functions, called kernels. GPUs implement a Single Instruction Multiple

Threads (SIMT) architecture. The unit of execution in SIMT is a group of threads called

a warp, which is typically 32 threads. Multiple warps can be organized in larger groups of

threads, called thread-blocks. On the K40 GPU, there are 15 SMs, each capable of running
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Figure 1.3: An example of bank/value access pattern for 32 threads in a warp.

64 concurrent warps.

Threads of a warp start executing at the same program address but have their private

register state and program counters so that each thread is free to branch independently.

However, when threads in the same warp follow a different execution path, threads are

serialized by the hardware. This phenomenon is called thread divergence. While the branch

followed by a subset of the threads in the warp is executed, the remaining threads are

idle, resulting in resource underutilization and performance degradation. To accelerate

algorithms including many branch instructions for GPUs, we have to rethink our approach

by transforming the control flow of the code or designing an algorithm with fewer branches.

GPUs benefit significantly from instruction level parallelism because they can execute

multiple instructions at a time if there are few or no instruction dependencies. Branches

introduce instruction dependencies and consequently degrade execution efficiency. When

few instructions depend on the outcome of a branch, a compiler would use predication.

Predication allows each thread in a warp to either execute an instruction if the branch

condition is true or do nothing (noop instruction) if the branch condition is false for this

thread. Predication reduces the branch overhead and also increases the instruction level

parallelism. However, depending on the instruction cost predication might increase the

overall execution time. Our techniques can use additional workload information that is not

available during compile time so it is complementary to the compiler optimizations.

GPUs have a radically different memory hierarchy from a traditional CPU [NVIDIA,

2015c]. Global memory is the largest type of memory, but it has high latency: 400–600
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cycles. The scope of global memory is all GPU threads and it is cached in the L2 cache of

the GPU, which is also shared among all threads. The L2 cache on a K40, which is shared

by all processing elements has 12,288 128-byte cache lines.

Shared memory is used as a parallel, software controlled cache and its scope is a thread-

block. Shared memory capacity is limited, on a K40 it is 16KB or 48KB depending on

the kernel configuration. To maximize performance, shared memory is organized into 32

banks, so that all threads in a warp can access different memory banks in parallel. However,

if two threads in a warp access different items in the same memory bank, a bank conflict

occurs, and accesses to this bank are serialized, potentially hurting performance. Figure 1.3

illustrates a possible shared memory access pattern by the 32 threads in a warp. There

are 2-way bank conflicts in banks 11, 13, 24, and 26. The three accesses to a single item

by threads 22, 23 and 25 represent value conflicts. If these three accesses are reads, then

there is no performance penalty; the system will broadcast the common data item to all

three threads in one round. However, if these were write accesses, then two additional

serialization rounds would be necessary for value conflicts.

Finally, registers are privately owned by each thread and store values that are used

immediately.

Figure 1.4: Thread scheduling in NVIDIA GPUs [NVIDIA, 2015c].
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GPUs achieve a very high degree of parallelism by having many processing elements,

each of which can have many warps in flight at any point in time. Figure 1.4 shows how

instructions from different warps can be overlapped [NVIDIA, 2015c]. In the newer GPU

generations, two instructions from each warp can be dispatched. When running at full

capacity, there may be 15× 64× 32 = 30, 720 threads in flight on a K40. With many more

threads than cache lines, any algorithm that tries to assign threads independent work is

liable to thrash in the L2 cache if those threads each access even a single cache line. One

possible optimization is reorganizing memory accesses so that threads access contiguous

memory addresses. In that case, multiple memory accesses of the threads within a warp

can be combined in few accesses from the global memory. This memory access pattern is

called memory coalescing, and it achieves spatial data locality.

Compared to CPU processors, GPUs have limited memory capacity. Consequently, a

single GPU can only fit small to moderate size databases. Data transfers between CPUs and

GPUs can become a performance bottleneck in some workloads. For these workloads, we

assume that only intermediate query results are exchanged between the CPU and the GPU,

that are typically much smaller than the original data. To fit larger database workloads,

we suggest a multi-GPU setting where the data is partitioned across different GPUs. For

the case of compression workloads, where we show that data transfers is not the main

bottleneck, we hide the data transfer latencies by using software pipelining.

CPU GPU

Function Kernel

Thread Warp

SIMD lane GPU thread

Branch prediction Predication/Thread divergence

Low latency High throughput

RAM Global memory

Table 1.1: CPU-GPU analogies.

Finally, in Table 1.1 we summarize the analogies between CPUs and GPUs.
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Figure 1.5: GPU Database system architecture.

1.3 Problem Setting and Context

In this chapter, we give a high-level overview of how our acceleration techniques and algo-

rithms could be integrated into a full-fledged GPU database system. Our goal is to optimize

query throughput and the query throughput per Joule. Based on our Experimental Evalu-

ation, higher query throughput results in improved energy efficiency, so these goals are not

contradicting.

Figure 1.5 shows the architectural components of a database system combining a tradi-

tional processor and an accelerator. As we describe in Section 4.5.1, we suggest executing

a calibration step on a small sample of data to abstract the memory characteristics of the

available GPU devices. The calibration must be executed when a new GPU is added to the

system and update accordingly the query execution.

Physical Design We assume an in-memory setting. The input tables have numeric

columns, string columns and potentially binary large objects (BLOBs). The string data is

duplicated on both GPU device and the CPU RAM. A subset of the numeric columns is also

duplicated on both the GPU and CPU RAM and the remaining data is stored in the CPU

RAM. Determining which columns will be stored in the GPU device requires an analysis of
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the workload to estimate which columns can benefit the most from GPU acceleration. We

also analyze the workload to compute columns that are frequently aggregated, to reduce

shared memory contention using our techniques described in Chapter 3.

The GPU resident data is loaded before the execution of the data analytics workload.

During runtime, the data transfers between the CPU and the GPU only involve exchanging

intermediate results. Our assumption is also in sync with the design of MapD, which is a

database start-up doing real-time analysis on streaming data [Mostak and Graham, 2014].

The most frequently used data are stored in the GPU memory and only result-sets are

exchanged between the GPU and the CPU.

Integer numeric columns are stored in a column-wise way. This matches the GPU

architecture because different threads processing contiguous column values will coalesce

their accesses to global memory, reducing the memory traffic. Column-stores are more

suitable for read-intensive workloads accessing few columns of a large portion of the input

tables. For string columns, our baseline layout stores the strings contiguously in memory.

In Section 5 we evaluate different storage layouts and compare them against the baseline.

Columns that are larger, such as BLOBs, will be typically stored in a compressed format.

Decompression performance can be more critical than compression performance because

data will compressed only once but decompressed multiple times during system execution.

In Chapter 7 we present our accelerated Gompresso framework, using GPUs to achieve 2X

higher decompression performance than the multi-core performance of gzip.

In the case of updates, they are batched in the CPU, in a delta-store [Plattner, 2009],

that is periodically merged with the GPU-resident data. Updates are typically only applied

on the base data. Data is not indexed using typical row-store indexes, such as B-trees

or hash-indexes. Our techniques could be combined with indexes, by querying the index

structure and apply our selection optimization on the intermediate results returned by the

index. Indexes, however, are not expected to improve the overall performance of the query

workloads we study. Although there are efficient implementations of indexed key tree-search

[Kim et al., 2010], indexes are mostly beneficial for highly selective predicates while analytics

queries scan fewer columns of a large portion of the involved tables. Also, indexing increases

the maintenance cost when new table data are loaded in batches and space consumption
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since they can be several times larger than the original data. Finally, indexes on GPUs

are memory bound because of the irregular access pattern that results in cache thrashing.

Efficient indexed search designs approach the compute bound limit but to avoid thrashing

the throughput must be limited [Kim et al., 2010].

There are, however, OLAP-friendly index structures, such as column zone maps or

bitmap indexes. They are more space-efficient and at the same time can be used to accel-

erate queries selecting larger portions of data. Zone maps divide a table into continuous

regions based on an attribute. These regions are called zones and record the minimum and

the maximum attribute value in the zone [Graefe and Kuno, 2010]. Zone maps provide addi-

tional access paths, considered by the query optimizer since they allow to quickly skip over

uninteresting zones of data for range queries. Bitmap indexes might also be constructed to

accelerate range selections so they would be considered during the query optimization plan

enumeration[Stockinger and Wu, 2006].

Query Optimization Initially, the query is submitted to the CPU, written in SQL or

another high-level query language. The query is parsed to an internal representation and

fed to the next step which is the typical query optimization exploring a space of alternative

plans. Update queries are only applied to the delta-store, stored in the CPU main memory.

For read-only queries, the optimal plan determines the operator ordering and the device

that each operator will execute. The query optimizer enumerates alternative plans corre-

sponding to different operator orders and access paths. The optimizer has access to the

data placement of the input table columns and consults the statistics catalog to estimate

the cost of the alternative plans. The optimizer computes a query graph, representing the

lower cost plan, defining the execution order and the device that each operator will execute

on. Query optimization on a heterogeneous environment is out of the scope of this thesis

but since the space of the plans considering different operator placements might explode for

an increasing number of devices, we would need a heuristic to limit the space of alternatives.

In Chapter 8 we discuss what cost models would be suitable for a heterogeneous database

optimizer.

In particular, for complex predicates, where a subset of filters are applied on the CPU
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and the remaining on the GPU the optimizer must select the optimal co-processing strategy.

The strategy describes the order of the predicates are executed and whether the predicates

are evaluated in sequence or in parallel across the available processors. The optimal choice

depends on the predicate selectivity, predicate cost, and the processor performance and

load. Section 5.3 describes the alternative strategies of CPU-GPU interaction for complex

filters. A complete database system would additionally require monitoring the utilization of

the available devices resources. In our setting, a single query is processed a time. However,

databases could benefit by processing multiple queries at a time to maximize the GPU

utilization, while avoiding shared resource contention [Wang et al., 2014].

The optimized plan describes the form of the intermediate query results. The result-

sets might be represented either by a row-identifier list or a bitmap, depending on which is

smaller.

Code Generation The query graph representing the optimal plan must be now compiled

to low-level code that might be mapped to one or multiple GPU kernels. Database systems

have used LLVM to produce quickly code that would execute efficiently on the GPU and

at the same time is portable across different GPU architectures [Suhan and Mostak, 2015].

Intermediate results between kernels would be written to the global memory. In this step, we

would integrate our conjunctive selection optimization framework, presented in Chapter 4,

to compute the optimal way to group different select predicates in different CUDA kernels.

The execution engine must communicate with the statistics catalog to estimate the cost of

different execution plans, taking into account indexes, such as zone maps on the involved

attributes.

Query Run-time Our parallelism approach is simple for GPUs: For each kernel im-

plementing a data processing operator, a GPU thread is processing a specified number of

input elements. In case of operators with two inputs we split the work based on the size

of the larger table. Query run-time on the GPU-device will use our optimized operator

implementations for string matching, presented in Chapter 5. Based on our evaluation, our

Pivot-KMP implementation for single-pattern matching and Pivoted-AC for multi-pattern

matching predicates are the most efficient implementation for most queries.
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1.4 Thesis Contribution

This thesis addresses performance bottlenecks that prevent in-memory analytics from taking

full advantage of the GPU performance.

Database processing on GPUs is still a new topic that has a lot of research potential.

The choice of the the sub-topics we worked on was based on the following motivation.

First, we chose operators that are vital for the performance of database analytics and still

have performance bottlenecks that previous work has not addressed. We concentrated on

problems that not only have a practical applicability but also involve interesting abstractions

capturing fundamental design features of GPUs, such as warped execution and throughput

optimization, rather than architectural details that might be absent from future processors.

In our analysis we used profiling tools to identify individual operator performance bottle-

necks in the baseline implementations but also algorithmic analysis to identify fundamental

shortcomings of current methods. Using our insights on the GPU architecture we came up

with a set of solutions that belong to different steps of the data processing workflow. Some

solutions involved preprocessing of data by optimizing the memory layout. In other cases

algorithmic redesign was essential, so after analyzing the average and worst-case algorithmic

behavior of the available solutions, we adapted algorithms to match the GPU model. Within

each thesis chapter we evaluate our algorithmic frameworks using micro-benchmarks and

compare their performance against the baseline and other competitive existing solutions.

Our Experimental Evaluations are done on NVIDIA GPUs so we use the NVIDIA

CUDA terminology but the abstractions of OpenCL APIs are similar so our techniques are

applicable for both GPU programming frameworks[NVIDIA, 2016a; AMD, 2013]. Most of

our experiments were carried out on a single GPU. However, the operators we accelerated

are “embarrassingly” parallel and it is trivial to extend them for multi-node GPU settings.

The following Sections discuss our specific research contributions. Unless otherwise

stated, the software to carry out our evaluations was written by this thesis author. In all

of the projects, discussions with my thesis advisor helped me shape the research problems

and refine my experimental evaluations. I gratefully acknowledge the contribution of other

collaborators in each individual subsection.
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1.4.1 Shared Memory Joins & Aggregations

GPU threads can co-operate using shared memory, which is organized in interleaved banks

and is fast only when threads read or modify addresses belonging to distinct memory banks.

Our goal in Chapter 3 is to examine the role of bank and value conflicts for database process-

ing on GPUs and to suggest bank-aware optimizations for improving data access behavior.

We focus on two core database operators: foreign-key joins and grouped aggregation.

Aggregation is common in business analytics queries. Grouped aggregation is a helpful

tool to summarize and explore data across different dimensions and potentially find unusual

patterns. To achieve high performance we need fast access to the aggregate table. Aggre-

gation on OLAP data warehouses, unless data is denormalized, requires several joins of the

fact table to the dimension tables. On CPUs to achieve high performance for joins and

aggregations, we try to fit the data in data caches [Manegold et al., 2002] by partitioning.

However, L2 caches on GPUs are not optimized for latency as in CPUs but for throughput

[Mei and Chu, 2015]. To accelerate joins and aggregations we consider using the fast shared

memory. For foreign key joins between a fact table and a dimension table, shared memory

is used to contain the needed fragment of the dimension table. For grouped aggregation,

shared memory contains the running aggregates for each group. In our baseline implemen-

tation scans through a fact table, consulting the structure in shared memory for each row.

However, threads might access the same bank concurrently resulting in bank conflicts and

degrading performance.

Our key insight is that if there is additional shared memory available beyond that needed

for the basic structure described above, we can use that memory to store extra copies of the

underlying data. For foreign key joins, we store duplicate dimension table rows; for grouped

aggregation, we store duplicate groups. In either case, we make sure that the duplicates

and the original item all occupy different banks. We modify the base fact table so that

some rows refer to one of the duplicates rather than the original item, in order to reduce

the number of bank and value conflicts. This modification is done once at data loading

time, so the cost of optimization and the modification of the fact table is amortized over

many queries.

In our Experimental Evaluation, we discover that:
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• Columns written by various queries, for example potential group columns, should be

optimized for writes

• For skewed data a 2× increase in footprint gives most of the benefits of bank opti-

mization

1.4.2 Multi-Predicate Selection Execution

In Chapter 4 we are interested in the performance of a table scan combined with the

application of a compound selection condition. While a filtering scan might be considered

a “lightweight” operator compared to a join, it is important for a number of reasons. Large

tables cannot be stored in the shared memory, because of its limited capacity so larger tables

should be stored in the global memory of GPUs. As the initial operator in a query plan,

a filtering scan will typically process a large volume of data compared with later operators

that process filtered data. In data analytics scenarios where there is a limited space budget

for secondary indices and/or queries touch relatively large segments of the data, scanning

the data may be preferable to index-based access methods.

Two baseline implementations involve applying all filters in the same kernel function

or apply each filter in a different kernel function with each kernel but the last writing the

intermediate query results in the GPU device memory. The first approach increases memory

cost because each kernel must push the intermediate results into the global memory. The

second approach reduces the memory cost, but it might result in reduced thread utilization.

For conjunctive filters, if the filter is not true for some threads in a warp, these threads will

remain idle while the other threads in a warp are evaluating the remaining conditions. We

need to find the trade-off of thread utilization and memory cost, maximizing the overall

performance.

The entire space of scan plans involves alternative ways to group filters into kernels. Es-

pecially in the presence of expensive select conditions, finding the optimal plan is necessary

to maximize query performance. We suggest an analytical model estimating the relative

performance of different plans by capturing the memory architectural features of GPUs.

Our cost model has two main components: The cost of writing the intermediate results

communicated between kernels and the overlap degree of memory loads.
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Our main results of our experimental evaluation are summarized:

• Our analytical cost model accurately predicts the relative performance of different

execution plans

• Our optimization algorithm using our cost model achieves 2-3× speed-up over the

baseline approaches

This work has been published in DaMoN workshop [Sitaridi and Ross, 2013].

1.4.3 String Matching Optimization

Chapter 5 focuses on the efficient implementation of string matching operators common in

SQL queries. GPU-accelerated string matching had not been studied in a database setting.

String matching algorithms have been extensively studied for CPUs but state-of-the-art al-

gorithms have branches and irregular memory access patterns that are inefficient for GPUs.

Due to different architectural features, the optimal algorithm for CPUs might be subopti-

mal for GPUs. In a naive string matching implementation threads process different strings,

stored contiguously in the GPU global memory. GPUs achieve high memory bandwidth by

running thousands of threads concurrently so it is not feasible to keep the working set of

all threads in the cache. In the presence of loops and branches, threads in a group have to

follow the same execution path; if some threads diverge then different paths are serialized.

Also, in the context of a database system we are often interested only in the first match.

If some threads locate a match early on, they can stop scanning the string. However, because

of the warped execution of GPUs, these threads will remain idle while the remaining threads

are still scanning their input string. GPU string matching in the database context improves

the memory access locality of the input strings while minimizing the effect of branches on

string matching performance.

We study the cache memory efficiency of single and multi-pattern string matching algo-

rithms for conventional and novel pivoted string layouts in the GPU memory. Our pivoted

layout split the input strings into similarly sized pieces and interleaves the string pieces in

the global memory. As a result, threads of a warp processing contiguous strings will coalesce

their accesses to the global memory. However, depending on the chosen string matching



CHAPTER 1. INTRODUCTION 18

algorithm, some threads might fall behind and will end up accessing different string pieces,

increasing the cache footprint. We define this effect as memory divergence. Because of the

limited L2 capacity, memory divergence degrades the string matching performance.

We also evaluate the different matching algorithms in terms of average and worst case

performance and compare them against state-of-the-art CPU and GPU libraries. To reduce

thread divergence we split string matching into multiple steps.

Our experimental evaluation shows that thread and memory efficiency affect perfor-

mance significantly and that our proposed methods outperform previous CPU and GPU

algorithms in terms of raw performance and power efficiency.

We summarize below the results of our Experimental Evaluation:

• Interleaving the strings in the GPU memory results in reduced memory traffic and

improved performance

• The Knuth-Morris-Pratt algorithm is a good choice for GPUs because its regular

memory access pattern reduces memory divergence

• GPUs achieve on average 3× faster performance than CPUs and 1.5× reduced energy

consumption

• CPUs still present a viable alternative platform for string matching because of their

high Performance/$ ratio

Our work has been published in the Special Issue of the VLDB Journal on “Data Man-

agement on Modern Hardware” [Sitaridi and Ross, 2015].

1.4.4 SIMD-Accelerated Regular Expressions

CPU with SIMD extensions bear similarities in their approach to GPUs. In CPUs, the same

instruction is broadcast to multiple execution units. A lane in a SIMD register corresponds

to a GPU thread of a warp. Based on the above observations, we explore whether our

concept of data parallel string matching can be extended for CPU processors with SIMD

extensions. However, in recent mainstream CPUs, substring matching is supported in
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hardware through a specialized SIMD instruction that is sufficient to cover most queries

using the like keyword.

While a single instruction is enough to cover most queries with substring matching op-

erators, more advanced predicates such as regular expression matching cannot be optimized

as easily. Regular expressions in queries offer high expressive power inside the DBMS and

are typically employed as selective filters. Generic regular expression depend on both the

complexity of the underlying deterministic-finite-automaton (DFA) and the irregularity of

the input. In Chapter 6, we show how to filter string columns against regular expressions

by using branchless vectorized (SIMD) code to traverse through the DFA.

CPUs have larger caches so there is no cache thrashing when threads process independent

input strings. Hence, we follow a different approach by accessing the input strings non-

sequentially and eliminate the inherent need for branching, whether the string is accepted

or rejected by the DFA.

Our evaluation on mainstream CPUs and co-processors shows our approach to be up to

5X faster compared to the scalar implementations, offering a crucial upgrade for DBMSs to

support efficient regular expression matching in selections.

Our work has been accepted for publication at the DaMoN 2016 workshop.

1.4.5 Compression Acceleration

There exists a plethora of compression techniques, each having a different trade-off between

its compression ratio (compression efficiency) and its speed of execution (bandwidth). De-

flate algorithm, used by gzip, has fast decompression performance and a reasonable com-

pression ratio and is thus widely used by many large scale systems [Ganelin et al., 2016].

Therefore, we show how to leverage the massive parallelism provided by GPUs to accelerate

Inflate, the Deflate decompressor.

We design a massively-parallel compression scheme that can be used to shrink the mem-

ory footprint of data in the GPU and better utilize its limited memory capacity. We are

interested in developing a general-purpose compression framework that can support diverse

Big Data workload formats ranging from unstructured text to matrix data. Most research

so far has focused on the speed of compressing data as it is loaded, but the speed of decom-
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pressing that data can be even more important for modern workloads – data is compressed

only once when loaded into the database but repeatedly decompressed as it is read when

executing analytics or machine learning jobs. Decompression speed is, therefore, crucial

to minimizing the response time of these applications, which are typically data bandwidth

bound. We are therefore interested in optimizing decompression performance, without un-

derlying compression ratio and speed.

Straightforward parallelization methods, in which the input block is simply split into

many, much smaller data blocks that are then processed independently by each processor,

result in poorer compression efficiency, due to the reduced redundancy in the smaller blocks,

as well as diminishing performance returns caused by per-block overheads. In order to

exploit the high degree of parallelism of GPUs, with potentially thousands of concurrent

threads, our implementation needs to take advantage of both intra-block parallelism and

inter-block parallelism. For intra-block parallelism, a group of GPU threads decompresses

the same data block concurrently. Achieving this parallelism is challenging due to the

inherent data dependencies among the threads that collaborate on decompressing that block.

We propose and evaluate two approaches to efficiently parallelize Inflate on GPUs. The

first technique exploits the SIMD-like execution model of GPUs to coordinate the threads

that are concurrently decompressing a data block. The second approach avoids data depen-

dencies encountered during decompression by pro-actively eliminating performance-limiting

dependencies during the compression phase. The resulting speed gain comes at the price of

a marginal loss of compression efficiency.

We also present Gompresso/Bit, the parallel implementation of an Inflate-like scheme [Deutsch,

1996] that is suitable for massively-parallel processors such as GPUs. We also implement

Gompresso/Byte, based on LZ77 with byte-level encoding. It trades off slightly lower

compression ratios for an average of 3× higher decompression speed.

Our main results are summarized below:

• Gompresso, running on an NVIDIA Tesla K40, decompresses two real-world datasets

2× faster than the state-of-the-art block-parallel variant of zlib running on a modern

multi-core CPU, while suffering no more than a 10 % penalty in compression ratio.

• Gompresso also uses 17 % less energy by using GPUs, against state-of-the-art parallel
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CPU libraries for decompression

Our work was accepted for publication at the ICPP 2016 conference.

1.5 Thesis Outline

In this Section, we describe the structure of the present thesis. Chapter 3 describes how

to efficiently preprocess data to access efficiently shared memory for concurrent reads or

updates.

In Chapter 4 we present our optimization execution algorithm for conjunctive selec-

tions, which uses an accurate analytical cost model to compare the relative performance of

alternative plans.

Chapter 5 tackles the sub-string matching optimization for GPU databases by carrying

out an extensive evaluation of alternative algorithms, string layouts, and parallelization

methods. Chapter 6, motivated by the speed-ups of GPU sub-string matching, extends our

ideas for more vectorized CPU-based regular expression matching.

In Chapter 7 we present our general purpose GPU compression framework, addressing

the needs of Big Data workloads for high decompression speed.

Finally, in Chapter 8 we summarize the main conclusions of our research and outline

future directions for GPU-powered data analytics and database processing.
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Chapter 2

Related Work

In this Chapter we discuss related projects on database acceleration using GPUs. We also

present key choices of more complete GPU research database systems.

2.1 Relational Operator Accelerator

We analyze further related projects to our contribution in the individual thesis chapters.

Research on database processing on GPUs has demonstrated significant speed-ups [Fang

et al., 2007; Bakkum and Skadron, 2010; Diamos et al., 2013]. The power of GPU pro-

cessors has been exploited for the efficient implementation of different join algorithms [He

et al., 2008b]. GPU hash-join achieved practically full utilization of the PCIe bandwidth

[Kaldewey et al., 2012]. The input tables were stored in the CPU RAM and GPU was used

to offload the requests from the probe table to the hash table, exploiting the fast random

memory access of the GPU global memory. Conjunctive selections and aggregations were

accelerated on earlier GPU processors with a different memory architecture [Govindaraju

et al., 2004].

P-ary search is an algorithm operating on sorted lists, designed to scale to the number

of available processors [Kaldewey et al., 2009; Kaldewey and Di Blas, 2011]. FAST, an ar-

chitecture sensitive tree index suitable for CPU and GPU processors accelerated in-memory

search [Kim et al., 2010; Kim et al., 2011].

Scatter and gather operations have been adapted for GPU processors to improve data
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locality [He et al., 2007]. Radix-sort was implemented with these scatter/gather opera-

tions while using shared memory to improve performance. A Map-Reduce framework has

been suggested to facilitate programming of web analysis tasks on GPU processors without

sacrificing performance [He et al., 2008a].

An extended precision library has been implemented on GPUs and incorporated into

a GPU-based query engine to achieve a significant performance improvement for scientific

applications [Lu et al., 2010].

GPUs also have had a commercial impact, especially on the database start-up market

share. MapD is a Big Analytics platform taking into advantage the high parallelism and fast

memory of GPU processors and uses indexes to search tweet contents [Mostak and Graham,

2014]. Other state-of-the-art GPU database systems are Parsteam [Michael Hummel, 2010],

SQream [Ori Netzer, 2014] Parstream [Michael Hummel, 2010], GPUDB[GPUDB, 2016],

and Jedox [Raue, 2010].

2.2 State-of-the-art GPU-Accelerated Database Systems

As we mentioned, there a lot of start-ups with commercial impact. Here, we focus on

research databases systems because of their design being publicly available. Some of these

start-ups include MapD [Mostak and Graham, 2014], SQream [Ori Netzer, 2014], .

We present now the research database systems and analyze them based on the following

implementation choices:

• Cost models: What type of function is used to estimate the cost of alternative query

execution plans?

• Storage layout: Is data stored in a row-wise or a column-wise fashion?

• Query execution: How are different query plans translated to GPU code? This step

is related to the execution model chosen by the engine.

• Query scheduling: Is query processing mapping queries just to GPUs or does it balance

the utilization of the available CPU and GPU processors?
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• String matching: Is string matching supported and if so what type of layout is used

for the string datasets?

CoGaDB CoGaDB optimizes co-processing for columnar hybrid CPU/GPU database

systems.

Cost model: A self-learning approach is used to distribute the amount of work in het-

erogeneous architectures [Breß et al., 2012]. This allows CoGaDB to be agnostic of the

architectural details of the available processors and easily extensible.

Storage layout: Tables are stored in a column-wise way allowing threads to coalesce

their accesses to the GPU memory [Breß et al., 2014].

Query execution: The input is processed in an operator-at-a-time fashion, so an operator

fully processes the input data before the result is pushed to the next operator.

Query scheduling: CoGaDB optimizes query plans to maximize parallelism across the

available devices, while keeping track of the operator utilization.

String matching: CoGaDB uses dictionary compression on strings so only equality and

inequality predicates are implemented.

Ocelot Ocelot is an extension of MonetDB that maps operators on different computer

architectures in a hardware oblivious way. This means, that a single code-path is main-

tained for CPUs, GPUs, and potentially others types of architectures, such as FPGAs. The

advantage of this approach is the reduced development overhead.

Cost model: Ocelot uses MonetDB optimization, which is based on analytical cost-

models [Heimel et al., 2013].

Storage layout: Ocelot is a column-store engine.

Query execution: Ocelot is a hardware oblivious extension of MonetDB using OpenCL.

It inherits the operator-at-a-time execution of MonetDB. However, it uses lazy evaluation

to match with the OpenCL programming model. Lazy evaluation in this context means the

operators are scheduled but the engine does not wait for them to complete. At the time

each operator is scheduled, it has a set of events on which it depends to ensure that all of

its inputs are available before execution.
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Query scheduling: Ocelot runs an entire query-plan on a single device, either on the

CPU or the GPU.

String matching: Ocelot supports simple string operations, such as equality predicates.

WOW WOW is a research prototype system, demonstrated by IBM, running the full Star

Schema Benchmark (SSB) at scale factor 1000[Mueller et al., 2013].

Cost model: WOW focuses on execution optimization rather than traditional query

optimization so it does not introduce a new cost model.

Storage layout: WOW uses a columnar layout.

Query execution: WOW has easily composable plans since each kernel implements a

single operator, executed in an operator-at-a-time fashion. The execution engine uses late

materialization.

Query scheduling: WOW uses GPU processors for group-by and join predicates. The

select predicates are applied on the CPU using multiple threads.

String matching: SSB does not require any string matching operations.

GPUQP GPUQP is a relational in-memory database engine using both CPUs and GPUs

for query processing [He et al., 2009].

Cost model: GPU-QP uses analytical cost models to find the most cost-efficient plan.

Storage layout: GPU-QP uses the columnar layout for CPUs and GPUs.

Query execution: Execution is done operator-at-a-time. An operator might be parti-

tioned and evaluated concurrently on the CPU and the GPU.

Query scheduling: A single query can be executed on the GPU, the CPU or on both

processors concurrently.

String matching: To the best of our knowledge, GPUQP does not support string match-

ing operations.

Virginian Virginian implements a subset of SQLite commands in the GPU. This subset

involves filtering and aggregation operations [Bakkum and Chakradhar, 2012].

Cost model: Virginian is implemented within SQLite database. No additional query

optimization techniques were described specific for GPU processing.
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Storage layout: Virginian implements the tablet data structure, where fixed-length

columns are stored in a column-wise way in the tablet. Variable-length columns, such

as strings, are stored in a dedicated section of the tablet structure.

Query execution: Virginian follows the op-code model. All query operators are compiled

into a single GPU kernel, to avoid the cost of writing the intermediate results.

Query scheduling: Queries are executed either in their entirety on the CPU or on the

GPU.

String matching: The tablet structure supports storage of strings but string matching

operators were left for future work [Bakkum and Chakradhar, 2012].

Red Fox Red Fox is a compiler and runtime execution framework for running relational

queries on GPUs [Wu et al., 2014].

Cost model: Red Fox is an execution environment rather than a full database system,

so it does not do full optimization for GPUs.

Storage layout: Tables are stored in a key-value store. Keys and values are represented

by densely packed arrays of tuples.

Query execution: An operator, depending on its implementation, is mapped to one or

multiple kernels. For example, join operations are mapped to multiple kernels.

Query scheduling: Queries in Red Fox are only executed on the GPU.

String matching: Red fox supports LIKE operations. String are stored in a separate

table with different sub-tables for strings having the same length.
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Chapter 3

Shared Memory Joins &

Aggregations

3.1 Introduction

GPUs have a radically different memory-hierarchy from a traditional CPU. As discussed in

Section 1.2, global memory is the largest type of memory but it has high latency: 400–600

cycles. Shared memory is used as a parallel, software controlled cache. Its capacity on a

high-end GPU is 16KB or 48KB depending on the kernel configuration. The access time of

each shared memory bank is 4-bytes per 2 cycles. To maximize performance, shared memory

is organized into 32 banks, so that all threads in a warp can access different memory banks

in parallel. However, if two threads in a warp access different items in the same memory

bank, a bank conflict occurs, and accesses to this bank are serialized, potentially hurting

performance.

The C2070 GPU offers atomic operations on global and shared memory 1, where each

thread that calls an atomic operation on a variable is promised that this variable will not

be accessed by another thread until this operation is complete [NVIDIA, 2010]. Other

threads trying to access the same address get serialized. This creates another possible form

1The K40 and K80 offer similar atomic operations. Our work was done when C2070 was the state-of-

the-art GPU.
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of contention between threads when at least one is writing data. We refer to this kind of

serialization as a value conflict. Value conflicts can span warps, because atomic operations

may still be in flight when new warps get scheduled to the SM.

Our goal is to examine the role of bank and value conflicts for database processing on

GPUs, and to suggest bank optimizations for improving data access behavior. We focus

on two core database operators: foreign-key join and grouped aggregation. For foreign key

joins, shared memory is used to contain the needed fragment of the dimension table. For

grouped aggregation, shared memory is used to contain the running aggregates for each

group. In both cases, we make a scan through a fact table, consulting the structure in

shared memory for each row.

Our key insight is that if there is additional shared memory available beyond that needed

for the basic structure described above, we can use that memory to store extra copies of the

underlying data. For foreign key joins, we store duplicate dimension table rows; for grouped

aggregation, we store duplicate groups. In either case, we make sure that the duplicates

and the original item all occupy different banks. We modify the base fact table so that

some rows refer to one of the duplicates rather than the original item, in order to reduce

the number of bank and value conflicts.2 This modification is done once at data loading

time, so the cost of optimization and the modification of the fact table is amortized over

many queries.

3.2 Related Work

Alternative aggregation strategies on chip multiprocessors minimize thread-level contention

on CPUs exhibiting different degrees of memory sharing between threads [Cieslewicz et

al., 2007]. A framework for parallel data-intensive operations automatically detects and

responds to contention by cloning popular items at query time [Cieslewicz et al., 2010].

This and two additional parallel aggregation strategies have been studied on a Nehalem

processor [Ye et al., 2011].

2For grouped aggregation, a final pass combines the aggregates for the duplicates into a single aggregate

for each item.
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Cuckoo hashing methods resolve hash collisions using multiple hash functions for each

item instead of one [Pagh and Rodler, 2004; Erlingsson et al., 2006; Ross, 2007]. During

the insertion of an item, if none of the positions are vacant, the key is inserted in one of

the candidate positions, selected randomly, displacing the key previously placed there. The

displaced key is re-inserted in one of its alternate positions. This procedure is repeated

until a vacant position is found or a maximum number of re-insertions is reached. Our

method searches for the shortest relocation sequence that eliminates bank conflicts, instead

of following a randomized procedure.

Data declustering techniques are used to distribute data partitions among multiple stor-

age units, e.g., disks [Holland and Gibson, 1992] or servers. Replication and optimal replica

placement of data items has been suggested to maximize resource utilization in the Kinesis

distributed storage system [MacCormick et al., 2009].

3.3 Problem Description

We assume an in-memory OLAP setting and a star schema. Using coding techniques com-

monly used in OLAP databases [Copeland and Khoshafian, 1985; Whang and Krishna-

murthy, 1990; Pucheral et al., 1990], we assume that foreign key columns and grouping

columns are coded with consecutive integer codes starting from 0. That way, dimension ta-

bles and aggregate structures can be organized as simple arrays rather than as hash tables.3

There is a direct relationship between the array index and memory bank, since memory

banks on the C2070 are distributed in a round robin fashion every four bytes 4 [NVIDIA,

2015b]. We assume all data tables are stored columnwise with 4-byte datatypes, maximizing

the potential for bank parallelism.

If d is a foreign key column, then the domain of d in the initial fact table will be the

integers between 0 and c − 1 where c is the cardinality of the referenced table. If d is a

3Such optimizations are particularly important in GPUs. If different threads in a warp need to follow

hash overflow chains of different length, then the execution paths will diverge and threads will be partially

serialized for the length of this divergence.

4Newer GPUs, such as the K40, support two banking modes: For 4-byte banks and an alternative banking

mode for 8-byte banks. Our project was implemented when the C0270 was the state-of-the-art GPU.
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grouping column, then the maximum value in the column is one less than the effective size

of the aggregation table.5 We will process a “warp’s worth” of contiguous data at a time,

a unit we shall call a “chunk.” On the C2070, the chunk size is 32 data elements 6.

Now suppose that column d takes values 3 and 35 at two places in a single chunk of

elements from column d. Because 3 ≡ 35 mod 32, both references will map to the same

bank, leading to a bank conflict. For this example, we might create a new version of the

element in slot 35, and put it in slot 3207, say, at the end of the table. In the fact table row

with the conflict, we re-map 35 to 3207 and the conflict no longer holds because 3 ̸≡ 3207

mod 32. We keep track of this new row in slot 3207, which could be used for subsequent

fact table rows as an alternative to slot 35 if slot 35 causes another conflict.

In the unbounded version of the problem, we do not limit the number of copies generated.

If we’re only concerned about bank conflicts within a warp, then 32 copies of each data item,

one per bank, would guarantee that we could avoid bank conflicts altogether. In practice,

fewer than 32 copies are needed. In the bounded version of the problem, we observe that

the shared memory capacity puts a limit on how many values can be efficiently handled.

Based on this capacity, we set a budget on the average number of copies. For example, a

budget of 5 would mean that the total size of the table including duplicates cannot exceed

5 times the size of the table without duplicates.

In the aggregation case, where we need to perform writes on the shared-memory-resident

array, we also need to create copies to resolve value conflicts, where the same value appears

more than once in a warp. We will also extend the analysis beyond the warp, looking for

value conflicts between nearby warps within a fixed “window,” on the grounds that an in-

flight atomic update of a value might conflict with that same value in subsequent warps. In

the worst case, more than 32 copies may be needed to completely avoid value conflicts.

Data partitioning between threads is static. Each thread in a thread block processes

a certain number of records, so we know beforehand which records a thread is going to

process. We can detect bank conflicts by scanning chunk-by-chunk and inter-warp value

5If some intermediate values don’t appear at all in the table, then the actual grouping cardinality may

be smaller.

6Newer GPUs, such as the K40, have the same number of banks, thus using the same chunk size.
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conflicts by remembering the set of values in the last chunks. The number of chunks we

remember defines the optimization window. Our algorithm is easily extended for different

regular access patterns, e.g., an access pattern where each thread reads four integers at a

time using built-in CUDA vector types.

Static partitioning means that our optimization may not be effective if data items

“move” from their original fact table grouping before being processed. This may limit

our choices for other operators. For example, a selection operator that scanned the fact ta-

ble and wrote an intermediate result containing only the matching records would change the

chunking pattern. Alternative selection operators are compatible with retaining physical

order. One option would be to combine the selection and aggregation into one joint kernel,

so that the aggregation operator sees the data in the original locations. Another option

would be to use a clustering scheme such as multidimensional clustering [Markl et al., 1999;

Padmanabhan and others, 2003] so that the records matching the selection conditions tend

to be contiguous.

Theta Distinct Banks Write SR Read SR

0.00 20.42 3.54 3.44

0.25 20.41 3.53 3.42

0.50 20.36 3.57 3.38

0.75 19.94 3.81 3.18

1.0 18.24 5.33 2.77

Table 3.1: Average number of distinct banks, read serialization rounds and write serializa-

tion rounds in a chunk.

We consider a variety of Zipfian distributions for the fact table column, ranging from

θ = 0 (uniform) to θ = 1 (very skewed). To give a better sense of the problem, we provide

in Table 3.3 some statistics for a column of cardinality 1024 for different θ parameters.

Without performing any optimization, we analyze the column and compute how many read

and write serialization rounds are required, together with the number of distinct banks in

a chunk. Note that skew hurts write serialization due to an increase in the number of value

conflicts, but helps read serialization due to improved locality (since shared items can be
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broadcast to multiple threads).

3.4 Data Placement Algorithms

This Section discusses how to optimize data placement by creating extra copies of the

table values accessed during query processing. Each subsection analyzes how to adapt the

placement algorithm for different optimization cases.

3.4.1 Write Conflicts

3.4.1.1 Intra-Warp Optimization

Before we discuss our main algorithms, we remark that it might be possible to reduce bank

and value conflicts by reordering the fact table so that rows that would cause a conflict

in the current chunk are held back until a later chunk. Reordering can only be a partial

solution, because if a value occurs with a frequency higher than 1/32, then value conflicts

cannot be eliminated by simple reordering. Further, there are often criteria more important

than bank conflicts for ordering a fact table, so assuming the ability to reorder the table

may be unreasonable.

Depending on the data distribution and data ordering each value should be assigned a

different number of copies. Intuitively, frequently occurring values should get more copies,

because those items are more likely to conflict, and because the extra copies are the most

valuable when they can be used by many rows. Rather than statically choose a prioritization

scheme for the number of copies based on frequency, we use a dynamic scheme to determine

the number of copies for each value based on the “demand” for extra copies.

Initially each value is assigned one copy. We process a chunk of fact table rows at a

time, until each chunk has been processed. For each chunk we proceed as follows.

We first try to assign as many values in the chunk as we can to one of its available copies,

without causing any bank or value conflicts relative to previous choices. If we succeed at

assigning all values, we move to the next chunk. If not, which is more likely, some values

remain whose copies conflict with previous assignments. For each such value v, we assign

v into one of the occupied banks and unassign the value v′ that was previously there. We
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then try to reassign v′ into one of its other copies, which could lead to a recursive sequence

of reassignments. We do not consider reassignments at random. Instead, we use a breadth-

first-search (BFS) algorithm to find the shortest sequence of reassignments that allows the

value to be inserted without conflicts.

Assignment of a value in a chunk may fail for one of the following reasons: 1) the distinct

number of banks among all copies in the chunk is less than the number of banks, or 2) none

of the keys can be assigned to an empty bank, because an empty bank is not reachable

given the current set of copies. In both cases, to resolve the conflict a new copy of the value

is created in one of the empty banks. In this way, we generate new copies of the values that

are hardest to place. If we have already spent our space budget, we place the item without

creating a new copy, and accept that this chunk will need multiple serialization rounds.

Two important choices affecting the space and time efficiency of the algorithm are:

• When failing, multiple bank-slots might be available. We want to assign the same

number of copies to each bank-slot so that the replicated table is stored contiguously

in the memory without gaps. If more copies are assigned to certain banks then there

will be “holes” in the memory in the less popular banks. These holes still consume

shared memory, and should be avoided.

• The order according to which we insert the copies into the BFS queue matters. If we

always enqueue the lower numbered banks first, then there is a high probability that

the available slots upon failure will be the higher numbered slots, creating contention

on those banks. To address this problem, we start each chunk from a different position

enumeration of the copies.

Figure 3.1 shows how our algorithm processes a chunk of the second column of a fact

table to eliminate bank conflicts. For simplicity, the chunk size in the example is 8 elements,

equal to the number of threads in a warp and equal to the number of memory bank-slots.

Each dashed edge links a placed value to its alternative bank locations. After the initial

assignment, values 15 and 531 remain unassigned. In the next step, a relocation sequence is

found for 531 that displaces 14, displacing 6 in turn. For value 15 there is no valid sequence

of value movements because the only empty bank-slot 4 is unreachable, so a new copy of 15
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14128 49 2 06
After initial assign-
ment values 531,15 
remain unassigned

0 1 2 3 4 5 6 7
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Figure 3.1: Bank optimization for 8-element chunks.

is created in bank 4.

3.4.1.2 Inter-Warp Optimization

Inter-warp value conflicts occur only between warps belonging to the same thread-block.

We set a window size corresponding to the number of chunks prior to the current chunk to

consider for value conflicts. (A window size of zero means that inter-warp value conflicts

are ignored.) We shall examine the impact of window size experimentally. We extend the

BFS algorithm so that copies that have previously been used within the current window

are not used again in the current chunk.

In case of failure, we create a new copy as before. If we have already used the space

budget we try again to place the value in the current chunk, ignoring inter-warp conflicts.

Finally, for a skewed dataset with a large window the number of copies for frequent

values will also be high, increasing the search cost. To reduce this cost we consider first

the copies that were least recently used, increasing the probability that a non conflicting

assignment is found early.

3.4.2 Read Conflicts

In case of read conflicts the problem is relaxed due to the value multicasting performed in

the hardware. If in a chunk there are some duplicate values, then all of those values can

be assigned to the same bank without degrading the performance. This means that we can

simply run the assignment algorithm for the first occurrence of the value in the chunk and
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put the rest of the occurrences in the same bank.

3.5 Experimental Evaluation

3.5.1 Experimental Setup

For our experiments we used synthetic data following the zipf distribution for different θ

parameters. The default number of distinct values in the zipf distribution was 1024. Each

column is a 4-byte integer. We used our suggested technique to resolve bank and value

conflicts for different table sizes (t, up to 200M which is the maximum number fitting in

GPU memory), window sizes (w) and space budgets (b).

We ran separately the following queries on an OLAP star-schema:

Q1: SELECT SUM(D1.B) Q2: SELECT A, COUNT(*)

FROM F, D1 FROM F

WHERE F.A=D1.A GROUP BY A
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Figure 3.2: Number of copies per value for shared memory aggregation.

In both cases fact table F was stored in the global memory. In the first query dimen-

sion tables are stored in the shared memory to perform the foreign key join, and a scalar

aggregate is generated. In the second query shared memory is used to store the aggregates

local to a thread block. After each thread-block computes the sums in the shared memory,

it merges the results for each copy to global memory; in the end, global memory contains
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the correct aggregate sums. In what follows, results measuring read conflicts correspond to

Q1, and results measuring write conflicts correspond to Q2.

Optimization was done on a dual-chip Intel E5620 CPU using 16 threads. GPU perfor-

mance was measured on an Nvidia Tesla C2070 machine with 6GB of RAM and a nominal

RAM bandwidth of 144GB/s. The GPU was configured to use 48KB of shared memory

in each SM. Each thread-block processed 350K rows using 1024 threads. The number of

thread blocks for a kernel was computed based on the number of table records.
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Figure 3.3: Number of copies per value for shared-memory joins.

3.5.2 Memory Footprint

Figures 3.2 and 3.3 show the number of copies per value for different optimizations with a

very lenient space budget b of just under 12 copies. Writes generate more copies than reads,

because the write value conflicts create additional constraints. For similar reasons, the

number of copies increases as the window size is increased. As skew increases, the number

of copies decreases significantly. Many copies of a few popular items is often enough to

create a conflict-free access pattern. As the number of records increases, the number of

copies also increases, but the increase is fairly mild after 50M records. Figure 3.4 shows the

average number of copies per value and the total number of value replicas for varying column

cardinality. As expected, for lower cardinalities the number of copies is higher because there

is an also higher probability for value conflicts and this trend is more apparent when an



CHAPTER 3. SHARED MEMORY JOINS & AGGREGATIONS 37

 0

 5

 10

 15

 20

 0  512  1024  1536  2048

#C
op

ie
s

Cardinality

#Copies - Write Conflicts, t=200M
W=0 Zipf=0.0
W=0 Zipf=1.0
W=0 Zipf=2.0

W=16 Zipf=0.0
W=16 Zipf=1.0
W=16 Zipf=2.0

 0

 5

 10

 15

 20

 25

 30

 0  512  1024  1536  2048
K

 T
ot

al
 C

op
ie

s
Cardinality

#Copies - Write Conflicts, t=200M
W=0 Zipf=0.0
W=0 Zipf=1.0
W=0 Zipf=2.0

W=16 Zipf=0.0
W=16 Zipf=1.0
W=16 Zipf=2.0

Figure 3.4: Number of copies per value for varying cardinality.
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Figure 3.5: Throughput for different budgets.

optimization window is set.

Figure 3.5 shows how performance depends on the space budget. The space budget is

the maximum allowed total footprint increase factor. For uniform data, we get close to

maximum throughput at an average of 4 copies per value. For skewed data, even 2 copies

per value gives good performance: our algorithm first creates copies for the frequent items

that cause most of the conflicts. These results show that with a realistic (2–4X) increase

in shared memory footprint, one can get most of the benefits of bank and value conflict

avoidance.
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Figure 3.6: Speed-up for Write Conflicts.
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Figure 3.7: Speed-up for Read Conflicts.

3.5.3 Query Performance

Figures 3.6 and 3.7 shows the speed-up of query execution on the GPU for the configurations

of Figure 3.2. The write speed-ups are particularly dramatic at high skew, highlighting the

importance of addressing conflicts when there are heavy hitters. For uniform data, the

speed-up factor is about 1.2, showing that optimizing for write conflicts is still important

without heavy hitters. The window size is unimportant for uniform data, but is important

for skewed data. Most of the benefit of windowing occurs with a window size of 16 chunks.

For reads, the speed-up is much smaller, about 2% or less once there are enough records

so that thread scheduling can hide the read serialization latency. As previously noted,
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Figure 3.8: Throughput and profiler Counters for varying conflict degree, t=30M.

unlike for writes, skew helps reads because it provides more opportunities for values to be

broadcast to multiple threads.

We describe a worst-case scenario for read conflicts where all threads in a warp read

a different value on the same bank. We note that since read conflicts are just a sub-case

of write conflicts, columns that are both read and written by various queries should be

optimized for writes. We used the CUDA command line profiler to count the number of

bank conflicts for different degrees of conflicts. The CUDA profiler reports counters per

SM. We generated synthetic data causing a specified number of serialization rounds per

warp. We were careful to make sure that all values are distinct within a chunk, to show

the worst case scenario for read conflicts. Figure 3.8 shows the throughput and the number

of conflicts as reported by the l1 shared bank conflicts counter of the CUDA Profiler 7

[NVIDIA, 2015a]. For the worst case of read conflicts the throughput is less than half of

the conflict-free performance. As previously noted, the effect for write conflicts was more

significant.

One may wonder whether an access pattern that reads many different elements concen-

trated in a few banks is realistic. After all, a simple randomization of the bank location

would lead to a reasonable spread of items across banks. The following example suggests

7In the newest version of CUDA command line profiler the number of read and write bank conflicts are

reported separately in counters shared load replay and shared store replay correspondingly.
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Figure 3.9: Throughput for different windows.

that degenerate cases may indeed arise in practice.

Consider a foreign key join where the foreign key consists of two attributes, x, and y.

Imagine that the dimension table represents metadata about cells in an n by m grid, so

there are nm rows in total. Suppose that the dimension table is clustered by (x, y). The

fact table also contains attributes x and y, but the fact table is clustered by y. As we scan

through the fact table we will be repeatedly (for each y value) touching n dimension table

rows separated by m rows. If d is the greatest common divisor of m and 32, then this access

pattern will use only 32/d banks. In the worst case, m is a multiple of 32, and only one

bank is accessed.

In Figure 3.9 we show the actual throughput for different windows, where the table size

is 200M records. We can process about 18 billion records per second, i.e., about 72GB/sec.

To assess the importance of optimizing writes for bank conflicts, we repeated the experiment

with a modified algorithm that optimizes for value conflicts but not bank conflicts. The

results in Figure 3.10 show that there is a 20% drop in throughput relative to Figure 3.9.

Write bank conflicts appear to be more significant than read bank conflicts. Atomic write

operations take longer, since they need a read-modify-write cycle.

For θ = 2.0 in Figure 3.10, the performance is better than expected. At this extreme

level of skew, there are two heavy hitters that occur many times in each chunk. Both of these

heavy hitters have copies in every bank, so they are easy to place. The only possible bank
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conflicts come from the less frequent items, of which there are just a few in each chunk.

The expected number of bank conflicts resembles the birthday paradox: The number of

people in a group of size n having the same birthday as another member is proportional

to n2. By removing a subset of items this expectation also decreases quadratically. Thus

high-skew distributions indirectly optimize for bank conflicts, even when only value conflicts

are explicitly considered by the placement algorithm.
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3.5.4 Optimization Speed

In Figure 3.11 we see the time performance of the optimization algorithm for write con-

flicts. The elapsed time is just a few seconds, even for moderately large window sizes. For

increasing skew, the algorithm runs faster because it is easier to arrange the records in

a chunk. Our algorithm adjusts to the data distribution by creating many copies for the

frequent values, so we have the freedom to place them in any bank and only have to resolve

conflicts with the non-frequent values. However, for increasing window sizes, skewed data

needs longer optimization time because relocations of frequent values are expensive, due to

the high number of copies these items have. Reassignments of frequent items occur when

infrequent values with few copies have to displace them.

3.6 Summary & Conclusions

We defined the problem of bank conflicts and value conflicts for data-processing operators

on GPU processors. We studied the impact on performance of those two contention factors

for two popular OLAP operators on CUDA architecture. We suggested and evaluated a

technique for resolving conflicts that can easily be configured for different memory access

patterns and space budget requirements. Results indicate that columns that are written by

various queries e.g., potential grouping columns, should be optimized for writes and that

read conflicts should not be a high priority for bank optimization.
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Chapter 4

Multi-Predicate Selections

4.1 Introduction

Here, we are interested in the performance on a GPU of a table scan combined with the

application of a compound selection condition. While a filtering scan might be considered

a “lightweight” operator compared to a join, it is important for a number of reasons. As

the initial operator in a query plan, a filtering scan will typically process a large volume of

data compared with later operators that process filtered data. In data analytics scenarios

where there is a limited space budget for secondary indices and/or queries touch relatively

large segments of the data, scanning the data may be preferable to index-based access

methods. GPUs have significantly higher RAM bandwidth compared to CPUs, so achieving

high memory bandwidth for GPU scans has a larger potential payoff. In the presence of

expensive select conditions, optimally ordering and grouping of conditions is necessary to

maximize query performance.

The following code snippets check the conjunction of two conditions on a two column-

table stored in global memory. P1 uses branching-and in which a thread retrieves the value

of the second column only if the first condition holds. P2 always checks both conditions,

but does not require a branch instruction.

P1: check=(t1[tid]==val1) && (t2[tid]==val2);

P2: check=(t1[tid]==val1) & (t2[tid]==val2);
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Consider the execution of P1 on a GPU where the selectivity of both conditions is 0.25.

During the first condition check the threads access contiguous memory locations so there

is only one coalesced memory transaction per warp. During the second condition check

there will be on average 8 threads of a warp for which the first check is successful, so an

additional memory transaction will be issued per warp, even though only a subset of the

threads evaluates the second condition.1 In P2, all threads retrieve both values from the

two columns but the memory requests can be scheduled more efficiently. We quantify this

improvement by running short tests on our target machine. Depending on the selectivity

of the first condition the improvement of P2 over P1 can be up to 25%.

An alternative implementation of this compound condition would apply each condition

in a separate kernel, with the two kernels executed serially. The first kernel applies the

first condition and outputs the records passing the check, which is the subset of records on

which the second kernel will apply the second condition. In this way there will be reduced

thread divergence but also increased traffic to the global memory.

Branches hurt the performance of CPU programs too. For datasets stored in main

memory, branch mispredictions can significantly degrade program performance. Compound

select conditions need to be optimized given the CPU, memory characteristics and condition

selectivities [Ross, 2004]. Our approach is motivated by the CPU optimizations but there

are significant differences since GPU branch divergence and CPU branch misprediction are

different phenomena.

4.2 Related Work

A subset of SQLite commands has been implemented on GPUs [Bakkum and Skadron,

2010]. A query is translated to a single kernel executing all operators and operators are

mapped to their corresponding opcodes. Some opcodes will only be executed by a subset of

threads, for example when a filter condition is true for only a subset of threads in a warp,

1Compilers sometimes use branch predication so that some instructions in branches are not skipped,

to maximize efficiency of instruction scheduling. Predication adds the overhead of pipeline slots with null

operations in some threads on each case of a branch. Typically there is a limit on the number of instructions

to which this heuristic is applied [NVIDIA, 2015c].
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so thread divergence caused thread underutilization.

Evaluating multiple predicates in a single-kernel is reminiscent of the kernel fusion tech-

nique suggested for data warehousing applications [Wu et al., 2012b]. Kernel fusion com-

bines operators of a query execution plan into a single CUDA kernel. A framework opti-

mizing which query operators to fuse has been suggested [Wu et al., 2012a]. Kernel fusion

results in reduced data transfer through the GPU memory hierarchy, but it might increase

register and shared memory pressure. Here, we focus on the increased thread divergence

caused by the fusion of multiple select operators, and on how branching reduces instruction

scheduling efficiency. We assume a columnar memory table layout; [Diamos et al., 2013]

assumes a row-store with full records packed into a 32-bit word. We also assume that data

are GPU memory resident and that no transfers are required between the CPU and GPU.

We suggest a software-based optimization to reduce thread divergence. Other software-

based solutions eliminate thread divergence by thread-data remapping [Zhang et al., 2010],

which has been extended to remove additional code irregularities, e.g., irregular mem-

ory references [Zhang et al., 2011]. Iteration delaying and branch distribution reduce

the performance impact of branch divergence on programs [Han and Abdelrahman, 2011].

Loop-splitting reduces register pressure caused by thread divergence [Carrillo et al., 2009].

Software-based branch predication has been suggested for AMD GPUs to reduce branch

penalties [Taylor and Li, 2011].

Various hardware extensions have been suggested for thread divergence elimination not

just for GPUs but for SIMD processors in general: dynamic regrouping of threads into

new warps [Fung et al., 2007], adjusting SIMD width based on branch or memory latency

divergence [Meng et al., 2010], and identifying reconvergence points for threads [Diamos et

al., 2011].

In this chapter, we study how branch penalties affect the performance of compound

select conditions on a GPU and our solution is adapted from algorithms minimizing branch

misprediction rate for main-memory databases running on a CPU [Ross, 2004]. The most

efficient plan optimizes the combination of branching-and (&&) and logical-and (&) op-

erators. We suggest two polynomial algorithms: The first also optimizes combinations of

branching-and and logical-and operators. The second optimizes which conditions to fuse
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into a single-kernel. In the presence of expensive predicates the optimal condition ordering is

in ascending order of the rank metric: selectivity−1
cost−per−tuple

[Hellerstein, 1998]. Optimal execution

strategies for select queries involve choosing between late and early materialization [Abadi

et al., 2007]. A query plan compilation framework has been suggested that, in addition to

minimizing CPU costs, maximizes the lifetime of the data within the registers [Neumann,

2011].

4.3 Problem Setting

We assume an OLAP setting and a GPU-friendly column-store memory layout. Data is

resident in GPU global memory. Queries posed are the conjunction of equality or range

conditions on one or multiple columns. Compound select queries with many conditions are

also common in scientific databases. We group all conditions on a single column into one so

in the rest of this Chapter we assume that every condition is applied on a different column.2

If there is an index on one or more attributes, we could apply the conditions on the indexed

attribute(s) and use our technique for the remaining conditions.

4.4 Execution Strategies

4.4.1 Single-Kernel Plans

In a program implementing a conjunctive select query, all threads in a warp check 32 consec-

utive values of the column the first condition constrains. If the condition is not satisfied for

some of the threads then these threads will not evaluate the remaining conditions. However,

they will remain idle until all threads in the warp finish condition evaluation. Also, similarly

to CPUs, the scheduling of instructions in a branch statement is less efficient. The choice of

the most efficient plan depends on the selectivity and the predicate cost. The left-to-right

order of conditions is determined by the rank metric mentioned above. We show below the

code snippets for all single-kernel plans of a three-condition query.

2Extending the cost model to conditions like c1[i]=c2[i] that mention more than one column is straight-

forward.
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S3: check = c1[i]<v1 & c2[i]<v2 & c3[i]<v3

S21: check = (c1[i]<v1 & c2[i]<v2) && c3[i]<v3

S12: check = c1[i]<v1 && (c2[i]<v2 & c3[i]<v3)

S111: check = c1[i]<v1 && c2[i]<v2 && c3[i]<v3

Figure 4.1 shows the execution path of the three conditions in the S111 plan.

C1

Figure 4.1: Execution of the S111 plan for two warps.

Using the implementation techniques described in [Ross, 2004], S3 needs no branches,

and is thus called the “no-branch” plan. S21 and S12 each need one branch (depending on

the compiler, which may choose predication rather than branching), and S111 needs two

branches.

Figure 4.2 shows the performance in milliseconds of all plans for a conjunctive query

computing a count aggregate with four conditions having the same selectivity, on a 128

million row table. Each plan is implemented in a separate CUDA kernel and they only vary

in how they evaluate the four conditions. The no-branch plan S4 is the most efficient for

selectivities ≥ 0.4 where the combined selectivity for the first three conditions is greater

than 1
32 . In such a case, there will typically be at least one thread per warp satisfying the

first three conditions. This means that one memory transaction has to be issued for each

of the four columns for all plans, so the time cost of all plans remains constant after this

value; the difference in performance comes from branch penalties. In the range [0.2-0.35]

the optimal plan is S31. Again we note that for selectivity values ≥ 0.2 there will be one

memory transaction for the first three columns. In the range 0.05-0.2 the optimal plan is

S211. In CPUs that depend on branch prediction, the branch penalty is highest when the
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probability that the branch being taken is close to 0.5 [Ross, 2004], a phenomenon we do

not see on GPUs.

Figure 4.2: Time performance in ms of different plans for a query with four conditions.

4.4.2 Multiple-Kernel Plans

Depending on the selectivity and the evaluation cost of the conditions, it may be more

efficient to execute the query by running separate kernels each checking a subset of the

conditions. All but the last kernel write the intermediate query results to the global memory.

Depending on the selectivities of the conditions, the extra write cost may be justified by

the reduction in thread divergence: Every thread is active in later kernels testing later

conditions. In presence of expensive predicates, fused kernels could exhibit higher resource

underutilization.

Each query execution plan has one or more kernels, each checking one or more conditions.

For example [c1][c2c3c4] denotes a plan for a four-condition query consisting of two kernels.

The first kernel evaluates the first condition and writes the positions/record-ids of the

satisfying records into the global memory. The second fused kernel checks all three remaining

conditions, with the best of the equivalent single-kernel plans described in the previous

section. The space of alternative plans includes the different groupings of the n conditions.

Because in optimal plans select conditions are ordered by the rank cost metric, we need

only consider one left-to-right ordering of the conditions, as before. This means that plan

[c1][c2c3c4] can be denoted unambiguously by K13. We call the K4 plan fuse-only, and the
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rest of the plan space uses kernel fusion on a subset of the conditions.

Warp 1

Warp 1

Warp 2

C1

Figure 4.3: Execution of the K21 plan for two warps.

Figure 4.3 shows the execution path of the K21 plan for three conditions.

Figure 4.4: Performance of multi-kernel plans when varying the selectivity of the first

condition.

Figure 4.4 shows the time cost of different plans, for a three condition query and a

table with 12.8 million rows. We execute a conjunctive query and vary the selectivity

of the first condition. The last two conditions have fixed selectivity 0.5 and the query

output is a fourth column. In each kernel only the third condition includes a branch (K3

is implemented as S21). All conditions are integer comparisons. Figure 4.5 the second and

the third diagram the last predicate is a substring match on a string column with 8 and

16-character strings correspondingly. We observe that for varying selectivity and predicate
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Figure 4.5: Performance of multi-kernel plans when varying the selectivity of the first

condition.

evaluation cost different plans are optimal, so we should optimize plan selection.

In the left diagram for higher values of selectivity (less selective conditions) fuse-only

plans are the fastest because multi-kernel plans have increased write cost. In the middle and

last diagram K21 is typically the most efficient because it evaluates the expensive predicate

on a reduced subset of rows. K111 also evaluates the expensive predicate for fewer rows

but due to the increased write cost is faster only for very selective predicates (selectivity

≤ 0.01). In fuse-only plans, even if only one of the values a thread reads satisfies the first

two conditions the remaining threads have to wait for this thread to evaluate the expensive

string-match operation. For 16 character strings and selectivities in [0.1-0.4] range K3 is

3-5X slower than K21 and K111 plans although the gap narrows as selectivities increase.

4.5 Query Cost-Model

4.5.1 Single-Kernel Plans

Based on these results we conclude that conjunctive select queries need to be optimized.

Our optimization algorithm uses a cost model estimating the global memory cost of different

execution plans. Due to CUDA scheduling, the time cost for a two-column scan is less than

twice the cost of a single-column scan when memory loads from both columns are branch

free. If the memory load from the second column is included in a branch and there is at
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least one thread in a warp fetching the second column value, the cost of the two-column

scan is twice the cost of a single-column scan. We will describe now how we quantify the

improvement from efficient instruction scheduling of branch-free memory loads. Say the

time cost for a k-column table scan is scank. If r is the number of table rows and w is the

warp size then the number of memory transactions for a sequential scan is r
w . We account

for the improvement from scheduling compared to the expected performance by computing

in advance (during a calibration phase) the following rate for each k:

rk =
scank

k × scan1

For example, the cost of the plan (C1 & C2 & C3) && C4 is:

r3 ×
3r

w
+ min(sel1 ∗ sel2 ∗ sel3 ∗ w, 1) ∗ r

w

4.5.2 Multiple-Kernel Plans

The total cost for a multi-kernel plan is the sum of costs of all individual kernels which

can be estimated as suggested in Section 4.5.1, plus the cost of writing the intermediate

query results. In Appendix 8.4 we explain how shared memory is used as a buffer to achieve

coalesced writes to global memory. While we have described a method that writes the

record-ids of intermediate records, we also consider a variant that instead writes all of the

column values that are needed in the subsequent kernels. The intermediate results are

stored column-wise to be read efficiently from the subsequent kernels. While this variant

may need to transfer more data, subsequent accesses will be better aligned for coalesced

access.

The cost of writing the intermediate results for plan K111 and a query that selects all

columns is:

write costcol =
n−1∑
i=1

seli!× r × n

w

where seli! is the combined selectivity for conditions 1 to i and sel0! = 1. If the output of a

kernel is a record-id list we have to add the cost of reading the list: r
w × seli−1!, except for

the first kernel which reads data sequentially. Also, all kernels but the last have to write
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the record-ids of the satisfying rows:

write costrid =
n−1∑
i=1

seli!× r

w

If we use record-id lists there will be sequential memory access only in the first kernel.

For the subsequent kernels the threads will read in a coalesced way only the record-id lists

containing the positions of satisfying records but the actual values might not be stored

contiguously. To account for that we have to adjust the read cost by using the random

access memory bandwidth of our target machine.

4.5.3 Model Calibration

To factor-in the improvement by efficient CUDA scheduling of memory transactions for

branch-free code we calibrate our model by measuring the scan performance for 1 to n-

column scans, where n is the number of conditions in the WHERE part of the query. The

calibration step is short because it only has to run once, on a relatively small number of table

records. We calibrate our model using tables containing 16 million rows. On our machine,

for 4-byte integer scans and 1024-thread block size the rate r2 for a two-column scan is

0.75. For three and four columns the rate is around 0.68. This means that when measuring

the cost of no-branch plan C1&C2 the weighed number of memory transactions accounted

for by our model will be 2× 0.75 = 1.5 rather than 2. The constants of our model depend

on the chosen thread block size/configuration since the performance of CUDA kernels also

depends on the kernel configuration. If there are multiple configurations to choose from,

then we should compute the described rates for each, and when optimizing a query we must

use the rates for the right configuration. Here, we are showing the results for 4-byte integer

columns but our model can be used for different data-types.

4.6 Optimization Algorithm

Here we describe our suggested optimization algorithm minimizing branch penalties. We

suggest two different methods. The first method computes the optimal execution plan for

single kernel queries with n conditions and the second method is a multi-kernel optimization
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Generate all no-branch plans for subsets p ∈ P, storing their costs in A[p], with null left

and right attributes

for r ∈ P in increasing order r right child of the plan do

for l ∈ P in increasing order such that rank(l.last)+1=rank(r.first) do

cost=(l && r).cost

if cost < A[r ∪ l].cost then

A[r ∪ l].cost=cost

A[r ∪ l].left=l

A[r ∪ l].right=r

end if

end for

end for

Figure 4.6: Single-Kernel Optimization Algorithm.

algorithm determining which conditions will be applied in a fused kernel. For a small number

of conditions we could enumerate all possible plans, but the number of all possible plans

grows factorially so we need more efficient alternative algorithms. Also the high performance

of GPUs implies that optimization time must be small. We assume that attributes are not

correlated. If this is not the case we might want to enumerate all possible condition orders

and choose the one with the minimum estimated cost.

Both algorithms have the same complexity. To compute the optimal plan for a query

with n conditions the time complexity is O(n3).

Single Kernel Optimization We present a polynomial dynamic programming algorithm

for computing the optimal execution plan with n conditions. We let P denote consecutive

nonempty subsets of the n conditions that have been ordered by the rank cost metric. For

n = 4 there are 10 such subsets: 4 with a single condition, 3 with two conditions, 2 with

three conditions, and one with four conditions. In general |P | = n(n + 1)/2.

In the initial step we generate all no-branch plans for subsets in P . Our algorithm has

an outer and an inner loop corresponding to the right and left subplan. We iterate over
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plans in increasing order, which means if p1 is a subset of p2 then p1 comes earlier in the

loop than p2. We use any generated subplan as part of the larger plans that are generated in

later iterations. In the end, the optimal plan for n conditions is contained in corresponding

position of the A array. Each position of this array contains the left and right subplan of

the optimal plan, and the cost of this plan. We can retrieve the optimal plan using the left

and right subplan.

There are O(n2) iterations of the outer loop, and O(n) iterations of the inner loop

because of the requirement that rank(l.last)+1=rank(r.first). Thus the overall complexity

is O(n3).

Multi-kernel Optimization The algorithm that determines the optimal plan by split-

ting query execution into multiple kernels is similar to the single-kernel optimization algo-

rithm. We use the same algorithm skeleton by varying the cost estimation when combining

two plans. When combining two plans the number of kernels in the combined plan will

be the sum of the number of kernels in the left and right plan and the cost is the sum of

their cost plus the intermediate result writing cost to the global memory. The optimal plan

determines which conditions to fuse similarly to how an optimal single kernel plan uses

logical-and (&) rather than the branching-and (&&) operator. Internally, the algorithm

calls Algorithm 4.6 to find the best fused plan for the included conditions.

4.7 Experimental Evaluation

4.7.1 Experimental Setup

GPU performance was measured using 1024 threads on an Nvidia Tesla C2070 machine

with 6GB of RAM and a nominal bandwidth of 144GB/s. Optimization was done on a

dual-chip Intel E5620 with nominal bandwidth 25.6GB/s using a single-thread. We assume

the data to be GPU resident so we do not measure the time needed to transfer the data to

the GPU memory. For reference a single column scan of a 128 million row table computing a

count aggregate takes 6.5 ms corresponding to a bandwidth of around 80GB/s. Our kernels

are typically memory bound. CUDA C code was compiled using the nvcc compiler of the
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CUDA toolkit 4.2 using full optimization. We used synthetic data with 128M rows and

4-byte integer columns. We ran the following handcompiled queries:

Q1: SELECT C4 FROM T

WHERE C1<v1 AND C2<v2 AND C3<v3

Q2: SELECT COUNT(*) FROM T

WHERE C1<v1 AND C2<v2 AND C3<v3 AND C4<v4

4.7.2 Cost Model Validation

Figure 4.7: Actual and estimated performance for different single-kernel plans of Q2.

Figure 4.7 validates the model for conjunctive queries executed in a single kernel for

query Q2, where all conditions have a common selectivity that is varied. We observe that

the trends of different plans in the left diagram (actual times, the same as Figure 4.2) closely

resemble those in the right diagram (optimizer estimates) proving that our cost model can

be used in single kernel optimization. Different plans are optimal in different selectivity

ranges. For completeness, Figure 4.8 shows the performance of the same plans on the

CPU using 16 threads. CPU plans are 4.5–7 times slower, so even for relatively lightweight

operators like compound selections, GPUs offer better performance due to higher memory

bandwidth.

In Figure 4.9 the left figure shows the performance of different plans for Q1 using

record-ids as the intermediate data representation between kernels. The three conditions
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Figure 4.8: Time performance of different plans on the CPU for Q2.

Figure 4.9: Actual and estimated performance of multi-kernel plans for Q1 varying the

selectivity of all conditions.

have the same selectivity and the right diagram shows the weighed number of global memory

transactions. The similar trends in the two diagrams indicate that memory cost is a valid

metric for multi-kernel optimization too. We also note that for such queries it is faster to

execute all conditions in a fused kernel when the conditions are not selective, although as

we saw in Section 4.4.2 the case is different in the presence of expensive predicates. K3 is

less efficient for very selective conditions: For selectivities below 0.01 the K111 plan is the

fastest, and for selectivities between 0.01 and 0.1, K21 is the most efficient.
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Figure 4.10: Time performance of single-kernel plans for Q1 for varying predicate selectivity.

Figure 4.11: Time performance of multi-kernel plans for Q1 or varying predicate selectivity.

4.7.3 Query Plan Space

In the next experiment we vary the selectivity of the second condition while the first selec-

tivity is fixed to 0.1 and the third to 0.8. Figure 4.10 shows the performance of single-kernel

plans and Figure 4.11 the performance of multi-kernel plans using rid-lists for intermediate

results and when writing full column values as intermediates. Multi-kernel plans seem to

provide a performance improvement for selective conditions. For example the K21 plan is

around 5% faster than the S21 plan for low selectivities. For multiple kernel plans, K21 is

the optimal up to 0.2 when writing record-ids and 0.3 when writing column values, because

the combined selectivity of the first two conditions is low and it is more efficient to write

the reduced set of results in global memory and then apply the third condition. For most
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plans it is slightly more efficient to write the column values than using rid-lists, except for

selective queries on plans such as K111 and K12 where there is more intermediate data

to be written. In general, the choice of intermediate result format would depend on the

columns in the SELECT clause of the query and the conditions’ selectivities.

4.7.4 Optimization Speed

Figure 4.12: Execution time of the multi-kernel optimizer as a function of the number of

conditions.

Figure 4.12 shows the performance of the multi-kernel optimizer (running on the CPU)

as a function of the number of conditions. Optimization time even for relatively many

conditions is a fraction of a millisecond suggesting that the optimization cost is low compared

to the query cost even in high performance environments like GPUs.

4.8 Summary & Conclusions

In this Chapter we studied the effect of branch penalties and thread divergence on the

performance of compound select conditions for tables stored in GPU global memory. We

suggest a cost model that accurately predicts the performance of query execution plans

with varying branching and divergence behavior. Our results suggest that different plans

are optimal for different sets of selectivities and predicate evaluation costs, and that our

optimization is able to find these plans.
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Chapter 5

Sub-string Matching Acceleration

5.1 Introduction

Relational queries often contain string matching conditions within the LIKE predicate.

For example, the following query appears as a subquery of Q16 of TPC-H [Transaction

Processing Performance Council, 2014]:

select s_suppkey

from supplier

where s_comment like ’%Customer%Complaints%’

The “%” character is a wildcard that can match an arbitrary number (including 0) of

characters. In this way, the SQL LIKE predicate allows for a limited form of regular

expression matching. When evaluating such queries, the system does not need to find all

occurrences of a pattern in a string, or even the position of the match(es) within the string.

It is therefore possible to apply optimizations for string matching that might not be possible

in a more general context, such as terminating string matching early as soon as a match is

found.

As discussed in Section 1.2, GPUs are becoming popular for data processing tasks be-

cause of their high memory bandwidth and abundant parallelism. Modern GPUs have a

moderate amount of on-board RAM. For example, the Nvidia K40 has 12GB of RAM, with

a potential access bandwidth of 288GB/sec. For the purposes of string matching, we pro-
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pose that the GPU RAM be used to store the string columns for a database system, while

the CPU RAM is used to store the remainder of the database. Multiple GPU cards can be

combined to store and process (in parallel) larger string collections. String matching can

then run at GPU speeds without needing large data transfers between the CPU and GPU.

Only string identifiers would be communicated between the CPU and GPU.

5.1.1 String Matching Acceleration

5.1.1.1 Algorithmic Background

Indexes can speed up search dramatically for selective queries. For string data, the state-of-

the-art index structure is the suffix tree [Weiner, 1973]. Unfortunately, even very efficient

implementations of suffix trees (or suffix arrays [Ferragina and Manzini, 2005]) are an order

of magnitude larger than the string data being indexed [Karkkainen and Ukkonen, 1996;

Ferragina and Manzini, 2005; Tian et al., 2005]. There are suffix arrays, a compressed form

of suffix tree, which can have as low consumption as 1.25X depending on the number of bits

used to encode a symbol [Ferragina and Manzini, 2005].

It is unclear whether allocating the extra space is a good use of resources. What is more,

a suffix tree lookup does not provide a complete solution for SQL LIKE conditions. If there

are many substrings within a LIKE clause, separated by “%” symbols, one would need to

search the index once for each of the substrings, intersect the matching string identifiers,

and then verify that the substrings occur in the correct order, without overlap.

String matching is a well-studied problem. Two classic algorithms are the Knuth-Morris-

Pratt (KMP) algorithm [Knuth et al., 1977] and the Boyer-Moore (BM) algorithm [Boyer

and Moore, 1977]. To search for a sequence of strings as specified in a LIKE clause with

“%” symbols, one can search for each string in turn using any string matching algorithm,

starting each search where the previous search left off. On CPUs, empirical studies have

shown that BM is generally superior to KMP [Crochemore and Lecroq, 1996] because it

facilitates larger jumps through the target string. Parallelizing these algorithms on CPUs

is straightforward: each available thread can be used to independently search a different

string in the database.

A database system should be able to give robust and stable performance without per-
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formance “surprises” for particular inputs. On GPUs the worst case is amplified due to the

SIMT architecture. If one string in a warp exhibits worst-case behavior, then all threads

in the warp will suffer the latency consequences. For this reason, we exclude algorithms

(such as Boyer-Moore-Horspool [Horspool, 1980] and Quick-Search [Sunday, 1990]) whose

worse-case behavior is O(m×n) where m is the pattern size and n the string size. We briefly

describe several well-known string searching algorithms, and state their time complexity.

Boyer-Moore (BM) [Boyer and Moore, 1977]. BM preprocesses the pattern and creates

two shift tables: BM bad character and BM good suffix tables. The good-suffix table stores

the shift value for each character in the pattern. The bad-character table stores a shift

value for each character in the alphabet, with the shift value being based on the occurrence

of the character in the pattern. BM compares the pattern with the string from right to left.

The worst-case performance is O(n + m) steps [Apostolico and Giancarlo, 1986]. BM can

skip over large parts of the input string if the last character of the pattern does not match

the input string.

Knuth Morris Pratt (KMP) [Knuth et al., 1977]. KMP preprocesses the pattern

storing the necessary information in the partial match table. The partial match table,

which we call next, stores how far we have to backtrack if a comparison of the current

position in the pattern with the input fails. Unlike BM, KMP compares the pattern to the

input string from left to right and in case of a failure it shifts the pattern rather than the

input based on the partial match table. KMP has worst case O(n + m) time complexity.

In Section 5.3.3 we present and evaluate three alternative KMP implementations.

Aho-Corasick (AC) [Aho and Corasick, 1975]. AC is a generalization of KMP for

multiple patterns. The complexity is linear in the length of the patterns and length of

the input string. It uses a deterministic finite automaton (DFA) for the matching process.

An equivalent Non Deterministic Finite state Automaton (NFA) can be designed, which is

typically more space efficient, but results in slower matching performance. In the context

of database query processing we advocate the use of a DFA for string matching.

Multi-pattern matching has been accelerated on Cell Processors for Intrusion Detection

Systems [Scarpazza et al., 2007; Iorio and Lunteren, 2008]. Cell processors similarly to

GPUs require memory coalescing and in order to use the SIMD instructions different streams
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processed in parallel are interleaved in SIMD registers.

RE2 is an optimized high performance regular expression matching library developed by

Google [RE2, 2014]. RE2 uses a DFA to detect whether a pattern appears in an input string.

Boost is a set of libraries implementing, among others, the KMP and BM algorithms [Boost,

2014]. The SSE 4.2 instruction set provides the CMPISTRI instruction which implements

a substring search for patterns fitting in an SSE register [Intel, 2011].

We focus on exact string matching but there is also a large body of work focusing on ap-

proximate string matching, allowing mismatches [Navarro, 2001]. Some popular algorithms

that are used extensively in computational biology are Smith-Waterman and Needleman-

Wunsch [Needleman and Wunsch, 1970; Smith and Waterman, 1981]. Approximate pattern

matching can also be implemented using Hidden-Markov models [Bhargava and Kondrak,

2009].

5.1.2 String Matching on GPUs

Significant speed-ups were obtained for the GPU implementation of multi-pattern matching

algorithms Wu-Manber [Pyrgiotis et al., 2012] and Aho-Corasick [Lin et al., 2010; Zha

and Sahni, 2013]. Also a multi-pattern version of BM was implemented but had inferior

performance to AC [Zha and Sahni, 2013]. Strings were stored contiguously and to reduce

the global memory latency, input is first loaded in the shared memory to achieve memory

coalescing. NFA matching has been implemented to reduce the space required for the

automaton [Cascarano et al., 2010]. String pivoting in 4-byte units has been suggested

for NFA-based string matching to achieve coalescing [Zu et al., 2012]. Offloading string

matching onto GPUs has been used to accelerate a digital forensics tool [Marziale et al.,

2007] and in intrusion detection system computation [Fisk and Varghese, 2004; Jacob and

Brodley, 2006; Vasiliadis et al., 2011].

A simplified version of KMP in older GPU architectures did not result in performance

speed-ups under normal load conditions [Jacob and Brodley, 2006]. KMP has been imple-

mented on the GPU using shared memory to store the pattern and the partial match table

[Bellekens et al., 2013]. It faced similar issues with thread divergence and it had subopti-

mal performance compared to PFAC for multiple pattern searches. Loop unrolling in the
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code of KMP resulted in a minor performance improvement. KMP has been implemented

on multi-GPUs [Lin et al., 2013c]. However, there were no exact performance numbers

reported, just the speed-up compared to a CPU implementation. Various single pattern

matching algorithms have been evaluated, taking advantage of the various GPU memories

[Vasiliadis et al., 2011].

Implementations of AC on GPUs have used device memory [Zha and Sahni, 2013] and

texture memory to store the DFA [Lin et al., 2010; Vasiliadis et al., 2011]. There are

multiple ways to parallelize string matching on a set of input strings by varying the mapping

of threads to strings. For example in the PFAC library a thread is allocated for each input

byte and each thread starts matching from the given byte offset [Lin et al., 2010; Lin et

al., 2013a]. If no match is found, the threads terminate searching without backtracking

the state automaton. PFAC also uses state number reordering to check more efficiently

whether an accepting state has been reached, which we also use in our implementation

of AC. PFAC has good performance for intrusion detection systems but its performance

varies by more than order of magnitude for adversarial inputs [Lin et al., 2013a]. (Our AC

implementation uses shared memory to store the transition table. This is a realistic choice

for database queries where there is a reasonable number of patterns in a single query.)

PFAC uses texture memory to store the transition table but it caches the initial row in the

shared memory.

The GPU implementations of Needlman-Wunsch and Smith-Waterman algorithms have

resulted in high performance improvements over CPU implementations [Ligowski and Rud-

nicki, 2009; Liu et al., 2009; Farivar et al., 2012]. Hidden-Markov models are computation-

ally intensive so evaluating them on GPUs resulted in significant performance speed-ups

exploiting the high parallelism and memory bandwidth [Li et al., 2009].

5.1.3 String matching on GPU Databases

Many GPU databases have been implemented following different co-processing approaches

for the GPU and CPU processors [Breß et al., 2014]. Typically GPU databases first apply

dictionary compression on strings and process the compressed representations in the GPU

memory [Breß et al., 2014]. However, not all string predicates, such as wildcards, can
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be answered using just the compressed representation of the strings. String processing

has been identified either as an unsuitable application for GPU acceleration [Rauhe et al.,

2013] or it has been identified as a still open problem [Pirk et al., 2014]. A data structure

called tablet has been suggested, that handles variable-length data as strings for a GPU

database [Bakkum and Chakradhar, 2012]. Redfox is a run time framework for database

queries that runs all TPC-H queries [Wu et al., 2014]. Strings are stored in different tables

with each string table storing different length strings. Significant speedups were observed on

queries containing string matching predicates but the matching algorithm was not specified.

Each thread performed matching on independent strings resulting in branch and memory

divergence. We consider alternative ways to map GPU threads to input strings and also

alternative GPU device string memory layouts. MapD is a Big Analytics platform taking

into advantage the high parallelism and fast memory of GPU processors and uses indexes

to search tweet contents [Mostak and Graham, 2014]. Other state-of-the art GPU database

systems are Parsteam [Michael Hummel, 2010] and SQream [Ori Netzer, 2014] but there is

not available documentation on their string matching approach.

String processing has also been identified as an application that can be accelerated using

vector processors [Zukowski, 2009]. GPU processors have different threads of the same warp

executing in each step rather than different data lanes. We believe that our approach can

also be adapted for SIMD processors.

5.1.4 Thread-Divergence on GPUs

Chapter 4 discussed how compiling queries to multiple kernels and writing intermediate

results to the global memory can reduce divergence. Another software based solution reduces

thread and memory divergence for applications that can tolerate errors [Sartori and Kumar,

2013]. Different warp scheduling policies have been suggested to reduce resource utilization

on GPUs [Narasiman et al., 2011].
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5.2 Cache Pressure

GPUs achieve a very high degree of parallelism by having many processing elements, each

of which can have many warps in flight at any point in time. On the Nvidia K40, there

are 15 processing elements called “stream multiprocessors” (SMs), each capable of running

64 concurrent warps. When running at full capacity, there may be 15 × 64 × 32 = 30,720

threads in flight. The L2 cache, which is shared by all processing elements has 12,288 128-

byte cache lines. With many more threads than cache lines, any algorithm that tries to

assign threads independent work is liable to thrash in the L2 cache if those threads each

access even a single cache line.

A second kind of cache pressure arises from the limited bandwidth of the L2 cache, which

is 1024 bytes per cycle. The cache access granularity is 32 bytes. Each SM can dispatch

two independent instructions per thread for each of four concurrent warps. If independent

L2 accesses were to occur in every instruction of every thread of every concurrent warp, the

bandwidth needed would be 15× 4× 2× 32× 32 = 122,880 bytes per cycle. For a workload

whose threads all access independent data, the GPU would only be able to sustain one L2

access every 120 instructions, on average.

Global memory is the most plentiful but also the slowest type of memory. GPUs coalesce

the global memory accesses of the threads in a warp into as few transactions as possible. If

all threads access the same cache line then there will only be one memory transaction, 32

times fewer than if all threads accessed different cache lines. Shared memory and L1 cache

are on-chip fast memories but have limited capacity. Their combined size is 64KB per SM

and they are two orders of magnitude faster than the global memory. We could use shared

memory to achieve coalescing: All threads in an SM would load contiguous strings into the

shared memory from global memory. Given 64 warps (2048 threads) in flight in each SM

and up to 48KB of shared memory, all threads could read in a coalesced fashion strings of

24 characters. However, for longer strings the parallelism would be reduced, resulting in

worse performance.
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(a) Sends row-ids satisfying

the two integer filters to the

GPU; the GPU then searches

only the listed strings for

matches, and returns the cor-

responding row-ids.

(b) Executes the integer fil-

ters on the CPU and in paral-

lel the string matching condi-

tion on all rows in the GPU;

the results are intersected to

compute the final result.

(c) This strategy first applies

the string filter on the GPU

and sends the matching row-

ids to the CPU which can

use this information to pro-

cess less data.

Figure 5.1: Strategies for CPU-GPU interaction.

5.3 String matching Framework

There are multiple strategies to execute a complete query in a coprocessing environment

with CPUs and GPUs. Suppose there are some integer and some string filters in the query,

as for example in Q16 of TPC-H. The output of the algorithm is expected to be the row-

identifiers of rows matching all of the specified conditions. Figure 5.1 shows three execution

strategies and the data exchanged between the CPU and the GPU. The query optimizer

is responsible for choosing a suitable strategy given selectivity and cost estimates for the

various conditions.

Queries that require the matching string itself in the SELECT clause are handled outside

the matching process.

5.3.1 Addressing Thread Divergence

Size Grouping. Thread divergence can occur when some threads have reached the end

of their string, while others in the same warp have not. The threads that have finished sit
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idle until all of the remaining threads in the warp complete their task, which may involve

scanning a long string segment. For this reason we make sure that all threads in a warp

operate on strings of similar length. We preprocess the string database, sorting the strings

by length. If necessary, we pad some strings with a few nulls so that each string can be

grouped with other strings of the same length into a warp.

Figure 5.2: Execution of the baseline method and Split-2 method for search pattern ’CAA’.

Splitting. Even with equal-length strings, thread divergence can occur when some

threads have found a match and sit idle, while others in the same warp have not. To

address this kind of divergence, we consider the option of splitting strings. For example, we

could split each string into two equally-sized pieces and initially perform string matching on

the first half. Those strings for which a match has been found have their IDs added to the

answer set, while strings for which a match has not been found have their IDs added to a

pending set. In a second pass, we process the second halves of strings in the pending set in

parallel, without ever looking at the second halves of strings that matched in the first pass.

In this way, threads that match early do not have to sit idle for the entire string length.

Splitting is illustrated in Figure 5.2.

We implement the multiple steps of split optimization in a single GPU function. In all

steps but the last, the threads store in the shared memory the record-ids of the strings that

have not matched the pattern. Different threads might process different parts of a string

in distinct steps. We divide the shared memory in different buffers, one for each warp.

For selective conditions the expected performance gain is higher because more strings are

filtered in each step and there is lower shared memory writing cost.

Splitting may introduce a small overhead at split boundaries. Searching each piece of
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the string (except the last) might need to process up to m−1 characters from the following

piece, where m is the length of the pattern. When the following piece is later searched,

some of those m− 1 characters may be processed again. For KMP (but not BM) we avoid

this boundary overhead by recording the search state for the last character of the previous

string piece.

5.3.2 Addressing Cache Pressure

The observations of Section 5.2 suggest that allowing all threads to do independent work

(the method of choice for CPUs) will not be sustainable on GPUs. Efficient GPU string

matching will need some form of locality so that data from each cache line is useful for

multiple threads.

Register Usage To reduce the number of memory loads from cache, we try to read as

large a unit of string data as possible into GPU registers. Using an extended load instruction,

it is possible to read up to 16 bytes of data at once into two registers. Depending on the

memory access pattern of the string matching algorithm, this approach can reduce the

traffic from the L2 cache, although it does not reduce the cache footprint needed by the

collection of threads.

Figure 5.3: Execution of Seg 6-4 parallelism method for a pattern of three characters.

Segmentation. One way to enhance locality is to allocate multiple threads from a warp

to different segments of the same string in such a way that the interval between consecutive

threads on a string is less than a cache line. In that way, multiple segments of the string can

be examined concurrently, and the cache misses needed to read the string are amortized over
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Figure 5.4: Contiguous and pivoted layout for 20-character strings and pivoted-piece of

4-characters.

multiple threads. For example, if four threads span a cache line, then the cache footprint

would be reduced by a factor of 4. Threads processing the same string can coordinate and

finish searching when one of them finds a match. For the segmented method, we will use

the term “Seg-k-t” to denote a method using t threads per input string with a gap between

threads of k bytes. Figure 5.3 demonstrates the execution of the Seg-6-4 method for string

of 24 characters. Typically we choose larger gaps, but we show a small gap for the sake of

simplicity.

While locality is improved in such a scheme, there is a boundary overhead for each

segment. To detect patterns that span segment boundaries for a pattern of m characters all

threads but the last will have to process the following m− 1 characters. Because segments

are processed in parallel, we miss opportunities to skip over the initial characters of each

segment.

Pivoting. So far, we have implicitly assumed that strings are stored contiguously.

However, in database applications preprocessing the data (e.g., by rearranging the string

layout) is a viable option to maximize workload performance. We propose pivoting1 the

1To the best of our knowledge string pivoting has been suggested only for fixed 1-byte or 4-byte units
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Independent Segmented Split Pivot Split+Pivot Self-Pivot

(Long Strings)

+Thread efficiency Low High High Low High High

+L2 efficiency Low High Low High High High

-Boundary overhead No Yes KMP:No/ No No Yes

BM:Yes

Table 5.1: Advantages and drawbacks of each string matching optimization.

strings in the GPU global memory to eliminate cache thrashing and to facilitate coalesced

loads. We divide the string into equally sized pieces and store each piece as if it was a

different column of a column store. For example, suppose we choose a piece size of 4 bytes

for strings 128 bytes long. The first “column” would contain the initial 4 characters of

each string. The second “column” would contain the second 4 characters, and so on up

to “column” 32. Figure 5.4 shows the contiguous and the pivoted layout for 20-character

strings and 4-character pivoted pieces. In case strings have different lengths we need to pad

them to have the same number of “columns”. Threads would be assigned one per string,

with threads in a warp processing consecutive strings. When they start, warps would read

the initial 4 bytes from a contiguous group of strings, which is an ideal memory access

pattern because (a) it is coalesced, and (b) it supports good spatial locality and a reduced

cache footprint. As string matching progresses, threads may progress at different rates

depending on the matching algorithm and pattern. We evaluate the effect on performance

for different pivot widths.

In the case of pivoted strings, algorithms for which threads progress at different rates

are vulnerable to a phenomenon we call memory divergence. If threads in a warp are

accessing mostly different offsets within the pivoted layout, we will have lost most of the

performance benefits of pivoting. As a result, there is an implicit advantage to methods that

proceed in lockstep (or close to it) through the strings, even if it means shorter advances

on each step. In fact, we show how one can slightly change the implementation of KMP

to guarantee lockstep processing, perhaps at the expense of increased thread divergence.

[Scarpazza et al., 2007; Iorio and Lunteren, 2008; Zu et al., 2012], without studying the impact on cache

behavior.
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Memory divergence has not previously been studied for string matching applications.

Self-Pivoting: For long strings we suggest the following solution combining the best

features of pivoting and segmentation: Segment the string into equal-sized pieces and store

the segments of each string in a pivoted fashion. For example, suppose we segment a 4KB

string into 32 segments of 128 bytes each. With a pivot width of 4 bytes, the first cache

line would contain the first 4 bytes from each segment; the second cache line would contain

bytes 5 though 8 for each segment, and so on. Threads in a warp process different segments

of a single string in parallel, and achieve locality because the data needed by those threads

at any point in time is concentrated in just a few cache lines (one if the threads manage

to proceed in lock-step). Threads in a group coordinate and terminate when any of them

locates the pattern.

Self-pivoting requires minimal padding, because each string can be divided into segments

that differ in size by at most one symbol. Unlike pivoting across strings, self-pivoting

retains good coalesced memory access behavior even for filtered string access (Strategy A

in Figure 5.1).

Method Techniques

Segmentation Segmentation, Size grouping, Register Usage

Splitting Splitting, Size grouping, Register Usage

Pivoting Pivoting, Size grouping, Register Usage

Self-Pivoting Self-Pivoting, Size grouping, Register Usage

Table 5.2: Set of techniques used in our string matching methods.

5.3.3 Addressing Memory Divergence

GPUs are sensitive to changes of source code even if the time complexity remains the same.

However, alternative implementations of KMP have not been studied. We show below two

alternative ways to code the KMP algorithm [Eppstein, 1996], assuming that the algorithm

returns “true” after finding the first match. In both of these code fragments, s is the string

being searched, p is the pattern, nxt is the partial match table, m is the length of the pattern,

and n is the length of the string. For simplicity we omit optimizations such as reading many
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characters at a time from memory into registers.

KMP_basic(char *s, char *p, nt *nxt, int m, int n){

int i=0;

int j=0;

while (i<n) {

if (p[j]==s[i]) { //Divergent branch

j++;

i++;

if (j==m)

return true;

} else {

if (j != 0) //Divergent branch

j = nxt[j];

else

i++;

}

}

KMP_step(char *s, char *p, int *nxt, int m, int n){

int j=0;

for (int i=0;i<n;i++) {

while (j>=0 && p[j]!=s[i]) //Divergent loop

j=nxt[j];

j++;

if (j==m)

return true;

}

In the KMP basic algorithm, if the while loop is executed in parallel by many threads,

each thread either advances through the string or advances the offset within the pattern.

Strings that advance the offset in the pattern will “fall behind” the other threads that
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advance though the string. Unlike KMP basic, a thread-parallel execution of the for loop

in KMP step waits for those threads that need to advance far enough through the pattern to

advance to the next character. We also propose a hybrid method KMP hybrid that has an

outer loop like KMP step, to ensure memory alignment, with an inner loop like KMP basic

to reduce thread divergence. The granularity of the outer loop should correspond to the

pivot width in a pivoted layout; the following code segment corresponds to a pivot width

of 4. In our string matching framework, we assume a little-endian representation similar to

the NVIDIA GPU architecture.

KMP_hybrid(char *s, char *p, int *nxt, int m, int n){

int j=0;

for(int i=0;i<n;i+=4){

unsigned t=*((unsigned *)s+(i>>2));

for(int k=0;k<4;){

if (p[j]==((char)t)) {//Divergent branch

t>>=8; k++; j++;

if (j==m)

return true;

} else {

if (j != 0) //Divergent branch

j = nxt[j];

else {

t>>=8; k++;

}}}}

In KMP Basic and KMP Hybrid the input is advanced in two cases: 1) If the comparison

of the pattern to the input succeeds or 2) If j equals zero. If the input is not advanced then

the jump table is accessed. Based on that observation we can remove some of the branches

in the code to increase the string matching performance. We show below the version of

KMP Hybrid, with the eliminated branches:
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KMP_hybrid(char *s, char *p, int *nxt, int m, int n){

int j=0;

for(int i=0;i<n && j<m;i+=4){

unsigned t=*((unsigned *)s+(i>>2));

for(int k=0;k<4 && j<m;){

const int cmp=p[j]==((char)t);

const int cmp2=cmp || j==0;

if(cmp2) {

t>>=8;

} else {

j = nxt[j];

}

j+=cmp;

k+=cmp2;

}

return j==m;

}

Removing the remaining branches resulted in inferior performance.

Figure 5.5 shows the execution of the Pivot-4 KMP-Hybrid method. Different threads

are processing different strings. Threads start scanning the first character of the first pivoted

piece. In the internal loop of KMP-Hybrid the input is advanced either if the comparison of

the current pattern character to the input succeeds or if it fails on the first character of the

pattern (j==0). T1, T3 match their input in first iteration to the pattern. In the second

iteration the comparison fails for both T1 and T3 so they have to consult the nxt table to

shift the pattern. In the third iteration T1 and T3 will compare the second input character

again after shifting the pattern. Threads synchronize again in the seventh iteration after

all threads process the first piece and scan the first character of the second pivoted piece.



CHAPTER 5. SUB-STRING MATCHING ACCELERATION 75

Figure 5.5: Execution of Pivot-4 method for ’ATG’ pattern using the KMP-Hybrid string

matching method and 4 GPU threads.

5.3.4 Combining Different Optimizations

In Table 5.1 we summarize the different optimization techniques we evaluate. Our suggested

techniques can be combined to implement more complex methods. Table 5.2 summarizes
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Figure 5.6: Memory access pattern for BM on an average case dataset and an adversarially

generated input maximizing memory divergence. There are 32 curves in each subfigure

showing the index accessed by each thread of a warp. The input strings are 128 charac-

ters/bytes long.

Figure 5.7: Memory access pattern for a worst case input of KMP.

the techniques used by the matching methods evaluated in our experiments. We always

implement size grouping and use registers to reduce the global memory traffic. When

using pivoting the size of the used registers is limited to the pivoting width: For example

in Pivot-4 method we load in 4-byte registers four characters from the input string. We

cannot use registers larger than the pivot width because this would require multiple loads

from non-contiguous memory locations.

Splitting can be combined with segmentation: In each step, each piece of the string

can be processed by multiple threads as in the segmented method. Splitting can also be

combined with pivoting, although it does not lead to better performance compared to plain
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pivoting. Splitting incurs the cost of writing the intermediate results in the shared memory

but this additional cost is justified by the reduced string processing cost. However, the

benefits of splitting are not as significant for pivoted layouts since the global memory cost

of string processing is reduced. For the conventional layout there is a cache miss in each

thread memory access while for the pivoted layout multiple thread accesses can be combined

in a few global memory transactions. Also, the benefits of pivoting will be reduced in the

subsequent steps because the strings being processed might not be contiguous. Self-pivoting

is designed for longer strings by combining the best features of the segmented and pivoted

methods.

5.3.5 Algorithm Analysis

Here, we analyze the worst-case behavior of KMP and BM string matching algorithms. We

then provide a cache footprint analysis of the baseline and optimized string memory layouts.

5.3.5.1 Worst-Case Algorithmic Analysis

We are interested in constructing worst case inputs for the BM and KMP algorithms. We

must avoid performance “surprises” on these inputs. The worst case for a single instance

of the KMP algorithm is searching for a pattern with m repetitions of a single character in

an input string which is a repetition of the following segment: the first m − 1 characters

match but the mth does not. For the warp level adversarial dataset the input strings are

constructed in such way that the first thread in the warp matches the first 4 characters and

fails, the second thread fails after the first 8 character comparisons and so on. This will result

in memory divergence for Pivot-KMP basic: Some of threads will fall behind, accessing

different column segments. KMP step will have increased thread divergence because threads

will each execute a different number of iterations of the internal while loop.

For BM we construct a similar adversarial set of strings as in KMP with the only

difference that the matching fails in the leftmost character rather than the rightmost because

it compares the characters from right to left. In Figure 5.6 we show the memory access

pattern of BM for two sets of input strings. There are 32 color bands in each of the subfigures

corresponding to the 32 different threads in a warp. Different threads process 32 different
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input strings, so the different curves show the string index accessed by each of the threads in

the warp. The first set of strings is randomly generated. In the second dataset to evaluate

the worst case memory access pattern of BM the strings are adversarially generated so that

the divergence of BM memory access pattern is maximized. Figure 5.7 shows the memory

access pattern of the KMP implementations. We note that different steps have different

cost for the three KMP versions and more steps do not imply slower performance. With a

pivoted layout, when concurrent threads access locations separated by more than the pivot

width, additional cache misses will result.

5.3.5.2 L2 Cache analysis

Table 5.3 shows the L2 cache footprint for different parallelization methods.

Method Cache footprint (MB)

Independent 3.75

Seg-64 1.875

Seg-32 0.938

Seg-16 0.469

Split-k 3.75

Pivot-2 (Ideal) 0.117

Pivot-4 (Ideal) 0.117

Pivot-8 (Ideal) 0.234

Pivot-16 (Ideal) 0.469

Pivot-32 (Ideal) 0.938

Pivot-k (Divergent) 3.75

Table 5.3: L2 cache footprint of different matching methods.

Segmentation and pivoting can reduce the cache footprint below the L2 capacity. Split-

ting does not impact the cache footprint, but could still be effective at reducing other forms

of latency. Below k = 4, the ideal footprint of Pivot-k does not change because a single

cache line can accommodate 32 threads’ worth of 4-byte data. The numbers for pivoting

labeled “ideal” reflect the footprint at the start of matching, and if matching proceeds at



CHAPTER 5. SUB-STRING MATCHING ACCELERATION 79

precisely the same rate in each thread of a warp. The row labeled “divergent” corresponds

to a situation in which threads progress at the sufficiently different pace that all threads

are touching different cache lines. In practice, partial thread divergence may lead to inter-

mediate cache footprint sizes. We will examine this issue in more depth in Sections 5.3.3

and 5.3.5.1. The cache footprint of self-pivoting is the same as regular pivoting.

Figure 5.8: KMP and BM Seg-k-t L2 misses for varying segment size on a dataset of 512K

strings with t=4.

To validate the analysis in Table 5.3, Figure 5.8 shows the number of L2 misses for

varying segment size as measured on Nvidia K40. The string length is 1024 bytes, the

pattern size is 4 bytes and the selectivity 0.9. For both algorithms L2 misses increase

significantly at a segment size of 64, as predicted in Table 5.3.

5.4 Experimental Evaluation

5.4.1 Experimental Setup

GPU performance was measured on two GPUs: an Nvidia Kepler K40, and an Nvidia

Tesla C2070. ECC was turned on. L1 caching is off by default on the K40. We turned off

L1 caching on the C2070 because we observed that performance improved for bandwidth-

bound algorithms as a result of the reduced bandwidth needed from the L2 cache.2 Table

2When the L1 cache is turned on, 128 byte cache lines are sent from the L2. When L1 caching is off, 32

bytes are accessed at a time from the L2.
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GPU Tesla C2070 Tesla K40

Memory size 6GB 12GB

Frequency(MHz) 1150 745

Bandwidth (GB/s) 144 288

L2 (KB) 768 1536

L2 band. (B/cycle) 384 1024

Cores 448 2880

Shared mem. (B/cycle/bank) 2 4

SMs 14 15

Cost ($) 1250 3100

Table 5.4: GPUs used in our experiments.

5.4 contains the specifications of each GPU. The default machine is the K40 but we show

some results for both machines to prove that our techniques and analysis are not specific

to one machine, and to highlight situations where the machine used does matter.

CUDA C code was compiled using nvcc of CUDA toolkit 5.5 using the full optimization

level. We also used loop unrolling in the string matching functions to reduce the number

of executed instructions. For a more fair comparison against CPUs we use the base clock

of the K40 GPU (745 MHz), although we noticed an improvement of 17% in performance

when using the maximum clock frequency (875 MHz).3 We used a dual socket Intel E5 2620

CPU to compare against the GPU performance. Each socket has 6 cores (12 threads) and

a power rating of 85W. We used all 24 threads of the dual socket machine.

Strings are either random (for average-case performance measurements), constructed

as described in Section 5.3.5.1 (for worst-case measurements) or generated from real-world

datasets. String characters in our experiments are one byte so we use the terms charac-

ter and byte interchangeably. To achieve a given selectivity, the pattern is inserted into

random locations of a suitable number of randomly chosen strings. For some experiments

we also vary the number of times that a pattern appears in a string. Table 5.5 summa-

3The higher frequency is a “boost” frequency that can only be used when there is power and temperature

headroom.
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A1 A2 R1 R2 TPC-H

String size 1024 16–16K 500 4.51M 63,1024

Occurrences 0–32 0 N/A N/A N/A

Pattern size 1–32 15 10 20/25 N/A

Rows 512K 32K 3.52M 64 512K

Alphabet 26 4 128 4 N/A

Table 5.5: Workload parameters.

rizes the workload parameters for our datasets. Workload A1 reflects a textual search task.

A2 reflects a search of an artificial DNA sequence. R1 is a set of wikipedia abstracts as

downloaded from DBpedia [DBPedia, 2014]. For R1 we chose a set of 10-character patterns

randomly selected from the input. All patterns correspond to low selectivity (<0.01). R2

searchehttps://www.facebook.com/s the genome sequence of Yersinia pestis [Trust Sanger

Institute, 2001] which we have replicated to achieve full parallelism to simulate a realis-

tic workload searching the genomes of many bacteria (one string per organism) for the

given pattern. For the TPC-H workload we use the data generator provided by the TPC-H

benchmark. We ran the sub-query of Q16, which we will be referring to as Q16 1:

select s_suppkey

from supplier

where s_comment like ’%Customer%Complaints%’

We use scale factor of 53 during data generation for the Supplier column to produce 512K

rows. A fixed number of rows is randomly selected from the TPC-H data generator to

contain strings matching %Customer%Complaints%. We show the results for both the

original s comment column size and for a wider column size of 1024 characters.

Pattern preprocessing is done only once for a pattern so it has no performance impact.

We store the jump-table in the shared memory in addition to the search pattern. We

compare our GPU implementation to the performance of PFAC multi-pattern matching

running on the GPU and a multi-threaded CPU implementation using three different CPU

implementations for A1.
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Figure 5.9: Performance as a function of string length for Pivot-4 (left) and Pivot-8 (right)

layouts. The top row shows the results for shorter strings and the bottom row for longer

strings.
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Figure 5.10: Time performance on A1 for varying pivoted width.

5.4.2 Comparing Algorithm Efficiency

Figure 5.9 shows the performance of all three versions of KMP and of BM on workload A2

as a function of the string length, using Pivot-4 and Pivot-8 layouts. The biggest impact of

our methods is for longer strings where there is worse memory locality and higher memory

divergence.

The top row shows the performance for strings up to 256 characters and the bottom

for strings up to 16384 characters. For strings less than 64 characters BM has similar

performance to KMP-Hybrid. For longer strings the performance of BM and KMP-Basic

deteriorates due to memory divergence.

Pivot-8 is clearly superior to Pivot-4 for all methods. Figure 5.10 shows the performance

of pivoted KMP and pivoted BM algorithms for varying pivot width on workload A1. We

observe that KMP has stable performance regardless of the pivoted width and pattern

length and in general it has superior performance to BM.

We repeated the experiment for workload R1, corresponding to a textual search on

a real-world dataset, where the character distribution is non-uniform. In Figure 5.11 we

show the corresponding results. We observe that the performance difference between KMP

methods and BM is higher than the difference for A1. This happens because when some

characters occur more frequently than others, as it is the case for real text, this resembles

inputs of smaller alphabet size for which BM has less competitive performance.
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Figure 5.11: Time performance on R1 for varying pivoted width.

Taken together, the results of Figures 5.10 and 5.11 suggest that 8 is the best choice for

pivoting width. We have repeated the same experiment for shorter strings (64 characters)

suggesting the same pivoted width. The results also show that, at least for pivoted layouts,

techniques that minimize memory divergence (KMP step and KMP hybrid) are superior.

KMP hybrid is better than KMP step in Figure 5.9 because thread divergence is reduced.

Threads do not have to proceed in lockstep at character granularity, just at 8-character

boundaries. From now on, we will use just KMP hybrid for single-pattern matching on

pivoted layouts.

We also implemented pivoting itself on the GPU to transform strings from contiguous

to pivoted representations. For a pivot width of 8, pivoting ran at 60GB/s on the K40,

which is typically faster than string search.

5.4.3 Effect of Thread Divergence

We show the performance of split optimization on the K40 and C2070 for workload A1 in

Figure 5.12.

Figure 5.12 compares the performance of independent string search to split-k for different

k and for a varying number of repetitions of the pattern in the strings. Each subfigure in

the top row corresponds to BM on the C2070 with a different operator selectivity: the first

for selectivity 0.6, the second for 0.75, and the last for selectivity 0.9. For less selective

conditions there is lower overhead of writing in shared memory in the intermediate steps
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C2070 BM C2070 BM C2070 BM

C2070 KMP K40 KMP K40 BM

Figure 5.12: Performance of Split-k Optimization on BM for varying number of string

occurrences in the input. The first subfigure is for selectivity 0.6, the second for 0.75, and

the last for selectivity 0.9.
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and more potential for bypassing computation, on the other hand the cost of string search

is lower because more threads finish searching early. For selectivity 0.9 the speed-up is up

to 40%, while for selectivity 0.6 the speed-up is 65%.

The right chart in the bottom row of Figure 5.12 shows corresponding results for BM

at selectivity 0.75 on the K40 GPU, which are qualitatively similar to the C2070. The

remaining two charts show the KMP performance on the two GPUs under various Split-

k configurations. Surprisingly, the GPUs differ significantly in the relative performance.

While split-k optimizations are helpful on the C2070, the same is not true on the K40. The

reasons for this difference are subtle, and illustrate the complexities of optimizing GPU

performance.

Consider the performance parameters of the two devices in Table 5.4. If an algorithm is

memory bound, it can expect at best a 2X (288/144) improvement moving from the C2070

to the K40. Similarly, if the algorithm is bound by the L2 bandwidth, an improvement of

1.7X ((1024 ∗ 745)/(384 ∗ 1150)) is possible. If the algorithm is bound by accesses to shared

memory, then a factor of 2 improvement is possible. On the other hand, an algorithm that

is not memory bound has the potential for a 4.2X ((2880 ∗ 745)/(448 ∗ 1150)) speedup due

to the much larger number of cores on the K40. The K40 can issue two instructions per

warp so depending on how well the pipeline slots can be filled, the speedup potential is

up to 8.4X. The KMP algorithms with the split optimization are shared-memory bound,

because the intermediates used by this optimization need to be written to and read from

shared memory. On the other hand, the KMP algorithm without the split optimization has

been engineered to be cache resident and to avoid memory performance pitfalls. As a result

it can achieve a speedup closer to the 4.2X potential speedup. BM, being memory bound

due to the high cache miss rate, cannot achieve the same speedup.

5.4.4 Effect of Alphabet Size

Figure 5.13 shows the performance of the pivoted and unpivoted methods for varying al-

phabet size. We observe that BM methods, both pivoted and unpivoted depend on the

alphabet size: For larger alphabets the performance improves, because the skipping dis-

tance increases. The performance improvement is more observable for pivoted-BM because
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Figure 5.13: Time performance of pivoted and unpivoted methods for varying alphabet size

and an 8-character pattern.

for large alphabets the memory divergence decreases and threads in a warp may skip entire

pivoted pieces. KMP also slightly improves: The memory access cost remains the same

because memory accesses are better coordinated (KMP-Hybrid and KMP-Step) but there

are fewer partial matches so there are fewer jumps over the pattern table. The overall

performance variation is less observable because the pattern and the jump table are stored

in the shared memory which is faster. Finally, we observe that pivoted KMP-Hybrid is the

faster matching method even for larger alphabets.

Figure 5.14: Performance for increasing pattern length for Independent and Seg-k-t (8)

implementations.



CHAPTER 5. SUB-STRING MATCHING ACCELERATION 88

Figure 5.15: Performance of BM for average and adversarial input.

5.4.5 Segmentation

Figure 5.14 shows the performance of Seg-k-t for t = 16 for increasing pattern length on

workload A1. For BM and patterns shorter than 16 characters the best method is Seg-32

because of the reduced cache misses, but for patterns longer than 16 characters the most

efficient method is having threads matching independent strings. For BM the performance

is initially increasing because BM can skip larger parts of the input but it starts decreasing

because of the increased effect of boundary overhead. For KMP the optimal parallelism

method is independent threads because we already reduce the memory cost by prefetching

multiple characters into the registers. We also observe that KMP performance seems to

depend less on the pattern length. When t > 8, we observed that the choice of t did not

significantly affect the performance of string matching.

5.4.6 Worse-Case Performance

Figure 5.15 shows the performance of row-wise and Pivoted-8 BM for an average and worst-

case input set of strings on workload A1 for a 32-character pattern.

The performance difference is about an order of magnitude. We also observe pivoting

helps the performance of BM. This is because subset of the threads particularly at the

beginning of the search process “jump” to the same pivoted column. However depending

on the pattern length and the pivoted width the performance improvement might be less
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Figure 5.16: Performance of KMP and BM for varying group size.

Figure 5.17: Bandwidth of string matching for sparse and dense record lists for pivoted

(left) and unpivoted (right) KMP methods.

significant, as we noted in Figure 5.10. The performance difference for all versions KMP

between the average and worst case is less than 2x making it a more robust choice.

5.4.7 Thread Group Size Tuning

Figure 5.16 shows the performance of (Pivot-8 and unpivoted) KMP and BM for varying

group size on A1 for a 4-character pattern. KMP basic is used for unpivoted and KMP hybrid

for Pivot-8. The optimal thread group size for unpivoted BM is 128 because it has larger

cache footprint when there are more concurrent threads. For the Seg-k-t BM method the

L2 footprint is reduced so the optimal group size is larger; we use the optimal thread group

size for each method.

Co-processing performance Figure 5.17 shows the performance of Pivot-KMP, Self-

Pivot-KMP and unpivoted KMP for two different access patterns. String matching is ap-
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plied on a sparse and a dense subset of records rather than the full table. The sparse record

list corresponds to 1% selectivity while the dense for 50% selectivity. These patterns cor-

respond to queries where one or multiple predicates have already been applied. The list of

the record identifiers are communicated from the CPU to GPU. In the pivoted methods the

dense rid-list performance is hardly affected because we’re still doing just a small number of

memory transactions (2 rather than 1, since the selectivity is 0.5). As expected, the unpiv-

oted method’s performance is not significantly affected. The performance for the unpivoted

method is still lower than the performance of the pivoted methods on sparse record lists.

For the sparse case threads in a warp will access different pivoted pieces so we are doing

32 transactions rather than 1 and pivoting performance degrades significantly. However,

self-pivoting maintains most of the performance benefits even when a sparse subset of the

strings is processed from a query.

Table 5.6 shows the performance of the three CPU-GPU coprocessing stategies for the

following query:

Select count(*)

From Orders

Where o_comment not like ’%special%packages%’ AND o_orderstatus=’F’ AND

o_totalprice>50000

The dataset is generated by the TPC-H generator. The string column o comment is

stored in the GPU. The other two columns are stored in the CPU RAM. The fastest stategy

Strategy A Strategy B Strategy C

0.85 ms 1.02 ms 1.05 ms

Table 5.6: Time performance of the three alternative CPU-GPU interaction strategies.

is Strategy A because the predicates applied on the CPU are “cheap” to evaluate. For more

expensive predicates we expect Strategy B to be more competitive.

5.4.8 Comparison with CPUs

Investing in the use of a GPU depends on more factors than just the raw query performance.

We compare GPUs and CPUs holistically in terms of raw performance, performance per
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$ and energy consumption for the subquery Q16 1. In addition to comparing CPU and a

GPU processors, we also show the estimated performance of a combined system that uses

both CPUs and a K40 GPU in the following way: It initially executes different instances

of the same query on the CPUs and the GPU. We run a query per CPU hardware thread

and another query instance on the CPU delegating its work to the GPU. The CPU threads

use for each query the fastest CPU matching library among the algorithms that have linear

time complexity. Whenever a query completes execution we start a new query to ensure

that all processors are kept busy. This process is executed for five seconds and in the

end we compute the average bandwidth and energy consumption per query. Typically the

throughput of the combined system is the sum of the measured query throughput of all the

processors when executing independently. There is only a small (5-10%) overhead when the

CPU thread delegating its workload to the GPU has to copy back the query results.

We use all 24 CPU hardware threads and set the frequency policy to maximum.4 We

evaluate two different popular CPU libraries, RE2, and Boost and we show the performance

of the fastest of the two. For RE2 each thread is independent operating on a separate re2

object, so the pattern is compiled once for each thread. For the Boost library we use the

object-based interface for each method and the pattern is again compiled once for each

CPU thread. We also implement a CPU matching method based on the CMPISTRI SSE

instruction for patterns that fit in a SSE register. In the worst case this method has O(n×m)

time complexity but in the special case of short patterns it has good performance. This

method scans the string in segments of 16 bytes (the size of the SSE register) until a full

match is found. If a partial match is found the CMPISTRI instruction returns an offset to

the beginning of the partial match; we then load the next 16 bytes and check whether the

following segment matches the remaining subpattern.

Tables 5.7 and 5.8 summarize our CPU versus GPU comparison for the two different

column sizes of the TPC-H workload. We focus on longer strings so we use the results

of Table 5.7 in our later analysis but the results also favour GPUs for the shorter string

experiments.

4This the maximum base frequency, not a boosted frequency that depends on power or temperature

headroom.
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CPU (RE2) CPU (CMPISTRI) GPU CPU+GPU

Price ($) 952 952 3100 4052

Query Performance (GB/s) 40.75 43.1 98.7 138.7

Energy consumed (J) 2.09 1.97 1.27 1.53

Performance / $ 42.8 45.28 31.89 34.23

Table 5.7: CPU versus GPU comparison for Q16 1 and string size 1024 bytes.

CPU (Boost BM) CPU (CMPISTRI) GPU CPU+GPU

Price ($) 952 952 3100 4052

Query Performance (GB/s) 20.87 28.36 80.56 100.2

Energy consumed (J) 0.24 0.18 0.1 0.15

Performance / $ 21.92 29.8 26.01 26.87

Table 5.8: CPU versus GPU comparison for Q16 1 and original string size (63 bytes).

The power rating of the K40 is 235W. For the two CPUs the aggregate power rating

is 170W. The energy consumption does not include the RAM memory energy consumption

while for the GPU the rating includes all GPU components. Tables 5.7 and 5.8 show

that the estimated GPU energy consumption is at least 1.55x less than the CPU energy

consumption for long and medium length strings. For long strings the energy consumed

for the Q16 1 execution is 1.97J for the CPU implementation based on CMPISTRI and

1.27J for the GPU, so the GPU consumes 1.55x times less the energy than the CPU even

without including the energy consumed from the CPU RAM. We also note the the power

efficiency for the latest GPUs seems to be improving: The K80 processor has 1.65x the

memory bandwidth of the K40 (480 GB/s) and 1.73x the number of cores while the power

rating is only 1.27x of that of the K40 used in our experiments [NVIDIA, 2015e].

We compute the (MB/s)/($) rate to quantify the performance per $. The price of the

K40 is $3100. The price for each CPU processor is $421 and to that cost we must add

the price for 12GB DDR3 RAM, which is $110, so the total price for the CPU system is

$952.5 Using the above costs the performance / $ rate for the CPU is 45.28 and for the

5Prices were taken on 05/08/2015 from amazon.com.
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Figure 5.18: Time performance of CPU and GPU string matching for A1 and a 8-character

pattern. The y-axis is logarithmic.

GPU 31.89 for long strings (Table 5.7). However, for medium length strings GPUs have

similar performance per $ ratio: 26.01 versus 29.8 for the CPU system (Table 5.8). If

we limit our comparison against CPU algorithms with linear worst-time complexity, the

GPU has actually better performance per $. We found similar results for a Q13 TPC-H

subquery, operating on shorter strings (average string length 47 characters). The results

for this sub-query can be found in the Appendix.

Figure 5.19: Time performance of KMP for two different predicates: ’%S1%S2%S3%’ vs.

’%S1S2S3%’.

Figure 5.18 shows the performance of the CPU libraries and the GPU pivoted string

matching methods for varying pattern selectivity. The performance difference between

GPU and CMPISTRI is less significant for the synthetic dataset but Pivot-KMP method’s

performance is still 20-45% faster for any selectivity value. We also notice that RE2 has
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Figure 5.20: Performance of pivoted AC, pivoted KMP against PFAC for varying selectivity.

worse performance for the artificially generated dataset: This happens because RE2 can

advance fast over a string if the first character of the pattern being searched does not

appear in the input string. For example, when searching for the wildcard predicate ’%Cus-

tomer%Complaints’ in Q16 1, character ’C’ occurs only in about a third of the input strings

so RE2 performance is relatively high. For the artificially generated dataset typically all 26

characters appear in each of the input strings so this optimization cannot be applied.

Figure 5.19 compares the performance of KMP for a LIKE ’%S1S2S3%’ query and a

LIKE ’%S1%S2%S3%’ query. In the second query all string searches are implemented in

one kernel. All three patterns are preprocessed and stored in an array of patterns. Each

time a substring is found the array index is incremented and an overall match is found

if all substrings are matched. KMP performance degrades slightly for queries involving a

sequence of patterns because of the extra bookkeeping cost.

Figure 5.20 shows the performance of pivoted AC for varying selectivity, implementing

the following LIKE predicate: LIKE ’%(S1|S2|S3)%’. We compare the performance of AC

to the performance of: a) KMP for the same query using split optimization, where each

step matches one of the three patterns consecutively; b) single-pattern KMP hybrid that

performs a simpler query; c) KMP step matching all three patterns by keeping a separate

state for each pattern; and d) PFAC library using all optimizations [Lin et al., 2013b]. We

observe that AC, when storing the DFA in the shared memory, does not have significant

overhead compared to single-pattern KMP, and that it is the superior method for multi-
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Library Machine Cores Bandwidth Perf.(m=20) Perf.(m=25) (Avg Perf.)/$

Self-Pivot-KMP Tesla C2070 448 144 GB/s 15.21GB/s 15.02GB/s 12.1

Self-Pivot-KMP Kepler K40 2880 288 GB/s 55.37GB/s 55.13GB/s 17.82

Pivot-KMP Tesla C2070 448 144 GB/s 14.93GB/s 15.27GB/s 12.08

Pivot-KMP Kepler K40 2880 288 GB/s 54.53GB/s 55.06GB/s 17.67

PFAC Kepler K40 2880 288 GB/s 26.3GB/s 26.3GB/s 8.5

KMP Tesla K20m 2496 208 GB/s 19.76GB/s N/A 7.39

BMH GTX 280 240 141.7 GB/s N/A 1.2GB/s 10

Table 5.9: Performance (GB/s) of our matching methods versus the published performance

of other GPU libraries (bottom three lines).

Short pat.(4) Medium pat.(16) Long pat. (64 chars)

Low sel. (0.05) Pivot-KMP Pivot-KMP Pivot-BM

Medium sel. (0.5) Pivot-KMP Pivot-KMP Pivot-KMP

High sel. (0.9) Pivot-KMP Pivot-KMP Pivot-KMP

Table 5.10: Best average case performance for workload A1 for different query parameters.

pattern matching. PFAC loads the first row in the shared memory which we have not

implemented in our AC implementation using texture memory. Our AC implementation

using shared memory is slightly faster than PFAC for a small number of patterns. The most

significant advantage is that its performance does not degrade dramatically for adversarial

inputs: PFAC performance for worst-case inputs degrades by up to 20x [Lin et al., 2013b],

while our performance degrades by less than 2x.

Table 5.9 compares published performance numbers and the measured performance of

our GPU implementation on workload R2. This table shows that we significantly outperform

prior methods, even when adjusting for differences in GPU capabilities. Self-pivot KMP has

similar performance to Pivot-KMP with the additional benefit that it can coalesce memory

even when GPU operates on a subset of the table given by an rid-list. Table 5.10 summarizes

which algorithm-parallelism combination is optimal for different query parameters under

6Prices were taken on 05/08/2015 from amazon.com.
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workload A1. We observe that Pivoted KMP is the best algorithm because it has the best

performance in 8/9 cases. The competing algorithm is Pivot-BM for low selectivity queries

and longer patterns: BM can effectively skip over large segments of text. For the worst-case

inputs KMP has always superior performance making it the best choice overall.

5.5 Conclusions and Future Work

We advocate using the GPU as a coprocessor for string matching and KMP as the preferred

string matching algorithm. String matching is an interesting application to evaluate the ef-

fect of thread and memory divergence on GPU kernel performance which has a fair number

of different dimensions. We suggest multiple parallelism methods for string matching and

study the performance of the state-of-the art algorithms on two different GPUs. We analyze

alternative string layouts in the global memory and suggest different performance optimiza-

tions for string matching algorithms. Our solution optimizes string search by selecting the

right parallelism granularity and string layout for the different algorithms. The performance

of our proposed methods exceeds that of other CPU and GPU implementations.
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Chapter 6

SIMD-Accelerated Regular

Expressions

6.1 Introduction

Modern hardware advances have made a substantial impact on the design and implementa-

tion of database systems. The increase in RAM capacity allows the average-sized database

to fit in main memory. With main-memory-resident data, the performance bottleneck shifts

from disk speed to the RAM bandwidth, an order of magnitude higher.

Improving CPU efficiency for in-memory query processing seeks to explore all kinds of

parallelism provided by modern CPUs in order to saturate the RAM bandwidth. With the

advent of multi-core CPUs, multi-threading is now the most fundamental optimization for

performance-critical tasks.

In the context of databases, scan operators, besides using multiple threads, also utilize

SIMD vector instructions to maximize efficiency. When the selective predicates are simple,

such as comparing a constant against a numeric column, multi-threaded scans in SIMD

code process data faster than can be loaded, reaching the RAM bandwidth bottleneck.

A significant collaborator in this project was Orestis Polychroniou. He contributed to

shaping the research problem during our discussions and writing our solution overview. He

also wrote the vectorized code for the regular expression matching.
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6.1.1 Substring Matching

Many algorithms have been proposed to accelerate substring matching, the most well known

being Knuth-Morris-Pratt [Knuth et al., 1977] and Boyer-Moore [Boyer and Moore, 1977].

Both algorithms improve over the worst-case O(n2) brute-force solution, by employing pre-

computed offset arrays, in order to achieve O(n) worst case complexity. The pre-processing

step is dependent on the pattern only and is trivial in databases where a single pattern is

matched against many tuples. The implementation of Boyer-Moore for matching a single

pattern is shown below. The pat_jmp and sym_jmp arrays are pre-computed once.

bool like(const char *string, const char *pattern,

size_t str_len, size_t pat_len, [...]) {

size_t i = pat_len - 1;

while (i < str_len) {

uint8_t b = string[i];

size_t j = pat_len - 1;

while (b == pattern[j]) {

if (j == 0) return true;

b = string[--i], j--; }

i += max(pat_jmp[j], sym_jmp[b]); }

return false; }

Luckily, recent mainstream CPUs offer a specialized SIMD instruction to process strings

that can also be used to implement substring matching. Specifically, the SSE 4.2 128-bit

SIMD instruction set in x86 processors provides the cmp?str instructions that can match

against patterns that fit in a SIMD register. The algorithm resembles the brute force

approach, but runs in O(n) time for patterns up to 16 bytes.

bool like(const char *string, __m128i pat, [...]) {

size_t i = 0;

while (i + 16 < str_len) {

__m128i str = _mm_loadu_si128(&string[i]);

size_t j = _mm_cmpistri(pat, str, 12);

if (j >= 16) i += 16;

else {
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Figure 6.1: Substring matching for TPC-H Q13.

if (j + pat_len <= 16) return true;

i += j; } }

if (i + pat_len <= str_len) {

__m128i str = _mm_loadu_si128(&string[i]);

size_t j = _mm_cmpestri(pat, pat_len, str,

str_len - i, 12);

if (j < 16 && j + pat_len <= 16) return true; }

return false; }

Figure 6.1 shows the performance of different algorithms for substring matching on

TPC-H Q13 (scalar factor 300) using multiple threads on a mainstream 4-core CPU. The

query has a like ’%special%packages%’ operator that matches patterns special and

packages in that order. By nesting two calls of substring matching that return the match

position, we can implement a conjunction of pattern matches.

Substring matching without using the specialized hardware instruction is far from the

RAM bandwidth, due to branch dependencies for every character of the input string. Knuth-

Morris-Pratt (KMP) is very similar to a deterministic finite automaton (DFA) that matches

the same pattern, but uses an ad-hoc jump table for failed matches. The DFA is imple-

mented using a 2D transition table for each state times all possible values per string charac-

ter. The number of states is equal to the pattern length. As expected, KMP and the DFA

have similar performance since both scan the entire string if there no match. Boyer-Moore

(BM) is much faster than KMP due to skipping a large portion of each input string. Still,

we cannot saturate the RAM bandwidth, even with multiple threads. Note that the we
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generate a bitmap and thus selectivity does not affect the performance.

6.1.2 Regular Expression Matching

While a single instruction is enough to cover most queries with substring matching operators,

more advanced predicates such as regular expression matching cannot be optimized as

easily. Popular databases offer regular expression matching predicates such as regexp_like

in Oracle DB, or rlike/regexp in MySQL. For example, this MySQL query counts the

employees with valid e-mail addresses:

select count(*) from employees

where email regexp # or "rlike"

’^[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+.[A-Za-z]2,4$’

To match a string against a regular expression, we typically construct a DFA. DFAs

have a number of states that transition to other states based on the next character of the

string. Because each character is processed only once, DFAs are worst-case O(n) to the

input string length. The DFAs are represented by a s × c transition table having s states

and c possible character values. The number of states s is dependent on the complexity of

the regular expression.

We show a DFA that validates e-mails in Figure 6.2. The DFA has 9 states and S is the

starting state. The double-circled states T2, T3, and T4 are also accepting states.

Figure 6.2: A DFA that validates e-mail addresses.
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Figure 6.3: DFAs for combinations of: she, her.

All regular expressions have a DFA that matches them. A DFA can be costructed au-

tomatically from a regular expression and the number of states can be minimized, which

is still a pre-processing step in the context of databases. Regular expressions of course

cover all logical combinations substring matching. For example, the selection filter like

’%special%’ or like ’%packages%’ can either use two calls of substring matching and

combine their result, or use a DFA to match both words simultaneously. The DFA matches

input strings in linear time regardless of the number of patterns, but its size grows if more

words have to be matched. A well known algorithm for multi-pattern substring matching

is Aho-Corasick [Aho and Corasick, 1975]. Aho-Corasick places all patterns in a trie, im-

plemented as a DFA, and keeps a separate transition table for failed matches, similar to

KMP. However, the extra table can be encoded in the DFA transitions. Then, Aho-Corasick

becomes identical to the minimal DFA. However, unlike Aho-Corasick, DFAs can accept all

logical combination of positive and negative patterns. Figure 6.3 shows: (i) the trie that

accepts her or she (A states), (ii) a DFA that accepts the same as substrings (B states),

and (iii) a DFA that accepts she but rejects her as substrings (C states).

In Figure 6.2, there is an implicit extra state that works as a reject sink. An e-mail is

invalid if we encounter an invalid character and can stop the DFA traveral immediately. In

Figure 6.3 B5 is an accept sink and C8 is a reject sink. A DFA can have both. These special

states allow us to accept or reject a string early, which is crucial for performance in some
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DFAs, but can also introduce branch mispredictions.

We show how to implement regular expression matching via DFA traversal in vectorized

SIMD code. Our implementation traverses the DFA for multiple strings at a time. We

employ non-contiguous loads (gathers) to access different parts of multiple input strings

without assuming any particular alignment. We also use gathers to traverse the DFA for

multiple strings in parallel. Finally, we use branchless vectorized code to store the rids of

matching tuples, while dropping strings that reach a sink state early.

Our approach works on both recent mainstream CPUs (Intel Haswell) and co-processors

(Intel Xeon Phi) and is independent of the SIMD length. Our experimental evaluation

shows that our method achieves more than 5X improvement on co-processors and significant

improvement (50% to 80% of the memory bandwidth) on mainstream CPUs, offering a

crucial tool to support fast regular expression matching.

In Section 6.2 we present related work. In Section 6.3 we describe our vectorized im-

plementation for regular expression matching, including details such as how to access the

input strings, how to traverse the DFA, and how to drop early failures. In Section 6.4 is

our evaluation and we conclude in Section 6.5.

6.2 Related Work

As seen in the introduction, several algorithms have been proposed for substring matching.

Knuth-Morris-Pratt [Knuth et al., 1977] and Boyer-Moore [Boyer and Moore, 1977] are the

most well known for single pattern matching, while Aho-Corasick [Aho and Corasick, 1975]

and Commentz [Commentz-Walter, 1979] support multiple patterns. To convert a regular

expression to a DFA with minimum number of states, we first translate it to an NFA, then

convert to a larger DFA, and then minimize the states [Hopcroft, 1971]. This process is not

time-critical in databases where expensive pre-processing is acceptable.

SIMD vector instructions were used to parallelize business text analytics workloads

[Salapura et al., 2012]. In Chapter 5 we used GPUs for efficient substring matching. Cell

SPEs were used for fast network filtering [Kulishov, 2009]. Cell processors also accelerated

DFA matching on multiple inputs [Scarpazza et al., 2007; Iorio and Lunteren, 2008]. Com-
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plementary techniques parallelized DFA matching within the same input [Mytkowicz et al.,

2014]. A space-efficient technique to split Aho-Corasick in two steps involving a DFA and

an NFA that can also use SIMD instructions was proposed [Yang et al., 2010]. Large DFAs

were partitioned to fit in the Xeon Phi co-processor cache [Tran et al., 2014]. Nevertheless,

DFAs used in databases rarely exceed the CPU cache size. Advanced vector instructions,

such as gathers, have been used to optimize in-memory database operators [Polychroniou

and Ross, 2014; Polychroniou et al., 2015].

6.3 Implementation

Regular expressions have a single DFA with the mininum number of states that matches

them. What makes the DFA deterministic is that there is only one possible transition per

state and character. Thus, we can represent the DFA as a s × c array with s states and c

transitions where c is the size of the alphabet. Here we will use c = 256 to cover every value

of each byte. Each state can either be accepting or rejecting. To avoid explicitly storing

this information, we reorder the states placing the first srej rejecting states in rows [0, srej)

and the rest sacc accepting states in rows [srej , sacc + srej). We use special numbers for sink

states without storing any transitions, as these states only loop back to themselves.

Because the 2D-array representation of the DFA has always c transitions per state, we

can map the 2D-array into an 1D-array and use arithmetic to compute the indexes. We

start from the initial state and combine the state number with the next byte to find the

position of the transition. The loop stops either when the string ends or if we reach one of

the two sink states. The scalar code is shown below:

bool rlike(const uint8_t *string, size_t str_len,

const ssize_t *dfa, [...]) {

size_t i = 0, s = initial_state;

do {

s = dfa[(s << 8) | string[i]];

} while (0 <= (ssize_t) s && ++i != str_len);

return s + 1 > reject_states; }

The snippet is inlined in a loop that scans over the string column and stores the rids
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of the accepted strings. A few optimizations we do to minimize the number of branches is

to set the transtions to the negative and the positive sink to -1 and -2 respectively. The

0 <= (ssize_t) s signed integer comparison tests whether the state is a sink or not. The

s+1 > reject_states unsigned integer comparison tests whether the state is in the range

[−1, srej), thus the string should be rejected (we use unsigned arithmetic and exploit the

s+1 unsigned overflow). By minimizing the branch tests and using simple arithmetic to

access the DFA transition table, we ensure that the scalar code is as fast as possible.

If the number of states is small, we can write the DFA as a byte array (if s < 255)

and shrink its memory footprint to fit it in the cache. In the database context, where the

regular expression is specified in the query, the DFA is small and will probably fit in the L1

cache. Thus, performance is determined primarily and the L1 access latency for accessing

new states, and by the number branch mispredictions if the strings are accepted or rejected

early. Note that while there are no explicit if statements in the code, branches still occur

if strings fail early. If we always have to process the entire string (e.g. because there are no

transitions to sink states), the inner loop will execute a specific number of repeats and will

not incur any branch mispredictions on advanced CPUs.

At first glance, optimizing the above snippet looks hardly possible, especially given

that there are really no compute instructions to vectorize. For instance, there is no hash

function compute. We will show that even such simple loops can get significant speedups

from vectorized SIMD code. The only assumption we make is that the strings have fixed

lengths, which is a common assumption of main-memory column stores to allow accessing

string columns using record identifiers (rids). If the strings are shorter, they can be padded

with some special character that is not part of the regular expression and transitions to a

sink state in the DFA.

The fundamental principle in the vectorized approach is to process a different string

per vector lane. This has been shown in previous work [Polychroniou and Ross, 2014;

Polychroniou et al., 2015] to work very well, especially on the co-processors that use very

simple cores augmented with large vector units. Also, the number of operations drop to

O(1/W ) (W the number of vector lanes) compared to the scalar code. Strings that reach

some sink state should be not continue traversing the DFA. Thus, we need to access the input



CHAPTER 6. SIMD-ACCELERATED REGULAR EXPRESSIONS 105

out-of-order, creating new rids to replace the rids of strings that have finished processing.

We also store the rids of processed strings that reached an accepting DFA state. A simplified

version of the vectorized approach is shown below.

r⃗ ← ridsin[0] ◃ rids of strings being processed

s⃗← sinitial ◃ state of strings being processed

o⃗← 0 ◃ offset in strings being processed

i←W , j ← 0 ◃ input & output index

while i ≤ N do

d⃗← strings[r⃗ · l + o⃗] ◃ gather next character(s)

s⃗← dfa[(s⃗ << 8) — d⃗] ◃ transition to next state(s)

m← (s⃗ + 1 > sreject) & (o⃗ = l) ◃ check if accepted

ridsout[j]←m r⃗ ◃ store rid(s) (if accepted)

j ← j + |m⃗| ◃ update output index

m← (s⃗ < 0) — (o⃗ ≥ l) ◃ check if finished

r⃗ ←m ridsin[0] ◃ replace rid (if finished)

i← i + |m⃗| ◃ update input index

s⃗← m ? sinitial : s⃗ ◃ reset DFA state (if finished)

o⃗← m ? 0 : o⃗ ◃ reset in-string offset (if finished)

end while

The notation is taken from earlier work [Polychroniou et al., 2015] and is summarized

here for clarity. x⃗ ← A[⃗i] is a gather operation using i⃗ for the indexes. x⃗ ←m A[i] is a

selective load where only the lanes specified in bitmap m are replaced with data loaded

sequentially string from memory location A. A[i] ← d⃗ is a selective store where only the

lanes specified in m are stored sequentially starting from A. x⃗ ← m ? y⃗ : z⃗ copies the

values of each lanes from either y⃗ or z⃗, based on the bitmap m. The notation |m| denotes

the number of set bits in m. Scalar values in vector operations are broadcast to all lanes of

a vector. For example, x⃗← x⃗ + c adds c to all lanes of x⃗.

In the example algorithm, the rids are explicitly loaded from an input array. If the

strings are just scanned in order, we can implicitly generate rids incrementing from 1 to N .

Figure 6.4 illustrates this functionality. The output rids are also generated out-of-order.
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Figure 6.4: Selective loads & stores of rids.

The difference of the above code with the scalar code is that it converts all conditional

control flow into branchless data flow. Since the input is no longer accessed in order, we use

vector gather to load the bytes from the strings, compared to the scalar code that processed

a single string and accessed the bytes sequentially.

The inefficiency of the algorithm shown above is that it only processes one byte at a

time from each string. In string processing, we expect to process a non-trivial portion of

each string to match the regular expression. Thus, processing more than one byte for each

time we load new rids from input and store rids of matching strings to the output. Instead

of doing a cache access for one byte per string, we could instead load multiple consecutive

bytes, at least as big as a processor word (32-bit or 64-bit). CPU caches are equally fast

whether we access 1 byte, or 8 bytes (aligned). Even aligned 32-byte vector accesses can be

equally fast in the latest CPUs.

When gathering string data from arbitrary offsets, the accesses may not be aligned in

4-byte word boundaries. For example, if the string length is 15, the second string will start

from the 15th byte. Even if the processor allows scalar loads of 4-byte words or vectors loads

to be unaligned, vector gathers of words may still require to be aligned on word boundaries.

Mainstream CPUs (Intel Haswell) support unaligned gathers in SIMD (AVX 2), thus we can

directly use 64-bit unaligned gathers. Xeon Phi co-processors however, require the gathers

to be aligned and thus we have to do the alignment manually. To implement unaligned

gathers in software, we issue aligned word gathers and align the bytes manually. In detail,

we align the byte offset to an 4-byte int offset, gather 2 consecutive 4-byte ints per string,

and then align the 4-byte ints using variable-stride shifts. The process is shown in Figure 6.5.
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If we issue the minimum two 4-byte gathers, the number of usable bytes varies depending

on the possible alignments of strings. If the (fixed) string length is a multiple of 4, then all

strings will be aligned in 4-byte word boundaries and all 8 bytes are valid, unless we exceed

the string length. If the string length is a multiple of 2, then all srings are aligned in 2-byte

boundaries and at least 6 bytes are valid. Otherwise, at least 5 bytes are valid.

Figure 6.5: Unaligned vector gathers in Xeon Phi.

The Xeon Phi code for gathering string bytes is shown below.

// compute index: rid * length + offset

__m512i p = _mm512_fmadd_epi32(rid, len, off);

// gather 8 bytes per string

__m512i p4 = _mm512_srli_epi32(p, 2);

__m512i w1 = _mm512_i32gather_epi32(p4, &strs[0], 4);

__m512i w2 = _mm512_i32gather_epi32(p4, &strs[4], 4);

// compute right shift strides: (3 & p) << 3

__m512i sr = _mm512_and_epi32(p, m3);

shr = _mm512_slli_epi32(shr, 3);

// compute left shift strides: 32 - shr

__m512i shl = _mm512_sub_epi32(m32, shr)

// align first word: w1 = (w1 >> shr) | (w2 << shl)

w1 = _mm512_or_epi32(_mm512_srlv_epi32(w1, shr),

_mm512_sllv_epi32(w2, shl));

// align second word: w2 >>= shr

w2 = _mm512_srlv_epi32(w2, shr);
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A guide to the vector intrinsics is available online.1 If a compact main-memory layout

of the string column is not important, we can pad the strings to lengths that are multiples

of 4 to avoid the manual alignment and use 8 out of 8 gathered bytes. The same technique

can be used in CPU with unaligned gather support to reduce the latency.

To traverse the DFA, we use inner loops for each word of bytes that was gathered. The

loop repeats are only dependent on the fixed string length and thus should not incur branch

mispredictions. While we avoid reloading rids from the input or storing rids to the input

inside these loops, we still have to check whether the string has reached a sink state or

the end of the string. The Xeon Phi code is shown below. In some extreme cases, it may

be faster to test whether all vector lanes are invalid and exit the inner loops. On average,

however, we expect the strings to be larger than 5–8 bytes, thus winning back the overhead

of a few redundant loops after reaching a sink state or the end of the string.

// isolate next byte per string

__m512i b = _mm512_and_epi32(w1, mFF);

// compute index in transition table

__m512i p = _mm512_slli_epi32(s, 8);

p = _mm512_or_epi32(p, b);

// gather new states (assuming 8-bit DFA array)

s = _mm512_mask_i32extgather_epi32(s, k, p, dfa,

_MM_UPCONV_EPI32_SINT8, 1, 0);

// increment offset for valid lanes using a -1 mask

off = _mm512_mask_sub_epi32(off, k, off, m1);

// shift word to get next string byte

w1 = _mm256_srli_epi32(w1, 8);

// update valid lanes: check for sink state (s > -1)

k = _mm512_mask_cmpgt_epi32_mask(k, cur, m1);

// update valid lanes: check for end of string

k = _mm512_mask_cmpgt_epi32_mask(k, len, off);

Finally, we note that the gathers to the DFA transition table cannot be optimized. Even

if the DFA is a table of bytes, there is no use for the nearby bytes that would fit in the same

1software.intel.com/sites/landingpage/IntrinsicsGuide/

software.intel.com/sites/landingpage/IntrinsicsGuide/
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processor word. An interesting observation is that if the hardware does not support single

byte gathers, the cost of converting (4-byte) int gathers to bytes using shifting is expensive

and adds significant overhead to the critical path. Xeon Phi supports this functionality but

the latest CPUs (AVX 2) do not. Thus, on the CPU implementation we found that storing

the transition table of small DFAs using 4-byte ints rather than bytes makes traversal faster,

even if it quadruples its size. The increase in the DFA footprint will in most cases not affect

performance, because CPU gathers (AVX 2) are equally fast in the L1 and the L2 cache

[Hofmann and others, 2014].

A common optimization applied to vector implementations is to unroll all instructions by

repeating them for multiple instances of data. Unrolling hides the latencies among instruc-

tions, and improves performance even in aggressively out-of-order CPUs with simultaneous

multi-threading (SMT). We can apply 2-way loop unrolling here by generating rids from 1

to N and N to 1 in the same loop, until the two rid offsets meet in the middle. In the end,

a few rids will be processed in scalar code but their number is trivial (< 4W ). The number

of variables that hold the state of the two instances is doubled and thus we must ensure

that the number of physical registers suffices to avoid register spilling.

Overall, the vectorized implementation improves regular expression matching via DFA

traversal when the DFA is cache-resident. If the DFA does not fit in the cache (which is

rare), we expect the performance to be dominated by RAM accesses. Note that reducing

the RAM latency through pre-fetching is not possible here because we cannot predict the

state at which the DFA will be in a generic way. A more practical solution is to partition

the DFA and apply our technique to each cache-resident partition. Nevertheless, reducing

the DFA footprint is out of the scope of this thesis.

6.4 Experimental Evaluation

Our evaluation was done on two platforms. The first platform is an Intel Xeon E3-1275v3

CPU with 4 Intel Haswell cores and 2-way SMT running at 3.5 GHz. The CPU has accesses

to 32 GB of 1600 MHz DDR3 ECC RAM with a peak load bandwidth of 21.8 GB/s and

supports 256-bit SIMD (AVX 2). It runs Linux 4.2 and we compile using GCC 5.2 with -O3.
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The second platform is an Intel Xeon Phi 7120P co-processor with 61 modified P54C cores

and 4-way SMT running at 1.238 GHz. The co-processor has access to 16 GB of on-chip

GDDR5 RAM with a peak load bandwidth of 212 GB/s and supports 512-bit SIMD. It

runs embedded Linux 2.6 and we compile using ICC 17 with -O3. We also tested ICC on

the CPU, but GCC was marginally faster.

All figures show the performance of three methods on both platforms. The three

methods shown are the scalar implementation (Scalar), the vectorized implementation

without loop unrolling (Vector (x1)), and vectorized implementation 2-way loop unrolled

(Vector (x2)). In all cases, we scan a fixed-length string column with synthetically gener-

ated data tailored to each regular expression to meet specific criteria per experiment. The

method scan over the column and the rids of the strings that match the regular expression.

The rids are implicitly generated from 0 to N -1. Each method is run in a shared nothing

fashion using multiple threads, but the DFA is shared (read-only). The DFAs are com-

pressed to byte if the number of states is small enough unless we run on the CPU where

32-bit gathers are faster. Unless otherwise specified, we use all available hardware threads,

the selectivity is 1%, and the string length is 32.

Figure 6.6: Varying string lengths (URL validation)

Figure 6.6 shows the throughput of regular expression matching by varying the string

length. The DFA validates whether the input string is a valid URL using a complicated

regular expression. The DFA has 90 states (64 rejecting states, 26 accepting states, and the

reject sink) and has a memory footprint of 23 KB if stored as a byte array. The selectivity

is 1% and we process half the string bytes on average to reach the reject sink state. The

speedup on the Haswell CPU is 1.75–1.9X and increases with the string length. The scalar
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code uses up to 25% of the memory bandwidth while the vector code uses up to 45% of

the bandwidth. Loop unrolling boosts the vectorized method up to 14% On the Xeon Phi

co-processor, the vectorized code is 3.1–3.7X faster and increases the bandwidth usage from

7% to 26%. Loop unrolling is actually slower on the Xeon Phi since each core executes

in-order and has 4-way SMT. Both platforms are severely compute-bound since we access

the cache per byte of input. Xeon Phi exhibits spikes due to unaligned gathers being slightly

faster when the strings are 4-byte aligned.

In Figure 6.7, we use the same DFA with the same settings, but we fix the string length

to 32 and vary the failure point of the input strings. The failure point represents the number

of bytes processed per string, or the average number of transitions in the DFA until we reach

the reject sink state.

Figure 6.7: Varying the failure point (URL validation)

Figure 6.8: Varying the failure point (URL validation, long strings)

The vectorization speedup in the CPU is 1.6–1.85X and increases the bandwidth usage from

a 26% to an 47% averaged across all failure points for strings of length 32. Loop unrolling
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boosts performance up to 13%. In the co-processor, the vectorized code is 2.7–3.3X faster

and uses up to 26% of the bandwidth. Loop unrolling again reduces performance. In

Figure 6.8, we fix the string length to 1024 characters. Similarly, loop unrolling boosts

performance on Haswell while it reduces performance on Xeon-Phi. For both processors,

the performance drop is more dramatic when more than 64 characters are processed on

average. The cache line size in both processors is 64 bytes so when more than 64 bytes are

processed per string, the total number of memory accesses increases.

Figure 6.9: Varying the selectivity (URL validation)

In Figure 6.9, we use the same URL-validating DFA. The string length is fixed to 32

and we vary the selectivity rate. For the strings that do not match, we process half the

bytes on average to traverse the DFA until the rejection is determined. In the CPU, we get

1.75–1.8X vectorization speedup and increase the bandwidth usage from 25% to 45% in low

selectivities. The throughput drops by 32% when the selectivity reaches 100%. When the

selectivity is near 0%, up to 45% of the load bandwidth is utilized. In the co-processor, the

vectorized code is 3.5–4.7X faster, which is maximized when the selectivity is close to 100%.

The speedup is maximized on high selectivity because the entire string must be processed

to determine if it is a valid URL. Since we are compute-bound by the DFA accesses in the

cache per byte of input, generating an array of rids for the accepted strings, does not affect

performance unless the strings are very short.

Figure 6.10 varies the DFA size using multi-pattern substring matching. We vary the

number of words that are inserted in the DFA so that its states are 10k and in some cases

exceed the cache size. The selectivity is 1% but the inputs are generated by appending

valid dictionary words picked randomly, in order to ensure that we traverse long paths in
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Figure 6.10: Varying the DFA size (DFA for multi-pattern matching using English dictio-

nary words)

the DFA. In the CPU, the speedup is 1.75–2.5X and is maximized when the DFA is large.

This implies that out-of-cache access latencies are exacerbated when tied with control flow

dependencies, which is also supported by the fact that loop unrolling improves performance

up to 45% on larger DFAs. In the co-processor, the speedup is 1.05–3.7X and is maximized

when the DFA is small. Eliminating control flow dependencies is not useful on the in-order

cores of Xeon Phi.

Figure 6.11 shows the scalability of all methods using a small multi-pattern matching

DFA that contains both positive and negative examples. We use this DFA to illustrate

that our approach is more general than multi-pattern matching. Performance scales almost

linearly with the number of threads, even using SMT. On the Xeon Phi, this is expected

due to high-latency vector instructions. On the Haswell, this means that the operation is

compute-bound. Interestingly, using both SMT threads and loop unrolling gives marginal

improvement thus we largely saturate instruction-level and thread-level parallelism and are

bound by the cache accesses.

6.5 Conclusions

We presented generic vectorized implementations of regular expression matching for in

memory string analytics. Our implementations are based on DFAs and are efficient both

for general regular expression predicates and multi-pattern matching. We describe how to
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Figure 6.11: Scalability (multi-pattern matching both positive and negative using English

dictionary words)

handle irregular memory accesses both on the input strings and the DFA state transition

table using gather intrinsics. Our solution achieves up to 1.9X speed-ups on multi-core

processors and 5X on many-core accelerators highlighting the impact of vectorization on

analytics wokloads that are bound by cache accesses rather than compute instructions.
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Chapter 7

Decompression Acceleration

This research project is joint work with my mentors during my IBM summer internships and

my advisor Ken Ross. During my IBM internship in summer 2013, I was mentored by Rene

Mueller, Tim Kaldewey, and Guy Lohman. They designed the project specifications and

contributed to the bibliographic research by suggesting related work. Rene Mueller and Tim

Kaldewey provided technical mentorship to profile existing compression frameworks. Their

technical contribution also extended to refining my software design of our GPU compression

framework. Tim Kaldewey programmed the first implementation of our CPU compression

framework. Finally, all of my collaborators contributed to the final presentation of our

work.

7.1 Introduction

With exponentially-increasing data volumes and the high cost of enterprise data storage,

data compression has become essential for reducing storage costs in the Big Data era. There

exists a plethora of compression techniques, each having a different trade-off between its

compression ratio (compression efficiency) and its speed of execution (bandwidth). Most

research so far has focused on the speed of compressing data as it is loaded, but the speed

of decompressing that data can be even more important for Big Data workloads – usually

data is compressed only once at load time but repeatedly decompressed as it is read when

executing analytics or machine learning jobs. Decompression speed is therefore crucial to
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minimizing response time of these applications, which are typically I/O-bound.

In an era of flattening processor speeds, parallelism provides our best hope of speeding

up any process. In this work, we leverage the massive parallelism provided by Graphics Pro-

cessing Units (GPUs) to accelerate decompression. GPUs have already been successfully

used to accelerate several other data processing problems, while concomitantly providing

a better Performance/Watt ratio than conventional CPUs, as well. However, accelerating

decompression on massively parallel processors like GPUs presents new challenges. Straight-

forward parallelization methods, in which the input block is simply split into many, much

smaller data blocks that are then processed independently by each processor, result in

poorer compression efficiency, due to the reduced redundancy in the smaller blocks, as well

as diminishing performance returns caused by per-block overheads. In order to exploit

the high degree of parallelism of GPUs, with potentially thousands of concurrent threads,

our implementation needs to take advantage of both intra-block parallelism and inter-block

parallelism. For intra-block parallelism, a group of GPU threads decompresses the same

data block concurrently. Achieving this parallelism is challenging due to the inherent data

dependencies among the threads that collaborate on decompressing that block.

We propose and evaluate two approaches to address this intra-block decompression

challenge. The first technique exploits the SIMD-like execution model of GPUs to coordi-

nate the threads that are concurrently decompressing a data block. The second approach

avoids data dependencies encountered during decompression by pro-actively eliminating

performance-limiting back-references during the compression phase. The resulting speed

gain comes at the price of a marginal loss of compression efficiency. We also present Gom-

presso/Bit, a parallel implementation of an Inflate-like scheme [Deutsch, 1996] that aims

at high decompression speed and is suitable for massively-parallel processors such as GPUs.

We also implement Gompresso/Byte, based on LZ77 with byte-level encoding. It trades

off slightly lower compression ratios for an average 3× higher decompression speed.
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a a c a a c b a c a d d

Uncompressed Input Compressed Output

'a','a','c'

a a c a a c b a c a d d 'a','a','c', (0,3)

Figure 7.1: Illustration of LZ77 compression: (1) Literal is emitted because there was no

match for ‘c’. (2) Back-reference is emitted for a match on ‘aac’.

7.2 Related Work

A common type of data compression replaces frequently-occurring sequences with references

to earlier occurrences. This can be achieved by maintaining a dictionary of frequently-

occurring patterns, such as in the LZ78 [Ziv and Lempel, 1978] and LZW [Welch, 1984]

algorithms, or by maintaining a sliding window over the most recent data, as in the LZ77

algorithm [Ziv and Lempel, 1977]. A further space reduction can be achieved by encoding

individual characters or dictionary symbols as variable-length code words. This so-called

entropy encoding assigns code words with fewer bits to more frequently occurring symbols.

Popular entropy encoding schemes are Huffman [Huffman, 1952] or Arithmetic [Rissanen,

1976] coding.

Compression schemes typically combine a dictionary-based technique and entropy cod-

ing. We study a variant of the popular DEFLATE [Deutsch, 1996] compression scheme,

which is used in the gzip, ZIP, and PNG file formats. More precisely, we focus on the

decompression process, called Inflate. DEFLATE uses the LZ77 dictionary scheme followed

by Huffman coding. The dictionary in LZ77 is a sliding window over the recently processed

input. The LZ77 compressor produces a stream of token symbols, in which each token is

either a back-reference to a position in the sliding window dictionary, or a literal con-

taining a sequence of characters, if that sequence does not appear in the sliding window.
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A back-reference is represented as a tuple with the offset and the length of a match in the

sliding window. Figure 7.1 illustrates both token types in a simple example. In the first

step, the sequence ‘aa’ has already been processed and is in the sliding window dictionary.

‘caac. . . ’ is the input to be processed next. Since the window does not contain any sequence

starting with ‘c’, LZ77 emits a literal token ‘c’ and appends ‘c’ to the window. The sequence

to be processed in the subsequent step is ‘aacb. . . ‘. ‘aac’ is found in the window at position

0. The match is 3 characters long, hence, LZ77 emits back-reference token (0,3).

The resulting stream of literal and back-reference tokens are then converted into se-

quences of codewords by an entropy coder. DEFLATE uses Huffman coding, which yields

code words with varying bit-lengths. We also consider entropy encoding that operates at the

level of bytes rather than bits. This sacrifices some compression efficiency for speed. Exist-

ing dictionary-based compression schemes that use byte-level coding are LZRW1 [Williams,

1991], Snappy [Gunderson, 2015], and LZ4 [Collet, 2015a]. We refer to the implementation

using bit-level encoding as Gompresso/Bit. Similarly, the entropy encoder in Gom-

presso/Byte operates at the byte level.

Although there are numerous compression schemes, we focus in this section on just the

parallelization attempts of the best-known compression schemes.

Parallel CPU Implementations A parallel implementation for CPUs of gzip compres-

sion in the pigz library [Adler, 2015] achieves a linear speed-up of compression with the

number of CPU cores. Decompression in pigz, however, has to be single-threaded be-

cause of its variable-length blocks. Another CPU compression library, pbzip [Gilchrist and

Nikolov, 2015], parallelizes the set of algorithms implemented by the bzip2 scheme. The

input is split into data blocks that can be compressed and decompressed in parallel. As

already described in the Introduction, this inter-block parallelism alone is insufficient and

results in poor performance on GPUs.

Hardware-Accelerated Implementations Parallelizing compression schemes within

a block is a bigger challenge for massively-parallel processors. For example, the GPU

implementation of bzip2 did not improve performance against the single-core CPU bzip2

[Patel et al., 2012]. The major bottleneck was the string sort required for the Burrow-
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Wheeler-Transform (BWT) compression layer. Future compressor implementations could

be accelerated by replacing string sort with suffix array construction [Deo and Keely, 2013;

Edwards and Vishkin, 2014; Wang et al., 2015].

Most research has focused on accelerating compression, rather than decompression [Oz-

soy and Swany, 2011]. Here, we address the thread dependencies that limit the parallelism of

the LZ77 decompression. In our implementation each thread writes multiple back-reference

characters at a time, avoiding the high per character cost. A parallel algorithm for LZ

decompression, depending on the type of data dependencies, does not guarantee efficient

GPU memory access[Agostino, 2000]. Huffman encoding is typically added to improve the

compression ratio[Ozsoy et al., 2014]. However, decoding is hard to parallelize because

it has to identify codeword boundaries for variable-length coding schemes. Our parallel

decoding method splits data blocks into smaller sub-blocks to increase the available paral-

lelism. We trade-off a little of compression efficiency but only make only one pass over the

encoded data. Alternative parallel decoding algorithms do not affect the compression ratio

but they require multiple passes to decode the data for BWT decompression: A first pass

to determine the codeword boundaries and a second for the actual decoding [Edwards and

Vishkin, 2014].

Simpler compression schemes have been implemented on GPUs in the context of a

database system [Fang et al., 2010], but while these algorithms achieve good compression

ratios for database columns, they are not efficient for Big Data workloads that might be

unstructured. FPGAs and custom hardware have also been used to accelerate compres-

sion, resulting in high speed-ups [Xilinx, 2015; Abdelfattah et al., 2014]. However, these

hardware devices have very different characteristics and constraints than GPUs, so their

parallelization techniques generally aren’t applicable to GPUs.

7.3 Gompresso Overview

In this section, we provide an overview of Gompresso, which exploits parallelism between

and also within data blocks. The most important design goal for Gompresso is a high

decompression speed, while maintaining a “reasonable” compression ratio. Gompresso
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Figure 7.2: Gompresso splits the input into equally-sized blocks, which are then LZ77-

compressed independently and in parallel. In Gompresso/Bit, the resulting token streams

are further split into equal-sized sub-blocks and Huffman-encoded. The inverse process

follows for decompression.

implements both compression and decompression, and defines its own file format. Figure 7.2

gives an overview of the Gompresso compression and decompression algorithms. We

first briefly outline the parallel compression phase before describing parallel decompression,

which is our focus.

7.3.1 Parallel Compression

In the first step, Gompresso splits the input into equally-sized data blocks, which are

then compressed independently and in parallel. The block size is a configurable run-time

parameter that is chosen depending on the total data size and the number of available pro-

cessing elements on the GPU. Each block is LZ77-compressed by a group of threads using

an exhaustive parallel matching technique we described earlier [Sitaridi et al., 2013]. For

Gompresso/Byte, the pipeline ends here, and the resulting token streams are written into

the output file using a direct byte-level encoding. Gompresso/Bit requires an additional

step in which the tokens are encoded using a Huffman coder. Similar to DEFLATE, Gom-

presso/Bit uses two separate Huffman trees to facilitate the encoding, one for the match

offset values and the second for the length of the matches and the literals themselves. Both

trees are created from the token frequencies for each block. To facilitate parallel decoding

later on, the tokens of the data blocks are further split into smaller sub-blocks during encod-
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Figure 7.3: The Gompresso file format, consisting of: (1) a file header, (2) a sequence of

compressed data blocks, each with its two Huffman trees (Gompresso/Byte does not use

Huffman trees.) and encoded bitstream.

ing. A run-time parameter allows the user to set the number of sub-blocks per data block;

more sub-blocks per block increases parallelism and hence performance, but diminishes sub-

block size and hence compression ratio. Each encoded sub-block is written to the output

file, along with its compressed size in bits. The parallel decoder can determine the location

of the encoded sub-blocks in the compressed bitstream with this size information. Finally,

the Huffman trees are written in a canonical representation [Huffman, 1952]. Figure 7.3

shows the structure of the compressed file format in detail.

7.3.2 Parallel Decompression

Gompresso/Byte can combine decoding and decompression in a single pass because of

its fixed-length byte-level coding scheme. The token streams can be read directly from the

compressed output. Gompresso/Bit uses a variable-length coding scheme for a higher

compression ratio, and therefore needs to first decode the bitstream into a stream of to-

kens before proceeding with the LZ77 decompression. Gompresso assigns a group of GPU

threads to collaborate on the Huffman decoding and LZ77 decompression on the indepen-

dently compressed data blocks. This permits an additional degree of parallelism within
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data blocks.

7.3.2.1 Huffman Decoding

Each thread of a group decodes a different sub-block of the compressed data block. The

starting offset of each sub-block in the bitstream is computed from the cumulative sub-

block sizes in the file header. All sub-blocks of a given data block decode their bitstreams

using look-up tables created from the same two Huffman trees for that block and stored in

the software-controlled, on-chip memories of the GPU. We can retrieve the original token

symbol with a single lookup in each table, which is much faster than searching through

the (more compact) Huffman trees, which would introduce branches and hence divergence

of the threads’ execution paths. The output of the decoder is the stream of literal and

back-reference tokens, and is written back to the device memory.

7.3.2.2 LZ77 Decompression

Each data block is assigned to a single GPU warp (32 threads operating in lock-step) for

decompression. We chose to limit the group size to one warp in order to be able to take

advantage of the efficient voting and shuffling instructions within a warp. Larger thread

groups would require explicit synchronization and data exchange via on-chip memory. We

found that the potential performance gain by the increased degree of parallelism is canceled

out by this additional coordination overhead.

We first group consecutive literals into a single literal string. We further require that a

literal string is followed by a back-reference and vice versa, similar to the LZ4 [Collet, 2015a]

compression scheme. A literal string may have zero length if there is no literal token between

two consecutive back-references. A pair consisting of a literal string and a back-reference

is called a sequence. We assign each sequence to a different thread (see Figure 7.4). In

our experiments, we found that this grouping results in better decompression speed, since

it not only assigns each thread a larger unit of work but its uniformity suits the lock-

step execution model of the GPU. All threads in the warp concurrently alternate between

executing instructions for string literals and for back references. For each sequence, its

thread performs: (a) read its sequence from device memory and compute the start position
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Figure 7.4: Decompression of 3 sequences by 3 threads. Numbers at the bottom show the

positions in the uncompressed output, and those in bold indicate the start write positions

of each token. For simplicity, we indicate each match position as a global offset, though

Gompresso uses thread-relative distances.

of its string literal, (b) determine the output position of its literal, and copy its string literal

to the output buffer, and (c) resolve and write its back-reference. We now describe each

step in more detail:

Reading sequences Each warp uses the block offset to determine the location of the first

decoded token in the device memory. Each thread in the warp will read a different sequence

(see Figure 7.4). The threads then need to determine the start location of their literal

strings in the token stream. This is accomplished by computing an intra-warp exclusive

prefix sum from the literal lengths of their sequences, in order to locate the start positions

from which they can copy their literal strings. We use NVIDIA’s shuffle instructions to

efficiently compute this prefix sum without memory accesses, a common GPU technique.

Copying literal strings Next, the threads compute write positions in the decompressed

output buffer. Since all blocks, except potentially the last, have the same uncompressed size,

the threads can also easily determine the start position of their block in the uncompressed

output stream. The start position of each thread’s literal string is determined by a second
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exclusive prefix sum, which is then added to the start position of the block. This prefix sum

is computed from the total number of bytes that each thread will write for its sequence,

i.e., the length of its literal string plus the match length of the back-reference. Once the

source and destination positions are determined from the two prefix sums, the threads can

copy the literal strings from the token stream into the output buffer.

Copying back-references This is the most challenging step for parallel decompression,

because of the data dependencies between threads in a warp. These dependencies arise

when a back-reference points to another back-reference, and thus cannot be resolved before

the former has been resolved. We address these nested back-references in Section 7.4. After

all the back-references have been resolved, the warp continues with the next 32 sequences.

'aac', (0,3), 'b',(3,3),'d',(3,4)

T1

Sequence 1 Sequence 2

T3

Sequence 3

Figure 7.5: Nested back-references: back-references in Sequence 2 and 3 depend on Sequence

1, and cannot be resolved before the output of Sequence 1 is available.

7.4 Data Dependencies in Nested Back-references

Before processing a back-reference, the data pointed to by this reference needs to be avail-

able in the output. This introduces a data dependency and stalls threads with dependent

references until the referenced data becomes available. The problem is illustrated in Fig-

ure 7.5. Threads T2 and T3 will have to wait for T1 to finish processing its sequence, because

they both have back-references that point into the range that is written by T1. Resolving
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back-references sequentially would produce the correct output, but would also under-utilize

the available thread resources. To maximize thread utilization, we propose two strategies to

handle these data dependencies. The first strategy uses warp shuffling and voting instruc-

tions to process dependencies as soon as possible, i.e., as soon as all of the referenced data

becomes available. The second strategy avoids data dependencies altogether by prohibiting

construction of nested back-references during compression. This second approach unfortu-

nately reduces compression efficiency somewhat, which we will quantify experimentally in

Section 7.5.

1: function MRR(HWM, read pos, write pos, length)

2: pending ← true ◃ thread has not written any output

3: do

4: if pending and read pos+length≤HWM then

5: copy length bytes from read pos to write pos

6: pending ← false

7: end if

8: votes ← ballot(pending)

9: last writer ← count leading zero bits(votes)

10: HWM ← shfl(write pos+length, last writer)

11: while votes> 0 ◃ Repeat until all threads done

12: return HWM

13: end function

Figure 7.6: Multi-Round Resolution (MRR) Algorithm.

7.4.1 MRR Strategy

Figure 7.6 shows the Multi-Round Resolution (MRR) algorithm for iterative resolution of

nested back-references, which is executed by every thread in the warp. We follow the GPU

programming convention in which each of the variables is thread-private unless it is explicitly

marked as locally or globally shared. The Boolean variable pending is initially set on 2 and

is cleared once the thread has copied its back-reference to the output (line 6).
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Figure 7.7: Multi-Round Resolution (MRR) execution.

Before calling MRR, all threads have written their literal string from their sequence

to the output, but no thread in the warp has written a back-reference yet. In order to

determine when the referenced data becomes available, the threads keep track of the high-

water mark (HWM) position of the output that has been written so far without gaps. A

back-reference whose referenced interval is below the HWM can therefore be resolved. In

each iteration, threads that have not yet written their output use the high-water mark

(HWM) to determine whether their back reference can be resolved (line 4). If so, they copy

the data from the referenced sequence to the output, and indicate that they completed their

work (lines 5 and 6).

The HWM is updated at the end of each iteration. The algorithm determines the

last sequence that was completed by the warp, and sets the HWM past the highest write

position of that sequence’s back-reference. The threads can determine the last sequence

without accessing shared memory by exploiting the warp-voting instruction ballot on the

pending flag (line 8). This produces a 32-bit bitmap that contains the pending states of

all threads in this warp. Each thread receives this bitmap and then counts the number of

leading zeros in the bitmap in order to determine the ID of the last writer thread that
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completed the last sequence. A subsequent warp-shuffle instruction broadcasts the new

HWM computed by the last writer thread to all other threads in the warp (line 10). The

iteration completes when all threads have processed their back-references.

Figure 7.7 illustrates the execution of MRR, for the set of 3 sequences from Figure 7.5.

Initially, all threads write in parallel their string of literals. In the next step, T1 copies

the back-reference of Sequence 1. In the last step, after Sequence 1 has been processed,

the dependencies of T2 and T3 are satisfied, so both threads can proceed to copy their

back-references.

At least one back-reference is resolved during each iteration which guarantees termina-

tion of the algorithm. The HWM increases strictly monotonically. The degree of achievable

parallelism depends on nesting of back-references. As soon as the referenced ranges falls

below the HWM they can be resolved simultaneously. Back-references that do not depend

on data produced by other back-references from the same warp can be resolved in one

round leading to maximum parallelism of the warp. In the worst-case scenario all but one

back-reference depends on another back-reference in the same warp. MRR then leads to

sequential execution. The next section describes a strategy that avoids this scenario.

7.4.2 DE Strategy

In this strategy, we trade off a little compression efficiency to avoid MRR’s run-time cost of

iterativelydetecting and resolving dependencies during decompression. During compression,

we prohibit nested back-references that would create data dependencies within the same

warp. This doesn’t eliminate all nested back-references, only those that would depend on

other back-references within the same warp. Prohibiting these same-warp back-references

generally results in a slightly lower compression ratio and more effort during compression,

due to the additional checking and bookkeeping. As we will show in Section 7.5, the

degradation in compression ratio and compression speed is acceptable. In return, however,

we get a 2–3× gain in decompression speed.

Dependency elimination works as follows: For every group of 32 sequences that will even-

tually be decompressed by the same warp of threads, we only look for dictionary matches

below a certain warp high-water mark (warpHWM). By choosing the warpHWM to be the
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1: pos ← 0

2: while pos<blocksize do

3: warpHWM ← pos

4: s ← 0

5: literal str ← “”

6: while s < 32 do

7: match ← find match below hwm(dict, input, warpHWM)

8: if match found then

9: emit sequence
(
(literal str, match)

)
10: update dictionary with backref(dict, match)

11: pos ← pos + match.length

12: s ← s + 1

13: literal str ← “”

14: else

15: b ← get next byte from input

16: literal str ← literal str | b

17: update dictionary with literal byte(dict, b)

18: pos ← pos + 1

19: end if

20: end while

21: end while

Figure 7.8: Modified LZ77 compression algorithm with Dependency Elimination (DE).
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a a c a f c b a a c d d

                           <1, 'b',(278,3)><1,'d', (284,4)>

Sequence 1

     T2

Sequence 2

b a a c

        T1

a a c a f c b a a c d d

                          <1, 'b',(278,3)><2,'db', (278,3)>

Sequence 1
      T2

Sequence 2

b a a

       T1

Dependency elimination

Figure 7.9: Resulting token stream without and with dependency elimination (DE).

cursor position in the input that has been completed previously by the warp, we avoid back-

references that would otherwise lead to data dependencies. Figure 7.8 shows the modified

LZ77 compression algorithm. The warpHWM is updated only after a group of 32 sequences

have been completely processed (line 3). Threads that cooperate in the compression per-

form the string matching in parallel in find match below hwm (line 7). They only look for

a match below the current warpHWM. If no match is found, the next input byte is added

to the literal string (line 16) and to the dictionary (line 17). Otherwise, if a match is found,

the thread closes and emits the output sequence comprising the current literal string and

the found match as a back-reference (line 9). Then the dictionary is updated with the found

match. The variable “pos” keeps track of the cursor position in the processed input. Fig-

ure 7.9 illustrates the algorithm with an example. The dependency of T2 on T1 is avoided

by choosing a shorter match in the back-references for Sequence 2.
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Since our Gompresso work is focused on decompression, our implementation of the

compressor is not as highly optimized as the most commonly used data compression libraries.

We decided to implement the DE algorithm in the LZ4 compression library (CPU-only)

[Collet, 2015a] in order to measure the impact that the dependency elimination has on

compression speed and the resulting compression ratio. In addition to the DE algorithm

itself, we also had to implement the logic for find match below hwm() (line 7) by modifying

the match-finding component in the LZ4 library so that it only returns matches below a

certain HWM. To find matches, the compressor of the LZ4 library uses a hash table, a

common choice for single-threaded implementations of LZ-based compression. The key in

the hash table is a string of three bytes (trigram). The value is the most recent position

in the input in which that trigram was encountered. This most recent position needs to

be compared with the warpHWM. We modified the existing hash replacement policy to

replace an occurrence with a more recent one only if the original entry is at more than some

number of bytes behind the current byte position. We use a constant value for this “minimal

staleness”, which we determined experimentally. By testing different values ranging from

64–8 K on different datasets, we determined that 1 K results in the lowest compression ratio

degradation.

7.5 Experimental Evaluation

7.5.1 Experimental Setup

We evaluate Gompresso using two different datasets. The first is a 1 GB XML dump of

the English Wikipedia. The second dataset is the ”Hollywood-2009” sparse matrix from

the University of Florida Sparse Matrix Collection, stored as a 0.77 GB Matrix Market file

format. Both sets are highly compressible. For comparison, the gzip tool achieves a com-

pression ratio of 3.09:1 for the former and 4.99:1 for the latter, using the default compression

level setting (–6). The performance measurements are conducted on a dual-socket system

with two Intel E5-2620 v2 CPUs, 2 × 6 cores running 24 hardware threads. We add an

NVIDIA Tesla K40 with 2,880 CUDA cores to the system for the GPU measurements. The

device is connected via a PCI Express (PCIe) 3.0 x16 link with a nominal bandwidth of
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Figure 7.10: (a) Decompression speed of Gompresso/Byte (data transfer cost not in-

cluded), using different dependency resolution strategies for the two datasets. (b) Number

of bytes processed on each round of MRR.

16 GB/sec in each direction. We report bandwidth numbers that include PCIe transfers.

In cases in which the PCIe bandwidth becomes the bottleneck, we report the bandwidth

with input and output data residing in the GPU’s device memory. ECC is turned on in our

measurements. We determine the decompression bandwidth as the ratio of the size of the

uncompressed data over the total processing time. Unless otherwise noted, we are using a

data block size of 256 KB and a sliding window of 8 KB. For compression, we look at the

next 64 bytes in the input for each match search in the 8 KB window. To facilitate parallel

Huffman decoding in Gompresso/Bit, we split the sequence stream into sub-blocks that

are 16 sequences long.

7.5.2 Data Dependency Resolution

7.5.3 Performance Impact of Nested back-references

We first focus on just the LZ decompression throughput of Gompresso/Byte, i.e., with no

entropy decoding, for different resolution strategies in Figure 7.10. Sequential Copying (SC)

is our baseline, in which threads copy their back-references in a sequential order without

intra-block parallelism. The figure shows that Dependency Elimination (DE) is the fastest

strategy for decompression. It is at least 5× faster than SC. We place the compressed input

and the decompressed output in device memory in this setup, and ignore PCIe transfers.

The figure shows that the decompression throughput is higher than the theoretical maximal
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Figure 7.11: Series of sequences inducing 32 and 16 rounds of resolution.

Figure 7.12: Decompression speed of MRR as a function of the number of resolution

rounds, for an artificially generated dataset.

bandwidth of the PCIe link. As expected, Multi-Round Resolution (MRR) performs better

than SC due to the higher degree of parallelism, while DE out-performs MRR because it

achieves an even higher degree of parallelism.

Figure 7.10 shows the average number of bytes that are resolved from back-references

in each round. For example, for round 2, we sum the number of bytes copied by the

active threads in the second round divided by the number of MRR iterations executed for a

dataset. The lower performance of MRR was surprising, given that we observed relatively

few bytes processed after the first round. However, what limits performance is the number

of rounds. For the Wikipedia dataset, the average number of resolution rounds is around

3, and for the Matrix dataset, 4.

To better understand the performance impact of multiple passes, we created a collection

of artificial 1 GB datasets that induce a specified depth of back-reference nesting. We

generate each dataset such that it leads to the desired depth. The general idea is as follows:
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we repeat a 16-byte string with a one-byte change occurring in an alternating fashion at

the first and last byte position. We chose the length of 16 to be close to the average back-

reference match length in the two real datasets used in our evaluation. A separator byte,

chosen from a disjoint set of bytes, is used to prevent accidental and undesired matches that

cross different instances of the repeating string. Figure 7.11 illustrates how sequences of

nested back-references are created. We show two small examples for strings of length four,

rather than 16 bytes, for space reasons. The separator bytes are printed in black, while the

repeating string is shown in green and orange colors. The arrows show the dependencies in

the MRR algorithm. LZ decompression of the dataset shown on top in Figure 7.11 will incur

data dependencies of all 32 threads in the warp except the first, whose dependency does

not cause a stall because it points to the data that was processed by this warp previously.

The nesting depth in a warp is 32, so completing the resolution requires 32 rounds. In order

to generate datasets with a smaller nesting depth, we alternate multiple distinct repeated

strings. For example, two repeated strings result in depth 16, four repeated strings in depth

8, and so on. For a depth of 16, in each round, two back-references are copied, one for each

repeated string. These two strings are marked in green and orange in the lower example in

Figure 7.11. Figure 7.12 shows the decompression time for different nesting depths. The

decompression time increases sharply until about 16 rounds. The primary reason for the

slower performance of MRR is that all threads in a warp have to wait until the entire

warp’s back-references have been resolved. Threads that resolve on the first round will be

underutilized while other threads do work in subsequent passes.

We also implemented an alternative variant of MRR that wrote nested back-references

to device memory during each round. Each round is performed in a separate kernel. Later

passes read unresolved back-references and all threads in a warp can be doing useful work.

Because of the overhead of writing to and reading from memory, together with the increased

complexity of tracking when a dependency can be resolved, the alternative variant did not

improve the performance of MRR.
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Figure 7.13: Degradation in compression efficiency and speed for DE method.

7.5.4 Impact of DE on Compression Ratio and Speed

Figure 7.13 shows the degradation in compression ratio and compression speed when elim-

inating dependencies using the Dependency Elimination (DE) algorithm we implemented

by modifying the LZ4 library. The maximum degradation is 13 % in compression speed and

19 % in compression ratio, which is acceptable since we are aiming at fast decompression.

In the remaining experiments, we use the DE method for decompression.

7.5.5 Compression Framework Tuning

Figure 7.13 shows the degradation in compression ratio and compression speed when elim-

inating dependencies using the Dependency Elimination (DE) algorithm we implemented

by modifying the LZ4 library. The maximum degradation is 13 % in compression speed and

19 % in compression ratio, which is acceptable since we are aiming at fast decompression.

In the remaining experiments, we use the DE method for decompression.

7.5.6 Dependency on Data Block Size

Figure 7.14 shows the decompression speed and compression ratio for different data block

sizes. Larger blocks increase the available parallelism for Huffman decoding because there

are more parallel sub-blocks in flight. Threads operating on sub-blocks that belong to

the same data block share the Huffman decoding tables, which are stored in the software-

controlled, on-chip memory of the GPU. This intra-block parallelism leads to a better

utilization of the GPU’s compute resources by scheduling more data blocks on the GPU’s
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Figure 7.14: Decompression speed (data transfer cost included) and ratio of Gom-

presso/Bit for different block sizes.

processors for concurrent execution (inter-block parallelism). The space required by the

Huffman decoding tables in the processors’ on-chip memory limit the number of data blocks

that can be decoded concurrently on a single GPU processor.

Each Huffman decoding table has 2CWL entries, where CWL is the maximum codeword

length. To fit the look-up tables in the on-chip memory, we are using limited-length Huffman

encoding with a maximum length of CWL = 10 bits. Figure 7.14 shows that the compression

ratio only marginally degrades for smaller blocks, so the space overhead of storing the block

header for each compressed data block is not significant.

7.5.7 GPU vs. Multi-core CPU Performance

Lastly, we compare the performance of Gompresso to state-of-the-art parallel CPU li-

braries regarding decompression speed and overall energy consumption. We used a power

meter to measure energy consumption at the wall socket. For CPU-only environments, we

physically removed the GPUs from our server to avoid including the GPU’s idle power. We

parallelize the single-threaded implementations of the CPU-based state-of-the-art compres-

sion libraries by splitting the input data into equally-sized blocks that are then processed

by the different cores in parallel. We chose a block size of 2 MB, as this size resulted in the

highest decompression speeds for the parallelized libraries. Once a thread has completed

decompressing a data block, it immediately processes the next block from a common queue.

This balances the load across CPU threads despite input-dependent processing times for
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Figure 7.15: GPU vs multicore CPU performance. Cost for transferring data to and from the

GPU is included for Gompresso/Bit. For Gompresso/Byte, we show the performance

both including and not including data transfers.

Figure 7.16: GPU vs multicore CPU performance. Cost for transferring data to and from the

GPU is included for Gompresso/Bit. For Gompresso/Byte, we show the performance

both including and not including data transfers.
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Figure 7.17: GPU vs. multicore CPU energy consumption.

the different data blocks.

Figure 7.15 shows the trade-offs between decompression speed and compression ratio.

In addition to the measurements of our Gompresso system, we include the performance

of two byte-level compression libraries (LZ4, Snappy) and for two libraries using bit-level

encoding (gzip, zlib) for comparison. Zstd implements a different coding algorithm on top

of LZ-compression that is typically faster than Huffman decoding, and we include it in our

measurements for completeness [Collet, 2015b]. zlib implements the DEFLATE scheme for

the CPU. For the GPU measurements, we show the end-to-end performance, including times

for: (a) both compressed input and uncompressed output over PCIe, marked (In/Out) in

Figure 7.15; (b) only the input transfers, marked as (In); and (c) ignoring data transfers

altogether, marked as No PCIe.

For Gompresso/Byte, PCIe transfers turned out to be the bottleneck. In separate

bandwidth tests, we were able to achieve a PCIe peak bandwidth of 13 GB/sec. Gom-

presso/Bit, though not PCIe-bound, is still 2× faster than zlib and Gompresso/Byte

is 1.35× faster than LZ4. For the matrix dataset, the decompression speed of Gom-

presso/Bit is around 2× faster than zlib. There is around 9 % degradation in compression

ratio because we use limited-length Huffman coding. Although it lowers the compression

efficiency, it enables us to fit more Huffman decoding tables into the on-chip memory.
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Finally, we compare the energy consumed to decompress the Wikipedia dataset. In

general, faster decompression on the same hardware platform results in improved energy

efficiency. This is because the power drawn at the system level, i.e., at the wall plug, does

not differ significantly for different algorithms. More interesting is the energy efficiency

when comparing different implementations on different hardware platforms, e.g., a paral-

lel CPU vs. a GPU solution. Figure 7.17 shows the overall energy consumption versus

the compression ratio for Gompresso and a number of parallelized CPU-based libraries.

Gompresso/Bit consumes around 1.2× less energy than the parallel zlib library. It also

has similar energy consumption to Zstd, which implements a faster coding algorithm.

7.6 Summary & Conclusions

The exponentially-increasing data volumes of the Big Data era make data compression es-

sential to control storage costs. The time to analyze such large data volumes is largely depen-

dent upon how fast it can be accessed and decompressed. As processor speeds plateau, the

best hope for significantly speeding up these operations is massively parallelizing them. Un-

fortunately, straightforward “divide and conquer” techniques that assign each data block to

one thread don’t sufficiently exploit massively-parallel computing platforms such as GPUs,

so more sophisticated algorithms that achieve parallelism within blocks of data are required.

We developed techniques for massively parallelizing decompression using GPUs, imple-

mented those techniques in two variants of the Gompresso system, and evaluated their

performance in terms of decompression speed, the resulting compression ratio, and the

energy consumed in the process. Decompression involves two operations that are inher-

ently hard to parallelize: Huffman decoding and resolution of back-references in the typical

LZ-style decompression. We presented one solution to parallelizing Huffman decoding by

using parallel sub-blocks, and two techniques to resolve back-references in parallel. The first

technique, called Multi-Round Resolution (MRR), exploits fast data-exchange primitives on

GPUs in an algorithm that iteratively resolves back-references. The second, called Depen-

dency Elimination (DE), is a simple technique during compression to limit back-references

within a set of sub-blocks, thereby eliminating data dependencies that will stall parallelism
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among collaborating threads that are concurrently decompressing that set of sub-blocks.

We implemented the above techniques in two variants of decompression for GPUs, called

Gompresso/Bit and Gompresso/Byte, where Gompresso/Bit adds parallel Huffman

decoding to LZ-style decompression. Gompresso, running on an NVIDIA Tesla K40, de-

compressed two real-world datasets 2× faster than the state-of-the-art block-parallel variant

of zlib running on a modern multi-core CPU, while suffering no more than a 10 % penalty in

compression ratio. Gompresso also uses 17 % less energy by using GPUs, when evaluated

against state-of-the-art parallel CPU libraries for decompression.

Future work includes determining the extent to which our parallelization techniques can

be applied to alternative coding and context-based compression schemes, and evaluating

their performance. While our performance improvements over CPU-based algorithms are

impressive, we continue to study innovative ways to significantly increase both the speed

and efficiency of decompression using massively-parallel hardware.
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Chapter 8

Concluding Remarks and Future

Work

In the present thesis, we proposed a set of techniques addressing fundamental limitations

of in-memory analytics operators on GPUs. Our techniques extend to different steps of

query processing: Data preprocessing, data storage layout, query plan compilation, and

algorithmic optimization of data processing operators. Our novel compression framework

can be used to fit more data in the GPU memory or as a stand-alone tool. Our techniques

are based on the SIMT architecture of GPUs and their memory hierarchy, designed for

high throughput rather than low latency. We focus on fundamental features of GPUs so we

project that our techniques will be useful for future GPU generations. The next sections

suggest interesting directions for future work on GPU data analytics.

8.1 GPU Query Execution Optimization

We suggested an execution optimization algorithm for conjunctive selections on GPUs. Our

solution uses an accurate analytical model to compare the performance of alternative con-

junctive scan selection plans based on the predicted memory performance involving the

number of memory accesses, the memory locality and the latency hiding factor of indepen-

dent memory requests from the GPU hardware. Our model abstracts the characteristics

of the GPU memory hierarchy that impact the selection performance. Further work would
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model the performance of more complex queries on the GPU involving joins, aggregations,

and disjunctions. The ordering of the operators would be decided by the query optimizer,

as in traditional database systems. An underlying execution optimizer would determine the

optimal query execution plan using the cardinality estimation component and our calibrated

model of the GPU memory characteristics.

Query execution also is responsible for translating queries from SQL to low-level code.

A first approach translates SQL queries to source code languages such as C++. However,

LLVM query compilation is more efficient [Suhan and Mostak, 2015]. LLVM query com-

pilation translates SQL queries to intermediate architecture independent code and has the

additional advantage of portability across different architectures, CPUs or different GPU

processor types. However, even if LLVM compilation is relatively more efficient, it might

pose an overhead for queries with low latency requirements, such as in real-time analyt-

ics applications. Similar queries or queries with a similar structure and different constant

parameters might be reoccurring so caching queries can reduce the query compilation cost.

8.2 String Matching Acceleration

We suggested software techniques reducing thread divergence of string matching and re-

organize the string layout to optimize memory accesses for the GPU memory hierarchy.

String data is amenable to compression enabling larger datasets to fit in the GPU and in

some cases compressing strings also improves pattern matching performance. Decompress-

ing text before performing string matching is the straightforward approach to compressed

pattern matching. More sophisticated algorithms for compressed pattern matching, search

strings either by skipping the decompression step or by only decompressing segments of the

input strings. Compressed pattern matching algorithms have been designed for different

types of text compression: such as Huffman Coding [Klein and Shapira, 2005] and LZ-

compression[Farach and Thorup, 1995; Gawrychowski, 2011]. Accelerating string matching

on different forms of compressed would not only evaluate the raw performance of algorithms

for different formats but also would produce a time-space timeline of the evaluated algo-

rithms. Compressed pattern matching would revisit the optimal layout for strings in the
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GPU device memory since compressed text would be bit-aligned rather than byte-aligned.

8.3 Massively Parallel Lossless Compression

Our work focused on accelerating the Deflate decompressor. We identify critical opportu-

nities for hardware-accelerated data compression. One important direction for future work

is exploring alternative coding schemes and evaluate whether they change the performance

skyline of compression frameworks. We showed how to parallelize Huffman decoding by

spitting data blocks into smaller sub-blocks, that can be decoded in parallel by different

parallel processors. This parallelization technique could be applied to other variable length

coding algorithms. The main alternative coding approaches involve Arithmetic Coding

[Rissanen, 1976] and Finite State Encoding [Duda, 2013].

Another research opportunity lies in exploring the efficiency of application-specific com-

pression methods on massively parallel processors. Application-specific compression schemes

become increasingly popular for large-scale data systems because of the higher resulting

compression efficiency[Jun et al., 2012]. The question remaining is how context-aware tech-

niques can be adapted for GPUs.

Finally, we evaluated Gompresso in the context of a GPU. Gompresso, however, is

generally designed for massively parallel architectures so it would be worth evaluating the

use of Xeon Phi for decompression acceleration. Xeon Phi has many simpler cores, as

GPUs. In Section 1.2 we discussed the similarities of GPUs to vector processors. However,

the internals of GPUs and Xeon Phi are significantly different leaving to future work to

determine whether our techniques would be efficient on Xeon Phi.

8.4 Heterogeneous Computing Data Analytics

Our techniques result in significant speed-ups over the CPU counterparts. However, in

some cases, CPUs are still a viable alternative because of their better Performance/$ ratio.

Based on this observation, in the next years, we expect database systems to be designed

for heterogeneous processing. This trend is supported by the increase of the GPU memory

capacity and the faster interconnection between the CPUs and the GPUs.
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Designing heterogeneous systems that utilize efficiently all available processors require

cost models to compare the absolute performance of queries on the available processors. In

Chapter 4, we discussed the accuracy of analytical models predicting the relative perfor-

mance of selection plans. Learning-based approaches have been suggested as an alternative

solution to traditional computational cost models, which are more computationally ex-

pensive but can seamlessly adapt to new hardware. Learning models can also select the

optimal operator variants in a hardware-oblivious way [Rosenfeld et al., 2015] for a subset

of operators. A natural way to extend this line of work is incorporating into the execution

optimization framework more database operators, as for example joins. Our conjunctive se-

lection optimization presents a middle ground between hardware-oblivious approaches and

hardware-aware approaches: We suggest running a calibration step on each available device

capturing critical features of the processor, such as the potential to overlap memory requests,

the performance of atomic updates and the random access memory performance. Running

this calibration step does not require prior knowledge of the device features and does not

pose an overhead, as it only has to be executed on a small sample of data. Our conjunctive

selection strategy could be extended for more general and complex queries. Additionally, it

could incorporate into the cost model alternative methods to write the intermediate results

in the GPU global memory, such as bitmaps [Rosenfeld et al., 2015]. After extending our

approach for general queries, the next step is comparing hardware-oblivious optimization

approaches to an approach as ours that captures the underlying hardware characteristics for

decision support benchmarks, such as TPC-H [Transaction Processing Performance Council,

2014].

At a practical level, the cost of increased code complexity must be quantified for hetero-

geneous systems. Integration of multiple processors means more code paths, increasing the

cost of code maintenance. The alternative is having a single code-path for all processors and

using the driver of each processor to translate it to low-level code. For example, OpenCL

code can be executed, basically unmodified on CPUs and GPUs. It would be essential for

future research to further evaluate how much performance is left on the table when using a

single code-path.

Minimizing idle power is also another objective of CPU/GPU co-processing. Adding
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one or multiple or GPUs to a system means more power wasted if these processors re-

main idle. This effect would diminish one of the advantages of using accelerators, which

is reduced energy consumption. We could increase the processor utilization by monitor-

ing the resource usage of the available processors and using this information for query

scheduling, ultimately improving overall performance. Learning models could be used

to schedule queries to processors during query runtime based on the operator execution

time, processor load and data transfer cost between the main processor and the pro-

cessors [Breß et al., 2012]. Efficient resource usage monitoring is important for multi-

query processing since processing only a single query at a time might underutilize pro-

cessor resources. To evaluate alternative scheduling methods, we have to rethink the

nature of the cost models for heterogeneous query processing. This reevaluation would

involve adapting for GPUs computational models suggested for CPUs [Wu et al., 2013;

Li et al., 2014] and comparing them to learning models focusing on hybrid CPU/GPU

processing [Breß et al., 2013].
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Appendix

Shared memory is divided into equally-sized buffers equal to the number of warps in a

thread block. When threads in a warp read a warp’s worth of data a local prefix sum is

computed for the values satisfying the condition and these values are written in the shared

memory buffer of this warp. To compute the local prefix sum we use CUDA intrinsics ballot

( ballot()) and population count ( popc()). Ballot function returns a 32-bit integer which

combines the condition outcome from each thread, where the i-th bit is set if the condition

is true for the corresponding thread in the warp. The population count function computes

how many bits were set. When the buffer of each warp is full the threads of this warp write

its contents to the global memory in a coalesced way.
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