More Than a Feeling: Emotion in Text

Candidacy Examination

Elsbeth Turcan
April 23, 2019

Columbia University, Department of Computer Science
Introduction
Introduction

Incorporating Psychological Models

• Scientists make modeling assumptions to study real-world phenomena
• Natural language processing - author and audience
• Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this
• A domain-specific understanding of these phenomena can help incorporate them
Focus for this talk: emotion in text

1. Introduction
2. Emotion and Influence
3. Emotion Classification
4. Uniting NLP Methods with Psychological Theories
5. Conclusion
Emotion and Influence
• Studying emotion and influence is not a new idea
In Argumentation Theory

- Studying emotion and influence is **not** a new idea
- Western roots in Aristotle (**Alan Brinton**)
 - Recognition by some of the earliest, most influential Western scholars
 - Pathos - one of Aristotle’s essential means of persuasion
 - Pathos related to morality and virtue for Aristotle
 - Persuading to feel emotion vs. emotion as basis for action
In Argumentation Theory

- Western roots in Aristotle (Alan Brinton)
- Argumentation and logic (Michael Gilbert)
 - Proposition: emotional and factual argument are *equally* fuzzy and ambiguous
 - Treats emotion under the *acceptability, relevance, sufficiency framework*
Western roots in Aristotle (Alan Brinton)
Argumentation and logic (Michael Gilbert)
- Proposition: emotional and factual argument are equally fuzzy and ambiguous
- Treats emotion under the acceptability, relevance, sufficiency framework
- In order to study the real world, we must study the things that actually happen, not just their idealized models
Emotion and influence highly studied in psychology
• Emotion and influence highly studied in psychology

• Processing arguments (Schwarz et al.)
 • Critical review of candidate mechanisms for how emotion affects persuasion
 • Central vs. peripheral processing
• Processing arguments (Schwarz et al.)
 • Mood as peripheral cue hypothesis
 • Mood congruency hypothesis
 • Change in criteria hypothesis
 • Motivational hypothesis
 • Cognitive capacity hypothesis
• Processing arguments (Schwarz et al.)
 • Mood as peripheral cue hypothesis
 • Mood congruency hypothesis
 • Change in criteria hypothesis
 • Motivational hypothesis
 • Cognitive capacity hypothesis
In Psychology

- Processing arguments (Schwarz et al.)
- Critical review of candidate mechanisms for how emotion affects persuasion
Process argumentation (Schwarz et al.)
- Critical review of candidate mechanisms for how emotion affects persuasion
- Conclusion: negative mood more conducive to central processing
• Processing arguments (Schwarz et al.)
• Making arguments (Villata et al.)
 • Used facial expression to examine emotions felt while arguing
 • Some significant correlations observed (e.g., sadness \propto withdrawal)
In Psychology

- Processing arguments (Schwarz et al.)
- Making arguments (Villata et al.)
 - Used facial expression to examine emotions felt while arguing
 - Some significant correlations observed (e.g., sadness \(\propto\) withdrawal)
 - Emotion and the process of making an argument do interact
In Computer Science

- Effects of argument type by audience (*Lukin et al.*)
 - Interaction of argument type and audience personality
 - No measures of long-lasting belief change, but definite short-term effects

- Characterizing emotional vs. logical arguments (*Oraby et al.*)
 - Syntactic patterns extracted from emotional and logical arguments
 - Logical arguments more structural, emotional more vivid and immediate
In Computer Science

- Effects of argument type by audience (Lukin et al.)
 - Interaction of argument type and audience personality
 - No measures of long-lasting belief change, but definite short-term effects
- Characterizing emotional vs. logical arguments (Oraby et al.)
 - Syntactic patterns extracted from emotional and logical arguments
 - Logical arguments more structural, emotional more vivid and immediate
- ...and...?
Emotion and Influence

Summary

- Emotion plays a significant role in influence and has been studied extensively in multiple fields
• Emotion plays a significant role in influence and has been studied extensively in multiple fields
• Emotion interacts with cognition—in the author and audience
Emotion and Influence

Summary

- Emotion plays a significant role in influence and has been studied extensively in multiple fields
- Emotion interacts with cognition—in the author and audience
- However, there is a dearth of computational work in this area
Emotion Classification
Emotion Classification

- Problem: given a piece of text, assign it one (or more) emotion label(s)

 Smiling like the cat who got the canary right now. Just got this beauty from Publix....#MyDayIsMade❤️🔥😍😊😂рап

- Typically a supervised machine learning problem with discrete emotion labels
- Greatly accelerated with popularization of social media data

1https://twitter.com/YLKATDelta/status/1117913821513838597
A Very Abridged History of Emotion Classification

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- EmoNet (2017)
- DeepMoji (2017)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
- Twitter Big Data (2012)
- Multi-Task (2018)
Emotion Categories

Ekman’s Six Basic Emotions (universal facial expressions)

Plutchik’s Wheel of Emotions (evolutionarily adaptive behaviors)

Other Models
- Circumplex model
- Geneva emotion wheel
- Valence/sentiment
- Still many more in psychology literature
- etc.....
A Very Abridged History of Emotion Classification

Ekman’s Six

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- EmoNet (2017)
- DeepMoji (2017)
- Twitter Big Data (2012)
- DeepEmo (2018)
- Emo2Vec (2018)
- Multi-Task (2018)
- NTUA-SLP (2018)
A Very Abridged History of Emotion Classification

Plutchik’s Wheel

- Emotions from Text (2005)
- Image Descriptions (2012)
- Learning Emotions (2008)
- Emotions from Text (2005)
- Image Descriptions (2012)
- Learning Emotions (2008)
- Twitter Big Data (2012)
- EMOTEX (2014)
- EmoNet (2017)
- DeepMoji (2017)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
- Multi-Task (2018)
A Very Abridged History of Emotion Classification

Other Emotion Schemes

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- EmoNet (2017)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
- Multi-Task (2018)
A Very Abridged History of Emotion Classification

Traditional ML

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- EmoNet (2017)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
- Multi-Task (2018)
Non-Neural Approaches

- Linear classifiers (SVM, Naïve Bayes)
- Decision and distance algorithms (decision trees, k-nearest neighbor, latent semantic analysis)
Feature Representation

- Bag-of-ngram features
- Lexical features (punctuation, emoticons, ALL CAPS)
- Semantic features (POS tags, negations)
- Curated lexicons (LIWC, WordNet, DAL, MPQA Subjectivity Lexicon)
A Very Abridged History of Emotion Classification

Deep Learning

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- EmoNet (2017)
- Multi-Task (2018)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
Deep Learning (Supervised)

Recurrent Networks

- Long Short-Term Memory Networks (NTUA-SLP, DeepMoji)
- Gated Recurrent Neural Networks (EmoNet, Multi-Task)
- “Tricks”: bidirectional, attention

Convolutional Networks

- A sort of neural n-gram approach (DeepEmo, Emo2Vec)
Emotional Embeddings

- Model-specific word embedding layers
- **NTUA-SLP** - add 10 affective dimensions and spread scores from hand-annotated words
- **DeepEmo** - collect syntactic patterns indicative of different emotions
A Very Abridged History of Emotion Classification

Hand-Annotated Corpora

- Learning Emotions (2008)
- Emotions from Text (2005)
- Image Descriptions (2012)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- EmoNet (2017)
- DeepEmo (2018)
- Emo2Vec (2018)
- NTUA-SLP (2018)
- Multi-Task (2018)
Hand-Annotated Corpora

- A small number of manual annotators ([Emotions from Text, Learning Emotions](#))
- Crowdsourced annotations ([Image Descriptions, Multi-Task](#))
A Very Abridged History of Emotion Classification

Distant Labeling

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- EmoNet (2017)
- DeepMoji (2017)
- Twitter Big Data (2012)
- DeepEmo (2018)
- Emo2Vec (2018)
- Multi-Task (2018)
- NTUA-SLP (2018)
Distant Labeling - Social Media

- **Twitter hashtags** - EmoNet, EMOTEX, DeepEmo, Twitter Big Data, Emo2Vec, Multi-Task
- **DeepMoji** - Tweets with emojis
- **Image Descriptions** - LiveJournal posts (author provides a mood)

Validation studies - Crowd annotations match distant labels fairly well and inform preprocessing (e.g., hashtags at end of Tweet only)
A Very Abridged History of Emotion Classification

Multi-Task Learning

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- NTUA-SLP (2018)
- DeepEmo (2018)
- Emo2Vec (2018)
- Multi-Task (2018)
- EmoNet (2017)
Multi-task Learning

- **Multi-Task** - same task, two different datasets (distantly labeled vs. hand-annotated)
- **Emo2Vec** - seven tasks (emotion classification/intensity, sentiment, sarcasm, stress, abusive language, personality, insults)
A Very Abridged History of Emotion Classification

Transfer Learning

- Learning Emotions (2008)
- Image Descriptions (2012)
- Emotions from Text (2005)
- EMOTEX (2014)
- Twitter Big Data (2012)
- DeepMoji (2017)
- DeepEmo (2018)
- EmoNet (2017)
- Emo2Vec (2018)
- Multi-Task (2018)
- NTUA-SLP (2018)
Transfer Learning

- **NTUA-SLP** - pretraining on much larger sentiment dataset (SemEval 2017); fine-tuned whole model simultaneously

- **DeepMoji** - pretraining on emoji prediction task; fine-tuned using chain-thaw approach
A Very Abridged History of Emotion Classification

F1 Comparison

- Learning Emotions (2008) - 0.18
- Image Descriptions (2012) - 0.52
- Twitter Big Data (2012) - 0.65
- EMOTEX (2014) - 0.83
- EmoNet (2017) - 0.90
- DeepMoji (2017) - 0.56
- DeepEmo (2018) - 0.72
- Emo2Vec (2018) - 0.47
- NTUA-SLP (2018) - 0.58
- Multi-Task (2018) - 0.65

Elsbeth Turcan (Columbia CS)
A Very Abridged History of Emotion Classification

F1 Comparison

- Emotions from Text (2005) - 0.18
- Image Descriptions (2012) - 0.52*
- Twitter Big Data (2012) - 0.65*
- EMOTEX (2014) - 0.83
- EmoNet (2017) - 0.90
- DeepMoji (2017) - 0.56*
- Emo2Vec (2018) - 0.72
- DeepEmo (2018) - 0.90
- Multi-Task (2018) - 0.65*
- NTUA-SLP (2018) - 0.47*

Elsbeth Turcan (Columbia CS)
Summary

- Computational research in affectual text processing is expanding
 - Distant labeling and deep learning have had a huge impact
 - Adjacent problems: emotion intensity, causes of emotion, etc.
Computer research in affectual text processing is expanding

- **Distant labeling and deep learning** have had a huge impact
- Adjacent problems: emotion intensity, causes of emotion, etc.
• Computational research in affectual text processing is expanding
 • Distant labeling and deep learning have had a huge impact
 • Adjacent problems: emotion intensity, causes of emotion, etc.
• Little work done to validate our choice or use of psychological theory
 • e.g., choice of emotion labels; domain-informed features
Summary

- Computational research in affectual text processing is expanding
 - Distant labeling and deep learning have had a huge impact
 - Adjacent problems: emotion intensity, causes of emotion, etc.
- Little work done to validate our choice or use of psychological theory
 - e.g., choice of emotion labels; domain-informed features
Summary

- Computational research in affectual text processing is expanding
 - Distant labeling and deep learning have had a huge impact
 - Adjacent problems: emotion intensity, causes of emotion, etc.
- Little work done to validate our choice or use of psychological theory
 - e.g., choice of emotion labels; domain-informed features
- Current models are not very interpretable
Summary

- Computational research in affectual text processing is expanding
 - Distant labeling and deep learning have had a huge impact
 - Adjacent problems: emotion intensity, causes of emotion, etc.
- Little work done to validate our choice or use of psychological theory
 - e.g., choice of emotion labels; domain-informed features
- Current models are **not very interpretable**
Uniting NLP Methods with Psychological Theories
NLP Methods and Psychological Theories

- Psychology theory
- Psychology statistics
- NLP methods

Arrows indicate:
- Informed models
- Empirical testing
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
- Interaction of language and emotion perception (Lindquist et al.)
 - Satiating relevant emotion words made emotion-matching tasks more difficult
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
- Interaction of **language** and emotion perception (**Lindquist et al.**)
 - Satiating relevant emotion words made emotion-matching tasks more difficult
 - **Suggests humans use emotion words to categorize emotional stimuli**
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
- Interaction of language and emotion perception (Lindquist et al.)
 - Satiating relevant emotion words made emotion-matching tasks more difficult
 - Suggests humans use emotion words to categorize emotional stimuli
- Influence of presentation on emotion perception (Sapute et al.)
 - Expressing a choice as a binary or continuum changed the tipping point for choosing one label or the other
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
- Interaction of **language** and emotion perception (**Lindquist et al.**)
 - Satiating relevant emotion words made emotion-matching tasks more difficult
 - Suggests humans use emotion words to categorize emotional stimuli
- Influence of **presentation** on emotion perception (**Sapute et al.**)
 - Expressing a choice as a binary or continuum changed the tipping point for choosing one label or the other
 - **The change correlated with different patterns of brain activity, suggesting a difference in perception**
Useful Theories from Psychology

- Psychology theory can influence how we build models and collect our data
- Interaction of language and emotion perception (Lindquist et al.)
 - Satiating relevant emotion words made emotion-matching tasks more difficult
 - Suggests humans use emotion words to categorize emotional stimuli
- Influence of presentation on emotion perception (Sapute et al.)
 - Expressing a choice as a binary or continuum changed the tipping point for choosing one label or the other
 - The change correlated with different patterns of brain activity, suggesting a difference in perception
- **How we talk about and present emotions can change how we and our annotators perceive them**
NLP Methods and Psychological Theories

- Psychology theory
- Psychology statistics
- NLP methods

Flow:
- Informed models from Psychology theory to NLP methods
- Empirical testing from NLP methods to Psychology statistics
- Informed models from Psychology statistics back to Psychology theory

Elsbeth Turcan (Columbia CS) Emotion in Text
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
- Analyzing motives for self-injury (*Snir et al.*)
 - Participants kept numerical diaries about acts and urges of self-harm
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
- Analyzing motives for self-injury (Snir et al.)
 - Participants kept numerical diaries about acts and urges of self-harm
 - Textual analysis can support or challenge survey answers and provide deeper insight into the variables of interest
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
- Analyzing motives for self-injury (*Snir et al.*)
 - Participants kept numerical diaries about acts and urges of self-harm
 - Textual analysis can support or challenge survey answers and provide deeper insight into the variables of interest
- Analyzing the effects of the implicit power motive (*Ditlmann et al.*)
 - Implicit power motive: individual’s tendency to seek influence
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
- Analyzing motives for self-injury (*Snir et al.*)
 - Participants kept numerical diaries about acts and urges of self-harm
 - Textual analysis can support or challenge survey answers and provide deeper insight into the variables of interest
- Analyzing the effects of the implicit power motive (*Ditlmann et al.*)
 - Implicit power motive: individual’s tendency to seek influence
 - Examined how this motive was expressed and received
Benefits of NLP Methods

- Psychology and health research tends to rely on human experts and shy away from textual data
- Analyzing motives for self-injury (Snir et al.)
 - Participants kept numerical diaries about acts and urges of self-harm
 - Textual analysis can support or challenge survey answers and provide deeper insight into the variables of interest
- Analyzing the effects of the implicit power motive (Ditlmann et al.)
 - Implicit power motive: individual’s tendency to seek influence
 - Examined how this motive was expressed and received
 - Text data was coded and manipulated by hand, so sample size was small
NLP Methods and Psychological Theories

Psychology theory

Psychology statistics

NLP methods

empirical testing

informed models

large-scale analysis

statistical rigor
Integration: NLP Tasks

<table>
<thead>
<tr>
<th>Paper</th>
<th>Li et al.</th>
<th>Rosenthal & McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>targeted sentiment</td>
<td>influence detection</td>
</tr>
<tr>
<td>Theory</td>
<td>social cognitive theories</td>
<td>Cialdini’s weapons of influence</td>
</tr>
<tr>
<td>Implementation</td>
<td>postprocessing predictions to conform to theory (e.g., attitudes are globally consistent)</td>
<td>features fed into linear classifier (predicted traits of author and of the majority in the discussion)</td>
</tr>
</tbody>
</table>
Integration: NLP Tasks

<table>
<thead>
<tr>
<th>Paper</th>
<th>Li et al.</th>
<th>Rosenthal & McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>targeted sentiment</td>
<td>influence detection</td>
</tr>
<tr>
<td>Theory</td>
<td>social cognitive theories</td>
<td>Cialdini's weapons of influence</td>
</tr>
<tr>
<td>Implementation</td>
<td>postprocessing predictions to conform to theory (e.g., attitudes are globally consistent)</td>
<td>features fed into linear classifier (predicted traits of author and of the majority in the discussion)</td>
</tr>
</tbody>
</table>

- Incorporating theory allows us to test that theory on a large scale
Integration: NLP Tasks

<table>
<thead>
<tr>
<th>Paper</th>
<th>Li et al.</th>
<th>Rosenthal & McKeown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>targeted sentiment</td>
<td>influence detection</td>
</tr>
<tr>
<td>Theory</td>
<td>social cognitive theories</td>
<td>Cialdini's weapons of influence</td>
</tr>
<tr>
<td>Implementation</td>
<td>postprocessing predictions to conform to theory (e.g., attitudes are globally consistent)</td>
<td>features fed into linear classifier (predicted traits of author and of the majority in the discussion)</td>
</tr>
</tbody>
</table>

- Incorporating theory allows us to test that theory on a large scale
- **We must consider what conclusions we can make and what our models measure**
Integration: Mental Health and Psychology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>predict future suicidal ideation</td>
<td>predict emotional features of text</td>
<td>predict future incidence of psychosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>given time and location</td>
<td></td>
</tr>
<tr>
<td>Empirical work</td>
<td>mental health</td>
<td>emotion, trauma</td>
<td>schizophrenia</td>
</tr>
<tr>
<td>Implementation</td>
<td>handcrafted semantic and syntactic</td>
<td>LIWC</td>
<td>LSA, syntactic features</td>
</tr>
<tr>
<td></td>
<td>features</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Integration: Mental Health and Psychology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>predict future suicidal ideation</td>
<td>predict emotional features of text given time and location</td>
<td>predict future incidence of psychosis</td>
</tr>
<tr>
<td>Empirical work</td>
<td>mental health</td>
<td>emotion, trauma</td>
<td>schizophrenia</td>
</tr>
<tr>
<td>Implementation</td>
<td>handcrafted semantic and syntactic features</td>
<td>LIWC</td>
<td>LSA, syntactic features</td>
</tr>
</tbody>
</table>

- Large-scale NLP methods complement domain knowledge
- Careful analysis of textual features bolsters their trustworthiness
Integration: Mental Health and Psychology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Task</td>
<td>predict future suicidal ideation</td>
<td>predict emotional features of text given time and location</td>
<td>predict future incidence of psychosis</td>
</tr>
<tr>
<td>Empirical work</td>
<td>mental health</td>
<td>emotion, trauma</td>
<td>schizophrenia</td>
</tr>
<tr>
<td>Implementation</td>
<td>handcrafted semantic and syntactic features</td>
<td>LIWC</td>
<td>LSA, syntactic features</td>
</tr>
</tbody>
</table>

- Large-scale NLP methods complement domain knowledge
- Careful analysis of textual features bolsters their trustworthiness
- **We must consider what conclusions we can make and what our models measure**
Conclusion
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this.
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this

- **Emotion has been recognized as a valid component of influence, but is understudied in the computational literature**
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this.
- Emotion has been recognized as a valid component of influence, but is understudied in the computational literature.
- **Affectual text processing is a growing field, but lacking in psychological grounding.**
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this.
- Emotion has been recognized as a valid component of influence, but is understudied in the computational literature.
- Affectual text processing is a growing field, but lacking in psychological grounding.
- **External theory and NLP methods complement one another to draw conclusions supported by domain experts and the power of big data.**
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this.
- Emotion has been recognized as a valid component of influence, but is understudied in the computational literature.
- Affectual text processing is a growing field, but lacking in psychological grounding.
- External theory and NLP methods complement one another to draw conclusions supported by domain experts and the power of big data.
- *If we apply it carefully, external theory can help us build more informed and interpretable models that better represent the real world.*
Recap

- Humans produce and consume the text we study (so far), and our models lack crucial information if we do not recognize this.
- Emotion has been recognized as a valid component of influence, but is understudied in the computational literature.
- Affectual text processing is a growing field, but lacking in psychological grounding.
- External theory and NLP methods complement one another to draw conclusions supported by domain experts and the power of big data.
- If we apply it carefully, external theory can help us build more informed and interpretable models that better represent the real world.

Thank you for listening!